
Package ‘clampSeg’
July 22, 2025

Title Idealisation of Patch Clamp Recordings

Version 1.2-0

Depends R (>= 3.3.0)

Imports stepR (>= 2.1.0), lowpassFilter, stats, methods

Suggests testthat, R.cache (>= 0.10.0), R.rsp

Description Implements the model-free multiscale idealisation approaches: Jump-
Segmentation by MUltiResolution Filter (JS-
MURF), Hotz et al. (2013) <doi:10.1109/TNB.2013.2284063>, JUmp Local dEconvolution Seg-
mentation filter (JULES), Pein et al. (2018) <doi:10.1109/TNB.2018.2845126>, and Heteroge-
neous Idealization by Local testing and DEconvolu-
tion (HILDE), Pein et al. (2021) <doi:10.1109/TNB.2020.3031202>. Further de-
tails on how to use them are given in the accompanying vignette.

VignetteBuilder R.rsp

License GPL-3

Encoding UTF-8

LazyData true

NeedsCompilation no

Author Pein Florian [aut, cre],
Timo Aspelmeier [ctb]

Maintainer Pein Florian <f.pein@lancaster.ac.uk>

Repository CRAN

Date/Publication 2025-06-27 13:30:08 UTC

Contents
clampSeg-package . 2
createLocalList . 6
deconvolveLocally . 8
getCritVal . 12
gramA . 18
hilde . 19

1

https://doi.org/10.1109/TNB.2013.2284063
https://doi.org/10.1109/TNB.2018.2845126
https://doi.org/10.1109/TNB.2020.3031202

2 clampSeg-package

improveSmallScales . 25
jsmurf . 31
jules . 37
lowpassFilter . 42
stepDetection . 46

Index 50

clampSeg-package Idealisation of Patch Clamp Recordings

Description

Implements the model-free multiscale idealisation approaches: Jump-Segmentation by MUltiResolution
Filter (JSMURF) (Hotz et al., 2013), JUmp Local dEconvolution Segmentation (JULES) filter (Pein
et al., 2018) and Heterogeneous Idealization by Local testing and DEconvolution (HILDE) (Pein et
al., 2021). These methods combine multiscale testing with deconvolution to idealise patch clamp
recordings. They allow to deal with subconductance states and flickering. Further details are given
in the accompanying vignette.

Details

The main functions are jsmurf, jules and hilde which implement JSMURF, JULES and HILDE,
respectively. JSMURF is the most simplest and fastest approach. If short events (flickering) occurs,
JULES or HILDE should be used instead. All three methods can assume homogeneous noise, but
JSMURF and HILDE have options to allow for heterogeneous noise. Further details on when which
method is suitable and on how to use them are given in Section II in the vignette.
The signal underlying the data in a patch clamp recording is assumed to be a step (piecewise con-
stant) function, e.g. constant conductance levels are assumed. The signal is perturbed by (Gaus-
sian) white noise and convolved with a lowpass filter, resulting in a smooth signal perturbed by
correlated noise with known correlation structure. The white noise is scaled by a constant if homo-
geneous noise is assumed and by an unknown piecewise constant function if heterogeneous noise
is assumed. Heterogeneous noise can for instance by caused by open channel noise. The recorded
data points are modelled as sampled (digitised) recordings of this process. For more details on this
model see Section III in the vignette. A small example of such a recording, 3 seconds of a grami-
cidin A recording, is given by gramA.
The filter can be created by the function lowpassFilter, currently only Bessel filters are supported.
createLocalList allows pre-calculations for improveSmallScales and hilde. Doing so reduces
the running time if improveSmallScales and hilde are called more than once. The multiscale
step in all three approaches requires critical values. Be default, those values are automatically com-
puted. Alternatively, they can be computed separately by getCritVal. Their computation relies on
Monte-Carlo simulations.
A Monte-Carlo simulation lasts potentially much longer (up to several hours or days if the number
of observations is in the millions) than the main calculations. Hence, multiple possibilities for sav-
ing and loading the simulations are offered and used by default. Simulations can either be saved
in the workspace in the variable critValStepRTab or persistently on the file system for which the
package R.cache is used. Moreover, storing in and loading from variables and RDS files is sup-
ported. The simulation, saving and loading can be controlled by the argument option. By default

clampSeg-package 3

simulations will be saved in the workspace and on the file system. For more details and for how
simulations can be removed see the documentation of getCritVal.
The detection and estimation step of JULES can be obtained separately by the functions stepDetection
and deconvolveLocally, respectively. The refinement steps (second and third step) of HILDE,
which improve a fit on small temporal scales by testing for additional events and applying local
deconvolution, can be accessed by the function improveSmallScales.

References

Pein, F., Bartsch, A., Steinem, C., Munk, A. (2021) Heterogeneous Idealization of Ion Channel
Recordings - Open Channel Noise. IEEE Transactions on NanoBioscience 20(1), 57–78.

Pein, F., Tecuapetla-Gómez, I., Schütte, O., Steinem, C., Munk, A. (2018) Fully-automatic mul-
tiresolution idealization for filtered ion channel recordings: flickering event detection. IEEE Trans-
actions on NanoBioscience 17(3), 300–320.

Hotz, T., Schütte, O., Sieling, H., Polupanow, T., Diederichsen, U., Steinem, C., and Munk, A.
(2013) Idealizing ion channel recordings by a jump segmentation multiresolution filter. IEEE Trans-
actions on NanoBioscience 12(4), 376–386.

Pein, F., Sieling, H., Munk, A. (2017) Heterogeneous change point inference. Journal of the Royal
Statistical Society, Series B, 79(4), 1207–1227.

Frick, K., Munk, A. and Sieling, H. (2014) Multiscale change-point inference. With discussion and
rejoinder by the authors. Journal of the Royal Statistical Society, Series B 76(3), 495–580.

See Also

jsmurf, jules, hilde, getCritVal, lowpassFilter, createLocalList, gramA, deconvolveLocally,
stepDetection, improveSmallScales

Examples

idealisation of the gramicidin A recording given by gramA
the used filter
filter <- lowpassFilter(type = "bessel", param = list(pole = 4L, cutoff = 1e3 / 1e4),

sr = 1e4)

the corresponding time points
time <- 9 + seq(along = gramA) / filter$sr

plot of the data as in (Pein et al., 2018, Figure 1 lower panel)
plot(time, gramA, pch = ".", col = "grey30", ylim = c(20, 50),

ylab = "Conductance in pS", xlab = "Time in s")

idealisations require Monte-Carlo simulations
and therefore might last a few minutes,
progress of the Monte-Carlo simulations is reported
JSMURF assuming homogeneous noise
fit1 <- jsmurf(gramA, filter = filter, family = "jsmurfPS",

startTime = 9, messages = 100)
JSMURF allowing heterogeneous noise
fit2 <- jsmurf(gramA, filter = filter, family = "hjsmurf",

4 clampSeg-package

startTime = 9, messages = 100)
JULES assuming homogeneous noise
fit3 <- jules(gramA, filter = filter, startTime = 9, messages = 100)
HILDE assuming homogeneous noise
fit4 <- hilde(gramA, filter = filter, family = "jsmurfPS", method = "LR",

startTime = 9, messages = 10)
HILDE allowing heterogeneous noise
fit5 <- hilde(gramA, filter = filter, family = "hjsmurf", method = "2Param",

startTime = 9, messages = 10, r = 100)
r = 100 is used to reduce its run time,
this is okay for illustration purposes, but for precise results
a larger number of Monte-Carlo simulations is recommend

gramA contains short peaks and the noise is homogeneous
hence jules seems to be most appropriate
idealisation <- fit3

add idealisation to the plot
lines(idealisation, col = "#FF0000", lwd = 3)

in the following we use jules to illustrate various points,
similar points are valid for jsmurf and hilde, too,
see also their individual documentation for more details
any second call should be much faster
as the previous Monte-Carlo simulation will be loaded
jules(gramA, filter = filter, startTime = 9)

much larger significance level alpha for a larger detection power,
but also with the risk of detecting additional artefacts
in this example much more changes are detected,
most of them are probably artefacts, but for instance the event at 11.36972
might be an additional small event that was missed before
jules(gramA, filter = filter, alpha = 0.9, startTime = 9)

getCritVal was called in jules, can be called explicitly
for instance outside of a for loop to save run time
q <- getCritVal(length(gramA), filter = filter)
identical(jules(gramA, q = q, filter = filter, startTime = 9), idealisation)

both steps of JULES can be called separately
fit <- stepDetection(gramA, filter = filter, startTime = 9)
identical(deconvolveLocally(fit, data = gramA, filter = filter, startTime = 9),

idealisation)

more detailed output
each <- jules(gramA, filter = filter, startTime = 9, output = "each")
every <- jules(gramA, filter = filter, startTime = 9, output = "every")

identical(idealisation, each$idealization)
idealisationEvery <- every$idealization[[3]]
attr(idealisationEvery, "noDeconvolution") <- attr(every$idealization,

"noDeconvolution")
identical(idealisation, idealisationEvery)

clampSeg-package 5

identical(each$fit, fit)
identical(every$fit, fit)

zoom into a single event, (Pein et al., 2018, Figure 2 lower left panel)
plot(time, gramA, pch = 16, col = "grey30", ylim = c(20, 50),

xlim = c(10.40835, 10.4103), ylab = "Conductance in pS", xlab = "Time in s")

idealisation
lines(idealisation, col = "red", lwd = 3)

idealisation convolved with the filter
ind <- seq(10.408, 10.411, 1e-6)
convolvedSignal <- lowpassFilter::getConvolution(ind, idealisation, filter)
lines(ind, convolvedSignal, col = "blue", lwd = 3)

fit prior to the deconvolution step
does not fit the recorded data points appropriately
fit
lines(fit, col = "orange", lwd = 3)

fit convolved with the filter
ind <- seq(10.408, 10.411, 1e-6)
convolvedSignal <- lowpassFilter::getConvolution(ind, fit, filter)
lines(ind, convolvedSignal, col = "darkgreen", lwd = 3)

zoom into a single jump
plot(9 + seq(along = gramA) / filter$sr, gramA, pch = 16, col = "grey30",

ylim = c(20, 50), xlim = c(9.6476, 9.6496), ylab = "Conductance in pS",
xlab = "Time in s")

idealisation
lines(idealisation, col = "red", lwd = 3)

idealisation convolved with the filter
ind <- seq(9.647, 9.65, 1e-6)
convolvedSignal <- lowpassFilter::getConvolution(ind, idealisation, filter)
lines(ind, convolvedSignal, col = "blue", lwd = 3)

idealisation with a wrong filter
does not fit the recorded data points appropriately
wrongFilter <- lowpassFilter(type = "bessel",

param = list(pole = 6L, cutoff = 0.2),
sr = 1e4)

the needed Monte-Carlo simulation depends on the number of observations and the filter
hence a new simulation is required (if called for the first time)
idealisationWrong <- jules(gramA, filter = wrongFilter, startTime = 9, messages = 100)

idealisation
lines(idealisationWrong, col = "orange", lwd = 3)

6 createLocalList

idealisation convolved with the filter
ind <- seq(9.647, 9.65, 1e-6)
convolvedSignal <- lowpassFilter::getConvolution(ind, idealisationWrong, filter)
lines(ind, convolvedSignal, col = "darkgreen", lwd = 3)

simulation for a larger number of observations can be used (nq = 3e4)
does not require a new simulation as the simulation from above will be used
(if the previous call was executed first)
jules(gramA[1:2.99e4], filter = filter, startTime = 9,

nq = 3e4, r = 1e3, messages = 100)

simulation of type "vectorIncreased" for n1 observations can only be reused
for n2 observations if as.integer(log2(n1)) == as.integer(log2(n2))
no simulation is required, since a simulation of type "matrixIncreased"
will be loaded from the fileSystem
this call also saves a simulation of type "vectorIncreased" in the workspace
jules(gramA[1:1e4], filter = filter, startTime = 9,

nq = 3e4, messages = 100, r = 1e3)
here a new simulation is required
(if no appropriate simulation is saved from a call outside of this file)
jules(gramA[1:1e3], filter = filter, startTime = 9,

nq = 3e4, messages = 100, r = 1e3,
options = list(load = list(workspace = c("vector", "vectorIncreased"))))

the above calls saved and (attempted to) load Monte-Carlo simulations
in the following call the simulations will neither be saved nor loaded
jules(gramA, filter = filter, startTime = 9, messages = 100, r = 1e3,

options = list(load = list(), save = list()))

only simulations of type "vector" and "vectorInceased" will be saved and
loaded from the workspace, but no simulations of type "matrix" and
"matrixIncreased" on the file system
jules(gramA, filter = filter, startTime = 9, messages = 100,

options = list(load = list(workspace = c("vector", "vectorIncreased")),
save = list(workspace = c("vector", "vectorIncreased"))))

explicit Monte-Carlo simulations, not recommended
stat <- stepR::monteCarloSimulation(n = length(gramA), , family = "mDependentPS",

filter = filter, output = "maximum",
r = 1e3, messages = 100)

jules(gramA, filter = filter, startTime = 9, stat = stat)

createLocalList Precomputes quantities for hilde and improveSmallScales

Description

Allows to precompute quantities that can be passed to hilde and improveSmallScales, all argu-
ments have to coincide with the corresponding ones in those function calls. Doing so saves run time

createLocalList 7

if those functions are called multiple times (with the same arguments) as then the quantities have to
be computed only once.

Usage

createLocalList(filter, method = c("2Param", "LR"),
lengths = if (method == "LR") 1:20 else 1:65)

Arguments

filter an object of class lowpassFilter giving the used analogue lowpass filter

method the testing method for short events, "2Param" allows for heterogeneous noise,
"LR" assumes homogeneous noise

lengths a vector of integers giving the lengths on which tests will be performed to de-
tect short events, should be chosen such that events on larger scales are already
detected by the previous jsmurf step

Value

An object of class "localList", contains computed quantities used by hilde and improveSmallScales

See Also

hilde, improveSmallScales, lowpassFilter

Examples

the used filter of the gramicidin A recordings given by gramA
filter <- lowpassFilter(type = "bessel", param = list(pole = 4L, cutoff = 1e3 / 1e4),

sr = 1e4)

localList <- createLocalList(filter = filter, method = "LR")

idealisation by HILDE using localList
this call requires a Monte-Carlo simulation
and therefore might last a few minutes,
progress of the Monte-Carlo simulation is reported
idealisation <- hilde(gramA, filter = filter, family = "jsmurfPS", method = "LR",

startTime = 9, messages = 10, localList = localList)

identical(hilde(gramA, filter = filter, family = "jsmurfPS", method = "LR",
startTime = 9), idealisation)

HILDE allowing heterogeneous noise, for only few lengths
localList <- createLocalList(filter = filter, method = "2Param", lengths = c(3, 10, 25))

localList has to be computed with the same filter, method and lengths
hilde(gramA, filter = filter, family = "hjsmurf", method = "2Param",

startTime = 9, messages = 10, r = 100,
lengths = c(3, 10, 25), localList = localList)

8 deconvolveLocally

r = 100 is used to reduce its run time,
this is okay for illustration purposes, but for precise results
a larger number of Monte-Carlo simulations is recommend

deconvolveLocally Local deconvolution

Description

Implements the estimation step of JULES (Pein et al., 2018, Section III-B) in which an initial fit
(reconstruction), e.g. computed by stepDetection, is refined by local deconvolution.

Usage

deconvolveLocally(fit, data, filter, startTime = 0, regularization = 1,
thresholdLongSegment = 10L, localEstimate = stats::median,
gridSize = c(1, 1 / 10, 1 / 100) / filter$sr,
windowFactorRefinement = 1,
output = c("onlyIdealization", "everyGrid"), report = FALSE,
suppressWarningNoDeconvolution = FALSE)

Arguments

fit an stepblock object or a list containing an entry fit with a stepblock object
giving the initial fit (reconstruction), e.g. computed by stepDetection

data a numeric vector containing the recorded data points

filter an object of class lowpassFilter giving the used analogue lowpass filter

startTime a single numeric giving the time at which recording (sampling) of data started,
sampling time points will be assumed to be startTime + seq(along = data) /
filter$sr

regularization a single positive numeric or a numeric vector with positive entries or a list
of length length(gridSize), with each entry a single positive numeric or a
numeric vector with positive entries, giving the regularisation added to the cor-
relation matrix, see details. For a list the i-th entry will be used in the i-th
refinement

thresholdLongSegment

a single integer giving the threshold determining how many observations are
necessary to estimate a level (without deconvolution)

localEstimate a function for estimating the levels of all long segments, see details, will be
called with localEstimate(data[i:j]) with i and j two integers in 1:length(data)
and j - i >= thresholdLongSegment

gridSize a numeric vector giving the size of the grids in the iterative grid search, see
details

deconvolveLocally 9

windowFactorRefinement

a single numeric or a numeric vector of length length(gridSize) - 1 giving
factors for the refinement of the grid, see details. If a single numeric is given its
value is used in all refinement steps

output a string specifying the return type, see Value

report a single logical, if TRUE the progress will be reported by messages

suppressWarningNoDeconvolution

a single logical, if FALSE a warning will be given if at least one segment exists
for which no deconvolution can be performed, since two short segments follow
each other immediately

Details

The local deconvolution consists of two parts.
In the first part, all segments of the initial fit will be divided into long and short ones. The first and
lasts filter$len data points of each segment will be ignored and if the remaining data points
data[i:j] are at least thresholdLongSegment, i.e. j - i + 1 >= thresholdLongSegment, the
level (value) of this segment will be determined by localEstimate(data[i:j]).
The long segments allow in the second part to perform the deconvolution locally by maximizing the
likelihood function by an iterative grid search. Three scenarios might occur: Two long segments can
follow each other, in this case the change, but no level, has to be estimated by maximizing the like-
lihood function of only few observations in this single parameter. A single short segment can be in
between of two long segments, in this case two changes and one level have to be estimated by maxi-
mizing the likelihood function of only few observations in these three parameters. Finally, two short
segments can follow each other, in this case no deconvolution is performed and the initial param-
eters are returned for these segments together with entries in the "noDeconvolution" attribute.
More precisely, let i:j be the short segments, then i:j will be added to the "noDeconvolution"
attribute and for the idealisation (if output == "everyGrid" this applies for each entry) the
entries value[i:j], leftEnd[i:(j + 1)] and rightEnd[(i - 1):j] are kept from the initial fit
without refinement by deconvolution. If suppressWarningNoDeconvolution == FALSE, addition-
ally, a warning will be given at first occurrence.
Maximisation of the likelihood is performed by minimizing (Pein et al., 2018, (9)), a term of the
form xTΣx, where Σ is the regularised correlation matrix and x a numeric vector of the same di-
mension. More precisely, the (unregularised) correlations are filter$acf, to this the regularisation
regularization is added. In detail, if regularization is a numeric, the regularised correlation
is

cor <- filter$acf
cor[seq(along = regularization)] <- cor[seq(along = regularization)] + regularization

and if regularization is a list the same, but regularization is in the i-th refinement replaced
by regularization[[i]]. Then, Σ is a symmetric Toeplitz matrix with entries cor, i.e. a matrix
with cor[1] on the main diagonal, cor[2] on the second diagonal, etc. and 0 for all entries outside
of the first length(cor) diagonals.
The minimisations are performed by an iterative grid search: In a first step potential changes will
be allowed to be at the grid / time points seq(cp - filter$len / filter$sr, cp, gridSize[1]),
with cp the considered change of the initial fit. For each grid point in case of a single change and
for each combination of grid points in case of two changes the term in (9) is computed and the

10 deconvolveLocally

change(s) for which the minimum is attained is / are chosen. Afterwards, refinements are done with
the grids

seq(cp - windowFactorRefinement[j - 1] * gridSize[j - 1],
cp + windowFactorRefinement[j - 1] * gridSize[j - 1],
gridSize[j]),

with cp the change of the iteration before, as long as entries in gridSize are given.

Value

The idealisation (fit, regression) obtained by local deconvolution procedure of the estimation step
of JULES. If output == "onlyIdealization" an object of class stepblock containing the fi-
nal idealisation obtained by local deconvolution. If output == "everyGrid" a list of length
length(gridSize) containing the idealisation after each refining step. Additionally, in both cases,
an attribute "noDeconvolution", an integer vector, gives the segments for which no deconvolu-
tion could be performed, since two short segments followed each other, see details.

References

Pein, F., Tecuapetla-Gómez, I., Schütte, O., Steinem, C., Munk, A. (2018) Fully-automatic mul-
tiresolution idealization for filtered ion channel recordings: flickering event detection. IEEE Trans-
actions on NanoBioscience 17(3), 300–320.

See Also

jules, stepDetection, lowpassFilter

Examples

refinement of an initial fit of the gramicidin A recordings given by gramA
the used filter
filter <- lowpassFilter(type = "bessel", param = list(pole = 4L, cutoff = 1e3 / 1e4),

sr = 1e4)
initial fit
with given q to save computation time
this q is specific to length of the data and the filter
fit <- stepDetection(gramA, q = 1.370737, filter = filter, startTime = 9)

deconvolution <- deconvolveLocally(fit, data = gramA, filter = filter, startTime = 9)

return fit after each refinement
every <- deconvolveLocally(fit, data = gramA, filter = filter, startTime = 9,

output = "every")

deconvolutionEvery <- every[[3]]
attr(deconvolutionEvery, "noDeconvolution") <- attr(every, "noDeconvolution")
identical(deconvolution, deconvolutionEvery)

identical to a direct idealisation by jules
identical(jules(gramA, q = 1.370737, filter = filter, startTime = 9),

deconvolveLocally 11

deconvolution)

zoom into a single event, (Pein et al., 2018, Figure 2 lower left panel)
time <- 9 + seq(along = gramA) / filter$sr # time points
plot(time, gramA, pch = 16, col = "grey30", ylim = c(20, 50),

xlim = c(10.40835, 10.4103), ylab = "Conductance in pS", xlab = "Time in s")

deconvolution
lines(deconvolution, col = "red", lwd = 3)

deconvolution convolved with the filter
ind <- seq(10.408, 10.411, 1e-6)
convolvedSignal <- lowpassFilter::getConvolution(ind, deconvolution, filter)
lines(ind, convolvedSignal, col = "blue", lwd = 3)

for comparison, fit prior to the deconvolution step
does not fit the recorded data points appropriately
fit
lines(fit, col = "orange", lwd = 3)

fit convolved with the filter
ind <- seq(10.408, 10.411, 1e-6)
convolvedSignal <- lowpassFilter::getConvolution(ind, fit, filter)
lines(ind, convolvedSignal, col = "darkgreen", lwd = 3)

zoom into a single jump
plot(9 + seq(along = gramA) / filter$sr, gramA, pch = 16, col = "grey30",

ylim = c(20, 50), xlim = c(9.6476, 9.6496), ylab = "Conductance in pS",
xlab = "Time in s")

deconvolution
lines(deconvolution, col = "red", lwd = 3)

deconvolution convolved with the filter
ind <- seq(9.647, 9.65, 1e-6)
convolvedSignal <- lowpassFilter::getConvolution(ind, deconvolution, filter)
lines(ind, convolvedSignal, col = "blue", lwd = 3)

deconvolution with a wrong filter
does not fit the recorded data points appropriately
wrongFilter <- lowpassFilter(type = "bessel",

param = list(pole = 6L, cutoff = 0.2),
sr = 1e4)

deconvolutionWrong <- deconvolveLocally(fit, data = gramA, filter = wrongFilter,
startTime = 9)

deconvolution
lines(deconvolutionWrong, col = "orange", lwd = 3)

ideconvolution convolved with the filter
ind <- seq(9.647, 9.65, 1e-6)
convolvedSignal <- lowpassFilter::getConvolution(ind, deconvolutionWrong, filter)

12 getCritVal

lines(ind, convolvedSignal, col = "darkgreen", lwd = 3)

with less regularisation of the correlation matrix
deconvolveLocally(fit, data = gramA, filter = filter, startTime = 9,

regularization = 0.5)

with estimation of the level of long segments by the mean
but requiring 30 observations for it
deconvolveLocally(fit, data = gramA, filter = filter, startTime = 9,

localEstimate = mean, thresholdLongSegment = 30)

with one refinement step less, but with a larger grid
progress of the deconvolution is reported
potential warning for no deconvolution is suppressed
deconvolveLocally(fit, data = gramA, filter = filter, startTime = 9,

gridSize = c(1 / filter$sr, 1 / 10 / filter$sr),
windowFactorRefinement = 2, report = TRUE,
suppressWarningNoDeconvolution = TRUE)

getCritVal Critical values

Description

Computes critical values for the functions jsmurf, jules, hilde, stepDetection and improveSmallScales.
getCritVal is usually automatically called, but can be called explicitly, for instance outside of a
for loop to save run time. Computation requires Monte-Carlo simulations. Since a Monte-Carlo
simulation lasts potentially much longer (up to several hours or days if the number of observations
is in the millions) than the main calculations, the simulations are by default saved in the workspace
and on the file system such that a second call that require the same Monte-Carlo simulation will be
much faster. For more details, in particular to which arguments the Monte-Carlo simulations are
specific, see Section Simulating, saving and loading of Monte-Carlo simulations below. Progress
of a Monte-Carlo simulation can be reported by the argument messages and the saving can be
controlled by the argument option.

Usage

getCritVal(n, filter, family = c("jules", "jsmurf", "jsmurfPS", "jsmurfLR",
"hjsmurf", "hjsmurfSPS", "hjsmurfLR", "LR", "2Param"),

alpha = 0.05, r = NULL, nq = n, options = NULL,
stat = NULL, messages = NULL, ...)

Arguments

n a positive integer giving the number of observations

filter an object of class lowpassFilter giving the used analogue lowpass filter

getCritVal 13

family the parametric family for which critical values should be computed, select "jules"
for a critical value that will be passed to jules or stepDetection, the families
"jsmurf", "jsmurfPS", "jsmurfLR", "hjsmurf", "hjsmurfSPS" and "hjsmurfLR"
according to the argument family in jsmurf and hilde, and "LR" and "2Param"
according to the argument method in hilde and improveSmallScales

alpha a probability, i.e. a single numeric between 0 and 1, giving the significance level.
Its choice is a trade-off between data fit and parsimony of the estimator. In other
words, this argument balances the risks of missing conductance changes and
detecting additional artefacts. For more details on this choice see the accompa-
nying vignette or (Frick et al., 2014, Section 4) and (Pein et al., 2017, Section
3.4)

r a positive integer giving the required number of Monte-Carlo simulations if they
will be simulated or loaded from the workspace or the file system, a larger num-
ber improves accuracy but simulations last longer; by default 1e4 is used except
for families "LR" and "2Param", where 1e3 is used since their simulations are
rather slow

nq a positive integer larger than or equal to n giving the (increased) number of
observations for the Monte-Carlo simulation. See Section Simulating, saving
and loading of Monte-Carlo simulations for more details

options a list specifying how Monte-Carlo simulations will be simulated, saved and
loaded. For more details see Section Simulating, saving and loading of Monte-
Carlo simulations

stat an object of class "MCSimulationVector" or "MCSimulationMaximum", usu-
ally computed by monteCarloSimulation. Has to be simulated for at least
the given number of observations n and for the given filter. If missing it
will automatically be loaded and if not found simulated accordingly to the given
options. For more details see Section Simulating, saving and loading of Monte-
Carlo simulations

messages a positive integer or NULL, in each messages iteration a message will be given in
order to show the progress of the simulation, if NULL no message will be given

... additional arguments of the parametric families "LR" and "2Param", i.e. thresholdLongSegment,
localValue, localVar, regularization, suppressWarningNoDeconvolution,
localList, please see their documentation in improveSmallScales to under-
stand their meaning, parameters have to coincide in the call of getCritVal and
hilde or improveSmallScales, argument localVar is only allowed for family
"2Param", for other families additional arguments are ignored with a warning

Value

For families "jules", "jsmurf", "jsmurfPS", "jsmurfLR" a single numeric giving the critical
value and for families "hjsmurf", "hjsmurfSPS", "hjsmurfLR", "LR" and "2Param" a numeric
vector giving scale dependent critical values. Additionally, an attribute n with a single integer
giving the number of data points for which the values are computed.

Simulating, saving and loading of Monte-Carlo simulations

Since a Monte-Carlo simulation lasts potentially much longer (up to several hours or days if the
number of observations is in the millions) than the main calculations, this function offers multi-

14 getCritVal

ple possibilities to save and load the simulations. By default, simulations are stored and loaded
with suitable default values and no user choices are required. If desired, the simulation, saving and
loading can be controlled by the argument option. This argument has to be a list or NULL. For
the list the following named entries are allowed: "simulation", "save", "load", "envir" and
"dirs". All missing entries will be set to their default option.
Each Monte-Carlo simulation is specific to the parametric family, their parameters in case of fam-
ilies "LR" or "2Param", the number of observations and the used filter. Monte-Carlo simulations
can also be performed for a (slightly) larger number of observations nq given in the argument nq,
which avoids extensive resimulations for only a little bit varying number of observations at price
of a (slightly) smaller detection power. We recommend to not use a nq more than two times larger
than the number of observations n.
Objects of the following types can be simulated, saved and loaded:

• "vector": an object of class "MCSimulationMaximum" for n observations, i.e. a numeric
vector of length r

• "vectorIncreased": an object of class "MCSimulationMaximum" for nq observations, i.e. a
numeric vector of length r

• "matrix": an object of class "MCSimulationVector" for n observations, i.e. a matrix of
dimensions as.integer(log2(n)) + 1L and r

• "matrixIncreased": an object of class "MCSimulationVector" for nq observations, i.e. a
matrix of as.integer(log2(n)) + 1L and r

Computation of scale depend critical values, i.e. calucatlions for the families "hjsmurf", "hjsmurfSPS",
"hjsmurfLR", "LR" and "2Param" require an object of class "MCSimulationVector". Otherwise,
objects of class "MCSimulationVector" and objects of class "MCSimulationMaximum" lead to the
same result (if the number of observations is the same), but an object of class "MCSimulationVector"
requires much more storage space and has slightly larger saving and loading times. However, simu-
lations of type "vectorIncreased", i.e. objects of class "MCSimulationMaximum" with nq obser-
vations, have to be resimulated if as.integer(log2(n1)) != as.integer(log2(n2)) when the
saved simulation was computed with n == n1 and the simulation now is required for n == n2 and
nq >= n1 and nq >= n2. All in all, if all data sets in the analysis have the same number of obser-
vations simulations of type "vector" for families "jules", "jsmurf", "jsmurfPS", "jsmurfLR"
and "matrix" for families "hjsmurf", "hjsmurfSPS", "hjsmurfLR", "LR" and "2Param" are rec-
ommended. If they have a slightly different number of observations it is recommend to set nq
to the largest number and to use simulations for an increased number of observations. For fam-
ilies "jules", "jsmurf", "jsmurfPS", "jsmurfLR" one should also consider the following: If
as.integer(log2(n)) is the same for all data sets type "vectorIncreased" is recommend , if
they differ type "matrixIncreased" avoids a resimulation at the price of a larger object to be
stored and loaded.
The simulations can either be saved in the workspace in the variable critValStepRTab or persis-
tently on the file system for which the package R.cache is used. Loading from the workspace is
faster, but either the user has to save the workspace manually or in a new session simulations have
to be performed again. Moreover, storing in and loading from variables and RDS files is supported.

options$envir and options$dirs: For loading from / saving in the workspace the variable
critValStepRTab in the environment options$envir will be looked for and if missing in case
of saving also created there. Moreover, the variable(s) specified in options$save$variable (ex-
plained in the Subsection Saving: options$save) will be assigned to this environment. By default
the global environment .GlobalEnv is used, i.e. options$envir == .GlobalEnv.

getCritVal 15

For loading from / saving on the file system loadCache(key = keyList, dirs = options$dirs)
and saveCache(stat, key = attr(stat, "keyList"), dirs = options$dirs) are called, re-
spectively. In other words, options$dirs has to be a character vector constituting the path to
the cache subdirectory relative to the cache root directory as returned by getCacheRootPath(). If
options$dirs == "", the path will be the cache root path. By default the subdirectory "stepR"
is used, i.e. options$dirs == "stepR". Missing directories will be created.

Simulation: options$simulation: Whenever Monte-Carlo simulations have to be performed,
i.e. when stat == NULL and the required Monte-Carlo simulation could not be loaded, the type
specified in options$simulation will be simulated by monteCarloSimulation. In other words,
options$simulation must be a single string of the following: "vector", "vectorIncreased",
"matrix" or "matrixIncreased". By default (options$simulation == NULL), an object of
class "MCSimulationVector" for nq observations will be simulated, i.e. options$simulation
== "matrixIncreased". For this choice please recall the explanations regarding computation
time and flexibility at the beginning of this section.

Loading: options$load: Loading of the simulations can be controlled by the entry options$load
which itself has to be a list with possible entries: "RDSfile", "workspace", "package" and
"fileSystem". Missing entries disable the loading from this option. Whenever a Monte-Carlo
simulation is required, i.e. when the variable q is not given, it will be searched for at the following
places in the given order until found:

1. in the variable stat,
2. in options$load$RDSfile as an RDS file, i.e. the simulation will be loaded by

readRDS(options$load$RDSfile).

In other words, options$load$RDSfile has to be a connection or the name of the file
where the R object is read from,

3. in the workspace or on the file system in the following order: "vector", "matrix", "vectorIncreased"
and finally of "matrixIncreased". For each option it will first be looked in the workspace
and then on the file system. All searches can be disabled by not specifying the correspond-
ing string in options$load$workspace and options$load$fileSystem. In other words,
options$load$workspace and options$load$fileSystem have to be vectors of strings
containing none, some or all of "vector", "matrix", "vectorIncreased" and "matrixIncreased",

4. if all other options fail a Monte-Carlo simulation will be performed.

By default (if options$load is missing / NULL) no RDS file is specified and all other options are
enabled, i.e.

options$load <- list(workspace = c("vector", "vectorIncreased",
"matrix", "matrixIncreased"),

fileSystem = c("vector", "vectorIncreased",
"matrix", "matrixIncreased"),

RDSfile = NULL).

Saving: options$save: Saving of the simulations can be controlled by the entry options$save
which itself has to be a list with possible entries: "workspace", "fileSystem", "RDSfile" and
"variable". Missing entries disable the saving in this option.
All available simulations, no matter whether they are given by stat, loaded, simulated or in
case of "vector" and "vectorIncreased" computed from "matrix" and "matrixIncreased",
respectively, will be saved in all options for which the corresponding type is specified. Here we

16 getCritVal

say a simulation is of type "vectorIncreased" or "matrixIncreased" if the simulation is not
performed for n observations. More specifically, a simulation will be saved:

1. in the workspace or on the file system if the corresponding string is contained in options$save$workspace
and options$save$fileSystem, respectively. In other words, options$save$workspace
and options$save$fileSystem have to be vectors of strings containing none, some or all
of "vector", "matrix", "vectorIncreased" and "matrixIncreased",

2. in a variable named by options$save$variable in the environment options$envir. Hence,
options$save$variable has to be a vector of one or two containing variable names (char-
acter vectors). If options$save$variable is of length two a simulation of type "vector" or
"vectorIncreased" (only one can occur at one function call) will be saved in options$save$variable[1]
and "matrix" or "matrixIncreased" (only one can occur at one function call) will be
saved in options$save$variable[2]. If options$save$variable is of length one both
will be saved in options$save$variable which means if both occur at the same call only
"vector" or "vectorIncreased" will be saved. Each saving can be disabled by not specify-
ing options$save$variable or by passing "" to the corresponding entry of options$save$variable.

By default (if options$save is missing) "vector" and "vectorIncreased" will be saved in the
workspace and "matrixIncreased" on the file system, i.e.

options$save <- list(workspace = c("vector", "vectorIncreased"),
fileSystem = c("matrix", "matrixIncreased"),
RDSfile = NULL, variable = NULL).

Simulations can be removed from the workspace by removing the variable critValStepRTab, i.e.
by calling remove(critValStepRTab, envir = envir), with envir the used environment, and
from the file system by deleting the corresponding subfolder, i.e. by calling

unlink(file.path(R.cache::getCacheRootPath(), dirs), recursive = TRUE),

with dirs the corresponding subdirectory.

References

Pein, F., Bartsch, A., Steinem, C., Munk, A. (2021) Heterogeneous Idealization of Ion Channel
Recordings - Open Channel Noise. IEEE Transactions on NanoBioscience 20(1), 57–78.

Pein, F., Tecuapetla-Gómez, I., Schütte, O., Steinem, C., Munk, A. (2018) Fully-automatic mul-
tiresolution idealization for filtered ion channel recordings: flickering event detection. IEEE Trans-
actions on NanoBioscience 17(3), 300–320.

Hotz, T., Schütte, O., Sieling, H., Polupanow, T., Diederichsen, U., Steinem, C., and Munk, A.
(2013) Idealizing ion channel recordings by a jump segmentation multiresolution filter. IEEE Trans-
actions on NanoBioscience 12(4), 376–386.

Frick, K., Munk, A., Sieling, H. (2014) Multiscale change-point inference. With discussion and
rejoinder by the authors. Journal of the Royal Statistical Society, Series B 76(3), 495–580.

Pein, F., Sieling, H., Munk, A. (2017) Heterogeneous change point inference. Journal of the Royal
Statistical Society, Series B, 79(4), 1207–1227.

See Also

jsmurf, jules, hilde, lowpassFilter, stepDetection, improveSmallScales

getCritVal 17

Examples

the for the recording of the gramA data set used filter
filter <- lowpassFilter(type = "bessel", param = list(pole = 4L, cutoff = 1e3 / 1e4),

sr = 1e4)

critical value for jules or stepDetection
this call requires a Monte-Carlo simulation at the first time
and therefore might last a few minutes,
progress of the Monte-Carlo simulation is reported
q <- getCritVal(length(gramA), filter = filter, messages = 100)

this second call should be much faster
as the previous Monte-Carlo simulation will be loaded
getCritVal(length(gramA), filter = filter)

critical value for jsmurf,
Monte-Carlo simulations are specific to the parametric family,
hence a new Monte-Carlo simulation is required
getCritVal(length(gramA), family = "jsmurfPS", filter = filter, messages = 100)

scale dependent critical value for jsmurf allowing for heterogeneous noise,
return value is a vector
getCritVal(length(gramA), family = "hjsmurf", filter = filter, messages = 100)

scale dependent critical value for "LR" as used by improveSmallScales and hilde,
return value is a vector
getCritVal(length(gramA), family = "LR", filter = filter, messages = 100)

families "LR" and "2Param" allows to specify additional parameters in ...
Monte-Carlo simulations are also specific to those values
getCritVal(length(gramA), family = "LR", filter = filter, messages = 100,

localValue = mean, thresholdLongSegment = 15L)

much larger significance level alpha for a larger detection power,
but also with the risk of detecting additional artefacts
getCritVal(length(gramA), filter = filter, alpha = 0.9)

medium significance level alpha for a tradeoff between detection power
and the risk to detect additional artefacts
getCritVal(length(gramA), filter = filter, alpha = 0.5)

critical values depend on the number of observations and on the filter
also a new Monte-Carlo simulation is required
getCritVal(100, filter = filter, messages = 500)

otherFilter <- lowpassFilter(type = "bessel",
param = list(pole = 6L, cutoff = 0.2),
sr = 1e4)

getCritVal(100, filter = otherFilter, messages = 500)

simulation for a larger number of oberservations can be used (nq = 100)
does not require a new simulation as the simulation from above will be used

18 gramA

(if the previous call was executed first)
getCritVal(90, filter = filter, nq = 100)

simulation of type "vectorIncreased" for n1 observations can only be reused
for n2 observations if as.integer(log2(n1)) == as.integer(log2(n2))
no simulation is required, since a simulation of type "matrixIncreased"
will be loaded from the fileSystem
this call also saved a simulation of type "vectorIncreased" in the workspace
getCritVal(30, filter = filter, nq = 100)
here a new simulation is required
(if no appropriate simulation is saved from a call outside of this file)
getCritVal(10, filter = filter, nq = 100, messages = 500,

options = list(load = list(workspace = c("vector", "vectorIncreased"))))

the above calls saved and (attempted to) load Monte-Carlo simulations
in the following call the simulations will neither be saved nor loaded
to save some time the number of iterations is reduced to r = 1e3
hence the critical value is computed with less precision
In general, r = 1e3 is enough for a first impression
for a detailed analysis r = 1e4 is suggested
getCritVal(100, filter = filter, messages = 100, r = 1e3,

options = list(load = list(), save = list()))

simulations will only be saved in and loaded from the workspace,
but not on the file system
getCritVal(100, filter = filter, messages = 100, r = 1e3,

options = list(load = list(workspace = c("vector", "vectorIncreased")),
save = list(workspace = c("vector", "vectorIncreased"))))

explicit Monte-Carlo simulations, not recommended
stat <- stepR::monteCarloSimulation(n = 100, , family = "mDependentPS",

filter = filter, output = "maximum",
r = 1e3, messages = 100)

getCritVal(100, filter = filter, stat = stat)

gramA Patch clamp recording of gramicidin A

Description

3 seconds part of a patch clamp recording of gramicidin A with solvent-free lipid bilayers using
the Port-a-Patch measured in the Steinem lab (Institute of Organic and Biomolecular Chemistry,
University of Goettingen). All rights reserved by them. The recorded data points are a conductance
trace in pico Siemens and were recorded at a sampling rate of 10 kHz using a 1 kHz 4-pole Bessel
filter. More details of the recording can be found in (Pein et al., 2018, Section V A) and a plot in
the examples or in (Pein et al., 2018, Figure 1 lower panel).

Usage

gramA

hilde 19

Format

A numeric vector containing 30,000 values.

References

Pein, F., Tecuapetla-Gómez, I., Schütte, O., Steinem, C., Munk, A. (2018) Fully-automatic mul-
tiresolution idealization for filtered ion channel recordings: flickering event detection. IEEE Trans-
actions on NanoBioscience 17(3), 300–320.

Examples

the recorded data points
gramA

the used filter
filter <- lowpassFilter(type = "bessel", param = list(pole = 4L, cutoff = 1e3 / 1e4),

sr = 1e4)

the corresponding time points
time <- 9 + seq(along = gramA) / filter$sr

plot of the data as in (Pein et al., 2018, Figure 1 lower panel)
plot(time, gramA, pch = ".", col = "grey30", ylim = c(20, 50),

ylab = "Conductance in pS", xlab = "Time in s")

hilde HILDE

Description

Implements the Heterogeneous Idealization by Local testing and DEconvolution (HILDE) filter
(Pein et al., 2021). This non-parametric (model-free) segmentation method combines statistical
multiresolution techniques with local deconvolution for idealising patch clamp (ion channel) record-
ings. It is able to idealize short events (flickering) and allows for heterogeneous noise, but is rather
slow. Hence, we recommend to use jsmurf or jules instead if they are suitable as well. Please
see the arguments family and method as well as the examples for how to access the function cor-
rectly depending on whether homogeneous is assumed or heterogeneous noise is allowed. hilde is
a combination of jsmurf (with locationCorrection == "none") and improveSmallScales. Fur-
ther details about how to decide whether the noise is homogeneous or heterogeneous and whether
events are short, and hence which method is suitable, are given in the accompanying vignette.
If q1 == NULL or q2 == NULL a Monte-Carlo simulation is required for computing the critical values.
Since a Monte-Carlo simulation lasts potentially much longer (up to several hours or days if the
number of observations is in the millions) than the main calculations, this package saves them by
default in the workspace and on the file system such that a second call requiring the same Monte-
Carlo simulation will be much faster. For more details, in particular to which arguments the Monte-
Carlo simulations are specific, see Section Storing of Monte-Carlo simulations below. Progress of a
Monte-Carlo simulation can be reported by the argument messages and the saving can be controlled
by the argument option, both can be specified in ... and are explained in getCritVal.

20 hilde

Usage

hilde(data, filter, family = c("hjsmurf", "hjsmurfSPS", "hjsmurfLR",
"jsmurf", "jsmurfPS", "jsmurfLR"),

method = c("2Param", "LR"), q1 = NULL, alpha1 = 0.01, q2 = NULL, alpha2 = 0.04,
sd = NULL, startTime = 0,
output = c("onlyIdealization", "eachStep", "everything"), ...)

Arguments

data a numeric vector containing the recorded data points

filter an object of class lowpassFilter giving the used analogue lowpass filter

family the parametric family used in the jsmurf step; "jsmurf", "jsmurfPS" and
"jsmurfLR" assume homogeneous noise and "hjsmurf", "hjsmurfSPS" and
"hjsmurfLR" allow for heterogeneous noise. By default, we recommend to use
"jsmurfPS" when homogeneous noise is assumed and "hjsmurf" when het-
erogeneous noise is allowed, see examples. "jsmurf" is the standard statistic
from (Hotz et al., 2013), "jsmurfPS" is a slightly more powerful partial sum
statistic, "jsmurfLR" is a likelihood-ratio statistic, which is even more powerful
but slow. "hjsmurf" is the standard statistic for heterogeneous noise which es-
timates the variance locally, "hjsmurfSPS" is a studentized partial sum statistic
and "hjsmurfLR" is a likelihood ratio statistic, which is more powerful, but very
slow

method the testing method for short events in the improveSmallScales step; "2Param"
allows for heterogeneous noise, "LR" assumes homogeneous noise

q1 will be passed to the argument q in jsmurf; by default chosen automatically
by getCritVal, for families "jsmurf", "jsmurfPS" and "jsmurfLR" a single
numeric, for families "hjsmurf", "hjsmurfSPS" and "hjsmurfLR" a numeric
vector giving scale dependent critical values

alpha1 will be passed to the argument alpha in jsmurf; a probability, i.e. a single
numeric between 0 and 1, giving the significance level to compute q1 (if q1 ==
NULL), see getCritVal. Its choice is a trade-off between data fit and parsimony
of the estimator. In other words, this argument balances the risks of missing
conductance changes and detecting additional artefacts

q2 will be passed to the argument q in improveSmallScales; a numeric vector of
the same length as lengths giving critical value for the tests for short events, by
default chosen automatically by getCritVal

alpha2 will be passed to the argument alpha in improveSmallScales; a probability,
i.e. a single numeric between 0 and 1, giving the significance level to compute
the critical value (if q2 == NULL), see getCritVal. Its choice balances the risks
of missing short events and detecting additional artefacts

sd a single positive numeric giving the standard deviation (noise level) σ0 of the
data points before filtering, by default (NULL) estimated by sdrobnorm with
lag = filter$len + 1L. For families "hjsmurf", "hjsmurfSPS" and "hjsmurfLR"
this argument is ignored with a warning

hilde 21

startTime a single numeric giving the time at which recording (sampling) of data started,
sampling time points will be assumed to be startTime + seq(along = data) /
filter$sr

output a string specifying the return type, see Value

... additional parameters to be passed to getCritVal or improveSmallScales:

1. getCritVal will be called automatically (if q1 == NULL or q2 == NULL), the
number of data points n = length(data) will be set, the argument family
will be assigned and alpha and filter will be passed. For these param-
eter no user interaction is required and possible, all other parameters of
getCritVal can be passed additionally. Note that the same arguments will
be passed twice if q1 and q2 have to be computed. If this is not suitable,
getCritVal can be called instead

2. improveSmallScales will be called automatically, the by jsmurf com-
puted fit will be passed to fit and data, filter, method, q = q2, alpha =
alpha2, startTime will be passed and output will be set accordingly to
the output argument. For these parameter no user interaction is required
and possible, all other parameters of deconvolveLocally can be passed
additionally

Value

The idealisation (estimation, regression) obtained by HILDE. If output == "onlyIdealization"
an object object of class stepblock containing the idealisation. If output == "eachStep" a list
containing the entries idealization with the idealisation, fit with the fit by jsmurf, q1 and q2
with the given / computed critical values, filter with the given filter and for families "jsmurf",
"jsmurfPS" and "jsmurfLR" sd with the given / estimated standard deviation. If output ==
"everything" a list containing the entries idealization with a list containing the idealisa-
tion after each refining step in the local deconvolution, fit with the fit by jsmurf, q1 and q2
with the given / computed critical values, filter with the given filter and for families "jsmurf",
"jsmurfPS" and "jsmurfLR" sd with the given / estimated standard deviation. Additionally, in
all cases, the idealisation has an attribute "noDeconvolution", an integer vector, that gives the
segments for which no deconvolution could be performed, since two short segments followed each
other, see also details in improveSmallScales.

Storing of Monte-Carlo simulations

If q1 == NULL or q2 == NULL a Monte-Carlo simulation is required to compute the critical values.
Since a Monte-Carlo simulation lasts potentially much longer (up to several hours or days if the
number of observations is in the millions) than the main calculations, multiple possibilities for sav-
ing and loading the simulations are offered. Progress of a simulation can be reported by the argu-
ment messages which can be specified in ... and is explained in the documentation of getCritVal.
Each Monte-Carlo simulation is specific to the parametric family / specified testing method, the
number of observations and the used filter. Simulations related to computing q2 are also specific
to the arguments thresholdLongSegment, localValue and localVar. Currently, storing such a
Monte-Carlo simulation is only possible for their default values. Note, that also Monte-Carlo sim-
ulations for a (slightly) larger number of observations nq , given in the argument nq in ... and
explained in the documentation of getCritVal, can be used, which avoids extensive resimulations
for only a little bit varying number of observations, but results in a (small) loss of power. However,

22 hilde

simulations of type "vectorIncreased" (only possible for q1 and families "jsmurf", "jsmurfPS"
and "jsmurfLR") or "matrixIncreased", i.e. objects of classes "MCSimulationMaximum" and
"MCSimulationVector" with nq observations, have to be resimulated if as.integer(log2(n1))
!= as.integer(log2(n2)) when the saved simulation was computed with n == n1 and the simu-
lation now is required for n == n2 and nq >= n1 and nq >= n2. Simulations can either be saved in
the workspace in the variable critValStepRTab or persistently on the file system for which the
package R.cache is used. Moreover, storing in and loading from variables and RDS files is sup-
ported. The simulation, saving and loading can be controlled by the argument option which can be
specified in ... and is explained in the documentation of getCritVal. By default simulations will
be saved in the workspace and on the file system. For more details and for how simulation can be
removed see Section Simulating, saving and loading of Monte-Carlo simulations in getCritVal.

References

Pein, F., Bartsch, A., Steinem, C., Munk, A. (2021) Heterogeneous Idealization of Ion Channel
Recordings - Open Channel Noise. IEEE Transactions on NanoBioscience 20(1), 57–78.

Hotz, T., Schütte, O., Sieling, H., Polupanow, T., Diederichsen, U., Steinem, C., and Munk, A.
(2013) Idealizing ion channel recordings by a jump segmentation multiresolution filter. IEEE Trans-
actions on NanoBioscience 12(4), 376–386.

See Also

getCritVal, jsmurf, jules, lowpassFilter, improveSmallScales, createLocalList

Examples

idealisation of the gramicidin A recordings given by gramA with hilde
the used filter
filter <- lowpassFilter(type = "bessel", param = list(pole = 4L, cutoff = 1e3 / 1e4),

sr = 1e4)

idealisation by HILDE assuming homogeneous noise
this call requires a Monte-Carlo simulation
and therefore might last a few minutes,
progress of the Monte-Carlo simulation is reported
idealisation <- hilde(gramA, filter = filter, family = "jsmurfPS", method = "LR",

startTime = 9, messages = 10)

any second call should be much faster
as the previous Monte-Carlo simulation will be loaded
hilde(gramA, filter = filter, family = "jsmurfPS", method = "LR", startTime = 9)

HILDE allowing heterogeneous noise
hilde(gramA, filter = filter, family = "hjsmurf", method = "2Param",

startTime = 9, messages = 10, r = 100)
r = 100 is used to reduce its run time,
this is okay for illustration purposes, but for precise results
a larger number of Monte-Carlo simulations is recommend

much larger significance level alpha1 for a larger detection power
in the refinement step on small temporal scales,

hilde 23

but also with the risk of detecting additional artefacts
hilde(gramA, filter = filter, family = "jsmurfPS", method = "LR",

alpha1 = 0.9, alpha2 = 0.9, startTime = 9)

getCritVal was called in hilde, can be called explicitly
for instance outside of a for loop to save run time
q2 <- getCritVal(length(gramA), filter = filter, family = "LR")
identical(hilde(gramA, filter = filter, family = "jsmurfPS",

method = "LR", startTime = 9, q2 = q2), idealisation)

both steps of HILDE can be called separately
fit <- jsmurf(gramA, filter = filter, family = "jsmurfPS", alpha = 0.01,

startTime = 9, locationCorrection = "none")
deconvolution <- improveSmallScales(fit, data = gramA, method = "LR", filter = filter,

startTime = 9, messages = 100)
attr(deconvolution, "q") <- NULL
identical(deconvolution, idealisation)

more detailed output
each <- hilde(gramA, filter = filter, family = "jsmurfPS", method = "LR",

startTime = 9, output = "each")

every <- hilde(gramA, filter = filter, family = "jsmurfPS", method = "LR",
startTime = 9, output = "every")

identical(idealisation, each$idealization)
idealisationEvery <- every$idealization[[3]]
attr(idealisationEvery, "noDeconvolution") <- attr(every$idealization,

"noDeconvolution")
identical(idealisation, idealisationEvery)

identical(each$fit, fit)
identical(every$fit, fit)

zoom into a single event
similar to (Pein et al., 2018, Figure 2 lower left panel)
plot(time, gramA, pch = 16, col = "grey30", ylim = c(20, 50),

xlim = c(10.40835, 10.4103), ylab = "Conductance in pS", xlab = "Time in s")

idealisation
lines(idealisation, col = "red", lwd = 3)

idealisation convolved with the filter
ind <- seq(10.408, 10.411, 1e-6)
convolvedSignal <- lowpassFilter::getConvolution(ind, idealisation, filter)
lines(ind, convolvedSignal, col = "blue", lwd = 3)

for comparison, fit prior to the improvement step
does not contain the event and hence fits the recorded data points badly
fit
lines(fit, col = "orange", lwd = 3)

24 hilde

fit convolved with the filter
ind <- seq(10.408, 10.411, 1e-6)
convolvedSignal <- lowpassFilter::getConvolution(ind, fit, filter)
lines(ind, convolvedSignal, col = "darkgreen", lwd = 3)

zoom into a single jump
plot(9 + seq(along = gramA) / filter$sr, gramA, pch = 16, col = "grey30",

ylim = c(20, 50), xlim = c(9.6476, 9.6496), ylab = "Conductance in pS",
xlab = "Time in s")

idealisation
lines(idealisation, col = "red", lwd = 3)

idealisation convolved with the filter
ind <- seq(9.647, 9.65, 1e-6)
convolvedSignal <- lowpassFilter::getConvolution(ind, idealisation, filter)
lines(ind, convolvedSignal, col = "blue", lwd = 3)

idealisation with a wrong filter
does not fit the recorded data points appropriately
wrongFilter <- lowpassFilter(type = "bessel",

param = list(pole = 6L, cutoff = 0.2),
sr = 1e4)

the needed Monte-Carlo simulation depends on the number of observations and the filter
hence a new simulation is required (if called for the first time)
idealisationWrong <- hilde(gramA, filter = wrongFilter, family = "jsmurfPS",

method = "LR", startTime = 9, messages = 10)

idealisation
lines(idealisationWrong, col = "orange", lwd = 3)

idealisation convolved with the filter
ind <- seq(9.647, 9.65, 1e-6)
convolvedSignal <- lowpassFilter::getConvolution(ind, idealisationWrong, filter)
lines(ind, convolvedSignal, col = "darkgreen", lwd = 3)

simulation for a larger number of observations can be used (nq = 3e4)
does not require a new simulation as the simulation from above will be used
(if the previous call was executed first)
hilde(gramA[1:2.99e4], filter = filter, family = "jsmurfPS", method = "LR",

startTime = 9, nq = 3e4)
note that arguments to compute critical values are used to compute q1 and q2
if this is not wanted, getCritVal can be called separately
q1 <- getCritVal(length(gramA[1:2.99e4]), filter = filter, family = "jsmurfPS",

messages = 100, r = 1e3)
hilde(gramA[1:2.99e4], filter = filter, family = "jsmurfPS", method = "LR",

q1 = q1, startTime = 9, nq = 3e4) # nq = 3e4 is only used to compute q2

simulation of type "vectorIncreased" for n1 observations can only be reused
for n2 observations if as.integer(log2(n1)) == as.integer(log2(n2))
no simulation is required, since a simulation of type "matrixIncreased"

improveSmallScales 25

will be loaded from the fileSystem
this call also saves a simulation of type "vectorIncreased" in the workspace
hilde(gramA[1:1e4], filter = filter, family = "jsmurfPS", method = "LR",

startTime = 9, nq = 3e4)

the above calls saved and (attempted to) load Monte-Carlo simulations
in the following call the simulations will neither be saved nor loaded
Monte-Carlo simulations are required for q1 and for q2
hilde(gramA, filter = filter, family = "jsmurfPS", method = "LR",

startTime = 9, messages = 10, r = 100,
options = list(load = list(), save = list()))

with given standard deviation
sd <- stepR::sdrobnorm(gramA, lag = filter$len + 1)
identical(hilde(gramA, filter = filter, family = "jsmurfPS", method = "LR",

startTime = 9, sd = sd), idealisation)

with less regularisation of the correlation matrix
hilde(gramA, filter = filter, family = "jsmurfPS", method = "LR",

startTime = 9, regularization = 0.5)

with estimation of the level of long segments by the mean
but requiring 30 observations for it
hilde(gramA, filter = filter, family = "jsmurfPS", method = "LR",

startTime = 9, localValue = mean, thresholdLongSegment = 30)

with one refinement step less, but with a larger grid
progress of the deconvolution is reported
potential warning for no deconvolution is suppressed
hilde(gramA, filter = filter, family = "jsmurfPS", method = "LR",

startTime = 9, messages = 100,
lengths = c(3:5, 8, 11, 16, 20),
gridSize = c(1 / filter$sr, 1 / 10 / filter$sr),
windowFactorRefinement = 2, report = TRUE,
suppressWarningNoDeconvolution = TRUE)

pre-computation of certain quantities using createLocalList
this saves run time if hilde or (improveSmallScales) is called more than once
localList is passed via ... to improveSmallScales
localList <- createLocalList(filter = filter, method = "LR")
identical(hilde(gramA, filter = filter, family = "jsmurfPS", method = "LR",

startTime = 9, localList = localList), idealisation)

improveSmallScales Improves small scales

Description

Implements the second and third step of HILDE (Pein et al., 2021). It refines an initial fit, e.g. ob-
tained by jsmurf on small temporal scales by testing for events and local deconvolution. Refinment

26 improveSmallScales

can be done assuming homogeneous noise, but also allow heterogeneous noise. Please see the ar-
gument method and the examples for how to access the function correctly depending on whether
homogeneous noise is assumed or heterogeneous noise is allowed. Further details about how to
decide whether the noise is homogeneous or heterogeneous and whether events are short are given
in the accompanying vignette.
If q == NULL a Monte-Carlo simulation is required for computing critical values. Since a Monte-
Carlo simulation lasts potentially much longer (up to several hours or days if the number of ob-
servations is in the millions) than the main calculations, the package saves them by default in the
workspace and on the file system such that a second call requiring the same Monte-Carlo simulation
will be much faster. For more details, in particular to which arguments the Monte-Carlo simulations
are specific, see Section Storing of Monte-Carlo simulations below. Progress of a Monte-Carlo sim-
ulation can be reported by the argument messages and the saving can be controlled by the argument
option, both can be specified in ... and are explained in getCritVal.

Usage

improveSmallScales(fit, data, filter, method = c("2Param", "LR"),
lengths = NULL, q = NULL, alpha = 0.04, r = 1e3, startTime = 0,
thresholdLongSegment = if (method == "LR") 10L else 25L,
localValue = stats::median,
localVar = function(data) stepR::sdrobnorm(data,

lag = filter$len + 1L)^2,
regularization = 1,
gridSize = c(1, 1 / 10, 1 / 100) / filter$sr,
windowFactorRefinement = 1,
output = c("onlyIdealization", "everyGrid"), report = FALSE,
suppressWarningNoDeconvolution = FALSE,
localList = NULL, ...)

Arguments

fit an stepblock object or a list containing an entry fit with a stepblock object
giving the initial fit (reconstruction), e.g. computed by jsmurf with locationCorrection
== "none"

data a numeric vector containing the recorded data points

filter an object of class lowpassFilter giving the used analogue lowpass filter

method the testing method for short events, "2Param" allows for heterogeneous noise,
"LR" assumes homogeneous noise

lengths a vector of integers giving the lengths on which tests will be performed to de-
tect short events, should be chosen such that events on larger scales are already
contained in fit

q a numeric vector of the same length as lengths giving scale dependent crit-
ical values for the tests for short events, by default chosen automatically by
getCritVal

alpha a probability, i.e. a single numeric between 0 and 1, giving the significance
level to compute the critical values (if q == NULL), see getCritVal. Its choice
balances the risks of missing short events and detecting additional artefacts

improveSmallScales 27

r an integer giving the number of Monte-Carlo simulations (if q == NULL), a larger
value increases accuracy, but also the run time

startTime a single numeric giving the time at which recording (sampling) of data started,
sampling time points will be assumed to be startTime + seq(along = data) /
filter$sr

thresholdLongSegment

a single integer giving the threshold determining how many observations are
necessary to estimate parameters, conductance value and its variance, without
deconvolution; has to be chosen such that localValue and localVar can be
applied to a vector of this and larger length

localValue a function for estimating the conductance levels on long segments, see details,
will be called with localValue(data[i:j]) with i and j two integers in 1:length(data)
and j - i >= thresholdLongSegment, has to return a single numeric

localVar a function for estimating the variance on long segments, see details, will be
called with localVar(data[i:j]) with i and j two integers in 1:length(data)
and j - i >= thresholdLongSegment, has to return a single, positive numeric

regularization a single positive numeric or a numeric vector with positive entries or a list
of length length(gridSize), with each entry a single positive numeric or a
numeric vector with positive entries, giving the regularisation added to the cor-
relation matrix, see details. For a list the i-th entry will be used in the i-th
refinement

gridSize a numeric vector giving the size of the grids in the iterative grid search, see
details

windowFactorRefinement

a single numeric or a numeric vector of length length(gridSize) - 1 giving
factors for the refinement of the grid, see details. If a single numeric is given its
value is used in all refinement steps

output a string specifying the return type, see Value

report a single logical, if TRUE the progress will be reported by messages

suppressWarningNoDeconvolution

a single logical, if FALSE a warning will be given if at least one segment exists
for which no deconvolution can be performed, since two short segments follow
each other immediately

localList an object of class "localList", usually computed by createLocalList, do-
ing such a pre-computation saves run time if improveSmallScales or hilde is
called multiple times with the same arguments

... additional parameters to be passed to getCritVal, getCritVal will be called
automatically (if q == NULL), the number of data points n = length(data) will
be set, argument method will be assigned to family and alpha and filter will
be passed. For these parameter no user interaction is required and possible, all
other parameters of getCritVal can be passed additionally

Details

First of al, tests for additional short events are performed. Those tests take into account the lowpass
filter explicitly. Afterwards all conductance levels (of the newly found and of the already existing

28 improveSmallScales

event) and locations of the conductance changes are determined by local deconvolution. The local
deconvolution consists of two parts.
In the first part, all segments of the initial fit, potentially interrupted by newly detected events, will
be divided into long and short ones. The first and lasts filter$len data points of each segment
will be ignored and if the remaining data points data[i:j] are at least thresholdLongSegment,
i.e. j - i + 1 >= thresholdLongSegment, the parameters, conductance level and variance, of this
segment will be determined by localValue(data[i:j]) and localVar(data[i:j]).
The long segments allow in the second part to perform the deconvolution locally by maximizing the
likelihood function by an iterative grid search. Three scenarios might occur: Two long segments can
follow each other, in this case the change, but no level, has to be estimated by maximizing the like-
lihood function of only few observations in this single parameter. A single short segment can be in
between of two long segments, in this case two changes and one level have to be estimated by maxi-
mizing the likelihood function of only few observations in these three parameters. Finally, two short
segments can follow each other, in this case no deconvolution is performed and the initial param-
eters are returned for these segments together with entries in the "noDeconvolution" attribute.
More precisely, let i:j be the short segments, then i:j will be added to the "noDeconvolution"
attribute and for the idealisation (if output == "everyGrid" this applies for each entry) the
entries value[i:j], leftEnd[i:(j + 1)] and rightEnd[(i - 1):j] are kept from the initial fit
without refinement by deconvolution. If suppressWarningNoDeconvolution == FALSE, addition-
ally, a warning will be given at first occurrence.
Maximisation of the likelihood is performed by minimizing (Pein et al., 2018, (9)), a term of the
form xTΣx, where Σ is the regularised correlation matrix and x a numeric vector of the same di-
mension. More precisely, the (unregularised) correlations are filter$acf, to this the regularisation
regularization is added. In detail, if regularization is a numeric, the regularised correlation
is

cor <- filter$acf
cor[seq(along = regularization)] <- cor[seq(along = regularization)] + regularization

and if regularization is a list the same, but regularization is in the i-th refinement replaced
by regularization[[i]]. Then, Σ is a symmetric Toeplitz matrix with entries cor, i.e. a matrix
with cor[1] on the main diagonal, cor[2] on the second diagonal, etc. and 0 for all entries outside
of the first length(cor) diagonals.
The minimisations are performed by an iterative grid search: In a first step potential changes will
be allowed to be at the grid / time points seq(cp - filter$len / filter$sr, cp, gridSize[1]),
with cp the considered change of the initial fit. For each grid point in case of a single change and
for each combination of grid points in case of two changes the term in (9) is computed and the
change(s) for which the minimum is attained is / are chosen. Afterwards, refinements are done with
the grids

seq(cp - windowFactorRefinement[j - 1] * gridSize[j - 1],
cp + windowFactorRefinement[j - 1] * gridSize[j - 1],
gridSize[j]),

with cp the change of the iteration before, as long as entries in gridSize are given.

Value

The idealisation (fit, regression) obtained by testing for short events and local deconvolution. If
output == "onlyIdealization" an object of class stepblock containing the final idealisation

improveSmallScales 29

obtained by local deconvolution. If output == "everyGrid" a list of length length(gridSize)
containing the idealisation after each refining step. Additionally, in both cases, an attribute
"noDeconvolution", an integer vector, gives the segments for which no deconvolution could be
performed, since two short segments followed each other, see details. Moreover, the (computed) q
is returned as an attribute.

Storing of Monte-Carlo simulations

If q == NULL a Monte-Carlo simulation is required to compute the critical values. Since a Monte-
Carlo simulation lasts potentially much longer (up to several hours or days if the number of obser-
vations is in the millions) than the main calculations, multiple possibilities for saving and loading
the simulations are offered. Progress of a simulation can be reported by the argument messages
which can be specified in ... and is explained in the documentation of getCritVal. Each Monte-
Carlo simulation is specific to test method, the number of observations and the used filter. Monte-
Carlo simulations are also specific to the arguments thresholdLongSegment, localValue and
localVar. Currently, storing a Monte-Carlo simulation is only possible for their default values.
Note, that also Monte-Carlo simulations for a (slightly) larger number of observations nq , given in
the argument nq in ... and explained in the documentation of getCritVal, can be used, which
avoids extensive resimulations for only a little bit varying number of observations, but results in
a (small) loss of power. However, simulations of type "matrixIncreased", i.e. objects of class
"MCSimulationVector" with nq observations, have to be resimulated if as.integer(log2(n1))
!= as.integer(log2(n2)) when the saved simulation was computed with n == n1 and the simu-
lation now is required for n == n2 and nq >= n1 and nq >= n2. Simulations can either be saved in
the workspace in the variable critValStepRTab or persistently on the file system for which the
package R.cache is used. Moreover, storing in and loading from variables and RDS files is sup-
ported. The simulation, saving and loading can be controlled by the argument option which can be
specified in ... and is explained in the documentation of getCritVal. By default simulations will
be saved in the workspace and on the file system. For more details and for how simulation can be
removed see Section Simulating, saving and loading of Monte-Carlo simulations in getCritVal.

References

Pein, F., Bartsch, A., Steinem, C., Munk, A. (2021) Heterogeneous Idealization of Ion Channel
Recordings - Open Channel Noise. IEEE Transactions on NanoBioscience 20(1), 57–78.

Pein, F., Tecuapetla-Gómez, I., Schütte, O., Steinem, C., Munk, A. (2018) Fully-automatic mul-
tiresolution idealization for filtered ion channel recordings: flickering event detection. IEEE Trans-
actions on NanoBioscience 17(3), 300–320.

See Also

hilde, lowpassFilter, createLocalList

Examples

refinement of an initial fit of the gramicidin A recordings given by gramA
the used filter
filter <- lowpassFilter(type = "bessel", param = list(pole = 4L, cutoff = 1e3 / 1e4),

sr = 1e4)
initial fit, good on larger temporal scales, but misses short events
with given q to save computation time

30 improveSmallScales

this q is specific to length of the data and the filter
fit <- jsmurf(gramA, filter = filter, family = "jsmurfPS", q = 1.775696, startTime = 9,

locationCorrection = "none")

improvement on small temporal scales by testing for short events and local deconvolution
this call requires a Monte-Carlo simulation
and therefore might last a few minutes,
progress of the Monte-Carlo simulation is reported
deconvolution <- improveSmallScales(fit, data = gramA, method = "LR", filter = filter,

startTime = 9, messages = 100)

any second call should be much faster
as the previous Monte-Carlo simulation will be loaded
return fit after each refinement
every <- improveSmallScales(fit, data = gramA, method = "LR", filter = filter,

startTime = 9, output = "every")
deconvolutionEvery <- every[[3]]
attr(deconvolutionEvery, "noDeconvolution") <- attr(every, "noDeconvolution")
attr(deconvolutionEvery, "q") <- attr(every, "q")
identical(deconvolution, deconvolutionEvery)

identical to a direct idealisation by hilde
compare <- deconvolution
attr(compare, "q") <- NULL
identical(hilde(gramA, filter = filter, family = "jsmurfPS", method = "LR",

startTime = 9), compare)

allowing heterogeneous noise
fitH <- jsmurf(gramA, filter = filter, family = "hjsmurf", r = 100, startTime = 9,

locationCorrection = "none")
improveSmallScales(fitH, data = gramA, method = "2Param", filter = filter,

startTime = 9, messages = 10, r = 100)
r = 100 is used to reduce its run time,
this is okay for illustration purposes, but for precise results
a larger number of Monte-Carlo simulations is recommend

zoom into a single event,
similar to (Pein et al., 2018, Figure 2 lower left panel)
time <- 9 + seq(along = gramA) / filter$sr # time points
plot(time, gramA, pch = 16, col = "grey30", ylim = c(20, 50),

xlim = c(10.40835, 10.4103), ylab = "Conductance in pS", xlab = "Time in s")

deconvolution
lines(deconvolution, col = "red", lwd = 3)

deconvolution convolved with the filter
ind <- seq(10.408, 10.411, 1e-6)
convolvedSignal <- lowpassFilter::getConvolution(ind, deconvolution, filter)
lines(ind, convolvedSignal, col = "blue", lwd = 3)

for comparison, fit prior to the improvement step
does not contain the event and hence fits the recorded data points badly

jsmurf 31

fit
lines(fit, col = "orange", lwd = 3)

fit convolved with the filter
ind <- seq(10.408, 10.411, 1e-6)
convolvedSignal <- lowpassFilter::getConvolution(ind, fit, filter)
lines(ind, convolvedSignal, col = "darkgreen", lwd = 3)

with less regularisation of the correlation matrix
improveSmallScales(fit, data = gramA, method = "LR", filter = filter,

startTime = 9, messages = 100, regularization = 0.5)

with estimation of the level of long segments by the mean
but requiring 30 observations for it
improveSmallScales(fit, data = gramA, method = "LR", filter = filter,

startTime = 9, messages = 100,
localValue = mean, thresholdLongSegment = 30)

with one refinement step less, but with a larger grid
test are performed on less lengths
progress of the deconvolution is reported
potential warning for no deconvolution is suppressed
improveSmallScales(fit, data = gramA, method = "LR", filter = filter,

startTime = 9, messages = 100,
lengths = c(3:5, 8, 11, 16, 20),
gridSize = c(1 / filter$sr, 1 / 10 / filter$sr),
windowFactorRefinement = 2, report = TRUE,
suppressWarningNoDeconvolution = TRUE)

pre-computation of quantities using createLocalList
this saves run time if improveSmallScales (or hilde) is called more than once
localList <- createLocalList(filter = filter, method = "LR")
identical(improveSmallScales(fit, data = gramA, method = "LR", filter = filter,

startTime = 9, localList = localList), deconvolution)

jsmurf JSMURF

Description

Implements the Jump-Segmentation by MUltiResolution Filter (JSMURF) (Hotz et al., 2013). This
model-free multiscale idealization approach works well on medium and large temporal scales. If
short events (flickering) occurs, jules or hilde should be used instead. The original work (Hotz
et al., 2013) assumed homogeneous noise, but an extension to heterogeneous noise was provided
in (Pein et al., 2021). Please see the argument family and the examples for how to access the
function correctly depending on whether homogeneous noise is assumed or heterogeneous noise is
allowed. Further details about how to decide whether the noise is homogeneous or heterogeneous
and whether events are short are given in the accompanying vignette.

32 jsmurf

If q == NULL a Monte-Carlo simulation is required for computing critical values. Since a Monte-
Carlo simulation lasts potentially much longer (up to several hours or days if the number of ob-
servations is in the millions) than the main calculations, the package saves them by default in the
workspace and on the file system such that a second call requiring the same Monte-Carlo simulation
will be much faster. For more details, in particular to which arguments the Monte-Carlo simulations
are specific, see Section Storing of Monte-Carlo simulations below. Progress of a Monte-Carlo sim-
ulation can be reported by the argument messages and the saving can be controlled by the argument
option, both can be specified in ... and are explained in getCritVal.

Usage

jsmurf(data, filter, family = c("jsmurf", "jsmurfPS", "jsmurfLR",
"hjsmurf", "hjsmurfSPS", "hjsmurfLR"),

q = NULL, alpha = 0.05, sd = NULL, startTime = 0,
locationCorrection = c("deconvolution", "constant", "none"),
output = c("onlyIdealization", "eachStep", "everything"), ...)

Arguments

data a numeric vector containing the recorded data points

filter an object of class lowpassFilter giving the used analogue lowpass filter

family the parametric family for the multiscale test in JSMURF. "jsmurf", "jsmurfPS"
and "jsmurfLR" assume homogeneous noise and "hjsmurf", "hjsmurfSPS"
and "hjsmurfLR" allow for heterogeneous noise. By default, we recommend
to use "jsmurfPS" when homogeneous noise is assumed and "hjsmurf" when
heterogeneous noise is allowed, see examples. "jsmurf" is the standard statis-
tic from (Hotz et al., 2013), "jsmurfPS" is a slightly more powerful partial sum
statistic, "jsmurfLR" is a likelihood-ratio statistic, which is even more powerful
but slow. "hjsmurf" is the standard statistic for heterogeneous noise which es-
timates the variance locally, "hjsmurfSPS" is a studentized partial sum statistic
and "hjsmurfLR" is a likelihood ratio statistic, which is more powerful, but very
slow

q by default chosen automatically by getCritVal, for families "jsmurf", "jsmurfPS"
and "jsmurfLR" a single numeric giving the critical value, for families "hjsmurf",
"hjsmurfSPS" and "hjsmurfLR" a numeric vector giving scale dependent crit-
ical values

alpha a probability, i.e. a single numeric between 0 and 1, giving the significance level
to compute q (if q == NULL), see getCritVal. Its choice is a trade-off between
data fit and parsimony of the estimator. In other words, this argument balances
the risks of missing conductance changes and detecting additional artefacts

sd a single positive numeric giving the standard deviation (noise level) σ0 of the
data points before filtering, by default (NULL) estimated by sdrobnorm with
lag = filter$len + 1L. For families "hjsmurf", "hjsmurfSPS" and "hjsmurfLR"
this argument is ignored with a warning

startTime a single numeric giving the time at which recording (sampling) of data started,
sampling time points will be assumed to be startTime + seq(along = data) /
filter$sr

jsmurf 33

locationCorrection

indicating how the locations of conductance changes are corrected for smooth-
ing effects due to lowpass filtering, if "deconvolution" the local deconvo-
lution procedure in deconvolveLocally from (Pein et al., 2018) is called, if
"constant" all changes are moved to the left by the constant filter$jump /
filter$sr, this was the approach in (Hotz et al., 2013), if "none" no correction
is applied

output a string specifying the return type, see Value

... additional parameters to be passed to getCritVal or deconvolveLocally:

1. getCritVal will be called automatically if q == NULL, the number of data
points n = length(data) will be set and family, alpha and filter will
be passed. For these parameter no user interaction is required and possible,
all other parameters of getCritVal can be passed additionally

2. deconvolveLocally will be called automatically if locationCorrection
== "deconvolution", the obtained fit will be passed to fit and data,
filter, startTime will be passed and output will be set accordingly to
the output argument. For these parameter no user interaction is required
and possible, all other parameters of deconvolveLocally can be passed
additionally

Value

The idealisation (estimation, regression) obtained by JSMURF. If output == "onlyIdealization"
an object object of class stepblock containing the idealisation. If output == "eachStep" a list
containing the entries idealization with the idealisation, fit with the fit before locations of
conductance changes were corrected for filtering, q with the given / computed critical values,
filter with the given filter and for families "jsmurf", "jsmurfPS" and "jsmurfLR" sd with
the given / estimated standard deviation. If output == "everything" a list containing the en-
tries idealization with a list containing the idealisation after each refining step in the local
deconvolution, fit with the fit before locations of conductance changes were corrected for fil-
tering, q with the given / computed critical values, filter with the given filter and for fami-
lies "jsmurf", "jsmurfPS" and "jsmurfLR" sd with the given / estimated standard deviation.
Additionally, if locationCorrection == "deconvolution", the idealisation has an attribute
"noDeconvolution", an integer vector, that gives the segments for which no deconvolution could
be performed, since two short segments followed each other, see also details in deconvolveLocally.

Storing of Monte-Carlo simulations

If q == NULL a Monte-Carlo simulation is required to compute the critical values. Since a Monte-
Carlo simulation lasts potentially much longer (up to several hours or days if the number of observa-
tions is in the millions) than the main calculations, multiple possibilities for saving and loading the
simulations are offered. Progress of a simulation can be reported by the argument messages which
can be specified in ... and is explained in the documentation of getCritVal. Each Monte-Carlo
simulation is specific to parametric family, the number of observations and the used filter. But note
that also Monte-Carlo simulations for a (slightly) larger number of observations nq , given in the ar-
gument nq in ... and explained in the documentation of getCritVal, can be used, which avoids
extensive resimulations for only a little bit varying number of observations, but results in a (small)

34 jsmurf

loss of power. However, simulations of type "vectorIncreased" or "matrixIncreased", i.e. ob-
jects of classes "MCSimulationMaximum" and "MCSimulationVector" with nq observations, have
to be resimulated if as.integer(log2(n1)) != as.integer(log2(n2)) when the saved simula-
tion was computed with n == n1 and the simulation now is required for n == n2 and nq >= n1 and
nq >= n2. Simulations can either be saved in the workspace in the variable critValStepRTab or
persistently on the file system for which the package R.cache is used. Moreover, storing in and
loading from variables and RDS files is supported. The simulation, saving and loading can be con-
trolled by the argument option which can be specified in ... and is explained in the documentation
of getCritVal. By default simulations will be saved in the workspace and on the file system. For
more details and for how simulation can be removed see Section Simulating, saving and loading of
Monte-Carlo simulations in getCritVal.

References

Hotz, T., Schütte, O., Sieling, H., Polupanow, T., Diederichsen, U., Steinem, C., and Munk, A.
(2013) Idealizing ion channel recordings by a jump segmentation multiresolution filter. IEEE Trans-
actions on NanoBioscience 12(4), 376–386.

Pein, F., Bartsch, A., Steinem, C., Munk, A. (2021) Heterogeneous Idealization of Ion Channel
Recordings - Open Channel Noise. IEEE Transactions on NanoBioscience 20(1), 57–78.

Pein, F., Tecuapetla-Gómez, I., Schütte, O., Steinem, C., Munk, A. (2018) Fully-automatic mul-
tiresolution idealization for filtered ion channel recordings: flickering event detection. IEEE Trans-
actions on NanoBioscience 17(3), 300–320.

See Also

getCritVal, lowpassFilter, deconvolveLocally, jules, hilde

Examples

idealisation of the gramicidin A recordings given by gramA with jsmurf
the used filter
filter <- lowpassFilter(type = "bessel", param = list(pole = 4L, cutoff = 1e3 / 1e4),

sr = 1e4)

idealisation by JSMURF assuming homogeneous noise
this call requires a Monte-Carlo simulation
and therefore might last a few minutes,
progress of the Monte-Carlo simulation is reported
idealisation <- jsmurf(gramA, filter = filter, family = "jsmurfPS",

startTime = 9, messages = 100)
detects conductance changes, but misses short events (flickering)
if they are not of interest the above idealisation is suitable
otherwise JULES should be used instead

JSMURF allowing heterogeneous noise
for illustration, but less appropriate for this dataset
jsmurf(gramA, filter = filter, family = "hjsmurf",

startTime = 9, messages = 100)

any second call should be much faster

jsmurf 35

as the previous Monte-Carlo simulation will be loaded
jsmurf(gramA, filter = filter, family = "jsmurfPS",

startTime = 9, messages = 100)

much larger significance level alpha for a larger detection power,
but also with the risk of detecting additional artefacts
in this example much more changes are detected,
most of them are probably artefacts
jsmurf(gramA, filter = filter, family = "jsmurfPS",

alpha = 0.9, startTime = 9)

getCritVal was called in jsmurf, can be called explicitly
for instance outside of a for loop to save run time
q <- getCritVal(length(gramA), filter = filter, family = "jsmurfPS")
identical(jsmurf(gramA, q = q, filter = filter, family = "jsmurfPS",

startTime = 9), idealisation)

more detailed output
each <- jsmurf(gramA, filter = filter, family = "jsmurfPS",

startTime = 9, output = "each")
every <- jsmurf(gramA, filter = filter, family = "jsmurfPS",

startTime = 9, output = "every")

identical(idealisation, each$idealization)
idealisationEvery <- every$idealization[[3]]
attr(idealisationEvery, "noDeconvolution") <- attr(every$idealization,

"noDeconvolution")
identical(idealisation, idealisationEvery)

zoom into a single jump
plot(9 + seq(along = gramA) / filter$sr, gramA, pch = 16, col = "grey30",

ylim = c(20, 50), xlim = c(9.6476, 9.6496), ylab = "Conductance in pS",
xlab = "Time in s")

idealisation
lines(idealisation, col = "red", lwd = 3)

idealisation convolved with the filter
ind <- seq(9.647, 9.65, 1e-6)
convolvedSignal <- lowpassFilter::getConvolution(ind, idealisation, filter)
lines(ind, convolvedSignal, col = "blue", lwd = 3)

idealisation with a wrong filter
does not fit the recorded data points appropriately
wrongFilter <- lowpassFilter(type = "bessel",

param = list(pole = 6L, cutoff = 0.2),
sr = 1e4)

Monte-Carlo simulations are specific the number of observations and the filter
hence a new simulation is required (if called for the first time)
idealisationWrong <- jsmurf(gramA, filter = wrongFilter, family = "jsmurfPS",

startTime = 9, messages = 100)

36 jsmurf

idealisation
lines(idealisationWrong, col = "orange", lwd = 3)

idealisation convolved with the filter
ind <- seq(9.647, 9.65, 1e-6)
convolvedSignal <- lowpassFilter::getConvolution(ind, idealisationWrong, filter)
lines(ind, convolvedSignal, col = "darkgreen", lwd = 3)

location correction by a constant, almost the same as the local deconvolution
idealisationConst <- jsmurf(gramA, filter = filter, family = "jsmurfPS",

locationCorrection = "constant", startTime = 9, messages = 100)

idealisation
lines(idealisationConst, col = "brown", lwd = 3)

idealisation convolved with the filter
ind <- seq(9.647, 9.65, 1e-6)
convolvedSignal <- lowpassFilter::getConvolution(ind, idealisationConst, filter)
lines(ind, convolvedSignal, col = "purple", lwd = 3)

no correction of locations for filter effects, jump location is shifted to the left
idealisationNone <- jsmurf(gramA, filter = filter, family = "jsmurfPS",

locationCorrection = "none", startTime = 9, messages = 100)

idealisation
lines(idealisationNone, col = "black", lwd = 3)

idealisation convolved with the filter
ind <- seq(9.647, 9.65, 1e-6)
convolvedSignal <- lowpassFilter::getConvolution(ind, idealisationNone, filter)
lines(ind, convolvedSignal, col = "green", lwd = 3)

local deconvolution can be called separately
identical(deconvolveLocally(idealisationNone, data = gramA, filter = filter, startTime = 9),

idealisation)

simulation for a larger number of observations can be used (nq = 3e4)
does not require a new simulation as the simulation from above will be used
(if the previous call was executed first)
jsmurf(gramA[1:2.99e4], filter = filter, family = "jsmurfPS", startTime = 9,

nq = 3e4, r = 1e3, messages = 100)

simulation of type "vectorIncreased" for n1 observations can only be reused
for n2 observations if as.integer(log2(n1)) == as.integer(log2(n2))
no simulation is required, since a simulation of type "matrixIncreased"
will be loaded from the fileSystem
this call also saves a simulation of type "vectorIncreased" in the workspace
jsmurf(gramA[1:1e4], filter = filter, family = "jsmurfPS", startTime = 9,

nq = 3e4, messages = 100, r = 1e3)
here a new simulation is required
(if no appropriate simulation is saved from a previous call)

jules 37

jsmurf(gramA[1:1e3], filter = filter, family = "jsmurfPS", startTime = 9,
nq = 3e4, messages = 100, r = 1e3,
options = list(load = list(workspace = c("vector", "vectorIncreased"))))

the above calls saved and (attempted to) load Monte-Carlo simulations
in the following call the simulations will neither be saved nor loaded
jsmurf(gramA, filter = filter, family = "jsmurfPS", startTime = 9,

messages = 100, r = 1e3, options = list(load = list(), save = list()))

only simulations of type "vector" and "vectorInceased" will be saved and
loaded from the workspace, but no simulations of type "matrix" and
"matrixIncreased" on the file system
jsmurf(gramA[1:1e4], filter = filter, family = "jsmurfPS",

startTime = 9, messages = 100,
options = list(load = list(workspace = c("vector", "vectorIncreased")),

save = list(workspace = c("vector", "vectorIncreased"))))

explicit Monte-Carlo simulations, not recommended
stat <- stepR::monteCarloSimulation(n = length(gramA), family = "jsmurfPS",

filter = filter, output = "maximum",
r = 1e3, messages = 100)

jsmurf(gramA, filter = filter, family = "jsmurfPS", startTime = 9, stat = stat)

with given standard deviation
sd <- stepR::sdrobnorm(gramA, lag = filter$len + 1)
identical(jsmurf(gramA, filter = filter, family = "jsmurfPS", startTime = 9,

sd = sd), idealisation)

with one refinement step less, but with a larger grid
progress of the deconvolution is reported
potential warning for no deconvolution is suppressed
jsmurf(gramA, filter = filter, family = "jsmurfPS", startTime = 9,

gridSize = c(1 / filter$sr, 1 / 10 / filter$sr),
windowFactorRefinement = 2, report = TRUE,
suppressWarningNoDeconvolution = TRUE)

jules JULES

Description

Implements the JUmp Local dEconvolution Segmentation (JULES) filter (Pein et al., 2018). This
non-parametric (model-free) segmentation method combines statistical multiresolution techniques
with local deconvolution for idealising patch clamp (ion channel) recordings. In particular, also
flickering (events on small time scales) can be detected and idealised which is not possible with
common thresholding methods. JULES requires that the underlying noise is homogeneous. If the
noise is heterogeneous, hilde should be used instead. hilde might be also more powerful (but
slower) when events are very short. If all events are very long, multiple times the filter length, the
simpler approach jsmurf is suitable. Further details about how to decide whether the noise is ho-
mogeneous or heterogeneous and whether events are short are given in the accompanying vignette.

38 jules

If q == NULL a Monte-Carlo simulation is required for computing the critical value. Since a Monte-
Carlo simulation lasts potentially much longer (up to several hours or days if the number of ob-
servations is in the millions) than the main calculations, the package saves them by default in the
workspace and on the file system such that a second call requiring the same Monte-Carlo simulation
will be much faster. For more details, in particular to which arguments the Monte-Carlo simulations
are specific, see Section Storing of Monte-Carlo simulations below. Progress of a Monte-Carlo sim-
ulation can be reported by the argument messages and the saving can be controlled by the argument
option, both can be specified in ... and are explained in getCritVal.

Usage

jules(data, filter, q = NULL, alpha = 0.05, sd = NULL, startTime = 0,
output = c("onlyIdealization", "eachStep", "everything"), ...)

Arguments

data a numeric vector containing the recorded data points

filter an object of class lowpassFilter giving the used analogue lowpass filter

q a single numeric giving the critical value q in (Pein et al., 2018, (7)), by default
chosen automatically by getCritVal

alpha a probability, i.e. a single numeric between 0 and 1, giving the significance
level to compute the critical value q (if q == NULL), see getCritVal. Its choice
is a trade-off between data fit and parsimony of the estimator. In other words,
this argument balances the risks of missing changes and detecting additional
artefacts

sd a single positive numeric giving the standard deviation (noise level) σ0 of the
data points before filtering, by default (NULL) estimated by sdrobnorm with
lag = filter$len + 1L

startTime a single numeric giving the time at which recording (sampling) of data started,
sampling time points will be assumed to be startTime + seq(along = data) /
filter$sr

output a string specifying the return type, see Value

... additional parameters to be passed to getCritVal or deconvolveLocally:

1. getCritVal will be called automatically (if q == NULL), the number of data
points n = length(data) will be set, the family = "jules" will be set and
alpha and filter will be passed. For these parameter no user interaction
is required and possible, all other parameters of getCritVal can be passed
additionally

2. deconvolveLocally will be called automatically, the by stepDetection
computed reconstruction / fit will be passed to fit and data, filter,
startTime will be passed and output will be set accordingly to the output
argument. For these parameter no user interaction is required and possible,
all other parameters of deconvolveLocally can be passed additionally

jules 39

Value

The idealisation (estimation, regression) obtained by JULES. If output == "onlyIdealization"
an object object of class stepblock containing the idealisation. If output == "eachStep" a list
containing the entries idealization with the idealisation, fit with the fit obtained by the detection
step only, q with the given / computed critical value, filter with the given filter and sd with
the given / estimated standard deviation. If output == "everything" a list containing the en-
tries idealization with a list containing the idealisation after each refining step in the local
deconvolution, fit with the fit obtained by the detection step only, stepfit with the fit ob-
tained by the detection step before postfiltering, q with the given / computed critical value,
filter with the given filter and sd with the given / estimated standard deviation. Additionally,
in all cases, the idealisation has an attribute "noDeconvolution", an integer vector, that gives
the segments for which no deconvolution could be performed, since two short segments followed
each other, see also details in deconvolveLocally.

Storing of Monte-Carlo simulations

If q == NULL a Monte-Carlo simulation is required to compute the critical value. Since a Monte-
Carlo simulation lasts potentially much longer (up to several hours or days if the number of obser-
vations is in the millions) than the main calculations, multiple possibilities for saving and loading the
simulations are offered. Progress of a simulation can be reported by the argument messages which
can be specified in ... and is explained in the documentation of getCritVal. Each Monte-Carlo
simulation is specific to the number of observations and the used filter. But note that also Monte-
Carlo simulations for a (slightly) larger number of observations nq , given in the argument nq in ...
and explained in the documentation of getCritVal, can be used, which avoids extensive resimula-
tions for only a little bit varying number of observations, but results in a (small) loss of power. How-
ever, simulations of type "vectorIncreased", i.e. objects of class "MCSimulationMaximum" with
nq observations, have to be resimulated if as.integer(log2(n1)) != as.integer(log2(n2))
when the saved simulation was computed with n == n1 and the simulation now is required for n
== n2 and nq >= n1 and nq >= n2. Simulations can either be saved in the workspace in the variable
critValStepRTab or persistently on the file system for which the package R.cache is used. More-
over, storing in and loading from variables and RDS files is supported. The simulation, saving and
loading can be controlled by the argument option which can be specified in ... and is explained
in the documentation of getCritVal. By default simulations will be saved in the workspace and on
the file system. For more details and for how simulation can be removed see Section Simulating,
saving and loading of Monte-Carlo simulations in getCritVal.

References

Pein, F., Tecuapetla-Gómez, I., Schütte, O., Steinem, C., Munk, A. (2018) Fully-automatic mul-
tiresolution idealization for filtered ion channel recordings: flickering event detection. IEEE Trans-
actions on NanoBioscience 17(3), 300–320.

See Also

getCritVal, lowpassFilter, deconvolveLocally, stepDetection

Examples

idealisation of the gramicidin A recordings given by gramA with jules

40 jules

the used filter
filter <- lowpassFilter(type = "bessel", param = list(pole = 4L, cutoff = 1e3 / 1e4),

sr = 1e4)

idealisation by JULES
this call requires a Monte-Carlo simulation
and therefore might last a few minutes,
progress of the Monte-Carlo simulation is reported
idealisation <- jules(gramA, filter = filter, startTime = 9, messages = 100)

any second call should be much faster
as the previous Monte-Carlo simulation will be loaded
jules(gramA, filter = filter, startTime = 9)

much larger significance level alpha for a larger detection power,
but also with the risk of detecting additional artefacts
in this example much more changes are detected,
most of them are probably artefacts, but for instance the event at 11.36972
might be an additional small event that was missed before
jules(gramA, filter = filter, alpha = 0.9, startTime = 9)

getCritVal was called in jules, can be called explicitly
for instance outside of a for loop to save run time
q <- getCritVal(length(gramA), filter = filter)
identical(jules(gramA, q = q, filter = filter, startTime = 9), idealisation)

both steps of JULES can be called separately
fit <- stepDetection(gramA, filter = filter, startTime = 9)
identical(deconvolveLocally(fit, data = gramA, filter = filter, startTime = 9),

idealisation)

more detailed output
each <- jules(gramA, filter = filter, startTime = 9, output = "each")
every <- jules(gramA, filter = filter, startTime = 9, output = "every")

identical(idealisation, each$idealization)
idealisationEvery <- every$idealization[[3]]
attr(idealisationEvery, "noDeconvolution") <- attr(every$idealization,

"noDeconvolution")
identical(idealisation, idealisationEvery)

identical(each$fit, fit)
identical(every$fit, fit)

zoom into a single event, (Pein et al., 2018, Figure 2 lower left panel)
plot(time, gramA, pch = 16, col = "grey30", ylim = c(20, 50),

xlim = c(10.40835, 10.4103), ylab = "Conductance in pS", xlab = "Time in s")

idealisation
lines(idealisation, col = "red", lwd = 3)

idealisation convolved with the filter

jules 41

ind <- seq(10.408, 10.411, 1e-6)
convolvedSignal <- lowpassFilter::getConvolution(ind, idealisation, filter)
lines(ind, convolvedSignal, col = "blue", lwd = 3)

fit prior to the deconvolution step
does not fit the recorded data points appropriately
fit
lines(fit, col = "orange", lwd = 3)

fit convolved with the filter
ind <- seq(10.408, 10.411, 1e-6)
convolvedSignal <- lowpassFilter::getConvolution(ind, fit, filter)
lines(ind, convolvedSignal, col = "darkgreen", lwd = 3)

zoom into a single jump
plot(9 + seq(along = gramA) / filter$sr, gramA, pch = 16, col = "grey30",

ylim = c(20, 50), xlim = c(9.6476, 9.6496), ylab = "Conductance in pS",
xlab = "Time in s")

idealisation
lines(idealisation, col = "red", lwd = 3)

idealisation convolved with the filter
ind <- seq(9.647, 9.65, 1e-6)
convolvedSignal <- lowpassFilter::getConvolution(ind, idealisation, filter)
lines(ind, convolvedSignal, col = "blue", lwd = 3)

idealisation with a wrong filter
does not fit the recorded data points appropriately
wrongFilter <- lowpassFilter(type = "bessel",

param = list(pole = 6L, cutoff = 0.2),
sr = 1e4)

the needed Monte-Carlo simulation depends on the number of observations and the filter
hence a new simulation is required (if called for the first time)
idealisationWrong <- jules(gramA, filter = wrongFilter, startTime = 9, messages = 100)

idealisation
lines(idealisationWrong, col = "orange", lwd = 3)

idealisation convolved with the filter
ind <- seq(9.647, 9.65, 1e-6)
convolvedSignal <- lowpassFilter::getConvolution(ind, idealisationWrong, filter)
lines(ind, convolvedSignal, col = "darkgreen", lwd = 3)

simulation for a larger number of observations can be used (nq = 3e4)
does not require a new simulation as the simulation from above will be used
(if the previous call was executed first)
jules(gramA[1:2.99e4], filter = filter, startTime = 9,

nq = 3e4, r = 1e3, messages = 100)

simulation of type "vectorIncreased" for n1 observations can only be reused

42 lowpassFilter

for n2 observations if as.integer(log2(n1)) == as.integer(log2(n2))
no simulation is required, since a simulation of type "matrixIncreased"
will be loaded from the fileSystem
this call also saves a simulation of type "vectorIncreased" in the workspace
jules(gramA[1:1e4], filter = filter, startTime = 9,

nq = 3e4, messages = 100, r = 1e3)
here a new simulation is required
(if no appropriate simulation is saved from a call outside of this file)
jules(gramA[1:1e3], filter = filter, startTime = 9,

nq = 3e4, messages = 100, r = 1e3,
options = list(load = list(workspace = c("vector", "vectorIncreased"))))

the above calls saved and (attempted to) load Monte-Carlo simulations
in the following call the simulations will neither be saved nor loaded
jules(gramA, filter = filter, startTime = 9, messages = 100, r = 1e3,

options = list(load = list(), save = list()))

only simulations of type "vector" and "vectorInceased" will be saved and
loaded from the workspace, but no simulations of type "matrix" and
"matrixIncreased" on the file system
jules(gramA, filter = filter, startTime = 9, messages = 100,

options = list(load = list(workspace = c("vector", "vectorIncreased")),
save = list(workspace = c("vector", "vectorIncreased"))))

explicit Monte-Carlo simulations, not recommended
stat <- stepR::monteCarloSimulation(n = length(gramA), , family = "mDependentPS",

filter = filter, output = "maximum",
r = 1e3, messages = 100)

jules(gramA, filter = filter, startTime = 9, stat = stat)

with given standard deviation
sd <- stepR::sdrobnorm(gramA, lag = filter$len + 1)
identical(jules(gramA, filter = filter, startTime = 9, sd = sd), idealisation)

with less regularisation of the correlation matrix
jules(gramA, filter = filter, startTime = 9, regularization = 0.5)

with estimation of the level of long segments by the mean
but requiring 30 observations for it
jules(gramA, filter = filter, startTime = 9,

localEstimate = mean, thresholdLongSegment = 30)

with one refinement step less, but with a larger grid
progress of the deconvolution is reported
potential warning for no deconvolution is suppressed
jules(gramA, filter = filter, startTime = 9,

gridSize = c(1 / filter$sr, 1 / 10 / filter$sr),
windowFactorRefinement = 2, report = TRUE,
suppressWarningNoDeconvolution = TRUE)

lowpassFilter Lowpass filtering

lowpassFilter 43

Description

Reexported from lowpassFilter. Creates lowpass filters.

Usage

lowpassFilter(type = c("bessel"), param, sr = 1, len = NULL, shift = 0.5)

Arguments

type a string specifying the type of the filter, currently only Bessel filters are sup-
ported

param a list specifying the parameters of the filter depending on type. For "bessel"
the entries pole and cutoff have to be specified and no other named entries
are allowed. pole has to be a single integer giving the number of poles (order).
cutoff has to be a single positive numeric not larger than 1 giving the normal-
ized cutoff frequency, i.e. the cutoff frequency (in the temporal domain) of the
filter divided by the sampling rate

sr a single numeric giving the sampling rate

len a single integer giving the filter length of the truncated and digitised filter, see
Value for more details. By default (NULL) it is chosen such that the autocorre-
lation function is below 1e-3 at len / sr and at all lager lags (len + i) / sr,
with i a positive integer

shift a single numeric between 0 and 1 giving a shift for the digitised filter, i.e. kernel
and step are obtained by evaluating the corresponding functions at (0:len +
shift) / sr

Value

An object of class lowpassFilter, i.e. a list that contains

"type", "param", "sr", "len" the corresponding arguments

"kernfun" the kernel function of the filter, obtained as the Laplace transform of the corresponding
transfer function

"stepfun" the step-response of the filter, i.e. the antiderivative of the filter kernel

"acfun" the autocorrelation function, i.e. the convolution of the filter kernel with itself

"acAntiderivative" the antiderivative of the autocorrelation function

"truncatedKernfun" the kernel function of the at len / sr truncated filter, i.e. kernfun truncated
and rescaled such that the new kernel still integrates to 1

"truncatedStepfun" the step-response of the at len / sr truncated filter, i.e. the antiderivative of
the kernel of the truncated filter

"truncatedAcfun" the autocorrelation function of the at len / sr truncated filter, i.e. the convo-
lution of the kernel of the truncated filter with itself

"truncatedAcAntiderivative" the antiderivative of the autocorrelation function of the at len /
sr truncated filter

44 lowpassFilter

"kern" the digitised filter kernel normalised to one, i.e. kernfun((0:len + shift) / sr) / sum(kernfun((0:len
+ shift) / sr))

"step" the digitised step-response of the filter, i.e. stepfun((0:len + shift) / sr)

"acf" the discrete autocorrelation, i.e. acfun(0:len / sr)

"jump" the last index of the left half of the filter, i.e. min(which(ret$step >= 0.5)) - 1L, it
indicates how much a jump is shifted in time by a convolution of the signal with the digitised
kernel of the lowpassfilter; if all values are below 0.5, len is returned with a warning

"number" for developers; an integer indicating the type of the filter

"list" for developers; a list containing precomputed quantities to recreate the filter in C++

Author(s)

This function is a modified and extended version of dfilter written by Thomas Hotz. New code
is written by Florian Pein and Inder Tecuapetla-Gómez.

References

Pein, F., Bartsch, A., Steinem, C., Munk, A. (2021) Heterogeneous Idealization of Ion Channel
Recordings - Open Channel Noise. IEEE Transactions on NanoBioscience 20(1), 57–78.

Pein, F., Tecuapetla-Gómez, I., Schütte, O., Steinem, C., Munk, A. (2018) Fully-automatic mul-
tiresolution idealization for filtered ion channel recordings: flickering event detection. IEEE Trans.
Nanobioscience, 17(3):300-320.

Pein, F. (2017) Heterogeneous Multiscale Change-Point Inference and its Application to Ion Chan-
nel Recordings. PhD thesis, Georg-August-Universität Göttingen. http://hdl.handle.net/11858/00-
1735-0000-002E-E34A-7.

Hotz, T., Schütte, O., Sieling, H., Polupanow, T., Diederichsen, U., Steinem, C., and Munk, A.
(2013) Idealizing ion channel recordings by a jump segmentation multiresolution filter. IEEE Trans.
Nanobioscience, 12(4):376-386.

Examples

the filter used for the gramicidin A recordings given by gramA
filter <- lowpassFilter(type = "bessel", param = list(pole = 4L, cutoff = 1e3 / 1e4),

sr = 1e4)

filter kernel, truncated version
plot(filter$kernfun, xlim = c(0, 20 / filter$sr))
t <- seq(0, 20 / filter$sr, 0.01 / filter$sr)
truncated version looks very similar
lines(t, filter$truncatedKernfun(t), col = "red")

filter$len (== 11) is chosen such that filter$acf < 1e-3 for it and all larger lags
plot(filter$acfun, xlim = c(0, 20 / filter$sr), ylim = c(-0.003, 0.003))
abline(h = 0.001, lty = "22")
abline(h = -0.001, lty = "22")

abline(v = (filter$len - 1L) / filter$sr, col = "grey")
abline(v = filter$len / filter$sr, col = "red")

lowpassFilter 45

zoom into a single jump of the idealisation
we suggest to do this for every new measurement setup once
to control whether the correct filter is assumed
idealisation by JULES (might take some time if not called somewhere before,
please see its documentation for more details)
idealisation <- jules(gramA, filter = filter, startTime = 9, messages = 100)

zoom into a single jump
plot(9 + seq(along = gramA) / filter$sr, gramA, pch = 16, col = "grey30",

ylim = c(20, 50), xlim = c(9.6476, 9.6496), ylab = "Conductance in pS",
xlab = "Time in s")

idealisation
lines(idealisation, col = "red", lwd = 3)

idealisation convolved with the filter
ind <- seq(9.647, 9.65, 1e-6)
convolvedSignal <- lowpassFilter::getConvolution(ind, idealisation, filter)
lines(ind, convolvedSignal, col = "blue", lwd = 3)

idealisation with a wrong filter
does not fit the recorded data points appropriately
wrongFilter <- lowpassFilter(type = "bessel",

param = list(pole = 6L, cutoff = 0.2),
sr = 1e4)

the needed Monte-Carlo simulation depends on the number of observations and the filter
hence a new simulation is required (if called for the first time)
idealisationWrong <- jules(gramA, filter = wrongFilter, startTime = 9, messages = 100)

idealisation
lines(idealisationWrong, col = "orange", lwd = 3)

idealisation convolved with the filter
ind <- seq(9.647, 9.65, 1e-6)
convolvedSignal <- lowpassFilter::getConvolution(ind, idealisationWrong, filter)
lines(ind, convolvedSignal, col = "darkgreen", lwd = 3)

filter with sr == 1
filter <- lowpassFilter(type = "bessel", param = list(pole = 4L, cutoff = 1e3 / 1e4))

filter kernel and its truncated version
plot(filter$kernfun, xlim = c(0, 20 / filter$sr))
t <- seq(0, 20 / filter$sr, 0.01 / filter$sr)
truncated version, looks very similar
lines(t, filter$truncatedKernfun(t), col = "red")
digitised filter
points((0:filter$len + 0.5) / filter$sr, filter$kern, col = "red", pch = 16)

without a shift
filter <- lowpassFilter(type = "bessel", param = list(pole = 4L, cutoff = 1e3 / 1e4),

shift = 0)

46 stepDetection

filter$kern starts with zero
points(0:filter$len / filter$sr, filter$kern, col = "blue", pch = 16)

much shorter filter
filter <- lowpassFilter(type = "bessel", param = list(pole = 4L, cutoff = 1e3 / 1e4),

len = 4L)
points((0:filter$len + 0.5) / filter$sr, filter$kern, col = "darkgreen", pch = 16)

stepDetection Detection of steps / jumps by a multiresolution criterion

Description

Implements the detection step of JULES (Pein et al., 2018, Section III-A) which consists of a fit
by a multiresolution criterion computed by a dynamic program and a postfilter step that removes
incremental steps. This initial fit (reconstruction) can then be refined by local deconvolution imple-
mented in deconvolveLocally to obtain JULES, also implemented in jules.
If q == NULL a Monte-Carlo simulation is required for computing the critical value. Since a Monte-
Carlo simulation lasts potentially much longer (up to several hours or days if the number of ob-
servations is in the millions) than the main calculations, the package saves them by default in the
workspace and on the file system such that a second call that require the same Monte-Carlo sim-
ulation will be much faster. For more details, in particular to which arguments the Monte-Carlo
simulations are specific, see Section Storing of Monte-Carlo simulations below. Progress of a
Monte-Carlo simulation can be reported by the argument messages and the saving can be con-
trolled by the argument option, both can be specified in ... and are explained in getCritVal.

Usage

stepDetection(data, filter, q = NULL, alpha = 0.05, sd = NULL, startTime = 0,
output = c("onlyFit", "everything"), ...)

Arguments

data a numeric vector containing the recorded data points

filter an object of class lowpassFilter giving the used analogue lowpass filter

q a single numeric giving the critical value q in (Pein et al., 2018, (7)), by default
chosen automatically by getCritVal

alpha a probability, i.e. a single numeric between 0 and 1, giving the significance
level to compute the critical value q (if q == NULL), see getCritVal. Its choice
is a trade-off between data fit and parsimony of the estimator. In other words,
this argument balances the risks of missing changes and detecting additional
artefacts

sd a single positive numeric giving the standard deviation (noise level) σ0 of the
data points before filtering, by default (NULL) estimated by sdrobnorm with
lag = filter$len + 1L

stepDetection 47

startTime a single numeric giving the time at which recording (sampling) of data started,
sampling time points will be assumed to be startTime + seq(along = data) /
filter$sr

output a string specifying the return type, see Value

... additional parameters to be passed to getCritVal. getCritVal will be called
automatically (if q == NULL), the number of data points n = length(data) will
be set, the family = "jules" will be set and alpha and filter will be passed.
For these parameter no user interaction is required and possible, all other param-
eters of getCritVal can be passed additionally

Value

The reconstruction (fit) obtained by the detection step of JULES. If output == "onlyFit" an object
object of class stepblock containing the fit. If output == "everything" a list containing the
entries fit with the fit, stepfit with the fit before postfiltering, q with the given / computed
critical value, filter with the given filter and sd with the given / estimated standard deviation.

Storing of Monte-Carlo simulations

If q == NULL a Monte-Carlo simulation is required to compute the critical value. Since a Monte-
Carlo simulation lasts potentially much longer (up to several hours or days if the number of obser-
vations is in the millions) than the main calculations, multiple possibilities for saving and loading the
simulations are offered. Progress of a simulation can be reported by the argument messages which
can be specified in ... and is explained in the documentation of getCritVal. Each Monte-Carlo
simulation is specific to the number of observations and the used filter. But note that also Monte-
Carlo simulations for a (slightly) larger number of observations nq , given in the argument nq in ...
and explained in the documentation of getCritVal, can be used, which avoids extensive resimula-
tions for only a little bit varying number of observations, but results in a (small) loss of power. How-
ever, simulations of type "vectorIncreased", i.e. objects of class "MCSimulationMaximum" with
nq observations, have to be resimulated if as.integer(log2(n1)) != as.integer(log2(n2))
when the saved simulation was computed with n == n1 and the simulation now is required for n
== n2 and nq >= n1 and nq >= n2. Simulations can either be saved in the workspace in the variable
critValStepRTab or persistently on the file system for which the package R.cache is used. More-
over, storing in and loading from variables and RDS files is supported. The simulation, saving and
loading can be controlled by the argument option which can be specified in ... and is explained
in the documentation of getCritVal. By default simulations will be saved in the workspace and on
the file system. For more details and for how simulation can be removed see Section Simulating,
saving and loading of Monte-Carlo simulations in getCritVal.

References

Pein, F., Tecuapetla-Gómez, I., Schütte, O., Steinem, C., Munk, A. (2018) Fully-automatic mul-
tiresolution idealization for filtered ion channel recordings: flickering event detection. IEEE Trans-
actions on NanoBioscience 17(3), 300–320.

See Also

jules, getCritVal, lowpassFilter, deconvolveLocally

48 stepDetection

Examples

fit of the gramicidin A recordings given by gramA
the used filter
filter <- lowpassFilter(type = "bessel", param = list(pole = 4L, cutoff = 1e3 / 1e4),

sr = 1e4)

this call requires a Monte-Carlo simulation (if not performed before)
and therefore might last a few minutes,
progress of the Monte-Carlo simulation is reported
fit <- stepDetection(gramA, filter = filter, startTime = 9, messages = 100)

this second call should be much faster
as the previous Monte-Carlo simulation will be loaded
stepDetection(gramA, filter = filter, startTime = 9)

much larger significance level alpha for a larger detection power,
but also with the risk of detecting additional artefacts
in this example much more changes are detected,
most of them are probably artefacts, but for instance the event at 11.3699
might be an additional small event that was missed before
stepDetection(gramA, filter = filter, alpha = 0.9, startTime = 9)

getCritVal was called in stepDetection, can be called explicitly
for instance outside of a for loop to save computation time
q <- getCritVal(length(gramA), filter = filter)
identical(stepDetection(gramA, q = q, filter = filter, startTime = 9), fit)

more detailed output
every <- stepDetection(gramA, filter = filter, startTime = 9, output = "every")
identical(every$fit, fit)
identical(every$q, q)
identical(every$sd, stepR::sdrobnorm(gramA, lag = filter$len + 1L))
identical(every$filter, every$filter)

for this data set no incremental changes occur
identical(every$stepfit, every$stepfit)

zoom into a single event
time <- 9 + seq(along = gramA) / filter$sr # time points
plot(time, gramA, pch = 16, col = "grey30", ylim = c(20, 50),

xlim = c(10.40835, 10.4103), ylab = "Conductance in pS", xlab = "Time in s")

fit is a piecewise constant approximation of the observations
hence its convolution does not fit the recorded data points appropriately
fitting the observations requires a deconvolution
either by calling deconveLocally,
or as suggested by calling jules instead of stepDetection
fit
lines(fit, col = "red", lwd = 3)

fit convolved with the filter
ind <- seq(10.408, 10.411, 1e-6)

stepDetection 49

convolvedSignal <- lowpassFilter::getConvolution(ind, fit, filter)
lines(ind, convolvedSignal, col = "blue", lwd = 3)

Monte-Carlo simulation depend on the number of observations and on the filter
hence a simulation is required again (if called for the first time)
to save some time the number of iterations is reduced to r = 1e3
hence the critical value is computed with less precision
In general, r = 1e3 is enough for a first impression
for a detailed analysis r = 1e4 is suggested
stepDetection(gramA, filter = filter, startTime = 9, messages = 100L, r = 1e3L)

simulation for a larger number of observations can be used (nq = 3e4)
does not require a new simulation as the simulation from above will be used
(if the previous call was executed first)
stepDetection(gramA, filter = filter, startTime = 9,

messages = 100L, r = 1e3L, nq = 3e4L)

simulation of type "vectorIncreased" for n1 observations can only be reused
for n2 observations if as.integer(log2(n1)) == as.integer(log2(n2))
no simulation is required, since a simulation of type "matrixIncreased"
will be loaded from the fileSystem
this call also saves a simulation of type "vectorIncreased" in the workspace
stepDetection(gramA[1:1e4], filter = filter, startTime = 9,

nq = 3e4, messages = 100, r = 1e3)
here a new simulation is required
(if no appropriate simulation is saved from a call outside of this file)
stepDetection(gramA[1:1e3], filter = filter, startTime = 9,

nq = 3e4, messages = 100, r = 1e3,
options = list(load = list(workspace = c("vector", "vectorIncreased"))))

the above calls saved and (attempted to) load Monte-Carlo simulations
in the following call the simulations will neither be saved nor loaded
stepDetection(gramA, filter = filter, startTime = 9, messages = 100L, r = 1e3L,

options = list(load = list(), save = list()))

only simulations of type "vector" and "vectorInceased" will save and
loaded from the workspace, but no simulations of type "matrix" and
"matrixIncreased" on the file system
stepDetection(gramA, filter = filter, startTime = 9, messages = 100L, r = 1e3L,

options = list(load = list(workspace = c("vector", "vectorIncreased")),
save = list(workspace = c("vector", "vectorIncreased"))))

explicit Monte-Carlo simulations, not recommended
stat <- stepR::monteCarloSimulation(n = length(gramA), , family = "mDependentPS",

filter = filter, output = "maximum",
r = 1e3, messages = 100)

stepDetection(gramA, filter = filter, startTime = 9, stat = stat)

with given standard deviation
sd <- stepR::sdrobnorm(gramA, lag = filter$len + 1)
identical(stepDetection(gramA, filter = filter, startTime = 9, sd = sd), fit)

Index

∗ datasets
gramA, 18

∗ nonparametric
clampSeg-package, 2
createLocalList, 6
deconvolveLocally, 8
getCritVal, 12
hilde, 19
improveSmallScales, 25
jsmurf, 31
jules, 37
stepDetection, 46

∗ package
clampSeg-package, 2

∗ ts
lowpassFilter, 43

attribute, 9, 10, 13, 21, 28, 29, 33, 39

character, 15
clampSeg (clampSeg-package), 2
clampSeg-package, 2
class, 43
connection, 15
createLocalList, 2, 3, 6, 22, 27, 29

deconvolveLocally, 3, 8, 21, 33, 34, 38, 39,
46, 47

detection step (stepDetection), 46
dfilter, 44

environment, 14, 16

getCacheRootPath, 15
getCritVal, 2, 3, 12, 12, 19–22, 26, 27, 29,

32–34, 38, 39, 46, 47
global environment, 14
gramA, 2, 3, 18
gramicidin (gramA), 18
gramicidin A (gramA), 18
gramicidinA (gramA), 18

hilde, 2, 3, 6, 7, 12, 13, 16, 19, 27, 29, 31, 34,
37

improveSmallScales, 2, 3, 6, 7, 12, 13, 16,
19–22, 25

jsmurf, 2, 3, 7, 12, 13, 16, 19–22, 25, 26, 31,
37

jules, 2, 3, 10, 12, 13, 16, 19, 22, 31, 34, 37,
46, 47

list, 8, 10, 13–15, 21, 27, 29, 33, 39, 43, 47
loadCache, 15
local deconvolution

(deconvolveLocally), 8
logical, 9, 27
lowpassFilter, 2, 3, 7, 8, 10, 12, 16, 20, 22,

26, 29, 32, 34, 38, 39, 42, 43, 46, 47

messages, 9, 27
monteCarloSimulation, 13, 15

numeric, 19

print.lowpassFilter (lowpassFilter), 43

R.cache, 2, 14, 22, 29, 34, 39, 47
RDS, 2, 14, 15, 22, 29, 34, 39, 47

saveCache, 15
sdrobnorm, 20, 32, 38, 46
stepblock, 8, 10, 21, 26, 28, 33, 39, 47
stepDetection, 3, 8, 10, 12, 13, 16, 38, 39, 46

vector, 15

warning, 9, 13, 20, 27, 28, 32

50

	clampSeg-package
	createLocalList
	deconvolveLocally
	getCritVal
	gramA
	hilde
	improveSmallScales
	jsmurf
	jules
	lowpassFilter
	stepDetection
	Index

