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backtracking.sc.dp Backtracking Clustering for a Specific Cluster Number

Description

Creates clustering for k number of clusters by using the backtrack data produced by findwithinss.sc.dp().

Usage

backtracking.sc.dp(x, k, backtrack)

Arguments

x a multi-dimensional array containing input data to be clustered

k the number of clusters

backtrack the backtrack data

Details

If the number of clusters is unknown findwithinss.sc.dp() followed by backtracking.sc.dp()
can be used for performing clustering. If only subsequent elements of the input data may form a
cluster method findwithinss.sc.dp() calculates the exact minimum of the sum of squares of
within-cluster distances (withinss) from each element to its corresponding cluster centre (mean) for
different cluster numbers. The user may analyse the withinss in order to select the proper number
of clusters. In this case, it is enough to run method backtracking.sc.dp() only once. Another
option is to run findwithinss.sc.dp() once, repeat the backtracking.sc.dp() step for a range
of potential cluster numbers and then the user may evaluate the optimal solutions created for differ-
ent number of clusters. This requires much less time than repeating the whole clustering algorithm
for the different cluster numbers.

Value

An object of class ’clustering.sc.dp’ which has a print method and is a list with components:

cluster A vector of integers (1:k) indicating the cluster to which each point is allocated.

centers A matrix whose rows represent cluster centres.

withinss The within-cluster sum of squares for each cluster.

size The number of points in each cluster.

Author(s)

Tibor Szkaliczki <szkaliczki.tibor@sztaki.hu>

See Also

findwithinss.sc.dp, clustering.sc.dp
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Examples

# Example: clustering data generated from a random walk with small withinss
x<-matrix(, nrow = 100, ncol = 2)
x[1,]<-c(0,0)
for(i in 2:100) {

x[i,1]<-x[i-1,1] + rnorm(1,0,0.1)
x[i,2]<-x[i-1,2] + rnorm(1,0,0.1)

}
k<-10
r<-findwithinss.sc.dp(x,k)

# select the first cluster number where withinss drops below a threshold
thres <- 5.0
k_th <- 1;
while(r$twithinss[k_th] > thres & k_th < k) {

k_th <- k_th + 1
}

# backtrack
result<-backtracking.sc.dp(x,k_th, r$backtrack)
plot(x, type = 'b', col = result$cluster)
points(result$centers, pch = 24, bg = (1:k_th))

clustering.sc.dp Optimal Clustering Multidimensional Data with Sequential Constraint
by Dynamic Programming

Description

Perform optimal clustering on multidimensional data with sequential constraint (i.e. only subse-
quent elements of the input may form a cluster).

Usage

clustering.sc.dp(x, k)

Arguments

x a multi-dimensional array containing input data to be clustered

k the number of clusters

Details

The ’clustering.sc.dp’ algorithm (Szkaliczki, 2016) groups multidimensional data given by
x into k clusters with sequential constraint by dynamic programming. It generalises the one-
dimensional ’Ckmeans.1d.dp’ algorithm (Wang and Song, 2011) to multidimensional data. If only
subsequent elements of the input data may form a cluster the algorithm guarantees the optimality
of clustering – the sum of squares of within-cluster distances (withinss) from each element to its
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corresponding cluster centre (mean) is always the minimum. The sequential constraint is typically
required in clustering datastreams or items with time stamps such as video frames, GPS signals of
vehicles or movement data of persons etc. The run time of the algorithm is O ( k d n^2) where k ,
d and n gives the number of clusters, the dimensions of the elements and the number of elements,
respectively.

Value

An object of class ’clustering.sc.dp’ which has a print method and is a list with components:

cluster a vector of cluster indices assigned to each element in x. Each cluster is indexed
by an integer from 1 to k

centers a matrix whose rows represent cluster centres

withinss the within-cluster sum of squares for each cluster

size a vector of the number of points in each cluster

Author(s)

Tibor Szkaliczki <szkaliczki.tibor@sztaki.hu>

References

Szkaliczki, T. (2016) "clustering.sc.dp: Optimal Clustering with Sequential Constraint by Us-
ing Dynamic Programming" <doi: 10.32614/RJ-2016-022> Wang, H. and Song, M. (2011) "Ck-
means.1d.dp: optimal k -means clustering in one dimension by dynamic programming" <doi: 10.32614/RJ-
2011-015>

Examples

# Example: clustering data generated from a random walk
x<-matrix(, nrow = 100, ncol = 2)
x[1,]<-c(0,0)
for(i in 2:100) {

x[i,1]<-x[i-1,1] + rnorm(1,0,0.1)
x[i,2]<-x[i-1,2] + rnorm(1,0,0.1)

}
k<-2
result<-clustering.sc.dp(x,k)
plot(x, type = 'b', col = result$cluster)
points(result$centers, pch = 24, bg = (1:k))

findwithinss.sc.dp Finding Optimal Withinss in Clustering Multidimensional Data with
Sequential Constraint by Dynamic Programming
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Description

Performs the main step of clustering multidimensional data with sequential constraint by a dynamic
programming approach guaranteeing optimality. It returns the minimum withinss for each number
of clusters less than or equal to k and backtracking data that can be used to find quickly the optimal
clustering for a specific cluster number. This function was created in order to support the case when
the number of clusters is unknown in advance.

Usage

findwithinss.sc.dp(x, k)

Arguments

x a multi-dimensional array containing input data to be clustered

k the maximal number of clusters, the output will be generated for cluster numbers
between 1 and k

Details

Method clustering.sc.dp() is split into two methods (findwithinss.sc.dp() and backtracking.sc.dp())
in order to support the case when the number of clusters is not known in advance. Method findwithinss.sc.dp()
returns the minimal sum of squares of within-cluster distances (withinss) for each number of clus-
ters less than or equal to k and the backtrack data which can be used to quickly determine the
optimal clustering for a specific cluster number. The returned withinss are guaranteed to be optimal
among the solutions where only subsequent items form a cluster.

The outputs of the method can be used to select the proper number of clusters. The user may
analyse the withinss in order to select the proper number of clusters. Another option is to run
findwithinss.sc.dp() once, repeat the backtracking.sc.dp() step for a range of potential
cluster numbers and then the user may evaluate the optimal solutions created for different number
of clusters. This requires much less time than repeating the whole clustering algorithm.

Value

A list with components:

twithinss a vector of total within-cluster sums of the optimal clusterings for each number
of clusters less than or equal to k.

backtrack backtrack data used by backtracking.sc.dp().

Author(s)

Tibor Szkaliczki <szkaliczki.tibor@sztaki.hu>

See Also

clustering.sc.dp, backtracking.sc.dp
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Examples

# Example: clustering data generated from a random walk with small withinss
x<-matrix(, nrow = 100, ncol = 2)
x[1,]<-c(0,0)
for(i in 2:100) {

x[i,1]<-x[i-1,1] + rnorm(1,0,0.1)
x[i,2]<-x[i-1,2] + rnorm(1,0,0.1)

}
k<-10
r<-findwithinss.sc.dp(x,k)

# select the first cluster number where withinss drops below a threshold
thres <- 5.0
k_th <- 1;
while(r$twithinss[k_th] > thres & k_th < k) {

k_th <- k_th + 1
}

# backtrack
result<-backtracking.sc.dp(x,k_th, r$backtrack)
plot(x, type = 'b', col = result$cluster)
points(result$centers, pch = 24, bg = (1:k_th))

print.clustering.sc.dp

Print the result returned by calling clustering.sc.dp

Description

Print the result returned by calling clustering.sc.dp

Usage

## S3 method for class 'clustering.sc.dp'
print(x, ...)

Arguments

x object returned by calling clustering.sc.dp()
... ignored arguments

Value

An object of class ’clustering.sc.dp’ which has a print method and is a list with components:

cluster A vector of integers (1:k) indicating the cluster to which each point is allocated.
centers A matrix whose rows represent cluster centres.
withinss The within-cluster sum of squares for each cluster.
size The number of points in each cluster.
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Author(s)

Tibor Szkaliczki <szkaliczki.tibor@sztaki.hu>

Examples

# Example: clustering data generated from a random walk
x<-matrix(, nrow = 100, ncol = 2)
x[1,]<-c(0,0)
for(i in 2:100) {

x[i,1]<-x[i-1,1] + rnorm(1,0,0.1)
x[i,2]<-x[i-1,2] + rnorm(1,0,0.1)

}
result<-clustering.sc.dp(x,2)
print(result)
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