Package 'cointmonitoR'

July 22, 2025

Type Package

Title Consistent Monitoring of Stationarity and Cointegrating Relationships

Date 2016-06-14

Version 0.1.0

Description We propose a consistent monitoring procedure to detect a structural change from a cointegrating relationship to a spurious relationship. The procedure is based on residuals from modified least squares estimation, using either Fully Modified, Dynamic or Integrated Modified OLS. It is inspired by Chu et al. (1996) <DOI:10.2307/2171955> in that it is based on parameter estimation on a pre-break ``calibration" period only, rather than being based on sequential estimation over the full sample. See the discussion paper <DOI:10.2139/ssrn.2624657> for further information. This package provides the monitoring procedures for both the cointegration and the stationarity case (while the latter is just a special case of the former one) as well as printing and plotting methods for a clear presentation of the results.

URL https://github.com/aschersleben/cointmonitoR

BugReports https://github.com/aschersleben/cointmonitoR/issues

License GPL-3

Depends cointReg (>= 0.2.0)

Imports stats, graphics, matrixStats (>= 0.14.1)

RoxygenNote 5.0.1

Suggests knitr, rmarkdown

VignetteBuilder knitr

NeedsCompilation no

Author Philipp Aschersleben [aut, cre], Martin Wagner [aut] (Author of underlying paper.), Dominik Wied [aut] (Author of underlying paper.)

Maintainer Philipp Aschersleben <aschersleben@statistik.tu-dortmund.de>

Repository CRAN

Date/Publication 2016-06-14 20:34:46

Contents

cointmonitoR-package	2
monitorCointegration	3
monitorStationarity	5
plot.cointmonitoR	8
print.cointmonitoR	10
	12

cointmonitoR-package The cointmonitoR package

Description

Index

Consistent Monitoring of Stationarity and Cointegrating Relationships

Details

See the vignette: vignette("cointmonitoR")

See the DESCRIPTION: help(package = cointmonitoR)

See the README: https://github.com/aschersleben/cointmonitoR/blob/master/README.md

Open the package documentation page: package?cointmonitoR

Further information and bug reporting: https://github.com/aschersleben/cointmonitoR

Functions

monitorCointegration

This procedure is able to monitor a cointegration model for level or trend cointegration and returns the corresponding break point, if available. It is based on parameter estimation on a pre-break "calibration" period at the beginning of the sample that is known or assumed to be free of structural change.

monitorStationarity

This procedure is a special case of monitorCointegration, since it's able to monitor a onedimensional vector for level or trend stationarity.

• print

Print clear results.

• plot

Plot the test statitics and the values/residuals of a cointmonitoR model.

Dependencies

This package mainly depends on our cointReg package.

monitorCointegration Procedure for Monitoring Level and Trend Cointegration

Description

This procedure is able to monitor a cointegration model for level or trend cointegration and returns the corresponding break point, if available. It is based on parameter estimation on a pre-break "calibration" period at the beginning of the sample that is known or assumed to be free of structural change and can be specified exactly via the m argument (see Details for further information).

Usage

```
monitorCointegration(x, y, m = 0.25, model = c("FM", "D", "IM"),
  trend = FALSE, kernel = c("ba", "pa", "qs", "tr"), bandwidth = c("and",
  "nw"), D.options = NULL, signif.level = 0.05, return.stats = TRUE,
  return.input = TRUE, check = TRUE, ...)
```

Arguments

Х	[numeric matrix data.frame] Data on which to apply the monitoring procedure (RHS).
У	[numeric matrix data.frame] Data on which to apply the monitoring procedure (LHS). Has to be one-dimensional. If matrix, it may have only one row or column, if data.frame just one column.
m	[numeric(1)] Length of calibration period as fraction of the data's length (between 0.1 and 0.9) or as number of observations (see Details).
model	[character(1)] The model to be used for modified OLS calculations. Should be one of FM-OLS ("FM"), D-OLS ("D") or IM-OLS ("IM").
trend	[logical] Should an intercept and a linear trend be included? If FALSE (default), only an intercept is included.
kernel	[character(1)] The kernel function to use for calculating the long-run variance. Default is Bartlett kernel ("ba"), see Details for alternatives.
bandwidth	[character(1) numeric(1)] The bandwidth to use for calculating the long-run variance. Default is Andrews (1991) ("and"), an alternative is Newey West (1994) ("nw"). You can also set the bandwidth manually.

D.options	[list NULL] Options for the D-OLS calculations. A list with elements n.lead, n.lag, kmax and info.crit – or NULL (then default arguments are the same as in cointRegD. See that help page for further information.) Missing list elements will be re- placed automatically.
signif.level	[numeric(1)] Level of significance (between 0.01 and 0.1). Detection time will be calculated only if the estimated p-value is smaller than signif.level. Default is 0.05.
return.stats	[logical] Whether to return all test statistics. Default is TRUE.
return.input	[logical] Whether to return the input data, default is TRUE.
check	[logical] Wheather to check (and if necessary convert) the arguments. See checkVars for further information.
	Arguments passed to getBandwidthNW (inter, weights), if bandwidth = "nw".

Details

The calibration period can be set by setting the argument m to the number of the last observation, that should be inside this period. The corresponding fraction of the data's length will be calculated automatically. Alternatively you can set m directly to the fitting fraction value, but you should pay attention to the fact, that the calibration period may become smaller than intended: The last observation is calculated as floor (m * N) (with N the length of x).

The kernel that is used for calculating the long-run variance can be one of the following:

- "ba": Bartlett kernel
- "pa": Parzen kernel
- "qs": Quadratic Spectral kernel
- "tr": Truncated kernel

Value

[cointmonitoR] object with components:

Hsm [numeric(1)] value of the test statistic

time [numeric(1)] detected time of structural break

p.value [numeric(1)] estimated p-value of the test (between 0.01 and 0.1)

cv [numeric(1)] critical value of the test

sig [numeric(1)] significance level used for the test

residuals [numeric] residuals of the modified OLS model to be used for calculating the test statistics

model [character(1)] cointOLS model ("FM", "D", or "IM")

trend [character(1)] trend model ("level" or "trend")

monitorStationarity

name [character(1)] name(s) of data

- m[list(2)] list with components: \$m.frac[numeric(1)]: calibration period (fraction) \$m.index[numeric(1)]: calibration period (length)
- kernel [character(1)] kernel function
- bandwidth [list(2)] \$name [character(1)]: bandwidth function (name)
 \$number [numeric(1)]: bandwidth
- statistics [numeric] values of test statistics with the same length as data, but NA during calibration period (available if return.stats = TRUE)

input [numeric | matrix | data.frame] copy of input data (available if return.stats = TRUE)

D.options [list] information about further parameters (available if model = "D")

References

Wagner, M. and D. Wied (2015): "Monitoring Stationarity and Cointegration," *Discussion Paper*, DOI:10.2139/ssrn.2624657.

See Also

Other cointmonitoR: monitorStationarity, plot.cointmonitoR, print.cointmonitoR

Examples

```
set.seed(42)
x = data.frame(x1 = cumsum(rnorm(200)), x2 = cumsum(rnorm(200)))
eps1 = rnorm(200, sd = 2)
eps2 = c(eps1[1:100], cumsum(eps1[101:200]))
y = x$x1 - x$x2 + 10 + eps1
monitorCointegration(x = x, y = y, m = 0.5, model = "FM")
y2 = y + seq(1, 30, length = 200)
monitorCointegration(x = x, y = y2, m = 0.5, model = "FM")
monitorCointegration(x = x, y = y2, m = 0.5, trend = TRUE, model = "FM")
y3 = x$x1 - x$x2 + 10 + eps2
monitorCointegration(x = x, y = y3, m = 0.5, model = "FM")
monitorCointegration(x = x, y = y3, m = 0.5, model = "D")
monitorCointegration(x = x, y = y3, m = 0.5, model = "IM")
```

Description

This procedure is able to monitor a one-dimensional vector for level or trend stationarity and returns the corresponding break point, if available. It is based on parameter estimation on a pre-break "calibration" period at the beginning of the sample that is known or assumed to be free of structural change and can be specified exactly via the m argument (see Details for further information).

Usage

```
monitorStationarity(x, m = 0.25, trend = FALSE, kernel = c("ba", "pa",
  "qs", "tr"), bandwidth = c("and", "nw"), signif.level = 0.05,
  return.stats = TRUE, return.input = TRUE, check = TRUE, ...)
```

Arguments

x	[numeric matrix data.frame] Data on which to apply the monitoring procedure. If matrix, it may have only one row or column, if data.frame just one column.
m	[numeric(1)] Length of calibration period as fraction of the data's length (between 0.1 and 0.9) or as number of observations (see Details).
trend	[logical] Should an intercept and a linear trend be included? If FALSE (default), only an intercept is included.
kernel	[character(1)] The kernel function to use for calculating the long-run variance. Default is Bartlett kernel ("ba"), see Details for alternatives.
bandwidth	[character(1) numeric(1)] The bandwidth to use for calculating the long-run variance. Default is Andrews (1991) ("and"), an alternative is Newey West (1994) ("nw"). You can also set the bandwidth manually.
signif.level	[numeric(1)] Level of significance (between 0.01 and 0.1). Detection time will be calculated only if the estimated p-value is smaller than signif.level. Default is 0.05.
return.stats	[logical] Whether to return all test statistics. Default is TRUE.
return.input	[logical] Whether to return the input data, default is TRUE.
check	[logical] Wheather to check (and if necessary convert) the arguments. See checkVars for further information.
	Arguments passed to getBandwidthNW (inter, weights), if bandwidth = "nw".

Details

The calibration period can be specified by setting the argument m to the number of its last observation. The corresponding fraction of the data's length will be calculated automatically. Alternatively

monitorStationarity

you can set m directly to the fitting fraction value. Attention: The calibration period may become smaller than intended: The last observation is calculated as floor($m \times N$) (with N = length of x).

The kernel that is used for calculating the long-run variance can be one of the following:

- "ba": Bartlett kernel
- "pa": Parzen kernel
- "qs": Quadratic Spectral kernel
- "tr": Truncated kernel

Value

[cointmonitoR] object with components:

Hsm [numeric(1)] value of the test statistic

time [numeric(1)] detected time of structural break

p.value [numeric(1)] estimated p-value of the test (between 0.01 and 0.1)

cv [numeric(1)] critical value of the test

sig [numeric(1)] significance level used for the test

trend [character(1)] trend model ("level" or "trend")

name [character(1)] name(s) of data

- m[list(2)] list with components: \$m.frac[numeric(1)]: calibration period (fraction) \$m.index[numeric(1)]: calibration period (length)
- kernel [character(1)] kernel function
- bandwidth [list(2)] \$name [character(1)]: bandwidth function (name) \$number [numeric(1)]: bandwidth
- statistics [numeric] values of test statistics with the same length as data, but NA during calibration period (available if return.stats = TRUE)

input [numeric | matrix | data.frame] copy of input data (available if return.stats = TRUE)

References

Wagner, M. and D. Wied (2015): "Monitoring Stationarity and Cointegration," *Discussion Paper*, DOI:10.2139/ssrn.2624657.

See Also

Other cointmonitoR: monitorCointegration, plot.cointmonitoR, print.cointmonitoR

Examples

```
set.seed(1909)
x <- rnorm(200)
x2 <- c(x[1:100], cumsum(x[101:200]) / 2)
# Specify the calibration period
# as fraction of the total length of x:
monitorStationarity(x, m = 0.25)
monitorStationarity(x2, m = 0.465)
# Specify the calibration period
# by setting its last observation exactly:
monitorStationarity(x, m = 50)
monitorStationarity(x2, m = 93)</pre>
```

plot.cointmonitoR Plot Method for Monitoring Procedures.

Description

Plotting objects of class "cointmonitoR".

Usage

```
## S3 method for class 'cointmonitoR'
plot(x, what = "test", type, main, xlab, ylab,
    axes = TRUE, legend = TRUE, main.val, xlab.val, ylab.val, lines = TRUE,
    ...)
```

Arguments

x	<pre>[cointmonitoR] Object of class "cointmonitoR", i.e. the result of monitorStationarity or monitorCointegration.</pre>
what	<pre>[character] Whether to plot test statistics ("test") (default) or the values/residuals of the tested time series ("values" or "residuals") or "both". Works only, if return.stats = TRUE in the called function that to get x (default setting).</pre>
type	[character] Plot type (from plot). Default is "1".
main, xlab, ylab	[character] Title and axis titles (from plot). Default values will be generated from the contents of x.
axes, legend	[logical] Whether to add axes (from plot) and a legend to the plot.

8

val,ylab.val
[character]
Title and axis titles (from plot) for the second plot, if generating both plots
in one step (see argument what). Default values will be generated from the
contents of x.
[logical]
Whether to add lines and annotations to the plot. Default is TRUE.
[any] Further arguments passed to plot.

See Also

Other cointmonitoR: monitorCointegration, monitorStationarity, print.cointmonitoR

Examples

```
### Monitoring stationarity (no break):
set.seed(1909)
x = rnorm(200)
test = monitorStationarity(x, m = 0.5)
plot(test)
oldpar = par(mfrow = c(2, 1), mar = c(4, 4, 1, 1))
plot(test, what = "both", legend = FALSE, main = "", main.val = "")
par(oldpar)
### Monitoring stationarity (break):
x = c(x[1:100], cumsum(rnorm(100, sd = 0.5)) + x[101:200])
test2 = monitorStationarity(x, m = 0.5)
plot(test2)
oldpar = par(mfrow = c(2, 1), mar = c(4, 4, 1, 1))
plot(test2, what = "both", legend = FALSE, main = "", main.val = "")
par(oldpar)
### Monitoring cointegration (no break):
set.seed(42)
x = data.frame(x1 = cumsum(rnorm(200)), x2 = cumsum(rnorm(200)))
eps1 = rnorm(200, sd = 2)
y = x x^{1} - x x^{2} + 10 + eps1
test3 = monitorCointegration(x = x, y = y, m = 0.5, model = "FM")
plot(test3)
oldpar = par(mfrow = c(2, 1), mar = c(4, 4, 1, 1))
plot(test3, what = "both", legend = FALSE, main = "", main.val = "")
par(oldpar)
### Monitoring cointegration (break):
```

```
y = x$x1 - x$x2 + 10 + eps2
test4 = monitorCointegration(x = x, y = y, m = 0.5, model = "FM")
plot(test4)
oldpar = par(mfrow = c(2, 1), mar = c(4, 4, 1, 1))
plot(test4, what = "both", legend = FALSE, main = "", main.val = "")
par(oldpar)
```

print.cointmonitoR Print Method for Monitoring Procedures.

Description

Printing objects of class "cointmonitoR".

Usage

S3 method for class 'cointmonitoR'
print(x, ..., digits = getOption("digits"))

Arguments

х	[cointmonitoR]
	Object of class "cointmonitoR", i.e. the result of monitorStationarity() or monitorCointegration().
	ignored
digits	[numeric] Number of significant digits to be used.

Value

The invisible x object.

See Also

 $Other\ cointmonito R:\ monitor Cointegration,\ monitor Stationarity,\ plot.\ cointmonitoR$

Examples

```
set.seed(42)
test = monitorStationarity(rnorm(100), m = 0.5)
print(test)
x = data.frame(x1 = cumsum(rnorm(200)), x2 = cumsum(rnorm(200)))
eps1 = rnorm(200, sd = 2)
eps2 = c(eps1[1:100], cumsum(eps1[101:200]))
y1 = x$x1 - x$x2 + 10 + eps1
```

10

print.cointmonitoR

y2 = x\$x1 - x\$x2 + 10 + eps2 test1 = monitorCointegration(x = x, y = y1, m = 0.5, model = "FM") print(test1) test2 = monitorCointegration(x = x, y = y2, m = 0.5, model = "FM") print(test2)

Index

checkVars, 4, 6
cointmonitoR-package, 2
cointRegD, 4

getBandwidthNW, 4, 6

monitorCointegration, 2, 3, 7–10 monitorStationarity, 2, 5, 5, 8–10

plot, 2, 8, 9
plot.cointmonitoR, 5, 7, 8, 10
print, 2
print.cointmonitoR, 5, 7, 9, 10