
Package ‘connected’
July 22, 2025

Title Visualize and Improve Connectedness of Factors in Tables

Version 1.1

Description Visualize the connectedness of factors in two-way tables.
Perform two-way filtering to improve the degree of connectedness.
See Weeks & Williams (1964) <doi:10.1080/00401706.1964.10490188>.

License GPL (>= 2)

Encoding UTF-8

Depends R (>= 4.1.0)

Imports grDevices, lattice, lfe, reshape2, stats

Suggests agridat, dplyr, janitor, knitr, lme4, lucid, rmarkdown,
testthat (>= 3.0.0)

VignetteBuilder knitr

LazyData true

RoxygenNote 7.3.2

Config/testthat/edition 3

URL https://kwstat.github.io/connected/

BugReports https://github.com/kwstat/connected/issues

NeedsCompilation no

Author Kevin Wright [aut, cre] (ORCID:
<https://orcid.org/0000-0002-0617-8673>)

Maintainer Kevin Wright <kw.stat@gmail.com>

Repository CRAN

Date/Publication 2025-03-05 13:30:02 UTC

Contents
con_check . 2
con_concur . 3
con_filter . 4

1

https://doi.org/10.1080/00401706.1964.10490188
https://kwstat.github.io/connected/
https://github.com/kwstat/connected/issues
https://orcid.org/0000-0002-0617-8673

2 con_check

con_view . 6
data_eccleston . 8
data_fernando . 9
data_searle . 10
data_student . 11
data_tosh . 12
data_weeks1 . 12
data_weeks2 . 13

Index 15

con_check Check connectedness of multiple factors in a dataframe

Description

Multiple factors in a dataframe are said to be connected if a model matrix based on those factors is
full rank.

This function provides a formula interface to the lfe::compfactor() function to check for connected-
ness of the factors.

Usage

con_check(data = NULL, formula = NULL, WW = TRUE, dropNA = TRUE)

Arguments

data A dataframe

formula A formula with multiple factor names in the dataframe, like y ~ f1 + f2 + f3

WW Pass-through argument to compfactor

dropNA If TRUE, observed data that are NA will be dropped.

Value

A vector with integers representing the group membership of each observation.

Author(s)

Kevin Wright

References

None

con_concur 3

Examples

In the data_eccleston dataframe, each pair of factors is connected.
con_check(data_eccleston, ~ row + trt)
con_check(data_eccleston, ~ col + trt)
con_check(data_eccleston, ~ row + col)
But all three factors are COMPLETELY disconnected into 16 groups.
con_check(data_eccleston, ~ row + col + trt)

con_concur View concurrence of two factors in a dataframe using a matrix plot.

Description

Draws a concurrence plot of 2 factors in a dataframe. For example, in a multi-environment yield
trial (testing multiple crop varieties in multple environments) it is interesting to examine the bal-
ance of the testing pattern. For each pair of environments, how many genotypes are tested in both
environments? The concurrence plot shows the amount of connectedness (number of varieties) of
the environments with each other.

By default, missing values in the response are deleted.

Replicated combinations of the two factors are ignored. (This could be changed if someone has a
need.)

Usage

con_concur(
data,
formula,
dropNA = TRUE,
xlab = "",
ylab = "",
cex.x = 0.7,
cex.y = 0.7,
...

)

Arguments

data A dataframe
formula A formula with multiple factor names in the dataframe, like y ~ f1 / f2.
dropNA If TRUE, observed data that are NA will be dropped.
xlab Label for x axis
ylab Label for y axis
cex.x Scale factor for x axis tick labels. Default 0.7.
cex.y Scale factor for y axis tick labels Default 0.7.
... Other parameters passed to the levelplot() function.

4 con_filter

Value

A lattice graphics object

Author(s)

Kevin Wright

References

None

Examples

require(lattice)
bar = transform(lattice::barley, env=factor(paste(site,year)))
set.seed(123)
bar <- bar[sample(1:nrow(bar), 70, replace=TRUE),]
con_concur(bar, yield ~ variety / env, cex.x=0.75, cex.y=.3)

con_filter Filter a dataframe using two-way criteria to increase connectedness

Description

Traditional filtering (subsetting) of data is typically performed via some criteria based on the columns
of the data.

In contrast, this function performs filtering of data based on the joint rows and columns of a matrix-
view of two factors.

Conceptually, the idea is to re-shape two or three columns of a dataframe into a matrix, and then
delete entire rows (or columns) of the matrix if there are too many missing cells in a row (or column).

The two most useful applications of two-way filtering are to:

1. Remove a factor level that has few interactions with another factor. This is especially useful
in linear models to remove rare factor combinations.

2. Remove a factor level that has any missing interactions with another factor. This is especially
useful with biplots of a matrix to remove rows or columns that have missing values.

A formula syntax is used to specify the two-way filtering criteria.

Some examples may provide the easiest understanding.

dat <- data.frame(state=c("NE","NE", "IA", "NE", "IA"), year=c(1,2,2,3,3), value=11:15)

When the ’value’ column is re-shaped into a matrix it looks like:

state/year | 1 | 2 | 3 | NE | 11 | 12 | 14 | IA | | 13 | 15 |

Drop states with too much missing combinations. Keep only states with "at least 3 years per state"
con_filter(dat, ~ 3 * year / state) NE 1 11 NE 2 12 NE 3 14

con_filter 5

Keep only years with "at least 2 states per year" con_filter(dat, ~ 2 * state / year) NE 2 12 IA 2 13
NE 3 14 IA 3 15

If the constant number in the formula is less than 1.0, this is interpreted as a fraction. Keep only
states with "at least 75% of years per state" con_filter(dat, ~ .75 * year / state)

It is possible to include another factor on either side of the slash "/". Suppose the data had another
factor for political party called "party". Keep only states with "at least 2 combinations of party:year
per state" con_filter(dat, ~ 2 * party:year / state)

If the formula contains a response variable, missing values are dropped first, then the two-way
filtering is based on the factor combinations. con_filter(dat, value ~ 2 * state / year)

Usage

con_filter(data, formula, verbose = TRUE, returndropped = FALSE)

Arguments

data A dataframe

formula A formula with two factor names in the dataframe that specifies the criteria for
filtering, like y ~ 2 * f1 / f2

verbose If TRUE, print some diagnostic information about what data is being deleted.
(Similar to the ’tidylog’ package).

returndropped If TRUE, return the dropped rows instead of the kept rows. Default is FALSE.

Value

The original dataframe is returned, minus rows that are filtered out.

Author(s)

Kevin Wright

References

None.

Examples

dat <- data.frame(
gen = c("G3", "G4", "G1", "G2", "G3", "G4", "G5",

"G1", "G2", "G3", "G4", "G5",
"G1", "G2", "G3", "G4", "G5",
"G1", "G2", "G3", "G4", "G5"),

env = c("E1", "E1", "E1", "E1", "E1", "E1", "E1",
"E2", "E2", "E2", "E2", "E2",
"E3", "E3", "E3", "E3", "E3",
"E4", "E4", "E4", "E4", "E4"),

yield = c(65, 50, NA, NA, 65, 50, 60,
NA, 71, 76, 80, 82,
90, 93, 95, 102, 97,

6 con_view

98, 102, 105, 130, 135))

How many observations are there for each combination of gen*env?
with(subset(dat, !is.na(yield)) , table(gen,env))

Note, if there is no response variable, the two-way filtering is based
only on the presence of the factor combinations.
dat1 <- con_filter(dat, ~ 4*env / gen)

If there is a response variable, missing values are dropped first,
then the two-way filtering is based on the factor combinations.

dat1 <- con_filter(dat, yield ~ 4*env/gen)
dat1 <- con_filter(dat, yield ~ 5*env/ gen)
dat1 <- con_filter(dat, yield ~ 6*gen/ env)
dat1 <- con_filter(dat, yield ~ .8 *env / gen)
dat1 <- con_filter(dat, yield ~ .8* gen / env)
dat1 <- con_filter(dat, yield ~ 7 * env / gen)

con_view View connectedness of two factors in a dataframe using a levelplot

Description

If there is replication for the treatment combination cells in a two-way table, the replications are
averaged together (or counted) before constructing the heatmap.

By default, rows and columns are clustered using the ’incidence’ matrix of 0s and 1s.

The function checks to see if the cells in the heatmap form a connected set. If not, the data is divided
into connected subsets and the subset group number is shown within each cell.

By default, missing values in the response are deleted.

Factor levels are shown along the left and bottom sides.

The number of cells in each column/row is shown along the top/right sides.

If the 2 factors are disconnected, the group membership ID is shown in each cell.

Usage

con_view(
data,
formula,
fun.aggregate = mean,
xlab = "",
ylab = "",
cex.num = 0.75,
cex.x = 0.7,
cex.y = 0.7,

con_view 7

col.regions = RedGrayBlue,
cluster = "incidence",
dropNA = TRUE,
...

)

Arguments

data A dataframe

formula A formula with two (or more) factor names in the dataframe like yield ~ f1
*f2

fun.aggregate The function to use for aggregating data in cells. Default is mean.

xlab Label for x axis

ylab Label for y axis

cex.num Disjoint group number.

cex.x Scale factor for x axis tick labels. Default 0.7.

cex.y Scale factor for y axis tick labels Default 0.7.

col.regions Function for color regions. Default RedGrayBlue.

cluster If "incidence", cluster rows and columns by the incidence matrix. If FALSE, no
clustering is performed.

dropNA If TRUE, observed data that are NA will be dropped.

... Other parameters passed to the levelplot() function.

Value

A lattice graphics object

Author(s)

Kevin Wright

Examples

require(lattice)
bar = transform(lattice::barley, env=factor(paste(site,year)))
set.seed(123)
bar <- bar[sample(1:nrow(bar), 70, replace=TRUE),]
con_view(bar, yield ~ variety * env, cex.x=1, cex.y=.3, cluster=FALSE)

Create a heatmap of cell counts
w2b = colorRampPalette(c('wheat','black'))
con_view(bar, yield ~ variety * env, fun.aggregate=length,

cex.x=1, cex.y=.3, col.regions=w2b, cluster=FALSE)

Example from paper by Fernando et al. (1983).
set.seed(42)
data_fernando = transform(data_fernando,

8 data_eccleston

y=stats::rnorm(9, mean=100))
con_view(data_fernando, y ~ gen*herd, cluster=FALSE,

main = "Fernando unsorted")
con_view(data_fernando, y ~ gen*herd, cluster=TRUE,

main = "Fernando unsorted")

Example from Searle (1971), Linear Models, p. 325
dat2 = transform(data_searle,

y=stats::rnorm(nrow(data_searle)) + 100)

con_view(dat2, y ~ f1*f2, cluster=FALSE, main="data_searle unsorted")
con_view(dat2, y ~ f1*f2, main="data_searle clustered")

data_eccleston Data from Eccleston & Russell

Description

Data from Eccleston & Russell

Usage

data_eccleston

Format

An object of class data.frame with 16 rows and 3 columns.

Details

A dataframe with 3 treatment factors. Each pair of factors is connected, but the 3 factors are
disconnected. The ’trt’ column uses numbers to match Eccleston (Table 1, Design 1) and letters
to match Foulley (Table 13.3).

Source

Eccleston, J. and K. Russell (1975). Connectedness and orthogonality in multi-factor designs.
Biometrika, 62, 341-345. https://doi.org/10.1093/biomet/62.2.341

References

Foulley, J. L., Bouix, J., Goffinet, B., & Elsen, J. M. (1990). Connectedness in Genetic Eval-
uation. Advanced Series in Agricultural Sciences, 277–308. https://doi.org/10.1007/978-3-642-
74487-7_13

data_fernando 9

Examples

Each pair of factors is connected
con_check(data_eccleston, ~ row + trt)
con_check(data_eccleston, ~ col + trt)
con_check(data_eccleston, ~ row + col)
But all three factors are COMPLETELY disconnected
con_check(data_eccleston, ~ row + col + trt)

set.seed(42)
data_eccleston <- transform(data_eccleston,

y = rnorm(nrow(data_eccleston), mean=100))
con_view(data_eccleston, y ~ row*col, xlab="row", ylab="col")
con_view(data_eccleston, y ~ row*trt, xlab="row", ylab="trt")
con_view(data_eccleston, y ~ col*trt, xlab="col", ylab="trt")

data_fernando Data from Fernando et al.

Description

Data from Fernando et al.

Usage

data_fernando

Format

An object of class data.frame with 9 rows and 2 columns.

Details

A dataframe with 2 treatment factors. The treatment combinations form 2 disconnected groups.

Source

Fernando et al. (1983). Identifying All Connected Subsets In A Two-Way Classification With-
out Interaction. J. of Dairy Science, 66, 1399-1402. Table 1. https://doi.org/10.3168/jds.S0022-
0302(83)81951-1

Examples

library(lfe)
cbind(data_fernando,

.group=con_check(data_fernando, ~ gen + herd))
library(connected)
set.seed(42)
data_fernando = transform(data_fernando,

10 data_searle

y=stats::rnorm(9, mean=100))
con_view(data_fernando, y ~ gen*herd, cluster=FALSE,

main = "Fernando unsorted")
con_view(data_fernando, y ~ gen*herd, main="Fernando clustered")

data_searle Data from Searle

Description

Data from Searle

Usage

data_searle

Format

An object of class data.frame with 14 rows and 2 columns.

Details

A dataframe with 2 treatment factors. The treatment combinations form 3 disconnected groups.

Source

Searle (1971). Linear Models. Page 324.

Examples

cbind(data_searle,
.group=con_check(data_searle, ~ f1 + f2))

data_searle = transform(data_searle,
y = rnorm(nrow(data_searle), mean=100))

con_view(data_searle, y ~ f1*f2, cluster=FALSE, main="Searle unsorted")
con_view(data_searle, y ~ f1*f2, main="Searle clustered")

data_student 11

data_student Simulated Data of Student Test Scores

Description

Simulated Data of Student Test Scores

Usage

data("data_student")

Format

A data frame with 41 observations on the following 4 variables.

student student ID

class class/subject

test1 score on test 1

test2 score on test 2

Details

This simulated data imagines the following scenario:

In a school, 12 students (A-M) were tested in 6 classes (math, chemistry, physics, art, horticulture,
welding).

Not all students were enrolled in all classes.

In each class, students were given test 1, then later test 2. Test scores could be 0-100.

(Using 2 tests is typical for learning assessment, measuring intervention effectiveness, comparison
of test forms, etc.)

Some students missed class on the day of a test and had no score for that test.

Student B felt ill during art test 1 and was allowed to re-take test 1 (both test 1 scores are included
and the same test 2 score was used).

Source

None

References

None

Examples

data(data_student)

12 data_weeks1

data_tosh Data from Tosh

Description

Data from Tosh

Usage

data_tosh

Format

An object of class data.frame with 15 rows and 3 columns.

Details

A dataframe with 3 treatment factors. The treatment combinations form 2 disconnected groups.

Source

Tosh, J. J., and J. W. Wilton. (1990). Degree of connectedness in mixed models. Proceedings of the
4th World Congress on Genetics applied to Livestock Production, 480-483. Page 481.

Examples

cbind(data_tosh,
.group=con_check(data_tosh, ~ a + b + c))

data_tosh = transform(data_tosh,
y = rnorm(nrow(data_tosh), mean=100))

library(connected)
con_view(data_tosh, y ~ b * c)

data_weeks1 Data from Weeks & Williams example 1

Description

Data from Weeks & Williams example 1

Usage

data_weeks1

data_weeks2 13

Format

An object of class data.frame with 16 rows and 3 columns.

Details

A dataframe with 3 treatment factors. The treatment combinations are connected.

Note: This data is based on Table 1 of Weeks & Williams. Table 2 is missing treatment combination
(1,2,4).

Source

Weeks, David L. & Donald R. Williams (1964). A Note on the Determination of Connectedness in
an N-Way Cross Classification. Technometrics, 6:3, 319-324. Table 1. http://dx.doi.org/10.1080/00401706.1964.10490188

Examples

library(lfe)
cbind(data_weeks1,

.group=con_check(data_weeks1, ~ f1+f2+f3))

data_weeks2 Data from Weeks & Williams example 2

Description

Data from Weeks & Williams example 2

Usage

data_weeks2

Format

An object of class data.frame with 62 rows and 3 columns.

Details

A dataframe with 3 treatment factors. The treatment combinations form 4 disconnected groups.

Note: This data is based on Table 3 of Weeks & Williams. The groups defined in the text are missing
some combinations.

Source

Weeks, David L. & Donald R. Williams (1964). A Note on the Determination of Connectedness in
an N-Way Cross Classification. Technometrics, 6:3, 319-324. Table 3. http://dx.doi.org/10.1080/00401706.1964.10490188

14 data_weeks2

Examples

library(lfe)
cbind(data_weeks2,

.group=con_check(data_weeks2, ~f1 + f2 + f3))

Index

∗ datasets
data_eccleston, 8
data_fernando, 9
data_searle, 10
data_student, 11
data_tosh, 12
data_weeks1, 12
data_weeks2, 13

con_check, 2
con_concur, 3
con_filter, 4
con_view, 6

data_eccleston, 8
data_fernando, 9
data_searle, 10
data_student, 11
data_tosh, 12
data_weeks1, 12
data_weeks2, 13

15

	con_check
	con_concur
	con_filter
	con_view
	data_eccleston
	data_fernando
	data_searle
	data_student
	data_tosh
	data_weeks1
	data_weeks2
	Index

