
Package ‘cito’
July 22, 2025

Type Package

Title Building and Training Neural Networks

Version 1.1

Description The 'cito' package provides a user-friendly interface for training and interpret-
ing deep neural networks (DNN). 'cito' simplifies the fitting of DNNs by supporting the famil-
iar formula syntax, hyperparameter tuning under cross-validation, and helps to detect and han-
dle convergence problems. DNNs can be trained on CPU, GPU and MacOS GPUs. In addi-
tion, 'cito' has many downstream functionalities such as various explainable AI (xAI) met-
rics (e.g. variable importance, partial dependence plots, accumulated local effect plots, and ef-
fect estimates) to interpret trained DNNs. 'cito' optionally provides confidence intervals (and p-
values) for all xAI metrics and predictions. At the same time, 'cito' is computationally effi-
cient because it is based on the deep learning framework 'torch'. The 'torch' package is na-
tive to R, so no Python installation or other API is required for this package.

Encoding UTF-8

RoxygenNote 7.2.3

Depends R (>= 3.5)

Imports coro, checkmate, torch, gridExtra, parabar, abind, progress,
cli, torchvision, tibble, lme4

License GPL (>= 3)

Suggests spelling, rmarkdown, testthat, plotly, ggraph, igraph, stats,
ggplot2, knitr

VignetteBuilder knitr

BugReports https://github.com/citoverse/cito/issues

URL https://citoverse.github.io/cito/

Language en-US

NeedsCompilation no

Author Christian Amesöder [aut],
Maximilian Pichler [aut, cre] (ORCID:
<https://orcid.org/0000-0003-2252-8327>),

Florian Hartig [ctb] (ORCID: <https://orcid.org/0000-0002-6255-9059>),
Armin Schenk [ctb]

1

https://github.com/citoverse/cito/issues
https://citoverse.github.io/cito/
https://orcid.org/0000-0003-2252-8327
https://orcid.org/0000-0002-6255-9059

2 Contents

Maintainer Maximilian Pichler <maximilian.pichler@biologie.uni-regensburg.de>

Repository CRAN

Date/Publication 2024-03-18 22:50:07 UTC

Contents
ALE . 3
analyze_training . 5
avgPool . 6
cito . 7
cnn . 10
coef.citocnn . 16
coef.citodnn . 16
conditionalEffects . 17
config_lr_scheduler . 19
config_optimizer . 21
config_tuning . 22
continue_training . 23
conv . 25
create_architecture . 26
dnn . 28
e . 37
findReTrmClasses . 38
linear . 38
maxPool . 39
PDP . 40
plot.citoarchitecture . 42
plot.citocnn . 43
plot.citodnn . 43
predict.citocnn . 44
predict.citodnn . 45
print.avgPool . 46
print.citoarchitecture . 46
print.citocnn . 47
print.citodnn . 48
print.conditionalEffects . 49
print.conv . 49
print.linear . 50
print.maxPool . 50
print.summary.citodnn . 51
print.transfer . 51
residuals.citodnn . 52
simulate_shapes . 52
summary.citocnn . 53
summary.citodnn . 53
sumTerms . 54
transfer . 55

ALE 3

tune . 56

Index 57

ALE Accumulated Local Effect Plot (ALE)

Description

Performs an ALE for one or more features.

Usage

ALE(
model,
variable = NULL,
data = NULL,
K = 10,
ALE_type = c("equidistant", "quantile"),
plot = TRUE,
parallel = FALSE,
...

)

S3 method for class 'citodnn'
ALE(
model,
variable = NULL,
data = NULL,
K = 10,
ALE_type = c("equidistant", "quantile"),
plot = TRUE,
parallel = FALSE,
...

)

S3 method for class 'citodnnBootstrap'
ALE(
model,
variable = NULL,
data = NULL,
K = 10,
ALE_type = c("equidistant", "quantile"),
plot = TRUE,
parallel = FALSE,
...

)

4 ALE

Arguments

model a model created by dnn

variable variable as string for which the PDP should be done

data data on which ALE is performed on, if NULL training data will be used.

K number of neighborhoods original feature space gets divided into

ALE_type method on how the feature space is divided into neighborhoods.

plot plot ALE or not

parallel parallelize over bootstrap models or not

... arguments passed to predict

Value

A list of plots made with ’ggplot2’ consisting of an individual plot for each defined variable.

Explanation

Accumulated Local Effect plots (ALE) quantify how the predictions change when the features
change. They are similar to partial dependency plots but are more robust to feature collinearity.

Mathematical details

If the defined variable is a numeric feature, the ALE is performed. Here, the non centered effect for
feature j with k equally distant neighborhoods is defined as:
ˆ̃
fj,ALE(x) =

∑kj(x)
k=1

1
nj(k)

∑
i:x

(i)
j ∈Nj(k)

[
f̂(zk,j , x

(i)
\j)− f̂(zk−1,j , x

(i)
\j)

]
Where Nj(k) is the k-th neighborhood and nj(k) is the number of observations in the k-th neigh-
borhood.

The last part of the equation,
[
f̂(zk,j , x

(i)
\j)− f̂(zk−1,j , x

(i)
\j)

]
represents the difference in model

prediction when the value of feature j is exchanged with the upper and lower border of the current
neighborhood.

See Also

PDP

Examples

if(torch::torch_is_installed()){
library(cito)

Build and train Network
nn.fit<- dnn(Sepal.Length~., data = datasets::iris)

ALE(nn.fit, variable = "Petal.Length")
}

analyze_training 5

analyze_training Visualize training of Neural Network

Description

After training a model with cito, this function helps to analyze the training process and decide on
best performing model. Creates a ’plotly’ figure which allows to zoom in and out on training graph

Usage

analyze_training(object)

Arguments

object a model created by dnn or cnn

Details

The baseline loss is the most important reference. If the model was not able to achieve a better
(lower) loss than the baseline (which is the loss for a intercept only model), the model probably
did not converge. Possible reasons include an improper learning rate, too few epochs, or too much
regularization. See the ?dnn help or the vignette("B-Training_neural_networks").

Value

a ’plotly’ figure

Examples

if(torch::torch_is_installed()){
library(cito)
set.seed(222)
validation_set<- sample(c(1:nrow(datasets::iris)),25)

Build and train Network
nn.fit<- dnn(Sepal.Length~., data = datasets::iris[-validation_set,],validation = 0.1)

show zoomable plot of training and validation losses
analyze_training(nn.fit)

Use model on validation set
predictions <- predict(nn.fit, iris[validation_set,])

Scatterplot
plot(iris[validation_set,]$Sepal.Length,predictions)
}

6 avgPool

avgPool Average pooling layer

Description

creates a ’avgPool’ ’citolayer’ object that is used by create_architecture.

Usage

avgPool(kernel_size = NULL, stride = NULL, padding = NULL)

Arguments

kernel_size (int or tuple) size of the kernel in this layer. Use a tuple if the kernel size isn’t
equal in all dimensions

stride (int or tuple) stride of the kernel in this layer. NULL sets the stride equal to the
kernel size. Use a tuple if the stride isn’t equal in all dimensions

padding (int or tuple) zero-padding added to both sides of the input. Use a tuple if the
padding isn’t equal in all dimensions

Details

This function creates a ’avgPool’ ’citolayer’ object that is passed to the create_architecture
function. The parameters that aren’t assigned here (and are therefore still NULL) are filled with the
default values passed to create_architecture.

Value

S3 object of class "avgPool" "citolayer"

Author(s)

Armin Schenk

See Also

create_architecture

cito 7

cito ’cito’: Building and training neural networks

Description

The ’cito’ package provides a user-friendly interface for training and interpreting deep neural net-
works (DNN). ’cito’ simplifies the fitting of DNNs by supporting the familiar formula syntax, hy-
perparameter tuning under cross-validation, and helps to detect and handle convergence problems.
DNNs can be trained on CPU, GPU and MacOS GPUs. In addition, ’cito’ has many downstream
functionalities such as various explainable AI (xAI) metrics (e.g. variable importance, partial de-
pendence plots, accumulated local effect plots, and effect estimates) to interpret trained DNNs.
’cito’ optionally provides confidence intervals (and p-values) for all xAI metrics and predictions.
At the same time, ’cito’ is computationally efficient because it is based on the deep learning frame-
work ’torch’. The ’torch’ package is native to R, so no Python installation or other API is required
for this package.

Details

Cito is built around its main function dnn, which creates and trains a deep neural network. Various
tools for analyzing the trained neural network are available.

Installation

in order to install cito please follow these steps:

install.packages("cito")

library(torch)

install_torch(reinstall = TRUE)

library(cito)

cito functions and typical workflow

• dnn: train deep neural network

• analyze_training: check for convergence by comparing training loss with baseline loss

• continue_training: continues training of an existing cito dnn model for additional epochs

• summary.citodnn: extract xAI metrics/effects to understand how predictions are made

• PDP: plot the partial dependency plot for a specific feature

• ALE: plot the accumulated local effect plot for a specific feature

Check out the vignettes for more details on training NN and how a typical workflow with ’cito’
could look like.

8 cito

Examples

if(torch::torch_is_installed()){
library(cito)

Example workflow in cito

Build and train Network
softmax is used for multi-class responses (e.g., Species)
nn.fit<- dnn(Species~., data = datasets::iris, loss = "softmax")

The training loss is below the baseline loss but at the end of the
training the loss was still decreasing, so continue training for another 50
epochs
nn.fit <- continue_training(nn.fit, epochs = 50L)

Sturcture of Neural Network
print(nn.fit)

Plot Neural Network
plot(nn.fit)
4 Input nodes (first layer) because of 4 features
3 Output nodes (last layer) because of 3 response species (one node for each
level in the response variable).
The layers between the input and output layer are called hidden layers (two
of them)

We now want to understand how the predictions are made, what are the
important features? The summary function automatically calculates feature
importance (the interpretation is similar to an anova) and calculates
average conditional effects that are similar to linear effects:
summary(nn.fit)

To visualize the effect (response-feature effect), we can use the ALE and
PDP functions

Partial dependencies
PDP(nn.fit, variable = "Petal.Length")

Accumulated local effect plots
ALE(nn.fit, variable = "Petal.Length")

Per se, it is difficult to get confidence intervals for our xAI metrics (or
for the predictions). But we can use bootstrapping to obtain uncertainties
for all cito outputs:
Re-fit the neural network with bootstrapping
nn.fit<- dnn(Species~.,

data = datasets::iris,
loss = "softmax",
epochs = 150L,
verbose = FALSE,

cito 9

bootstrap = 20L)
convergence can be tested via the analyze_training function
analyze_training(nn.fit)

Summary for xAI metrics (can take some time):
summary(nn.fit)
Now with standard errors and p-values
Note: Take the p-values with a grain of salt! We do not know yet if they are
correct (e.g. if you use regularization, they are likely conservative == too
large)

Predictions with bootstrapping:
dim(predict(nn.fit))
predictions are by default averaged (over the bootstrap samples)

Hyperparameter tuning (experimental feature)
hidden_values = matrix(c(5, 2,

4, 2,
10,2,
15,2), 4, 2, byrow = TRUE)

Potential architectures we want to test, first column == number of nodes
print(hidden_values)

nn.fit = dnn(Species~.,
data = iris,
epochs = 30L,
loss = "softmax",
hidden = tune(values = hidden_values),
lr = tune(0.00001, 0.1) # tune lr between range 0.00001 and 0.1
)

Tuning results:
print(nn.fit$tuning)

test = Inf means that tuning was cancelled after only one fit (within the CV)

Advanced: Custom loss functions and additional parameters
Normal Likelihood with sd parameter:
custom_loss = function(pred, true) {

logLik = torch::distr_normal(pred,
scale = torch::nnf_relu(scale)+

0.001)$log_prob(true)
return(-logLik$mean())

}

nn.fit<- dnn(Sepal.Length~.,
data = datasets::iris,
loss = custom_loss,
verbose = FALSE,
custom_parameters = list(scale = 1.0)

)

10 cnn

nn.fit$parameter$scale

Multivariate normal likelihood with parametrized covariance matrix
Sigma = L*L^t + D
Helper function to build covariance matrix
create_cov = function(LU, Diag) {

return(torch::torch_matmul(LU, LU$t()) + torch::torch_diag(Diag$exp()+0.01))
}

custom_loss_MVN = function(true, pred) {
Sigma = create_cov(SigmaPar, SigmaDiag)
logLik = torch::distr_multivariate_normal(pred,

covariance_matrix = Sigma)$
log_prob(true)

return(-logLik$mean())
}

nn.fit<- dnn(cbind(Sepal.Length, Sepal.Width, Petal.Length)~.,
data = datasets::iris,
lr = 0.01,
verbose = FALSE,
loss = custom_loss_MVN,
custom_parameters =

list(SigmaDiag = rep(0, 3),
SigmaPar = matrix(rnorm(6, sd = 0.001), 3, 2))

)
as.matrix(create_cov(nn.fit$loss$parameter$SigmaPar,

nn.fit$loss$parameter$SigmaDiag))

}

cnn CNN

Description

fits a custom convolutional neural network.

Usage

cnn(
X,
Y = NULL,
architecture,
loss = c("mse", "mae", "softmax", "cross-entropy", "gaussian", "binomial", "poisson"),
optimizer = c("sgd", "adam", "adadelta", "adagrad", "rmsprop", "rprop"),
lr = 0.01,
alpha = 0.5,

cnn 11

lambda = 0,
validation = 0,
batchsize = 32L,
burnin = 10,
shuffle = TRUE,
epochs = 100,
early_stopping = NULL,
lr_scheduler = NULL,
custom_parameters = NULL,
device = c("cpu", "cuda", "mps"),
plot = TRUE,
verbose = TRUE

)

Arguments

X predictor: array with dimension 3, 4 or 5 for 1D-, 2D- or 3D-convolutions,
respectively. The first dimension are the samples, the second dimension the
channels and the third - fifth dimension are the input dimensions

Y response: vector, factor, numerical matrix or logical matrix

architecture ’citoarchitecture’ object created by create_architecture

loss loss after which network should be optimized. Can also be distribution from the
stats package or own function, see details

optimizer which optimizer used for training the network, for more adjustments to opti-
mizer see config_optimizer

lr learning rate given to optimizer

alpha add L1/L2 regularization to training (1 − α) ∗ |weights| + α||weights||2 will
get added for each layer. Must be between 0 and 1

lambda strength of regularization: lambda penalty, λ ∗ (L1 + L2) (see alpha)

validation percentage of data set that should be taken as validation set (chosen randomly)

batchsize number of samples that are used to calculate one learning rate step

burnin training is aborted if the trainings loss is not below the baseline loss after burnin
epochs

shuffle if TRUE, data in each batch gets reshuffled every epoch

epochs epochs the training goes on for

early_stopping if set to integer, training will stop if loss has gotten higher for defined number of
epochs in a row, will use validation loss if available.

lr_scheduler learning rate scheduler created with config_lr_scheduler
custom_parameters

List of parameters/variables to be optimized. Can be used in a custom loss
function. See Vignette for example.

device device on which network should be trained on.

plot plot training loss

verbose print training and validation loss of epochs

12 cnn

Value

an S3 object of class "citocnn" is returned. It is a list containing everything there is to know about
the model and its training process. The list consists of the following attributes:

net An object of class "nn_sequential" "nn_module", originates from the torch pack-
age and represents the core object of this workflow.

call The original function call
loss A list which contains relevant information for the target variable and the used

loss function
data Contains data used for training the model
weights List of weights for each training epoch
use_model_epoch

Integer, which defines which model from which training epoch should be used
for prediction.

loaded_model_epoch

Integer, shows which model from which epoch is loaded currently into model$net.
model_properties

A list of properties of the neural network, contains number of input nodes, num-
ber of output nodes, size of hidden layers, activation functions, whether bias is
included and if dropout layers are included.

training_properties

A list of all training parameters that were used the last time the model was
trained. It consists of learning rate, information about an learning rate scheduler,
information about the optimizer, number of epochs, whether early stopping was
used, if plot was active, lambda and alpha for L1/L2 regularization, batchsize,
shuffle, was the data set split into validation and training, which formula was
used for training and at which epoch did the training stop.

losses A data.frame containing training and validation losses of each epoch

Convolutional neural networks:

Convolutional Neural Networks (CNNs) are a specialized type of neural network designed for pro-
cessing structured grid data, such as images. The characterizing parts of the architecture are convo-
lutional layers, pooling layers and fully-connected (linear) layers:

• Convolutional layers are the core building blocks of CNNs. They consist of filters (also called
kernels), which are small, learnable matrices. These filters slide over the input data to perform
element-wise multiplication, producing feature maps that capture local patterns and features.
Multiple filters are used to detect different features in parallel. They help the network learn
hierarchical representations of the input data by capturing low-level features (edges, textures)
and gradually combining them (in subsequent convolutional layers) to form higher-level fea-
tures.

• Pooling layers are used to downsample the spatial dimensions of the feature maps while retain-
ing important information. Max pooling is a common pooling operation, where the maximum
value in a local region of the input is retained, reducing the size of the feature maps.

• Fully-connected (linear) layers connect every neuron in one layer to every neuron in the next
layer. These layers are found at the end of the network and are responsible for combining
high-level features to make final predictions.

cnn 13

Loss functions / Likelihoods

We support loss functions and likelihoods for different tasks:

Name Explanation Example / Task
mse mean squared error Regression, predicting continuous values
mae mean absolute error Regression, predicting continuous values
softmax categorical cross entropy Multi-class, species classification
cross-entropy categorical cross entropy Multi-class, species classification
gaussian Normal likelihood Regression, residual error is also estimated (similar to stats::lm())
binomial Binomial likelihood Classification/Logistic regression, mortality
Poisson Poisson likelihood Regression, count data, e.g. species abundances

Training and convergence of neural networks

Ensuring convergence can be tricky when training neural networks. Their training is sensitive to a
combination of the learning rate (how much the weights are updated in each optimization step), the
batch size (a random subset of the data is used in each optimization step), and the number of epochs
(number of optimization steps). Typically, the learning rate should be decreased with the size of
the neural networks (amount of learnable parameters). We provide a baseline loss (intercept only
model) that can give hints about an appropriate learning rate:

If the training loss of the model doesn’t fall below the baseline loss, the learning rate is either too
high or too low. If this happens, try higher and lower learning rates.

A common strategy is to try (manually) a few different learning rates to see if the learning rate is
on the right scale.

See the troubleshooting vignette (vignette("B-Training_neural_networks")) for more help on
training and debugging neural networks.

Finding the right architecture

As with the learning rate, there is no definitive guide to choosing the right architecture for the right
task. However, there are some general rules/recommendations: In general, wider, and deeper neural
networks can improve generalization - but this is a double-edged sword because it also increases
the risk of overfitting. So, if you increase the width and depth of the network, you should also add
regularization (e.g., by increasing the lambda parameter, which corresponds to the regularization
strength). Furthermore, in Pichler & Hartig, 2023, we investigated the effects of the hyperparam-
eters on the prediction performance as a function of the data size. For example, we found that the
selu activation function outperforms relu for small data sizes (<100 observations).

https://arxiv.org/abs/2306.10551

14 cnn

We recommend starting with moderate sizes (like the defaults), and if the model doesn’t general-
ize/converge, try larger networks along with a regularization that helps minimize the risk of overfit-
ting (see vignette("B-Training_neural_networks")).

Overfitting

Overfitting means that the model fits the training data well, but generalizes poorly to new obser-
vations. We can use the validation argument to detect overfitting. If the validation loss starts to
increase again at a certain point, it often means that the models are starting to overfit your training
data:

Solutions:

• Re-train with epochs = point where model started to overfit

• Early stopping, stop training when model starts to overfit, can be specified using the early_stopping=. . .
argument

• Use regularization (dropout or elastic-net, see next section)

Regularization

Elastic Net regularization combines the strengths of L1 (Lasso) and L2 (Ridge) regularization. It
introduces a penalty term that encourages sparse weight values while maintaining overall weight
shrinkage. By controlling the sparsity of the learned model, Elastic Net regularization helps avoid
overfitting while allowing for meaningful feature selection. We advise using elastic net (e.g. lambda
= 0.001 and alpha = 0.2).

Dropout regularization helps prevent overfitting by randomly disabling a portion of neurons during
training. This technique encourages the network to learn more robust and generalized representa-
tions, as it prevents individual neurons from relying too heavily on specific input patterns. Dropout
has been widely adopted as a simple yet effective regularization method in deep learning. In the

cnn 15

case of 2D and 3D inputs whole feature maps are disabled. Since the torch package doesn’t cur-
rently support feature map-wise dropout for 1D inputs, instead random neurons in the feature maps
are disabled similar to dropout in linear layers.

By utilizing these regularization methods in your neural network training with the cito package,
you can improve generalization performance and enhance the network’s ability to handle unseen
data. These techniques act as valuable tools in mitigating overfitting and promoting more robust
and reliable model performance.

Custom Optimizer and Learning Rate Schedulers

When training a network, you have the flexibility to customize the optimizer settings and learn-
ing rate scheduler to optimize the learning process. In the cito package, you can initialize these
configurations using the config_lr_scheduler and config_optimizer functions.

config_lr_scheduler allows you to define a specific learning rate scheduler that controls how the
learning rate changes over time during training. This is beneficial in scenarios where you want to
adaptively adjust the learning rate to improve convergence or avoid getting stuck in local optima.

Similarly, the config_optimizer function enables you to specify the optimizer for your network.
Different optimizers, such as stochastic gradient descent (SGD), Adam, or RMSprop, offer vari-
ous strategies for updating the network’s weights and biases during training. Choosing the right
optimizer can significantly impact the training process and the final performance of your neural
network.

Training on graphic cards

If you have an NVIDIA CUDA-enabled device and have installed the CUDA toolkit version 11.3
and cuDNN 8.4, you can take advantage of GPU acceleration for training your neural networks. It
is crucial to have these specific versions installed, as other versions may not be compatible. For
detailed installation instructions and more information on utilizing GPUs for training, please refer
to the mlverse: ’torch’ documentation.

Note: GPU training is optional, and the package can still be used for training on CPU even without
CUDA and cuDNN installations.

Author(s)

Armin Schenk, Maximilian Pichler

See Also

predict.citocnn, plot.citocnn, coef.citocnn, print.citocnn, summary.citocnn, continue_training,
analyze_training

https://torch.mlverse.org/docs/articles/installation.html

16 coef.citodnn

coef.citocnn Returns list of parameters the neural network model currently has in
use

Description

Returns list of parameters the neural network model currently has in use

Usage

S3 method for class 'citocnn'
coef(object, ...)

Arguments

object a model created by cnn

... nothing implemented yet

Value

list of weights of neural network

coef.citodnn Returns list of parameters the neural network model currently has in
use

Description

Returns list of parameters the neural network model currently has in use

Usage

S3 method for class 'citodnn'
coef(object, ...)

S3 method for class 'citodnnBootstrap'
coef(object, ...)

Arguments

object a model created by dnn

... nothing implemented yet

Value

list of weights of neural network

conditionalEffects 17

Examples

if(torch::torch_is_installed()){
library(cito)

set.seed(222)
validation_set<- sample(c(1:nrow(datasets::iris)),25)

Build and train Network
nn.fit<- dnn(Sepal.Length~., data = datasets::iris[-validation_set,])

Sturcture of Neural Network
print(nn.fit)

#analyze weights of Neural Network
coef(nn.fit)
}

conditionalEffects Calculate average conditional effects

Description

Average conditional effects calculate the local derivatives for each observation for each feature.
They are similar to marginal effects. And the average of these conditional effects is an approxi-
mation of linear effects (see Pichler and Hartig, 2023 for more details). You can use this function
to either calculate main effects (on the diagonal, take a look at the example) or interaction effects
(off-diagonals) between features.

To obtain uncertainties for these effects, enable the bootstrapping option in the dnn(..) function
(see example).

Usage

conditionalEffects(
object,
interactions = FALSE,
epsilon = 0.1,
device = c("cpu", "cuda", "mps"),
indices = NULL,
data = NULL,
type = "response",
...

)

S3 method for class 'citodnn'
conditionalEffects(
object,

18 conditionalEffects

interactions = FALSE,
epsilon = 0.1,
device = c("cpu", "cuda", "mps"),
indices = NULL,
data = NULL,
type = "response",
...

)

S3 method for class 'citodnnBootstrap'
conditionalEffects(
object,
interactions = FALSE,
epsilon = 0.1,
device = c("cpu", "cuda", "mps"),
indices = NULL,
data = NULL,
type = "response",
...

)

Arguments

object object of class citodnn

interactions calculate interactions or not (computationally expensive)

epsilon difference used to calculate derivatives

device which device

indices of variables for which the ACE are calculated

data data which is used to calculate the ACE

type ACE on which scale (response or link)

... additional arguments that are passed to the predict function

Value

an S3 object of class "conditionalEffects" is returned. The list consists of the following at-
tributes:

result 3-dimensional array with the raw results

mean Matrix, average conditional effects

abs Matrix, summed absolute conditional effects

sd Matrix, standard deviation of the conditional effects

Author(s)

Maximilian Pichler

config_lr_scheduler 19

References

Scholbeck, C. A., Casalicchio, G., Molnar, C., Bischl, B., & Heumann, C. (2022). Marginal effects
for non-linear prediction functions. arXiv preprint arXiv:2201.08837.

Pichler, M., & Hartig, F. (2023). Can predictive models be used for causal inference?. arXiv preprint
arXiv:2306.10551.

Examples

if(torch::torch_is_installed()){
library(cito)

Build and train Network
nn.fit = dnn(Sepal.Length~., data = datasets::iris)

Calculate average conditional effects
ACE = conditionalEffects(nn.fit)

Main effects (categorical features are not supported)
ACE

With interaction effects:
ACE = conditionalEffects(nn.fit, interactions = TRUE)
The off diagonal elements are the interaction effects
ACE[[1]]$mean
ACE is a list, elements correspond to the number of response classes
Sepal.length == 1 Response so we have only one
list element in the ACE object

Re-train NN with bootstrapping to obtain standard errors
nn.fit = dnn(Sepal.Length~., data = datasets::iris, bootstrap = 30L)
The summary method calculates also the conditional effects, and if
bootstrapping was used, it will also report standard errors and p-values:
summary(nn.fit)

}

config_lr_scheduler Creation of customized learning rate scheduler objects

Description

Helps create custom learning rate schedulers for dnn.

20 config_lr_scheduler

Usage

config_lr_scheduler(
type = c("lambda", "multiplicative", "reduce_on_plateau", "one_cycle", "step"),
verbose = FALSE,
...

)

Arguments

type String defining which type of scheduler should be used. See Details.

verbose If TRUE, additional information about scheduler will be printed to console.

... additional arguments to be passed to scheduler. See Details.

Details

different learning rate scheduler need different variables, these functions will tell you which vari-
ables can be set:

• lambda: lr_lambda

• multiplicative: lr_multiplicative

• reduce_on_plateau: lr_reduce_on_plateau

• one_cycle: lr_one_cycle

• step: lr_step

Value

object of class cito_lr_scheduler to give to dnn

Examples

if(torch::torch_is_installed()){
library(cito)

create learning rate scheduler object
scheduler <- config_lr_scheduler(type = "step",

step_size = 30,
gamma = 0.15,
verbose = TRUE)

Build and train Network
nn.fit<- dnn(Sepal.Length~., data = datasets::iris, lr_scheduler = scheduler)

}

config_optimizer 21

config_optimizer Creation of customized optimizer objects

Description

Helps you create custom optimizer for dnn. It is recommended to set learning rate in dnn.

Usage

config_optimizer(
type = c("adam", "adadelta", "adagrad", "rmsprop", "rprop", "sgd"),
verbose = FALSE,
...

)

Arguments

type character string defining which optimizer should be used. See Details.

verbose If TRUE, additional information about scheduler will be printed to console

... additional arguments to be passed to optimizer. See Details.

Details

different optimizer need different variables, this function will tell you how the variables are set. For
more information see the corresponding functions:

• adam: optim_adam

• adadelta: optim_adadelta

• adagrad: optim_adagrad

• rmsprop: optim_rmsprop

• rprop: optim_rprop

• sgd: optim_sgd

Value

object of class cito_optim to give to dnn

Examples

if(torch::torch_is_installed()){
library(cito)

create optimizer object
opt <- config_optimizer(type = "adagrad",

lr_decay = 1e-04,
weight_decay = 0.1,

22 config_tuning

verbose = TRUE)

Build and train Network
nn.fit<- dnn(Sepal.Length~., data = datasets::iris, optimizer = opt)

}

config_tuning Config hyperparameter tuning

Description

Config hyperparameter tuning

Usage

config_tuning(
CV = 5,
steps = 10,
parallel = FALSE,
NGPU = 1,
cancel = TRUE,
bootstrap_final = NULL,
bootstrap_parallel = FALSE,
return_models = FALSE

)

Arguments

CV numeric, specifies k-folded cross validation

steps numeric, number of random tuning steps

parallel numeric, number of parallel cores (tuning steps are parallelized)

NGPU numeric, set if more than one GPU is available, tuning will be parallelized over
CPU cores and GPUs, only works for NCPU > 1

cancel CV/tuning for specific hyperparameter set if model cannot reduce loss below
baseline after burnin or returns NA loss

bootstrap_final

bootstrap final model, if all models should be boostrapped it must be set globally
via the bootstrap argument in the dnn() function

bootstrap_parallel

should the bootstrapping be parallelized or not

return_models return individual models

continue_training 23

Details

Note that hyperparameter tuning can be expensive. We have implemented an option to parallelize
hyperparameter tuning, including parallelization over one or more GPUs (the hyperparameter eval-
uation is parallelized, not the CV). This can be especially useful for small models. For example,
if you have 4 GPUs, 20 CPU cores, and 20 steps (random samples from the random search), you
could run ‘dnn(..., device="cuda",lr = tune(), batchsize=tune(), tuning=config_tuning(parallel=20,
NGPU=4)’, which will distribute 20 model fits across 4 GPUs, so that each GPU will process 5
models (in parallel).

continue_training Continues training of a model generated with dnn or cnn for addi-
tional epochs.

Description

If the training/validation loss is still decreasing at the end of the training, it is often a sign that the
NN has not yet converged. You can use this function to continue training instead of re-training the
entire model.

Usage

continue_training(model, ...)

S3 method for class 'citodnn'
continue_training(
model,
epochs = 32,
data = NULL,
device = NULL,
verbose = TRUE,
changed_params = NULL,
...

)

S3 method for class 'citodnnBootstrap'
continue_training(
model,
epochs = 32,
data = NULL,
device = NULL,
verbose = TRUE,
changed_params = NULL,
parallel = FALSE,
...

)

24 continue_training

S3 method for class 'citocnn'
continue_training(
model,
epochs = 32,
X = NULL,
Y = NULL,
device = c("cpu", "cuda", "mps"),
verbose = TRUE,
changed_params = NULL,
...

)

Arguments

model a model created by dnn or cnn
... class-specific arguments
epochs additional epochs the training should continue for
data matrix or data.frame. If not provided data from original training will be used
device can be used to overwrite device used in previous training
verbose print training and validation loss of epochs
changed_params list of arguments to change compared to original training setup, see dnn which

parameter can be changed
parallel train bootstrapped model in parallel
X array. If not provided X from original training will be used
Y vector, factor, numerical matrix or logical matrix. If not provided Y from origi-

nal training will be used

Value

a model of class citodnn, citodnnBootstrap or citocnn created by dnn or cnn

Examples

if(torch::torch_is_installed()){
library(cito)

set.seed(222)
validation_set<- sample(c(1:nrow(datasets::iris)),25)

Build and train Network
nn.fit<- dnn(Sepal.Length~., data = datasets::iris[-validation_set,], epochs = 32)

continue training for another 32 epochs
nn.fit<- continue_training(nn.fit,epochs = 32)

Use model on validation set
predictions <- predict(nn.fit, iris[validation_set,])
}

conv 25

conv Convolutional layer

Description

creates a ’conv’ ’citolayer’ object that is used by create_architecture.

Usage

conv(
n_kernels = NULL,
kernel_size = NULL,
stride = NULL,
padding = NULL,
dilation = NULL,
bias = NULL,
activation = NULL,
normalization = NULL,
dropout = NULL

)

Arguments

n_kernels (int) amount of kernels in this layer

kernel_size (int or tuple) size of the kernels in this layer. Use a tuple if the kernel size isn’t
equal in all dimensions

stride (int or tuple) stride of the kernels in this layer. NULL sets the stride equal to the
kernel size. Use a tuple if the stride isn’t equal in all dimensions

padding (int or tuple) zero-padding added to both sides of the input. Use a tuple if the
padding isn’t equal in all dimensions

dilation (int or tuple) dilation of the kernels in this layer. Use a tuple if the dilation isn’t
equal in all dimensions

bias (boolean) if TRUE, adds a learnable bias to the kernels of this layer

activation (string) activation function that is used after this layer. The following activation
functions are supported: "relu", "leaky_relu", "tanh", "elu", "rrelu", "prelu",
"softplus", "celu", "selu", "gelu", "relu6", "sigmoid", "softsign", "hardtanh",
"tanhshrink", "softshrink", "hardshrink", "log_sigmoid"

normalization (boolean) if TRUE, batch normalization is used after this layer

dropout (float) dropout rate of this layer. Set to 0 for no dropout

Details

This function creates a ’conv’ ’citolayer’ object that is passed to the create_architecture func-
tion. The parameters that aren’t assigned here (and are therefore still NULL) are filled with the
default values passed to create_architecture.

26 create_architecture

Value

S3 object of class "conv" "citolayer"

Author(s)

Armin Schenk

See Also

create_architecture

create_architecture CNN architecture

Description

creates a ’citoarchitecture’ object that is used by cnn.

Usage

create_architecture(
...,
default_n_neurons = 10,
default_n_kernels = 10,
default_kernel_size = list(conv = 3, maxPool = 2, avgPool = 2),
default_stride = list(conv = 1, maxPool = NULL, avgPool = NULL),
default_padding = list(conv = 0, maxPool = 0, avgPool = 0),
default_dilation = list(conv = 1, maxPool = 1),
default_bias = list(conv = TRUE, linear = TRUE),
default_activation = list(conv = "relu", linear = "relu"),
default_normalization = list(conv = FALSE, linear = FALSE),
default_dropout = list(conv = 0, linear = 0)

)

Arguments

... objects of class ’citolayer’ created by linear, conv, maxPool, avgPool or transfer
default_n_neurons

(int) default value: amount of neurons in a linear layer
default_n_kernels

(int) default value: amount of kernels in a convolutional layer
default_kernel_size

(int or tuple) default value: size of the kernels in convolutional and pooling
layers. Use a tuple if the kernel size isn’t equal in all dimensions

default_stride (int or tuple) default value: stride of the kernels in convolutional and pooling
layers. NULL sets the stride equal to the kernel size. Use a tuple if the stride
isn’t equal in all dimensions

create_architecture 27

default_padding

(int or tuple) default value: zero-padding added to both sides of the input. Use a
tuple if the padding isn’t equal in all dimensions

default_dilation

(int or tuple) default value: dilation of the kernels in convolutional and max-
Pooling layers. Use a tuple if the dilation isn’t equal in all dimensions

default_bias (boolean) default value: if TRUE, adds a learnable bias to neurons of linear and
kernels of convolutional layers

default_activation

(string) default value: activation function that is used after linear and convolu-
tional layers. The following activation functions are supported: "relu", "leaky_relu",
"tanh", "elu", "rrelu", "prelu", "softplus", "celu", "selu", "gelu", "relu6", "sig-
moid", "softsign", "hardtanh", "tanhshrink", "softshrink", "hardshrink", "log_sigmoid"

default_normalization

(boolean) default value: if TRUE, batch normalization is used after linear and
convolutional layers

default_dropout

(float) default value: dropout rate of linear and convolutional layers. Set to 0 for
no dropout

Details

This function creates a ’citoarchitecture’ object that provides the cnn function with all information
about the architecture of the CNN that will be created and trained. The final architecture consists
of the layers in the sequence they were passed to this function. All parameters of the ’citolayer’
objects, that are still NULL because they haven’t been specified at the creation of the layer, are filled
with the given default parameters for their specific layer type (linear, conv, maxPool, avgPool). The
default values can be changed by either passing a list with the values for specific layer types (in
which case the defaults of layer types which aren’t in the list remain the same) or by passing a
single value (in which case the defaults for all layer types is set to that value).

Value

S3 object of class "citoarchitecture"

Author(s)

Armin Schenk

See Also

cnn, linear, conv, maxPool, avgPool, transfer, print.citoarchitecture, plot.citoarchitecture

28 dnn

dnn DNN

Description

fits a custom deep neural network using the Multilayer Perceptron architecture. dnn() supports the
formula syntax and allows to customize the neural network to a maximal degree.

Usage

dnn(
formula = NULL,
data = NULL,
hidden = c(50L, 50L),
activation = "selu",
bias = TRUE,
dropout = 0,
loss = c("mse", "mae", "softmax", "cross-entropy", "gaussian", "binomial", "poisson",

"mvp", "nbinom"),
validation = 0,
lambda = 0,
alpha = 0.5,
optimizer = c("sgd", "adam", "adadelta", "adagrad", "rmsprop", "rprop"),
lr = 0.01,
batchsize = NULL,
burnin = 30,
baseloss = NULL,
shuffle = TRUE,
epochs = 100,
bootstrap = NULL,
bootstrap_parallel = FALSE,
plot = TRUE,
verbose = TRUE,
lr_scheduler = NULL,
custom_parameters = NULL,
device = c("cpu", "cuda", "mps"),
early_stopping = FALSE,
tuning = config_tuning(),
X = NULL,
Y = NULL

)

Arguments

formula an object of class "formula": a description of the model that should be fitted

data matrix or data.frame with features/predictors and response variable

hidden hidden units in layers, length of hidden corresponds to number of layers

dnn 29

activation activation functions, can be of length one, or a vector of different activation
functions for each layer

bias whether use biases in the layers, can be of length one, or a vector (number of
hidden layers + 1 (last layer)) of logicals for each layer.

dropout dropout rate, probability of a node getting left out during training (see nn_dropout)

loss loss after which network should be optimized. Can also be distribution from the
stats package or own function, see details

validation percentage of data set that should be taken as validation set (chosen randomly)

lambda strength of regularization: lambda penalty, λ ∗ (L1 + L2) (see alpha)

alpha add L1/L2 regularization to training (1 − α) ∗ |weights| + α||weights||2 will
get added for each layer. Must be between 0 and 1

optimizer which optimizer used for training the network, for more adjustments to opti-
mizer see config_optimizer

lr learning rate given to optimizer

batchsize number of samples that are used to calculate one learning rate step, default is
10% of the training data

burnin training is aborted if the trainings loss is not below the baseline loss after burnin
epochs

baseloss baseloss, if null baseloss corresponds to intercept only models

shuffle if TRUE, data in each batch gets reshuffled every epoch

epochs epochs the training goes on for

bootstrap bootstrap neural network or not, numeric corresponds to number of bootstrap
samples

bootstrap_parallel

parallelize (CPU) bootstrapping

plot plot training loss

verbose print training and validation loss of epochs

lr_scheduler learning rate scheduler created with config_lr_scheduler

custom_parameters

List of parameters/variables to be optimized. Can be used in a custom loss
function. See Vignette for example.

device device on which network should be trained on. mps correspond to M1/M2 GPU
devices.

early_stopping if set to integer, training will stop if loss has gotten higher for defined number of
epochs in a row, will use validation loss is available.

tuning tuning options created with config_tuning

X Feature matrix or data.frame, alternative data interface

Y Response vector, factor, matrix or data.frame, alternative data interface

30 dnn

Value

an S3 object of class "cito.dnn" is returned. It is a list containing everything there is to know
about the model and its training process. The list consists of the following attributes:

net An object of class "nn_sequential" "nn_module", originates from the torch pack-
age and represents the core object of this workflow.

call The original function call

loss A list which contains relevant information for the target variable and the used
loss function

data Contains data used for training the model

weigths List of weights for each training epoch
use_model_epoch

Integer, which defines which model from which training epoch should be used
for prediction. 1 = best model, 2 = last model

loaded_model_epoch

Integer, shows which model from which epoch is loaded currently into model$net.
model_properties

A list of properties of the neural network, contains number of input nodes, num-
ber of output nodes, size of hidden layers, activation functions, whether bias is
included and if dropout layers are included.

training_properties

A list of all training parameters that were used the last time the model was
trained. It consists of learning rate, information about an learning rate scheduler,
information about the optimizer, number of epochs, whether early stopping was
used, if plot was active, lambda and alpha for L1/L2 regularization, batchsize,
shuffle, was the data set split into validation and training, which formula was
used for training and at which epoch did the training stop.

losses A data.frame containing training and validation losses of each epoch

Activation functions

Supported activation functions: "relu", "leaky_relu", "tanh", "elu", "rrelu", "prelu", "softplus",
"celu", "selu", "gelu", "relu6", "sigmoid", "softsign", "hardtanh", "tanhshrink", "softshrink", "hard-
shrink", "log_sigmoid"

Loss functions / Likelihoods

We support loss functions and likelihoods for different tasks:

Name Explanation Example / Task
mse mean squared error Regression, predicting continuous values
mae mean absolute error Regression, predicting continuous values
softmax categorical cross entropy Multi-class, species classification
cross-entropy categorical cross entropy Multi-class, species classification
gaussian Normal likelihood Regression, residual error is also estimated (similar to stats::lm())
binomial Binomial likelihood Classification/Logistic regression, mortality

dnn 31

poisson Poisson likelihood Regression, count data, e.g. species abundances
nbinom Negative binomial likelihood Regression, count data with dispersion parameter
mvp multivariate probit model joint species distribution model, multi species (presence absence)

Training and convergence of neural networks

Ensuring convergence can be tricky when training neural networks. Their training is sensitive to a
combination of the learning rate (how much the weights are updated in each optimization step), the
batch size (a random subset of the data is used in each optimization step), and the number of epochs
(number of optimization steps). Typically, the learning rate should be decreased with the size of the
neural networks (depth of the network and width of the hidden layers). We provide a baseline loss
(intercept only model) that can give hints about an appropriate learning rate:

If the training loss of the model doesn’t fall below the baseline loss, the learning rate is either too
high or too low. If this happens, try higher and lower learning rates.

A common strategy is to try (manually) a few different learning rates to see if the learning rate is
on the right scale.

See the troubleshooting vignette (vignette("B-Training_neural_networks")) for more help on
training and debugging neural networks.

Finding the right architecture

As with the learning rate, there is no definitive guide to choosing the right architecture for the right
task. However, there are some general rules/recommendations: In general, wider, and deeper neural
networks can improve generalization - but this is a double-edged sword because it also increases
the risk of overfitting. So, if you increase the width and depth of the network, you should also add
regularization (e.g., by increasing the lambda parameter, which corresponds to the regularization
strength). Furthermore, in Pichler & Hartig, 2023, we investigated the effects of the hyperparam-
eters on the prediction performance as a function of the data size. For example, we found that the
selu activation function outperforms relu for small data sizes (<100 observations).

We recommend starting with moderate sizes (like the defaults), and if the model doesn’t general-
ize/converge, try larger networks along with a regularization that helps minimize the risk of overfit-
ting (see vignette("B-Training_neural_networks")).

Overfitting

Overfitting means that the model fits the training data well, but generalizes poorly to new obser-
vations. We can use the validation argument to detect overfitting. If the validation loss starts to

https://arxiv.org/abs/2306.10551

32 dnn

increase again at a certain point, it often means that the models are starting to overfit your training
data:

Solutions:

• Re-train with epochs = point where model started to overfit

• Early stopping, stop training when model starts to overfit, can be specified using the early_stopping=. . .
argument

• Use regularization (dropout or elastic-net, see next section)

Regularization

Elastic Net regularization combines the strengths of L1 (Lasso) and L2 (Ridge) regularization. It
introduces a penalty term that encourages sparse weight values while maintaining overall weight
shrinkage. By controlling the sparsity of the learned model, Elastic Net regularization helps avoid
overfitting while allowing for meaningful feature selection. We advise using elastic net (e.g. lambda
= 0.001 and alpha = 0.2).

Dropout regularization helps prevent overfitting by randomly disabling a portion of neurons during
training. This technique encourages the network to learn more robust and generalized representa-
tions, as it prevents individual neurons from relying too heavily on specific input patterns. Dropout
has been widely adopted as a simple yet effective regularization method in deep learning.

By utilizing these regularization methods in your neural network training with the cito package,
you can improve generalization performance and enhance the network’s ability to handle unseen
data. These techniques act as valuable tools in mitigating overfitting and promoting more robust
and reliable model performance.

dnn 33

Uncertainty

We can use bootstrapping to generate uncertainties for all outputs. Bootstrapping can be enabled
by setting bootstrap = ... to the number of bootstrap samples to be used. Note, however, that the
computational cost can be excessive.

In some cases it may be worthwhile to parallelize bootstrapping, for example if you have a GPU
and the neural network is small. Parallelization for bootstrapping can be enabled by setting the
bootstrap_parallel = ... argument to the desired number of calls to run in parallel.

Custom Optimizer and Learning Rate Schedulers

When training a network, you have the flexibility to customize the optimizer settings and learn-
ing rate scheduler to optimize the learning process. In the cito package, you can initialize these
configurations using the config_lr_scheduler and config_optimizer functions.

config_lr_scheduler allows you to define a specific learning rate scheduler that controls how the
learning rate changes over time during training. This is beneficial in scenarios where you want to
adaptively adjust the learning rate to improve convergence or avoid getting stuck in local optima.

Similarly, the config_optimizer function enables you to specify the optimizer for your network.
Different optimizers, such as stochastic gradient descent (SGD), Adam, or RMSprop, offer vari-
ous strategies for updating the network’s weights and biases during training. Choosing the right
optimizer can significantly impact the training process and the final performance of your neural
network.

Hyperparameter tuning

We have implemented experimental support for hyperparameter tuning. We can mark hyperparame-
ters that should be tuned by cito by setting their values to tune(), for example dnn (..., lr = tune().
tune() is a function that creates a range of random values for the given hyperparameter. You can
change the maximum and minimum range of the potential hyperparameters or pass custom values
to the tune(values = c(....)) function. The following table lists the hyperparameters that can
currently be tuned:

Hyperparameter Example Details
hidden dnn(. . . ,hidden=tune(10, 20, fixed=’depth’)) Depth and width can be both tuned or only one of them, if both of them should be tuned, vectors for lower and upper #’ boundaries must be provided (first = number of nodes)
bias dnn(. . . , bias=tune()) Should the bias be turned on or off for all hidden layers
lambda dnn(. . . , lambda = tune(0.0001, 0.1)) lambda will be tuned within the range (0.0001, 0.1)
alpha dnn(. . . , lambda = tune(0.2, 0.4)) alpha will be tuned within the range (0.2, 0.4)
activation dnn(. . . , activation = tune()) activation functions of the hidden layers will be tuned
dropout dnn(. . . , dropout = tune()) Dropout rate will be tuned (globally for all layers)
lr dnn(. . . , lr = tune()) Learning rate will be tuned
batchsize dnn(. . . , batchsize = tune()) batch size will be tuned
epochs dnn(. . . , batchsize = tune()) batchsize will be tuned

The hyperparameters are tuned by random search (i.e., random values for the hyperparameters
within a specified range) and by cross-validation. The exact tuning regime can be specified with
config_tuning.

34 dnn

Note that hyperparameter tuning can be expensive. We have implemented an option to parallelize
hyperparameter tuning, including parallelization over one or more GPUs (the hyperparameter eval-
uation is parallelized, not the CV). This can be especially useful for small models. For example, if
you have 4 GPUs, 20 CPU cores, and 20 steps (random samples from the random search), you could
run dnn(..., device="cuda",lr = tune(), batchsize=tune(), tuning=config_tuning(parallel=20, NGPU=4),
which will distribute 20 model fits across 4 GPUs, so that each GPU will process 5 models (in par-
allel).

As this is an experimental feature, we welcome feature requests and bug reports on our github site.

For the custom values, all hyperparameters except for the hidden layers require a vector of values.
Hidden layers expect a two-column matrix where the first column is the number of hidden nodes
and the second column corresponds to the number of hidden layers.

How neural networks work

In Multilayer Perceptron (MLP) networks, each neuron is connected to every neuron in the previous
layer and every neuron in the subsequent layer. The value of each neuron is computed using a
weighted sum of the outputs from the previous layer, followed by the application of an activation
function. Specifically, the value of a neuron is calculated as the weighted sum of the outputs of
the neurons in the previous layer, combined with a bias term. This sum is then passed through
an activation function, which introduces non-linearity into the network. The calculated value of
each neuron becomes the input for the neurons in the next layer, and the process continues until the
output layer is reached. The choice of activation function and the specific weight values determine
the network’s ability to learn and approximate complex relationships between inputs and outputs.

Therefore the value of each neuron can be calculated using: a(
∑

j wj ∗ aj). Where wj is the
weight and aj is the value from neuron j to the current one. a() is the activation function, e.g.
relu(x) = max(0, x)

Training on graphic cards

If you have an NVIDIA CUDA-enabled device and have installed the CUDA toolkit version 11.3
and cuDNN 8.4, you can take advantage of GPU acceleration for training your neural networks. It
is crucial to have these specific versions installed, as other versions may not be compatible. For
detailed installation instructions and more information on utilizing GPUs for training, please refer
to the mlverse: ’torch’ documentation.

Note: GPU training is optional, and the package can still be used for training on CPU even without
CUDA and cuDNN installations.

Author(s)

Christian Amesoeder, Maximilian Pichler

See Also

predict.citodnn, plot.citodnn, coef.citodnn,print.citodnn, summary.citodnn, continue_training,
analyze_training, PDP, ALE,

https://torch.mlverse.org/docs/articles/installation.html

dnn 35

Examples

if(torch::torch_is_installed()){
library(cito)

Example workflow in cito

Build and train Network
softmax is used for multi-class responses (e.g., Species)
nn.fit<- dnn(Species~., data = datasets::iris, loss = "softmax")

The training loss is below the baseline loss but at the end of the
training the loss was still decreasing, so continue training for another 50
epochs
nn.fit <- continue_training(nn.fit, epochs = 50L)

Sturcture of Neural Network
print(nn.fit)

Plot Neural Network
plot(nn.fit)
4 Input nodes (first layer) because of 4 features
3 Output nodes (last layer) because of 3 response species (one node for each
level in the response variable).
The layers between the input and output layer are called hidden layers (two
of them)

We now want to understand how the predictions are made, what are the
important features? The summary function automatically calculates feature
importance (the interpretation is similar to an anova) and calculates
average conditional effects that are similar to linear effects:
summary(nn.fit)

To visualize the effect (response-feature effect), we can use the ALE and
PDP functions

Partial dependencies
PDP(nn.fit, variable = "Petal.Length")

Accumulated local effect plots
ALE(nn.fit, variable = "Petal.Length")

Per se, it is difficult to get confidence intervals for our xAI metrics (or
for the predictions). But we can use bootstrapping to obtain uncertainties
for all cito outputs:
Re-fit the neural network with bootstrapping
nn.fit<- dnn(Species~.,

data = datasets::iris,
loss = "softmax",
epochs = 150L,
verbose = FALSE,

36 dnn

bootstrap = 20L)
convergence can be tested via the analyze_training function
analyze_training(nn.fit)

Summary for xAI metrics (can take some time):
summary(nn.fit)
Now with standard errors and p-values
Note: Take the p-values with a grain of salt! We do not know yet if they are
correct (e.g. if you use regularization, they are likely conservative == too
large)

Predictions with bootstrapping:
dim(predict(nn.fit))
predictions are by default averaged (over the bootstrap samples)

Hyperparameter tuning (experimental feature)
hidden_values = matrix(c(5, 2,

4, 2,
10,2,
15,2), 4, 2, byrow = TRUE)

Potential architectures we want to test, first column == number of nodes
print(hidden_values)

nn.fit = dnn(Species~.,
data = iris,
epochs = 30L,
loss = "softmax",
hidden = tune(values = hidden_values),
lr = tune(0.00001, 0.1) # tune lr between range 0.00001 and 0.1
)

Tuning results:
print(nn.fit$tuning)

test = Inf means that tuning was cancelled after only one fit (within the CV)

Advanced: Custom loss functions and additional parameters
Normal Likelihood with sd parameter:
custom_loss = function(pred, true) {

logLik = torch::distr_normal(pred,
scale = torch::nnf_relu(scale)+

0.001)$log_prob(true)
return(-logLik$mean())

}

nn.fit<- dnn(Sepal.Length~.,
data = datasets::iris,
loss = custom_loss,
verbose = FALSE,
custom_parameters = list(scale = 1.0)

)

e 37

nn.fit$parameter$scale

Multivariate normal likelihood with parametrized covariance matrix
Sigma = L*L^t + D
Helper function to build covariance matrix
create_cov = function(LU, Diag) {

return(torch::torch_matmul(LU, LU$t()) + torch::torch_diag(Diag$exp()+0.01))
}

custom_loss_MVN = function(true, pred) {
Sigma = create_cov(SigmaPar, SigmaDiag)
logLik = torch::distr_multivariate_normal(pred,

covariance_matrix = Sigma)$
log_prob(true)

return(-logLik$mean())
}

nn.fit<- dnn(cbind(Sepal.Length, Sepal.Width, Petal.Length)~.,
data = datasets::iris,
lr = 0.01,
verbose = FALSE,
loss = custom_loss_MVN,
custom_parameters =

list(SigmaDiag = rep(0, 3),
SigmaPar = matrix(rnorm(6, sd = 0.001), 3, 2))

)
as.matrix(create_cov(nn.fit$loss$parameter$SigmaPar,

nn.fit$loss$parameter$SigmaDiag))

}

e Embeddings

Description

Can be used for categorical variables, a more efficient alternative to one-hot encoding

Usage

e(dim = 1L, weights = NULL, train = TRUE, lambda = 0, alpha = 1)

Arguments

dim integer, embedding dimension

weights matrix, to use custom embedding matrices

train logical, should the embeddings be trained or not

38 linear

lambda regularization strength on the embeddings

alpha mix between L1 and L2 regularization

findReTrmClasses list of specials – taken from enum.R

Description

list of specials – taken from enum.R

Usage

findReTrmClasses()

linear Linear layer

Description

creates a ’linear’ ’citolayer’ object that is used by create_architecture.

Usage

linear(
n_neurons = NULL,
bias = NULL,
activation = NULL,
normalization = NULL,
dropout = NULL

)

Arguments

n_neurons (int) amount of hidden neurons in this layer

bias (boolean) if TRUE, adds a learnable bias to the neurons of this layer

activation (string) activation function that is used after this layer. The following activation
functions are supported: "relu", "leaky_relu", "tanh", "elu", "rrelu", "prelu",
"softplus", "celu", "selu", "gelu", "relu6", "sigmoid", "softsign", "hardtanh",
"tanhshrink", "softshrink", "hardshrink", "log_sigmoid"

normalization (boolean) if TRUE, batch normalization is used after this layer

dropout (float) dropout rate of this layer. Set to 0 for no dropout

maxPool 39

Details

This function creates a ’linear’ ’citolayer’ object that is passed to the create_architecture func-
tion. The parameters that aren’t assigned here (and are therefore still NULL) are filled with the
default values passed to create_architecture.

Value

S3 object of class "linear" "citolayer"

Author(s)

Armin Schenk

See Also

create_architecture

maxPool Maximum pooling layer

Description

creates a ’maxPool’ ’citolayer’ object that is used by create_architecture.

Usage

maxPool(kernel_size = NULL, stride = NULL, padding = NULL, dilation = NULL)

Arguments

kernel_size (int or tuple) size of the kernel in this layer. Use a tuple if the kernel size isn’t
equal in all dimensions

stride (int or tuple) stride of the kernel in this layer. NULL sets the stride equal to the
kernel size. Use a tuple if the stride isn’t equal in all dimensions

padding (int or tuple) zero-padding added to both sides of the input. Use a tuple if the
padding isn’t equal in all dimensions

dilation (int or tuple) dilation of the kernel in this layer. Use a tuple if the dilation isn’t
equal in all dimensions

Details

This function creates a ’maxPool’ ’citolayer’ object that is passed to the create_architecture
function. The parameters that aren’t assigned here (and are therefore still NULL) are filled with the
default values passed to create_architecture.

40 PDP

Value

S3 object of class "maxPool" "citolayer"

Author(s)

Armin Schenk

See Also

create_architecture

PDP Partial Dependence Plot (PDP)

Description

Calculates the Partial Dependency Plot for one feature, either numeric or categorical. Returns it as
a plot.

Usage

PDP(
model,
variable = NULL,
data = NULL,
ice = FALSE,
resolution.ice = 20,
plot = TRUE,
parallel = FALSE,
...

)

S3 method for class 'citodnn'
PDP(
model,
variable = NULL,
data = NULL,
ice = FALSE,
resolution.ice = 20,
plot = TRUE,
parallel = FALSE,
...

)

S3 method for class 'citodnnBootstrap'
PDP(
model,

PDP 41

variable = NULL,
data = NULL,
ice = FALSE,
resolution.ice = 20,
plot = TRUE,
parallel = FALSE,
...

)

Arguments

model a model created by dnn

variable variable as string for which the PDP should be done. If none is supplied it is
done for all variables.

data specify new data PDP should be performed . If NULL, PDP is performed on the
training data.

ice Individual Conditional Dependence will be shown if TRUE

resolution.ice resolution in which ice will be computed

plot plot PDP or not

parallel parallelize over bootstrap models or not

... arguments passed to predict

Value

A list of plots made with ’ggplot2’ consisting of an individual plot for each defined variable.

Description

Performs a Partial Dependency Plot (PDP) estimation to analyze the relationship between a selected
feature and the target variable.

The PDP function estimates the partial function f̂S :

f̂S(xS) =
1
n

∑n
i=1 f̂(xS , x

(i)
C)

with a Monte Carlo Estimation:

f̂S(xS) = 1
n

∑n
i=1 f̂(xS , x

(i)
C) using a Monte Carlo estimation method. It calculates the average

prediction of the target variable for different values of the selected feature while keeping other
features constant.

For categorical features, all data instances are used, and each instance is set to one level of the
categorical feature. The average prediction per category is then calculated and visualized in a bar
plot.

If the ice parameter is set to TRUE, the Individual Conditional Expectation (ICE) curves are also
shown. These curves illustrate how each individual data sample reacts to changes in the feature
value. Please note that this option is not available for categorical features. Unlike PDP, the ICE
curves are computed using a value grid instead of utilizing every value of every data entry.

Note: The PDP analysis provides valuable insights into the relationship between a specific feature
and the target variable, helping to understand the feature’s impact on the model’s predictions. If a

42 plot.citoarchitecture

categorical feature is analyzed, all data instances are used and set to each level. Then an average is
calculated per category and put out in a bar plot.

If ice is set to true additional the individual conditional dependence will be shown and the original
PDP will be colored yellow. These lines show, how each individual data sample reacts to changes
in the feature. This option is not available for categorical features. Unlike PDP the ICE curves are
computed with a value grid instead of utilizing every value of every data entry.

See Also

ALE

Examples

if(torch::torch_is_installed()){
library(cito)

Build and train Network
nn.fit<- dnn(Sepal.Length~., data = datasets::iris)

PDP(nn.fit, variable = "Petal.Length")
}

plot.citoarchitecture Plot the CNN architecture

Description

Plot the CNN architecture

Usage

S3 method for class 'citoarchitecture'
plot(x, input_shape, output_shape, ...)

Arguments

x an object of class citoarchitecture created by create_architecture

input_shape a vector with the dimensions of a single sample (e.g. c(3,28,28))

output_shape the number of nodes in the output layer

... additional arguments

Value

nothing

plot.citocnn 43

plot.citocnn Plot the CNN architecture

Description

Plot the CNN architecture

Usage

S3 method for class 'citocnn'
plot(x, ...)

Arguments

x a model created by cnn

... additional arguments

Value

original object x

plot.citodnn Creates graph plot which gives an overview of the network architec-
ture.

Description

Creates graph plot which gives an overview of the network architecture.

Usage

S3 method for class 'citodnn'
plot(x, node_size = 1, scale_edges = FALSE, ...)

S3 method for class 'citodnnBootstrap'
plot(x, node_size = 1, scale_edges = FALSE, which_model = 1, ...)

Arguments

x a model created by dnn

node_size size of node in plot

scale_edges edge weight gets scaled according to other weights (layer specific)

... no further functionality implemented yet

which_model which model from the ensemble should be plotted

44 predict.citocnn

Value

A plot made with ’ggraph’ + ’igraph’ that represents the neural network

Examples

if(torch::torch_is_installed()){
library(cito)

set.seed(222)
validation_set<- sample(c(1:nrow(datasets::iris)),25)

Build and train Network
nn.fit<- dnn(Sepal.Length~., data = datasets::iris[-validation_set,])

plot(nn.fit)
}

predict.citocnn Predict from a fitted cnn model

Description

Predict from a fitted cnn model

Usage

S3 method for class 'citocnn'
predict(
object,
newdata = NULL,
type = c("link", "response", "class"),
device = c("cpu", "cuda", "mps"),
...

)

Arguments

object a model created by cnn

newdata new data for predictions
type which value should be calculated, either raw response, output of link function

or predicted class (in case of classification)
device device on which network should be trained on.
... additional arguments

Value

prediction matrix

predict.citodnn 45

predict.citodnn Predict from a fitted dnn model

Description

Predict from a fitted dnn model

Usage

S3 method for class 'citodnn'
predict(
object,
newdata = NULL,
type = c("link", "response", "class"),
device = c("cpu", "cuda", "mps"),
reduce = c("mean", "median", "none"),
...

)

S3 method for class 'citodnnBootstrap'
predict(
object,
newdata = NULL,
type = c("link", "response", "class"),
device = c("cpu", "cuda", "mps"),
reduce = c("mean", "median", "none"),
...

)

Arguments

object a model created by dnn

newdata new data for predictions

type type of predictions. The default is on the scale of the linear predictor, "response"
is on the scale of the response, and "class" means that class predictions are
returned (if it is a classification task)

device device on which network should be trained on.

reduce predictions from bootstrapped model are by default reduced (mean, optional
median or none)

... additional arguments

Value

prediction matrix

46 print.citoarchitecture

Examples

if(torch::torch_is_installed()){
library(cito)

set.seed(222)
validation_set<- sample(c(1:nrow(datasets::iris)),25)

Build and train Network
nn.fit<- dnn(Sepal.Length~., data = datasets::iris[-validation_set,])

Use model on validation set
predictions <- predict(nn.fit, iris[validation_set,])
Scatterplot
plot(iris[validation_set,]$Sepal.Length,predictions)
MAE
mean(abs(predictions-iris[validation_set,]$Sepal.Length))
}

print.avgPool Print pooling layer

Description

Print pooling layer

Usage

S3 method for class 'avgPool'
print(x, input_shape, ...)

Arguments

x an object of class avgPool

input_shape input shape

... further arguments, not supported yet

print.citoarchitecture

Print class citoarchitecture

Description

Print class citoarchitecture

print.citocnn 47

Usage

S3 method for class 'citoarchitecture'
print(x, input_shape, output_shape, ...)

Arguments

x an object created by create_architecture

input_shape a vector with the dimensions of a single sample (e.g. c(3,28,28))

output_shape the number of nodes in the output layer

... additional arguments

Value

original object

print.citocnn Print class citocnn

Description

Print class citocnn

Usage

S3 method for class 'citocnn'
print(x, ...)

Arguments

x a model created by cnn

... additional arguments

Value

original object x

48 print.citodnn

print.citodnn Print class citodnn

Description

Print class citodnn

Usage

S3 method for class 'citodnn'
print(x, ...)

S3 method for class 'citodnnBootstrap'
print(x, ...)

Arguments

x a model created by dnn

... additional arguments

Value

original object x gets returned

Examples

if(torch::torch_is_installed()){
library(cito)

set.seed(222)
validation_set<- sample(c(1:nrow(datasets::iris)),25)

Build and train Network
nn.fit<- dnn(Sepal.Length~., data = datasets::iris[-validation_set,])

Structure of Neural Network
print(nn.fit)
}

print.conditionalEffects 49

print.conditionalEffects

Print average conditional effects

Description

Print average conditional effects

Usage

S3 method for class 'conditionalEffects'
print(x, ...)

S3 method for class 'conditionalEffectsBootstrap'
print(x, ...)

Arguments

x print ACE calculated by conditionalEffects

... optional arguments for compatibility with the generic function, no function im-
plemented

Value

Matrix with average conditional effects

print.conv Print conv layer

Description

Print conv layer

Usage

S3 method for class 'conv'
print(x, input_shape, ...)

Arguments

x an object of class conv

input_shape input shape

... further arguments, not supported yet

50 print.maxPool

print.linear Print linear layer

Description

Print linear layer

Usage

S3 method for class 'linear'
print(x, input_shape, ...)

Arguments

x an object of class linear

input_shape input shape

... further arguments, not supported yet

print.maxPool Print pooling layer

Description

Print pooling layer

Usage

S3 method for class 'maxPool'
print(x, input_shape, ...)

Arguments

x an object of class maxPool

input_shape input shape

... further arguments, not supported yet

print.summary.citodnn 51

print.summary.citodnn Print method for class summary.citodnn

Description

Print method for class summary.citodnn

Usage

S3 method for class 'summary.citodnn'
print(x, ...)

S3 method for class 'summary.citodnnBootstrap'
print(x, ...)

Arguments

x a summary object created by summary.citodnn

... additional arguments

Value

List with Matrices for importance, average CE, absolute sum of CE, and standard deviation of the
CE

print.transfer Print transfer model

Description

Print transfer model

Usage

S3 method for class 'transfer'
print(x, input_shape, output_shape, ...)

Arguments

x an object of class transfer

input_shape input shape

output_shape output shape

... further arguments, not supported yet

52 simulate_shapes

residuals.citodnn Extract Model Residuals

Description

Returns residuals of training set.

Usage

S3 method for class 'citodnn'
residuals(object, ...)

Arguments

object a model created by dnn

... no additional arguments implemented

Value

residuals of training set

simulate_shapes Data Simulation for CNN

Description

generates images of rectangles and ellipsoids

Usage

simulate_shapes(n, size, channels = 1)

Arguments

n number of images

size size of the (quadratic) images

channels number of channels the generated data has (in each channel a new rectangle/ellipsoid
is created)

Details

This function generates simple data to demonstrate the usage of cnn(). The generated images are of
centered rectangles and ellipsoids with random widths and heights.

summary.citocnn 53

Value

array of dimension (n, 1, size, size)

Author(s)

Armin Schenk

summary.citocnn Summary citocnn

Description

currently the same as the print.citocnn method.

Usage

S3 method for class 'citocnn'
summary(object, ...)

Arguments

object a model created by cnn

... additional arguments

Value

original object x

summary.citodnn Summarize Neural Network of class citodnn

Description

Performs a Feature Importance calculation based on Permutations

Usage

S3 method for class 'citodnn'
summary(object, n_permute = NULL, device = NULL, ...)

S3 method for class 'citodnnBootstrap'
summary(object, n_permute = NULL, device = NULL, adjust_se = FALSE, ...)

54 sumTerms

Arguments

object a model of class citodnn created by dnn

n_permute number of permutations performed. Default is 3 ∗
√
n, where n euqals then

number of samples in the training set

device for calculating variable importance and conditional effects

... additional arguments

adjust_se adjust standard errors for importance (standard errors are multiplied with 1/sqrt(3)
)

Details

Performs the feature importance calculation as suggested by Fisher, Rudin, and Dominici (2018),
and the mean and standard deviation of the average conditional Effects as suggested by Pichler &
Hartig (2023).

Feature importances are in their interpretation similar to a ANOVA. Main and interaction effects
are absorbed into the features. Also, feature importances are prone to collinearity between features,
i.e. if two features are collinear, the importances might be overestimated.

Average conditional effects (ACE) are similar to marginal effects and approximate linear effects,
i.e. their interpretation is similar to effects in a linear regression model.

The standard deviation of the ACE informs about the non-linearity of the feature effects. Higher
values correlate with stronger non-linearities.

For each feature n permutation get done and original and permuted predictive mean squared error
(eperm & eorig) get evaluated with FIj = eperm/eorig. Based on Mean Squared Error.

Value

summary.citodnn returns an object of class "summary.citodnn", a list with components

sumTerms combine a list of formula terms as a sum

Description

combine a list of formula terms as a sum

Usage

sumTerms(termList)

Arguments

termList a list of formula terms

transfer 55

transfer Transfer learning

Description

creates a ’transfer’ ’citolayer’ object that is used by create_architecture.

Usage

transfer(
name = c("alexnet", "inception_v3", "mobilenet_v2", "resnet101", "resnet152",
"resnet18", "resnet34", "resnet50", "resnext101_32x8d", "resnext50_32x4d", "vgg11",
"vgg11_bn", "vgg13", "vgg13_bn", "vgg16", "vgg16_bn", "vgg19", "vgg19_bn",
"wide_resnet101_2", "wide_resnet50_2"),

pretrained = TRUE,
freeze = TRUE

)

Arguments

name The name of the pretrained model

pretrained if FALSE, random weights are used instead of the pretrained weights

freeze if TRUE, the weights of the pretrained model (except the "classifier" part at the
end) aren’t changed in the training anymore. Only works if pretrained=TRUE

Details

This function creates a ’transfer’ ’citolayer’ object that is passed to the create_architecture
function. With this object the pretrained models that are available in the ’torchvision’ package can
be used in cito. When ’freeze’ is set to TRUE, only the weights of the last part of the network
(consisting of one or more linear layers) are adjusted in the training. There mustn’t be any other
citolayers before the transfer citolayer object when calling create_architecture. If there are any
citolayers after the transfer citolayer, the linear classifier part of the pretrained model is replaced
with the specified citolayers.

Value

S3 object of class "transfer" "citolayer"

Author(s)

Armin Schenk

See Also

create_architecture

56 tune

tune Tune hyperparameter

Description

Control hyperparameter tuning

Usage

tune(
lower = NULL,
upper = NULL,
fixed = NULL,
additional = NULL,
values = NULL

)

Arguments

lower numeric, numeric vector, character, lower boundaries of tuning space

upper numeric, numeric vector, character, upper boundaries of tuning space

fixed character, used for multi-dimensional hyperparameters such as hidden, which
dimensions should be fixed

additional numeric, additional control parameter which sets the value of the fixed argument

values custom values from which hyperparameters are sampled, must be a matrix for
hidden layers (first column == nodes, second column == number of layers)

Index

ALE, 3, 7, 34, 42
analyze_training, 5, 7, 15, 34
avgPool, 6, 26, 27

cito, 7
cito-package (cito), 7
cnn, 5, 10, 16, 23, 24, 26, 27, 43, 44, 47, 53
coef.citocnn, 15, 16
coef.citodnn, 16, 34
coef.citodnnBootstrap (coef.citodnn), 16
conditionalEffects, 17, 49
config_lr_scheduler, 11, 15, 19, 29, 33
config_optimizer, 11, 15, 21, 29, 33
config_tuning, 22, 29, 33
continue_training, 7, 15, 23, 34
conv, 25, 26, 27
create_architecture, 6, 11, 25, 26, 26,

38–40, 42, 47, 55

dnn, 4, 5, 7, 16, 19–21, 23, 24, 28, 41, 43, 45,
48, 52, 54

dnn(), 22

e, 37

findReTrmClasses, 38
formula, 28

linear, 26, 27, 38
lr_lambda, 20
lr_multiplicative, 20
lr_one_cycle, 20
lr_reduce_on_plateau, 20
lr_step, 20

maxPool, 26, 27, 39

nn_dropout, 29

optim_adadelta, 21
optim_adagrad, 21

optim_adam, 21
optim_rmsprop, 21
optim_rprop, 21
optim_sgd, 21

PDP, 4, 7, 34, 40
plot.citoarchitecture, 27, 42
plot.citocnn, 15, 43
plot.citodnn, 34, 43
plot.citodnnBootstrap (plot.citodnn), 43
predict, 4, 41
predict.citocnn, 15, 44
predict.citodnn, 34, 45
predict.citodnnBootstrap

(predict.citodnn), 45
print.avgPool, 46
print.citoarchitecture, 27, 46
print.citocnn, 15, 47
print.citodnn, 34, 48
print.citodnnBootstrap (print.citodnn),

48
print.conditionalEffects, 49
print.conditionalEffectsBootstrap

(print.conditionalEffects), 49
print.conv, 49
print.linear, 50
print.maxPool, 50
print.summary.citodnn, 51
print.summary.citodnnBootstrap

(print.summary.citodnn), 51
print.transfer, 51

residuals.citodnn, 52

simulate_shapes, 52
summary.citocnn, 15, 53
summary.citodnn, 7, 34, 51, 53
summary.citodnnBootstrap

(summary.citodnn), 53
sumTerms, 54

57

58 INDEX

transfer, 26, 27, 55
tune, 56
tune(), 33

	ALE
	analyze_training
	avgPool
	cito
	cnn
	coef.citocnn
	coef.citodnn
	conditionalEffects
	config_lr_scheduler
	config_optimizer
	config_tuning
	continue_training
	conv
	create_architecture
	dnn
	e
	findReTrmClasses
	linear
	maxPool
	PDP
	plot.citoarchitecture
	plot.citocnn
	plot.citodnn
	predict.citocnn
	predict.citodnn
	print.avgPool
	print.citoarchitecture
	print.citocnn
	print.citodnn
	print.conditionalEffects
	print.conv
	print.linear
	print.maxPool
	print.summary.citodnn
	print.transfer
	residuals.citodnn
	simulate_shapes
	summary.citocnn
	summary.citodnn
	sumTerms
	transfer
	tune
	Index

