
Package ‘chores’
July 22, 2025

Title A Collection of Large Language Model Assistants

Version 0.2.0

Description Provides a collection of ergonomic large language model assistants
designed to help you complete repetitive, hard-to-automate tasks quickly.
After selecting some code, press the keyboard shortcut you've chosen to
trigger the package app, select an assistant, and watch your chore be
carried out. While the package ships with a number of chore helpers for R
package development, users can create custom helpers just by writing some
instructions in a markdown file.

License MIT + file LICENSE

Config/testthat/edition 3

Encoding UTF-8

RoxygenNote 7.3.2

URL https://github.com/simonpcouch/chores,

https://simonpcouch.github.io/chores/

BugReports https://github.com/simonpcouch/chores/issues

Imports cli (>= 3.6.3), glue (>= 1.8.0), ellmer, miniUI (>= 0.1.1.1),
rlang (>= 1.1.4), rstudioapi (>= 0.17.1), shiny (>= 1.9.1),
streamy

Suggests gt, knitr, rmarkdown, testthat (>= 3.0.0), tibble, withr

VignetteBuilder knitr

NeedsCompilation no

Author Simon Couch [aut, cre] (ORCID: <https://orcid.org/0000-0001-5676-5107>),
Posit Software, PBC [cph, fnd] (ROR: <https://ror.org/03wc8by49>)

Maintainer Simon Couch <simon.couch@posit.co>

Repository CRAN

Date/Publication 2025-04-30 15:10:02 UTC

1

https://github.com/simonpcouch/chores
https://simonpcouch.github.io/chores/
https://github.com/simonpcouch/chores/issues
https://orcid.org/0000-0001-5676-5107
https://ror.org/03wc8by49

2 .init_addin

Contents

.init_addin . 2

.init_helper . 3
cli_helper . 4
directory . 7
helper_options . 9
prompt . 9
roxygen_helper . 11
testthat_helper . 14

Index 17

.init_addin Run the chores addin

Description

The chores addin allows users to interactively select a chore helper to interface with the current
selection. This function is not intended to be interfaced with in regular usage of the package.
To launch the chores addin in RStudio, navigate to Addins > Chores and/or register the addin with a
shortcut via Tools > Modify Keyboard Shortcuts > Search "Chores"–we suggest Ctrl+Alt+C
(or Ctrl+Cmd+C on macOS).

Usage

.init_addin()

Value

NULL, invisibly. Called for the side effect of launching the chores addin and interfacing with selected
text.

Examples

if (interactive()) {
.init_addin()

}

.init_helper 3

.init_helper Initialize a Helper object

Description

Users typically should not need to call this function.

• Create new helpers that will automatically be registered with this function with prompt_new().

• The chores addin will initialize needed helpers on-the-fly.

Usage

.init_helper(chore = NULL, .chores_chat = getOption(".chores_chat"))

Arguments

chore The identifier for a helper prompt. By default one of "cli", "testthat" or "roxy-
gen", though custom helpers can be added with prompt_new().

.chores_chat An ellmer Chat, e.g. function() ellmer::chat_claude(). Defaults to the
option by the same name, so e.g. set options(.chores_chat = ellmer::chat_claude())
in your .Rprofile to configure chores with ellmer every time you start a new R
session.

Value

A Helper object, which is a subclass of an ellmer chat.

Examples

requires an API key and sets options
Not run:
to create a chat with claude:
.init_helper(.chores_chat = ellmer::chat_claude())

or with OpenAI's 4o-mini:
.init_helper(.chores_chat = ellmer::chat_openai(model = "gpt-4o-mini"))

to set OpenAI's 4o-mini as the default model powering chores, for example,
set the following option (possibly in your .Rprofile, if you'd like
them to persist across sessions):
options(

.chores_chat = ellmer::chat_openai(model = "gpt-4o-mini")
)

End(Not run)

4 cli_helper

cli_helper The cli helper

Description

A couple years ago, the tidyverse team began migrating to the cli R package for raising errors,
transitioning away from base R (e.g. stop()), rlang (e.g. rlang::abort()), glue, and homegrown
combinations of them. cli’s new syntax is easier to work with as a developer and more visually
pleasing as a user.

In some cases, transitioning is as simple as Finding + Replacing rlang::abort() to cli::cli_abort().
In others, there’s a mess of ad-hoc pluralization, paste0()s, glue interpolations, and other assorted
nonsense to sort through. Total pain, especially with thousands upon thousands of error messages
thrown across the tidyverse, r-lib, and tidymodels organizations.

The cli helper helps you convert your R package to use cli for error messages.

Cost

The system prompt for a cli helper includes something like 4,000 tokens. Add in (a generous) 100
tokens for the code that’s actually highlighted and also sent off to the model and you’re looking
at 4,100 input tokens. The model returns approximately the same number of output tokens as it
receives, so we’ll call that 100 output tokens per refactor.

As of the time of writing (October 2024), the recommended chores model Claude Sonnet 3.5 costs
$3 per million input tokens and $15 per million output tokens. So, using the recommended model,
cli helpers cost around $15 for every 1,000 refactored pieces of code. GPT-4o Mini, by contrast,
doesn’t tend to get cli markup classes right but does return syntactically valid calls to cli functions,
and it would cost around 75 cents per 1,000 refactored pieces of code.

Gallery

This section includes a handful of examples "from the wild" and are generated with the recom-
mended model, Claude Sonnet 3.5.

At its simplest, a one-line message with a little bit of markup:

rlang::abort("`save_pred` can only be used if the initial results saved predictions.")

Returns:

cli::cli_abort("{.arg save_pred} can only be used if the initial results saved predictions.")

Some strange vector collapsing and funky line breaking:

extra_grid_params <- glue::single_quote(extra_grid_params)
extra_grid_params <- glue::glue_collapse(extra_grid_params, sep = ", ")

msg <- glue::glue(

https://github.com/tidymodels/tune/blob/f8d734ac0fa981fae3a87ed2871a46e9c40d509d/R/checks.R

cli_helper 5

"The provided `grid` has the following parameter columns that have ",
"not been marked for tuning by `tune()`: {extra_grid_params}."

)

rlang::abort(msg)

Returns:

cli::cli_abort(
"The provided {.arg grid} has parameter columns that have not been
marked for tuning by {.fn tune}: {.val {extra_grid_params}}."

)

A message that probably best lives as two separate elements:

rlang::abort(
paste(
"Some model parameters require finalization but there are recipe",
"parameters that require tuning. Please use ",
"`extract_parameter_set_dials()` to set parameter ranges ",
"manually and supply the output to the `param_info` argument."

)
)

Returns:

cli::cli_abort(
c(
"Some model parameters require finalization but there are recipe
parameters that require tuning.",
"i" = "Please use {.fn extract_parameter_set_dials} to set parameter

ranges manually and supply the output to the {.arg param_info}
argument."

)
)

Gnarly ad-hoc pluralization:

msg <- "Creating pre-processing data to finalize unknown parameter"
unk_names <- pset$id[unk]
if (length(unk_names) == 1) {
msg <- paste0(msg, ": ", unk_names)

} else {
msg <- paste0(msg, "s: ", paste0("'", unk_names, "'", collapse = ", "))

}
rlang::inform(msg)

Returns:

6 cli_helper

cli::cli_inform(
"Creating pre-processing data to finalize unknown parameter{?s}: {.val {unk_names}}"

)

Some paste0() wonk:

rlang::abort(paste0(
"The workflow has arguments to be tuned that are missing some ",
"parameter objects: ",
paste0("'", pset$id[!params], "'", collapse = ", ")

))

Returns:

cli::cli_abort(
"The workflow has arguments to be tuned that are missing some
parameter objects: {.val {pset$id[!params]}}"

)

The model is instructed to only return a call to a cli function, so erroring code that’s run conditionally
can get borked:

cls <- paste(cls, collapse = " or ")
if (!fine) {
msg <- glue::glue("Argument '{deparse(cl$x)}' should be a {cls} or NULL")
if (!is.null(where)) {
msg <- glue::glue(msg, " in `{where}`")

}
rlang::abort(msg)

}

Returns:

cli::cli_abort(
"Argument {.code {deparse(cl$x)}} should be {?a/an} {.cls {cls}} or {.code NULL}{?in {where}}."

)

Note that ?in where is not valid cli markup.

Sprintf-style statements aren’t an issue:

abort(sprintf("No such '%s' function: `%s()`.", package, name))

Returns:

cli::cli_abort("No such {.pkg {package}} function: {.fn {name}}.")

directory 7

Interfacing manually with the cli helper

Chore helpers are typically interfaced with via the chores addin. To call the cli helper directly, use:

helper_cli <- .init_helper("cli")

Then, to submit a query, run:

helper_cli$chat({x})

directory The prompt directory

Description

The chores package’s prompt directory is a directory of markdown files that is automatically regis-
tered with the chores package on package load. directory_*() functions allow users to interface
with the directory, making new "chores" available:

• directory_path() returns the path to the prompt directory.
• directory_set() changes the path to the prompt directory (by setting the option .chores_dir).
• directory_list() enumerates all of the different prompts that currently live in the directory

(and provides clickable links to each).

Functions prefixed with prompt*() allow users to conveniently create, edit, and delete the prompts
in chores’ prompt directory.

Usage

directory_load(dir = directory_path())

directory_list()

directory_path()

directory_set(dir)

Arguments

dir Path to a directory of markdown files–see Details for more.

Value

• directory_path() returns the path to the prompt directory (which is not created by default
unless explicitly requested by the user).

• directory_set() return the path to the new prompt directory.
• directory_list() returns the file paths of all of the prompts that currently live in the direc-

tory (and provides clickable links to each).
• directory_load() returns NULL invisibly.

8 directory

Format of the prompt directory

Prompts are markdown files with the name chore-interface.md, where interface is one of "re-
place", "prefix" or "suffix". An example directory might look like:

/
|-- .config/
| |-- chores/
| |-- proofread-replace.md
| |-- summarize-prefix.md

In that case, chores will register two custom helpers when you call library(chores). One of them
is for the "proofread" chore and will replace the selected text with a proofread version (according
to the instructions contained in the markdown file itself). The other is for the "summarize" chore
and will prefix the selected text with a summarized version (again, according to the markdown file’s
instructions). Note:

• Files without a .md extension are ignored.

• Files with a .md extension must contain only one hyphen in their filename, and the text fol-
lowing the hyphen must be one of replace, prefix, or suffix.

To load custom prompts every time the package is loaded, place your prompts in directory_path().
To change the prompt directory without loading the package, just set the .chores_dir option with
options(.chores_dir = some_dir). To load a directory of files that’s not the prompt directory,
provide a dir argument to directory_load().

See Also

The "Custom helpers" vignette, at vignette("custom", package = "chores"),for more on adding
your own helper prompts, sharing them with others, and using prompts from others.

Examples

choose a path for the prompt directory
tmp_dir <- withr::local_tempdir()
directory_set(tmp_dir)

print out the current prompt directory
directory_path()

list out prompts currently in the directory
directory_list()

create a prompt in the prompt directory
prompt_new("boop", "replace")

view updated list of prompts
directory_list()

helper_options 9

helper_options Options used by the chores package

Description

The chores package makes use of three notable user-facing options:

• .chores_dir is the directory where helper prompts live. See the helper directory help-page
for more information.

• .chores_chat determines the underlying LLM powering each helper. See the "Choosing a
model" section of vignette("chores", package = "chores") for more information.

prompt Working with helper prompts

Description

The chores package provides a number of tools for working on system prompts. System prompts are
what instruct helpers on how to behave and provide information to live in the models’ "short-term
memory."
prompt_*() functions allow users to conveniently create, edit, remove, the prompts in chores’
"prompt directory."

• prompt_new() creates a new markdown file that will automatically create a helper with the
specified chore, prompt, and interface on package load. Specify a contents argument to
prefill with contents from a markdown file on your computer or the web.

• prompt_edit() and prompt_remove() open and delete, respectively, the file that defines the
given chore’s system prompt.

The prompts you create with these functions will be automatically loaded when you next trigger the
helper addin.

Usage

prompt_new(chore, interface, contents = NULL)

prompt_remove(chore)

prompt_edit(chore)

10 prompt

Arguments

chore A single string giving a descriptor of the helper’s functionality. Cand only con-
tain letters and numbers.

interface One of "replace", "prefix", or "suffix", describing how the helper will
interact with the selection. For example, the cli helper "replace"s the selection,
while the roxygen helper "prefixes" the selected code with documentation.

contents Optional. Path to a markdown file with contents that will "pre-fill" the file.
Anything file ending in .md or .markdown that can be read with readLines()
is fair game; this could be a local file, a "raw" URL to a GitHub Gist or file in a
GitHub repository, etc.

Value

Each prompt_*() function returns the file path to the created, edited, or removed filepath, invisibly.

See Also

The directory help-page for more on working with prompts in batch using directory_*() func-
tions, and vignette("custom", package = "chores") for more on sharing helper prompts and
using prompts from others.

Examples

if (interactive()) {
create a new helper for chore `"boop"` that replaces the selected text:
prompt_new("boop")

after closing the file, reopen with:
prompt_edit("boop")

remove the prompt (next time the package is loaded) with:
prompt_remove("boop")

pull prompts from files on local drives or the web with
`prompt_new(contents)`. for example, here is a GitHub Gist:
paste0(
"https://gist.githubusercontent.com/simonpcouch/",
"daaa6c4155918d6f3efd6706d022e584/raw/ed1da68b3f38a25b58dd9fdc8b9c258d",
"58c9b4da/summarize-prefix.md"
)
#
press "Raw" and then supply that URL as `contents` (you don't actually
have to use the paste0() to write out the URL--we're just keeping
the characters per line under 80):
prompt_new(

chore = "summarize",
interface = "prefix",
contents =
paste0(

"https://gist.githubusercontent.com/simonpcouch/",

roxygen_helper 11

"daaa6c4155918d6f3efd6706d022e584/raw/ed1da68b3f38a25b58dd9fdc8b9c258d",
"58c9b4da/summarize-prefix.md"

)
)
}

roxygen_helper The roxygen helper

Description

The roxygen helper prefixes the selected function with a minimal roxygen2 documentation template.
The helper is instructed to only generate a subset of a complete documentation entry, to be then
completed by a developer:

• Stub @param descriptions based on defaults and inferred types

• Stub @returns entry that describes the return value as well as important errors and warnings
users might encounter.

Cost

The system prompt from a roxygen helper includes something like 1,000 tokens. Add in 200 tokens
for the code that’s actually highlighted and also sent off to the model and you’re looking at 1,200 in-
put tokens. The model returns maybe 10 to 15 lines of relatively barebones royxgen documentation,
so we’ll call that 200 output tokens per refactor.

As of the time of writing (October 2024), the recommended chores model Claude Sonnet 3.5 costs
$3 per million input tokens and $15 per million output tokens. So, using the recommended model,
roxygen helpers cost around $4 for every 1,000 generated roxygen documentation entries.
GPT-4o Mini, by contrast, doesn’t tend to infer argument types correctly as often and often fails to
line-break properly, but does usually return syntactically valid documentation entries, and it would
cost around 20 cents per 1,000 generated roxygen documentation entries.

Gallery

This section includes a handful of examples "from the wild" and are generated with the recom-
mended model, Claude Sonnet 3.5.

Documenting a function factory:

deferred_method_transform <- function(lambda_expr, transformer, eval_env) {
transformer <- enexpr(transformer)
force(eval_env)

unique_id <- new_id()
env_bind_lazy(
generators,
!!unique_id := inject((!!transformer)(!!lambda_expr)),
eval.env = eval_env

12 roxygen_helper

)

inject(
function(...) {
(!!generators)[[!!unique_id]](self, private, ...)

}
)

}

Returns:

#' #' Transform a deferred method
#'
#' @description
#' A short description...
#'
#' @param lambda_expr A lambda expression to transform.
#' @param transformer A transformer function or expression.
#' @param eval_env The environment in which to evaluate the transformer.
#'
#' @returns
#' A function that, when called, will evaluate the transformed lambda expression.
#' The returned function accepts `...` arguments which are passed to the generated function.
#'
#' @export

A function that may raise a condition:

set_default <- function(value, default, arg = caller_arg(value)) {
if (is.null(value)) {
if (!is_testing() || is_snapshot()) {
cli::cli_inform("Using {.field {arg}} = {.val {default}}.")

}
default

} else {
value

}
}

Returns:

#' Set default value
#'
#' @description
#' A short description...
#'
#' @param value A value to check.
#' @param default The default value to use if `value` is NULL.

roxygen_helper 13

#' @param arg Optional. The name of the argument being set.
#'
#' @returns
#' Returns `value` if it's not NULL, otherwise returns `default`.
#' Informs the user when using the default value.
#'
#' @export

A function with some tricky indexing:

find_index <- function(left, e_right) {
if (!is.list(e_right) || !has_name(e_right, "index") || !is.numeric(e_right$index)) {

return(NA)
}

matches_idx <- map_lgl(left, function(e_left) e_left$index == e_right$index)
if (sum(matches_idx) != 1) {
return(NA)

}
which(matches_idx)[[1]]

}

Returns:

#' Find matching index
#'
#' @description
#' A short description...
#'
#' @param left A list of elements, each expected to have an 'index' field.
#' @param e_right A list with an 'index' field to search for in `left`.
#'
#' @returns
#' The numeric index in `left` where `e_right$index` matches, or NA if not found
#' or if inputs are invalid. Returns NA if multiple matches are found.
#'
#' @export

Interfacing manually with the roxygen helper

Chore helpers are typically interfaced with via the chores addin. To call the roxygen helper directly,
use:

helper_roxygen <- .init_helper("roxygen")

Then, to submit a query, run:

helper_roxygen$chat({x})

14 testthat_helper

testthat_helper The testthat helper

Description

testthat 3.0.0 was released in 2020, bringing with it numerous changes that were both huge quality
of life improvements for package developers and also highly breaking changes.

While some of the task of converting legacy unit testing code to testthat 3e is quite is pretty straight-
forward, other components can be quite tedious. The testthat helper helps you transition your R
package’s unit tests to the third edition of testthat, namely via:

• Converting to snapshot tests
• Disentangling nested expectations
• Transitioning from deprecated functions like expect_known_*()

Cost

The system prompt from a testthat helper includes something like 1,000 tokens. Add in (a generous)
100 tokens for the code that’s actually highlighted and also sent off to the model and you’re looking
at 1,100 input tokens. The model returns approximately the same number of output tokens as it
receives, so we’ll call that 100 output tokens per refactor.

As of the time of writing (October 2024), the recommended chores model Claude Sonnet 3.5 costs
$3 per million input tokens and $15 per million output tokens. So, using the recommended model,
testthat helpers cost around $4 for every 1,000 refactored pieces of code. GPT-4o Mini, by
contrast, doesn’t tend to get many pieces of formatting right and often fails to line-break properly,
but does usually return syntactically valid calls to testthat functions, and it would cost around 20
cents per 1,000 refactored pieces of code.

Gallery

This section includes a handful of examples "from the wild" and are generated with the recom-
mended model, Claude Sonnet 3.5.

Testthat helpers convert expect_error() (and *_warning() and *_message() and *_condition())
calls to use expect_snapshot() when there’s a regular expression present:

expect_warning(
check_ellipses("exponentiate", "tidy", "boop", exponentiate = TRUE, quick = FALSE),
"\\`exponentiate\\` argument is not supported in the \\`tidy\\(\\)\\` method for \\`boop\\` objects"

)

Returns:

expect_snapshot(
.res <- check_ellipses(
"exponentiate", "tidy", "boop", exponentiate = TRUE, quick = FALSE

)
)

https://github.com/tidymodels/broom/tree/7fa26488ab522bf577092e99aad1f2003f21b327/tests
https://github.com/tidymodels/tune/tree/f8d734ac0fa981fae3a87ed2871a46e9c40d509d/tests

testthat_helper 15

Note, as well, that intermediate results are assigned to an object so as not to be snapshotted when
their contents weren’t previously tests.

Another example with multiple, redudant calls:

augment_error <- "augment is only supported for fixest models estimated with feols, feglm, or femlm"
expect_error(augment(res_fenegbin, df), augment_error)
expect_error(augment(res_feNmlm, df), augment_error)
expect_error(augment(res_fepois, df), augment_error)

Returns:

expect_snapshot(error = TRUE, augment(res_fenegbin, df))
expect_snapshot(error = TRUE, augment(res_feNmlm, df))
expect_snapshot(error = TRUE, augment(res_fepois, df))

They know about regexp = NA, which means "no error" (or warning, or message):

expect_error(
p4_b <- check_parameters(w4, p4_a, data = mtcars),
regex = NA

)

Returns:

expect_no_error(p4_b <- check_parameters(w4, p4_a, data = mtcars))

They also know not to adjust calls to those condition expectations when there’s a class argument
present (which usually means that one is testing a condition from another package, which should
be able to change the wording of the message without consequence):

expect_error(tidy(pca, matrix = "u"), class = "pca_error")

Returns:

expect_error(tidy(pca, matrix = "u"), class = "pca_error")

When converting non-erroring code, testthat helpers will assign intermediate results so as not to
snapshot both the result and the warning:

expect_warning(
tidy(fit, robust = TRUE),
'"robust" argument has been deprecated'

)

Returns:

16 testthat_helper

expect_snapshot(
.res <- tidy(fit, robust = TRUE)

)

Nested expectations can generally be disentangled without issue:

expect_equal(
fit_resamples(decision_tree(cost_complexity = 1), bootstraps(mtcars)),
expect_warning(tune_grid(decision_tree(cost_complexity = 1), bootstraps(mtcars)))

)

Returns:

expect_snapshot({
fit_resamples_result <- fit_resamples(decision_tree(cost_complexity = 1),

bootstraps(mtcars))
tune_grid_result <- tune_grid(decision_tree(cost_complexity = 1),

bootstraps(mtcars))
})
expect_equal(fit_resamples_result, tune_grid_result)

There are also a few edits the helper knows to make to third-edition code. For example, it transitions
expect_snapshot_error() and friends to use expect_snapshot(error = TRUE) so that the error
context is snapshotted in addition to the message itself:

expect_snapshot_error(
fit_best(knn_pca_res, parameters = tibble(neighbors = 2))

)

Returns:

expect_snapshot(
error = TRUE,
fit_best(knn_pca_res, parameters = tibble(neighbors = 2))

)

Interfacing manually with the testthat helper

Chore helpers are typically interfaced with via the chores addin. To call the testthat helper directly,
use:

helper_testthat <- .init_helper("testthat")

Then, to submit a query, run:

helper_testthat$chat({x})

Index

.chores_chat (helper_options), 9

.chores_dir (helper_options), 9

.init_addin, 2

.init_helper, 3

chores addin, 3
cli helper, 10
cli_helper, 4

directory, 7, 9, 10
directory_list (directory), 7
directory_load (directory), 7
directory_path (directory), 7
directory_set (directory), 7

Functions prefixed with, 7

helper_options, 9

prompt, 9
prompt directory, 9
prompt_edit (prompt), 9
prompt_new (prompt), 9
prompt_new(), 3
prompt_remove (prompt), 9

roxygen helper, 10
roxygen_helper, 11

testthat_helper, 14

17

	.init_addin
	.init_helper
	cli_helper
	directory
	helper_options
	prompt
	roxygen_helper
	testthat_helper
	Index

