
Package ‘corHMM’
July 22, 2025

Version 2.8

Date 2022-06-10

Title Hidden Markov Models of Character Evolution

Maintainer Jeremy Beaulieu <jmbeauli@uark.edu>

Depends ape, nloptr, GenSA

Suggests testthat, knitr, rmarkdown

Imports expm, numDeriv, corpcor, MASS, nnet, phangorn, parallel,
viridis, Rmpfr, igraph, phytools

Description Fits hidden Markov models of discrete character evolution which allow different transi-
tion rate classes on different portions of a phy-
logeny. Beaulieu et al (2013) <doi:10.1093/sysbio/syt034>.

License GPL (>= 2)

VignetteBuilder knitr

NeedsCompilation no

Author Jeremy Beaulieu [aut, cre],
Brian O'Meara [aut],
Jeffrey Oliver [aut],
James Boyko [aut]

Repository CRAN

Date/Publication 2022-06-13 22:20:09 UTC

Contents
ancRECON . 2
ConvertPhangornReconstructions . 4
corDISC . 5
corHMM . 7
examples . 11
fitCorrelationTest . 12
getFullMat . 13
getStateMat4Dat . 15

1

https://doi.org/10.1093/sysbio/syt034

2 ancRECON

makeSimmap . 17
plotMKmodel . 19
plotRECON . 20
rayDISC . 22

Index 26

ancRECON Ancestral state reconstruction

Description

Infers ancestral states based on a set of model parameters

Usage

ancRECON(phy,data, p, method=c("joint", "marginal", "scaled"),
rate.cat, ntraits=NULL, rate.mat=NULL,
model="ARD", root.p=NULL, get.likelihood=FALSE, get.tip.states = FALSE, collapse = TRUE)

Arguments

phy a phylogenetic tree, in ape “phylo” format.
data a data matrix containing species information (see Details).
p a vector of transition rates to be used to estimate ancestral states.
method method used to calculate ancestral states at internal nodes. Can be one of:

"joint", "marginal", or "scaled" (see Details).
rate.cat specifies the number of rate categories in the HRM.
ntraits currently, this is automaticall detected and can always be set to NULL.
rate.mat a user-supplied rate matrix index of parameters to be optimized.
model specifies the underlying model if a rate.mat is not provided ("ER", SYM", or

"ARD").
root.p a vector used to fix the probabilities at the root, but “yang” and “maddfitz” can

also be supplied to use the method of Yang (2006) and FitzJohn et al (2009)
respectively (see details).

get.likelihood a logical indicating whether to obtain the likelihood of the rates and states. The
default is FALSE.

get.tip.states a logical indicating whether just tip reconstructions should be output. The de-
fault is FALSE.

collapse a boolean indicating whether to collapse multiple character combinations into
only the observed states. For example, if true a two character dataset contained
(0,0), (1,0), and (1,1), this would be collapsed into 1,2,3. However, if set to false
it would 1,2,4. In combination with a custom rate matrix this allows for the
estimation of transitions between the unobserved character combination. The
default is TRUE

.

ancRECON 3

Details

This is a stand alone function for computing the marginal, joint, or scaled likelihoods of internal
nodes for a given set of transition rates. Like all other functions contained in corHMM, the tree does
not have to be bifurcating in order for analyses to be carried out. IMPORTANT: If the corDISC,
corHMM, and rayDISC functions are used they automatically provide a tree with the likeliest states
as internal node labels. This function is intended for circumstances where the user would like to
reconstruct states based on rates estimated elsewhere (e.g. BayesTraits, Mesquite, ape).

The algorithm based on Pupko et al. (2000, 2002) is used to calculate the joint estimates of
ancestral states. The marginal method was originally implemented based on a description of an
algorithm by Yang (2006). The basic idea is that the tree is rerooted on each internal node, with the
marginal likelihood being the probabilities of observing the tips states given that the focal node is
the root. However, this takes a ton of time as the number of nodes increase. But, importantly, this
does not work easily when the model contains asymmetric rates. Here, we use the same dynamic
programming algorithm as Mesquite (Maddison and Maddison, 2011), which is time linear with
the number of species and calculates the marginal probability at a node using an additional up and
down pass of the tree. If scaled, the function uses the same algorithm from ace(). Note that the
scaled method of ace() is simply the conditional likelihoods of observing everything at or above
the focal node and these should NOT be used for ancestral state estimation.

The user can fix the root state probabilities by supplying a vector to root.p. For example, in the two
trait case, if the hypothesis is that the root is 00, then the root vector would be root.p=c(1,0,0,0)
for state combinations 00, 01, 10, and 11, respectively. If analyzing a binary or multistate character,
the order of root.p is the same order as the traits – e.g., for states 1, 2, 3, a root.p=c(0,1,0)
would fix the root to be in state 2. If the user supplies the flag root.p=“yang”, then the estimated
transition rates are used to set the weights at the root (see pg. 124 Yang 2006), whereas specifying
root.p=“maddfitz” employs the same procedure described by Maddison et al. (2007) and FitzJohn
et al. (2009). Note that the default root.p=NULL assumes equal weighting among all possible states.

Setting get.likelihood=TRUE will provide the user the joint likelihood of the rates and states.

Value

$lik.tip.states

A matrix of the reconstructed tip values. If the number of rate.cats is greater
than 2 then the probability that each observed state is in a particular hidden state
is given.

$lik.anc.states

For joint, a vector of likeliest states at internal nodes and tips. For either
marginal or $scaled, a matrix of the probabilities of each state for each in-
ternal node are returned.

$info.anc.states

A vector containing the amount of information (in bits) that the tip states and
model gives to each node. See Boyko and Beaulieu (2021).

Author(s)

Jeremy M. Beaulieu and Jeffrey C. Oliver

4 ConvertPhangornReconstructions

References

FitzJohn, R.G., W.P. Maddison, and S.P. Otto. 2009. Estimating trait-dependent speciation and
extinction rates from incompletely resolved phylogenies. Systematic Biology 58:595-611.

Maddison, W.P. and D.R. Maddison. 2011. Mesquite: a modular system for evolutionary analysis.
Version 2.75 http://mesquiteproject.org

Pupko, T., I. Pe’er, R. Shamir, and D. Graur. 2000. A fast algorithm for joint reconstruction of
ancestral amino-acid sequences. Molecular Biology and Evolution 17:890-896.

Pupko, T., I. Pe’er, D. Graur, M. Hasegawa, and N Friedman N. 2002. A branch-and-bound algo-
rithm for the inference of ancestral amino-acid sequences when the replacement rate varies among
sites: application to the evolution of five gene families. Bioinformatics 18:1116-1123.

Yang, Z. 2006. Computational Molecular Evolution. London:Oxford.

Boyko, J. D., and J. M. Beaulieu. 2021. Generalized hidden Markov models for phylogenetic
comparative datasets. Methods in Ecology and Evolution 12:468-478.

Examples

data(primates)
phy <- multi2di(primates[[1]])
data <- primates[[2]]
MK_3state <- corHMM(phy = phy, data = data, rate.cat = 1)

one way to get the parameters from your corHMM object in the correct order
p <- sapply(1:max(MK_3state$index.mat, na.rm = TRUE), function(x)
na.omit(c(MK_3state$solution))[na.omit(c(MK_3state$index.mat) == x)][1])

using custom params
states_1 <- ancRECON(phy = phy, data = MK_3state$data, p = p, method = "marginal",
rate.cat <- MK_3state$rate.cat, ntraits = NULL, rate.mat = MK_3state$index.mat,
root.p = MK_3state$root.p)

ConvertPhangornReconstructions

Convert phangorn reconstruction to a vector

Description

Converts a character reconstruction from phangorn into a vector of tip and node states. Nodes where
there are equal weights among states, ties are broken at random.

Usage

ConvertPhangornReconstructions(x, site = 1, best = TRUE)

corDISC 5

Arguments

x The phyDat object that contains a character reconstruction from phangorn
site The character number to convert into a vector
best A logical indicating whether the state that maximizes some function (likelihood,

parsimony, etc.) is to be returned.

Details

Creates a vector that contains the best tips and node state from a phangorn reconstruction.

corDISC Correlated evolution binary traits

Description

Fits a model of correlated evolution between two or three binary traits

Usage

corDISC(phy,data, ntraits=2, rate.mat=NULL, model=c("ER","SYM","ARD"),
node.states=c("joint", "marginal", "scaled", "none"), lewis.asc.bias=FALSE, p=NULL,
root.p=NULL, ip=NULL, lb=0, ub=100, diagn=FALSE)

Arguments

phy a phylogenetic tree, in ape “phylo” format.
data a data matrix containing species information (see Details).
ntraits specifies the number of traits to be included in the analysis.
rate.mat a user-supplied rate matrix index of parameters to be optimized.
model specifies the underlying model.
node.states method used to calculate ancestral states at internal nodes (see Details).
lewis.asc.bias a logical indicating whether the ascertainment bias correction of Lewis et al.

2001 should be used. The default is FALSE.
p a vector of transition rates. Allows the user to calculate the likelihood given a

specified set of parameter values to specified as fixed and calculate the likeli-
hood.

root.p a vector used to fix the probabilities at the root, but “yang” and “maddfitz” can
also be supplied to use the method of Yang (2006) and FitzJohn et al (2009)
respectively (see details).

ip initial values used for the likelihood search. Can be a single value or a vector of
unique values for each parameter. The default is ip=1.

lb lower bound for the likelihood search. The default is lb=0.
ub upper bound for the likelihood search. The default is ub=100.
diagn logical indicating whether diagnostic tests should be performed. The default is

FALSE.

6 corDISC

Details

__THIS FUNCTION IS NO LONGER NECESSARY AS IT IS NOW ENTIRELY SUBSUMED
WITHIN__ corHMM (see _Generalized corHMM_ vignette). But we still provide it for those that
are more comfortable using it than exploring the new corHMM function. As before, corDISC takes
a tree and a trait file and estimates transition rates and ancestral states for two or three binary char-
acters (see Pagel 1994). Note, however, that rayDISC can be used to evaluate the same models as
in corDISC, with the major difference being that, with rayDISC, the rate matrix would have to be
manipulated using rate.mat.maker in order to remove parameters associated with dual transitions.
With corDISC, the input phylogeny need not be bifurcating as the algorithm is implemented to han-
dle multifucations. Polytomies are allowed by generalizing Felsenstein’s (1981) pruning algorithm
to be the product of the probability of observing the tip states of n descendant nodes, rather than
two, as in the completely bifurcating case. For the trait file, the first column of the trait file must
contain the species labels to match to the tree, with the second column onwards corresponding to
the binary traits of interest.

The user can fix the root state probabilities by supplying a vector to root.p. For example, in the two
trait case, if the hypothesis is that the root is 00, then the root vector would be root.p=c(1,0,0,0)
for state combinations 00, 01, 10, and 11, respectively. If the user supplies the flag root.p=“yang”,
then the estimated transition rates are used to set the weights at the root (see pg. 124 Yang 2006),
whereas specifying root.p=“maddfitz” employs the same procedure described by Maddison et al.
(2007) and FitzJohn et al. (2009). Note that the default root.p=NULL assumes equal weighting
among all possible states.

We also note that scoring information that is missing for a species can be incorporated in the analysis
by including an NA for that particular trait. corDISC will then set the trait vector so that the tip
vector will reflect the probabilities that are compatible with our observations. For example, if the
scoring for trait 1 is missing, but trait 2 is scored as 0, then the tip vector would be (1,0,1,0), for
state combinations 00, 01, 10, and 11 respectively, given our observation that trait 2 is scored 0 (for
a good discussion see Felsenstein 2004, pg. 255).

Value

corDISC returns an object of class corDISC. This is a list with elements:

$loglik the maximum negative log-likelihood.

$AIC Akaike information criterion.

$AICc Akaike information criterion corrected for sample size.

$ntraits The number of traits specified.

$solution a matrix containing the maximum likelihood estimates of the transition rates.

$solution.se a matrix containing the approximate standard errors of the transition rates. The
standard error is calculated as the square root of the diagonal of the inverse of
the Hessian matrix.

$index.mat The indices of the parameters being estimated are returned. The numbers corre-
spond to the row in the eigvect and can useful for identifying the parameters
that are causing the objective function to be at a saddlepoint.

$lewis.asc.bias

The setting describing whether or not the Lewis ascertainment bias correction
was used.

corHMM 7

$opts Internal settings of the likelihood search
$data User-supplied dataset.
$phy User-supplied tree.
$states The likeliest states at each internal node.
$tip.states NULL
$iterations The number of iterations used by the optimization routine.
$eigval The eigenvalues from the decomposition of the Hessian of the likelihood func-

tion. If any eigval<0 then one or more parameters were not optimized during
the likelihood search

$eigvect The eigenvectors from the decomposition of the Hessian of the likelihood func-
tion is returned

Author(s)

Jeremy M. Beaulieu

References

Beaulieu J.M., and M.J. Donoghue 2013. Fruit evolution and diversification in campanulid an-
giosperms. Evolution, 67:3132-3144.

Felsenstein, J. 1981. A likelihood approach to character weighting and what it tells us about parsi-
mony and compatibility. Biological Journal of the Linnean Society 16: 183-196.

Felsenstein J. 2004. Inferring phylogenies. Sunderland MA: Sinauer Associates.

FitzJohn, R.G., W.P. Maddison, and S.P. Otto. 2009. Estimating trait-dependent speciation and
extinction rates from incompletely resolved phylogenies. Systematic Biology 58:595-611.

Lewis, P.O. 2001. A likelihood approach to estimating phylogeny from discrete morphological
character data. Systematic Biology 50:913-925.

Maddison, W.P., P.E. Midford, and S.P. Otto. 2007. Estimating a binary characters effect on speci-
ation and extinction. Systematic Biology 56:701-710.

Pagel, M. 1994. Detecting correlated evolution on phylogenies: a general method for the compara-
tive analysis of discrete characters. Proceedings of the Royal Society, B. 255:37-45.

corHMM Hidden Rates Model

Description

Estimates hidden rates underlying the evolution of a binary character

Usage

corHMM(phy, data, rate.cat, rate.mat=NULL, model = "ARD", node.states = "marginal",
fixed.nodes=FALSE, p=NULL, root.p="yang", ip=NULL, nstarts=0, n.cores=1,
get.tip.states = FALSE, lewis.asc.bias = FALSE, collapse = TRUE, lower.bound = 1e-9,
upper.bound = 100, opts=NULL)

8 corHMM

Arguments

phy a phylogenetic tree, in ape “phylo” format.

data a data.frame containing species information. The first column must be species
names matching the phylogeny. Additional columns contain discrete character
data.

rate.cat specifies the number of rate categories (see Details).

rate.mat a user-supplied index of parameters to be optimized.

model One of "ARD", "SYM", or "ER". ARD: all rates differ. SYM: rates between
any two states do not differ. ER: all rates are equal.

node.states method used to calculate ancestral states at internal nodes (see Details).

fixed.nodes specifies that states for nodes in the phylogeny are assumed fixed. These are
supplied as node labels in the “phylo” object.

p a vector of transition rates. Allows the user to calculate the likelihood given a
specified set of parameter values to specified as fixed and calculate the likeli-
hood.

root.p a vector used to fix the probabilities at the root, but “yang” and “maddfitz” can
also be supplied to use the method of Yang (2006) and FitzJohn et al (2009)
respectively (see details).

ip initial values used for the likelihood search. Can be a single value or a vector of
unique values for each parameter. The default is ip=1.

nstarts the number of random restarts to be performed. The default is nstarts=0.

n.cores the number of processor cores to spread out the random restarts.

get.tip.states a boolean indicating whether tip reconstructions should be output. The default
is FALSE.

lewis.asc.bias a boolean indicating whether to correct for observing a dataset that is not uni-
variate. The default is FALSE

.

collapse a boolean indicating whether to collapse multiple character combinations into
only the observed states. For example, if true a two character dataset contained
(0,0), (1,0), and (1,1), this would be collapsed into 1,2,3. However, if set to false
it would 1,2,4. In combination with a custom rate matrix this allows for the
estimation of transitions between the unobserved character combination. The
default is TRUE

.

lower.bound lower bound for the likelihood search. The default is lower.bound=1e-9.

upper.bound upper bound for the likelihood search. The default is upper.bound=100.

opts options to pass to nloptr. default is NULL.

corHMM 9

Details

This function takes a tree and a trait file and estimates transition rates and ancestral states for any
number of discrete characters using a Markov model with or without "hidden" states. Users are ad-
vised to read the _Generalized corHMM_ vignette for details on how to make full use of corHMM’s
new functionality. In general, these models describe evolution as discrete transitions between ob-
served states. If rate.class > 1, then the model is a hidden Markov model (HMM; also known
as a hidden rates model (HRM)). The HRM is a generalization of the covarion model that allows
different rate classes to be treated as "hidden" states. Essentially a hidden Markov model allows
for multiple processes to describe the evolution of your observed character. This could be another
(hidden) state or a large group of them. Regardless of the reason, an HMM is saying that not all
observed characters are expected to act the same way.

The first column of the input data must be species names (as in the previous version), but there can
be any number of data columns. If your dataset does have 2 or more columns of trait information,
each column is taken to describe a separate character. The separation of character and state is an
important one because corHMM will automatically remove dual transitions from your model. For
example, say you had 3 characters each with 2 states (0 or 1), but only three of these combinations
were ever observed 0_0_1, 0_1_0, or 1_0_0. With dual transitions disallowed, it is impossible to
move between these combinations because it would mean simultaneously losing and gaining a state
(0_0_1 -> 0_0_0 -> 0_1_0 in one step.) One way around this is to provide a custom rate matrix to
corHMM where transitions are allowed between these states. However, this is also a case where it
would seem appropriate to code the data as a single character with 3 states.

Ambiguities (polymorphic taxa or taxa missing data) are assigned likelihoods following Felsenstein
(2004, p. 255). Taxa with missing data are coded “?” with all states observed at a tip. Polymorphic
taxa are coded with states separated by an “&”. For example, if a trait has four states and taxonA
is observed to be in state 1 and 3, the character would be coded as “1&3”. corHMM then uses this
information to assign a likelihood of 1.0 to both states. Missing data are treated as ambiguous for
all states, thus all states for taxa missing data are assigned a likelihood of 1.0. For example, for a
four-state character (i.e. DNA), a taxon missing data will have likelihoods of all four states equal to
1.0 [e.g. L(A)=1.0, L(C)=1.0, L(G)=1.0, L(T)=1.0].

The likelihood function is maximized using the bounded subplex optimization routine implemented
in the R package nloptr, which provides a common interface to NLopt, an open-source library
for nonlinear optimization. In the former case, however, it is recommended that nstarts is set to
a large value (e.g. 100) to ensure that the maximum likelihood solution is found. Users can set
n.cores to parse the random restarts onto multiple processors.

The user can fix the root state probabilities by supplying a vector to root.p. For example, if the
hypothesis is that the root is 0_S in a model with two hidden rates, then the root vector would
be root.p=c(1,0,0,0) for state combinations 0_S, 1_S, 0_F, and 1_F, respectively. If the user
supplies the flag root.p=“NULL”, then there is equal weighting among all possible states in the
model. If the user supplies the flag root.p=“yang”, then the estimated transition rates are used
to set the weights at the root (see pg. 124 Yang 2006), whereas specifying root.p=“maddfitz”
employs the same procedure described by Maddison et al. (2007) and FitzJohn et al. (2009). Note
that the default root.p="yang".

Ancestral states can be estimated using marginal, joint, scaled, or none approaches. Marginal gives
the likelihood of state at each node, integrating over the states at other nodes. Joint gives the optimal
state at each node for the entire tree at once (it can only return the most likely state, i.e. it is not
a probability like the marginal reconstruction). Scaled is included for compatibility with ape’s

10 corHMM

ace() function. None suppresses calculation of ancestral states, which can dramatically speed up
calculations if you’re comparing models but make plotting difficult.

Value

corHMM returns an object of class corHMM. This is a list with elements:

$loglik the maximum negative log-likelihood.

$AIC Akaike information criterion.

$AICc Akaike information criterion corrected for sample size.

$rate.cat The number of rate categories specified.

$solution a matrix containing the maximum likelihood estimates of the transition rates.
Note that the rate classes are ordered from slowest (R1) to fastest (Rn) with
respect to state 0.

$index.mat The indices of the parameters being estimated are returned. This also is a way to
allow the estimation of transition rates for parameters not oberved in the dataset.
Say you have 2 traits X and Y, where the combinations 00, 01, and 11 are ob-
served (10 is not). A 4 by 4 index matrix could be used to force 10 into the
model.

$data User-supplied dataset.

$data.legend User-supplied dataset with an extra column of trait values corresponding to how
corHMM calls the user data.

$phy User-supplied tree.

$states The likeliest states at each internal node. The state and rates reconstructed at
internal nodes are in the order of the column headings of the rates matrix.

$tip.states The likeliest state at each tip. The state and rates reconstructed at the tips are in
the order of the column headings of the rates matrix.

$states.info a vector containing the amount of information (in bits) that the tip states and
model gives to each node.

$iterations The number of iterations used by the optimization routine.

$root.p The root prior used in model estimation.

Author(s)

Jeremy M. Beaulieu and James D. Boyko

References

Beaulieu J.M., B.C. O’Meara, and M.J. Donoghue. 2013. Identifying hidden rate changes in
the evolution of a binary morphological character: the evolution of plant habit in campanulid an-
giosperms. Systematic Biology 62:725-737.

Boyko, J. D., and J. M. Beaulieu. 2021. Generalized hidden Markov models for phylogenetic
comparative datasets. Methods in Ecology and Evolution 12:468-478.

Felsenstein, J. 1981. A likelihood approach to character weighting and what it tells us about parsi-
mony and compatibility. Biological Journal of the Linnean Society 16: 183-196.

examples 11

Felsenstein J. 2004. Inferring phylogenies. Sunderland MA: Sinauer Associates.

FitzJohn, R.G., W.P. Maddison, and S.P. Otto. 2009. Estimating trait-dependent speciation and
extinction rates from incompletely resolved phylogenies. Systematic Biology 58:595-611.

Maddison, W.P., P.E. Midford, and S.P. Otto. 2007. Estimating a binary characters effect on speci-
ation and extinction. Systematic Biology 56:701-710.

Pagel, M. 1994. Detecting correlated evolution on phylogenies: a gneeral method for the compara-
tive analysis of discrete characters. Proc. R. Soc. Lond. B 255:37-45.

Yang, Z. 2006. Computational Molecular Evolution. Oxford Press:London.

Examples

data(primates)
phy <- multi2di(primates[[1]])
data <- primates[[2]]
MK_3state <- corHMM(phy = phy, data = data, rate.cat = 1)
MK_3state

examples Example datasets

Description

Example files for running various functions in corHMM. The “primates” dataset comes from the ex-
ample files provided by BayesTraits, though here we only include a single tree with branch lengths
scaled to time. The “primates.paint” dataset is the same, but with the tree painted according to hypo-
thetical regimes. Finally, the “rayDISC.example” dataset provides an example on how polymorphic
data can be coded for rayDISC.

Format

a list object that contains a tree of class “phylo” and a dataframe that contains the trait data

References

Pagel, M., and A. Meade. 2006. Bayesian analysis of correlated evolution of discrete characters by
reversible-jump Markov chain Monte Carlo. American Naturalist 167:808-825.

12 fitCorrelationTest

fitCorrelationTest Test for correlation

Description

Automatically fits a set of independent and dependent models to test for correlation between char-
acters.

Usage

fitCorrelationTest(phy, data, simplified_models=FALSE)

Arguments

phy a phylogenetic tree, in ape “phylo” format.

data a data.frame containing species information. The first column must be species
names matching the phylogeny. Additional columns contain discrete character
data.

simplified_models

A boolean which indicates whether to include simplified independent and depen-
dent models (currently only works for two binary-state characters; see Details).

Details

This function automatically fit a set of multi-rate independent and dependent models (with default
corHMM options) to drastically reduce false support for correlation. Currently, the simplified mod-
els are only available for two binary-state characters, but it is straightforward for users to use the
tools available in corHMM to create model structures specific to their questions when the datasets
are more complex.

The correlation between two characters is often interpreted as evidence that there exists a significant
and biologically important relationship between them. However, Maddison and FitzJohn (2015)
recently pointed out that in certain situations find evidence of correlated evolution between two
categorical characters is often spurious, particularly, when the dependent relationship stems from
a single replicate deep in time. In Boyko and Beaulieu (in prep) we showed that there is, in fact,
a statistical solution to the problem posed by Maddison and FitzJohn (2015) naturally embedded
within the expanded model space afforded by the hidden Markov model (HMM) framework.

The problem of single unreplicated evolutionary events manifests itself as rate heterogeneity within
our models and that this is the source of the false correlation. Therefore, we argue that this prob-
lem is better understood as model misspecification rather than a failure of comparative methods to
account for phylogenetic pseudoreplication. We utilize HMMs to develop a multi-rate independent
model which, when implemented, drastically reduces support for correlation.

Value

fitCorrelationTest returns an object of class corhmm_list. This is a list with elements:

getFullMat 13

$independent_model_fit

A corHMM object of the standard independent model ala Pagel (1994).
$correlated_model_fit

A corHMM object of the standard dependent model ala Pagel (1994).
$hidden_Markov_independent_model_fit

A corHMM object of the hidden Markov independent model which allows for
rate heterogeneity independent of the focal character.

$hidden_Markov_correlated_model_fit.cat

A corHMM object of the hidden Markov dependent model which allows for rate
heterogeneity independent of the focal character as well as correlation between
characters.

$simplified_* If simplified was set to TRUE, then the function will also return simplified ver-
sions of the above models. These models have fewer parameters than the above
models while still being either dependent or independent models.

Author(s)

James D. Boyko

References

Maddison W.P., FitzJohn R.G. 2015. The Unsolved Challenge to Phylogenetic Correlation Tests for
Categorical Characters. Syst Biol. 64:127-136.

Examples

data(primates)
phy <- multi2di(primates[[1]])
data <- primates[[2]]
not run because of long run times
#corr_test_fits <- fitCorrelationTest(phy = phy, data = data, simplified_models = TRUE)
#corr_test_fits

getFullMat Combines several rate class index matrices

Description

Combines several index matrices which describe transitions between observed states into output a
single index matrix for use in corHMM

Usage

getFullMat(StateMats, RateClassMat = NULL)

14 getFullMat

Arguments

StateMats A list of index matrices describing transitions between observed states. Each
unique number from 1 to n, will be independently estimated. Values of 0 are not
estimated. Matrix entries of the same value are estimated to be the same rate.

RateClassMat An optional index matrix which describes how StateMats are related to one an-
other. This will be a matrix of size: length(StateMats) by length(StateMats). By
default, all transitions between StateMats are allowed and independently esti-
mated.

Details

This function is the final step in creating a custom hidden Markov model. It takes a list of index
matrices (StateMats) which describe different ways that the observed states are related to one an-
other and creates a single matrix to describe the model. The matrices are combined following Eq.
2 of Tarasov (2019). getFullMat is part of several functions which help the user efficiently create
custom index matrices. Often, it will be more practical to begin constructing a custom model with
getRateMat4Dat.

getStateMat will generate an index matrix of size n by n in which all transitions between the n
states are allowed and independently estimated. That index matrix can then be manipulated by
dropStateMatPars and equateStateMatPars. dropStateMatPars will drop specific rates from an index
matrix. dropStateMatPars requires an index matrix and a vector of which rates should be dropped.
equateStateMatPars will equates rates within an index matrix. equateStateMatPars requires an index
matrix and a list of vectors each element of which should correspond to two or more rates to be
equated.

Value

Returns an index matrix.

Author(s)

James D. Boyko

References

Boyko, J. D., and J. M. Beaulieu. 2021. Generalized hidden Markov models for phylogenetic
comparative datasets. Methods in Ecology and Evolution 12:468-478.

Tarasov, S. 2019. Integration of Anatomy Ontologies and Evo-Devo Using Structured Markov
Models Suggests a New Framework for Modeling Discrete Phenotypic Traits. Systematic Biology,
68(5) 698-716. doi:10.1093/sysbio/syz005

See Also

getRateMat4Dat

getStateMat4Dat 15

Examples

data(primates)
phy <- primates[[1]]
phy <- multi2di(phy)
data <- primates[[2]]
create a legend and rate mat from a multi-character dataset.
LegendAndRateMat <- getStateMat4Dat(data)
rate.mat <- LegendAndRateMat$rate.mat
legend <- LegendAndRateMat$legend

To create a hidden markov model first define your rate classes (state-dependent processes)
R1 will be a manually created SYM model
R1 <- equateStateMatPars(rate.mat, c(1:6))
R2 will only allow transitions between 1 and 2
R2 <- dropStateMatPars(rate.mat, c(3,4))
R1 and R2 will transtion at equal rates (i.e. the parameter process will be ER)
P <- getRateCatMat(2)
P <- equateStateMatPars(P, c(1,2))
combine our state-dependnet processes and parameter process
HMM <- getFullMat(list(R1, R2), P)

This can now be used in a corHMM model
CustomModel <- corHMM(phy = phy, data = data, rate.cat = 2, rate.mat = HMM, node.states = "none")

getStateMat4Dat Produce an index matrix and legend from a dataset

Description

Takes a dataset to produce an index matrix that corresponds to a single state-dependent process (i.e.
a single rate category) and a legend which matches input data to the rows and columns of the index
matrix and corHMM solution.

Usage

getStateMat4Dat(data, model = "ARD", dual = FALSE, collapse = TRUE, indep = FALSE)

Arguments

data A data matrix containing species information in the same format as the main
corHMM function: column[,1] is species names, column[,2:n] are the discrete
states.

model One of "ARD", "SYM", or "ER". ARD: all rates differ. SYM: rates between
any two states do not differ. ER: all rates are equal.

dual A boolean indicating whether or not to include dual transitions.

16 getStateMat4Dat

collapse a boolean indicating whether to collapse multiple character combinations into
only the observed states. For example, if true a two character dataset contained
(0,0), (1,0), and (1,1), this would be collapsed into 1,2,3. However, if set to false
it would 1,2,4. In combination with a custom rate matrix this allows for the
estimation of transitions between the unobserved character combination. The
default is TRUE

.

indep A boolean indicating whether or not to return an independent or correlated
model.

Details

This function will generate an index matrix based on user provided data. It provides a useful starting
point for further modifications using dropStateMatPars, equateStateMatPars, and getFullMat.
If more than a single column of data is given double transitions between characters are disallowed.
For example, if character 1 is the presence or absence of limbs, and character 2 is the presence
or absence of fingers, then the transition from absence of limbs and fingers to presence of limbs
and fingers is automatically disallowed. This is consistent with Pagel’s (1994) model of correlated
character evolution.

Value

$legend A named vector. The elements of the vector are all the unique state combinations
in the user data. The names of the vector are the state number assigned to each
combination.

$rate.mat A rate index matrix describing a single rate class.

Author(s)

James D. Boyko

References

Pagel, M. 1994. Detecting correlated evolution on phylogenies: a gneeral method for the compara-
tive analysis of discrete characters. Proc. R. Soc. Lond. B 255:37-45.

See Also

getFullmat

Examples

data(primates)
phy <- primates[[1]]
phy <- multi2di(phy)
data <- primates[[2]]
create a legend and rate mat from a multi-character dataset.
LegendAndRateMat <- getStateMat4Dat(data)
rate.mat <- LegendAndRateMat$rate.mat

makeSimmap 17

legend <- LegendAndRateMat$legend

makeSimmap Simulate a character history

Description

Produces a character history given some of the outputs of a corHMM object.

Usage

makeSimmap(tree, data, model, rate.cat, root.p="yang", nSim=1, nCores=1, fix.node=NULL,
fix.state=NULL, parsimony = FALSE, max.attempt = 1000, collapse=TRUE)

Arguments

tree A phylogeny of class phylo.

data a data.frame containing species information. The first column must be species
names matching the phylogeny. Additional columns contain discrete character
data.

model The transition rate matrix.

rate.cat The number of rate categories.

root.p The root prior to begin the sampling at the root. Currently only "yang" allowed.

nSim The number of simmaps to be simulated.

nCores The number of cores to be used.

fix.node A vector specifying node numbers to be fixed. Also possible to fix tips if using
a hidden Markov model. Tips are in the order of tree$tip.label.

fix.state Specifies which states to fix the nodes. States are specified according to position
in the rate matrix. E.g. If I had binary observed characters 0/1 and two hidden
rate classes A/B and wanted to fix a node as 1B, I would set this to 4.

parsimony A boolean indicating whether node states should be based on conditional likeli-
hood (per Bollback 2006), or if they should be consistent with a parsimonious
model (if TRUE). Parsimony states are evaluted by dividing the rates present in
the variable, model, by 1000 and evaluating the conditional likelihood of each
state. However, by lowering the rates we can approximate a parsimony recon-
struction (Steel and Penny 2000).

max.attempt A numeric value indicating the maximum number of attempts to create a pos-
sible path between an initial and final state on a branch. When the maximum
value is reached we use the Floyd-Walsh algorithm to produce the shortest path
between the two states and divide the branch into equal segments.

18 makeSimmap

collapse a boolean indicating whether to collapse multiple character combinations into
only the observed states. For example, if true a two character dataset contained
(0,0), (1,0), and (1,1), this would be collapsed into 1,2,3. However, if set to false
it would 1,2,4. In combination with a custom rate matrix this allows for the
estimation of transitions between the unobserved character combination. The
default is TRUE

.

Details

This function will generate a character history given a model and dataset. It has a similar struc-
ture to the simmap generated in phytools and follows the methods of Bollback (2006). If using
hidden states, then it is necessary to reconstruct the tip probabilities as well as the node probabil-
ities (i.e. get.tip.states must be TRUE when running corHMM). We chose not to implement any new
plotting functions, instead makeSimmap produces a simmap object which is formatted so it can used
with other R packages such as phytools (Revell, 2012). For additional capabilities, options, and
biological examples we refer readers to the detailed _Generalized corHMM_ vignette.

Value

A list of simmaps.

Author(s)

James D. Boyko

References

Boyko, J. D., and J. M. Beaulieu. 2021. Generalized hidden Markov models for phylogenetic
comparative datasets. Methods in Ecology and Evolution 12:468-478.

Bollback, J. P. 2006. SIMMAP: stochastic character mapping of discrete traits on phylogenies.
BMC Bioinformatics 7:88.

Revell, L. J. 2012. phytools: an R package for phylogenetic comparative biology (and other things).
Methods in Ecology and Evolution, 3(2), 217-223.

Steel, M., and D. Penny. 2000. Parsimony, Likelihood, and the Role of Models in Molecular
Phylogenetics. Molecular Biology and Evolution 17:839-850.

Examples

data(primates)
phy <- primates[[1]]
phy <- multi2di(phy)
data <- primates[[2]]

##run corhmm
MK <- corHMM(phy, data, 1)

##get simmap from corhmm solution
model <- MK$solution

plotMKmodel 19

simmap <- makeSimmap(tree=phy, data=data, model=model, rate.cat=1, nSim=1, nCores=1)

we import phytools plotSimmap for plotting
library(phytools)
plotSimmap(simmap[[1]])

plotMKmodel Plot a Markov model

Description

Plots a diagram of a Markov model from the output of corHMM or a custom index matrix

Usage

plotMKmodel(corhmm.obj, rate.cat = NULL, display = "column", color = c("blue", "red"),
arrow.scale = 1, text.scale = 1, vertex.scale = 1)

Arguments

corhmm.obj an object of class corHMM or matrix.

rate.cat if using a custom matrix then the number of rate categories must be indicated.

display the structure of the plot. one of "column", "square", or "row".

color Either, 1. a vector of 2 colors to create a gradient from low transition rates (first
element) to high transition rates (second element), or 2. "col.blind" which will
use the color pallete "plasma" from viridis.

arrow.scale determines the size of the arrows for the Markov diagram.

text.scale determines the size of the text for the plotted matrix.

vertex.scale determines the size of the text for the Markov diagram.

Details

Plots Markov models in a ball and stick type diagram next to its corresponding matrix. If plotting
a hidden rates model it will produce a compound plot describing how the different rate classes are
related to one another. If the input is a corHMM result then arrows are colored by relative rate. If the
input is a custom matrix arrows are colored by the paramater index.

Value

Returns a ball and stick diagram of the input model.

Author(s)

James D. Boyko

20 plotRECON

References

Boyko, J. D., and J. M. Beaulieu. 2021. Generalized hidden Markov models for phylogenetic
comparative datasets. Methods in Ecology and Evolution 12:468-478.

Examples

data(primates)
phy <- primates[[1]]
phy <- multi2di(phy)
data <- primates[[2]]
create a legend and rate mat from a multi-character dataset.
LegendAndRateMat <- getStateMat4Dat(data)
rate.mat <- LegendAndRateMat$rate.mat
legend <- LegendAndRateMat$legend

To create a hidden markov model first define your rate classes (state-dependent processes)
R1 will be a manually created SYM model
R1 <- equateStateMatPars(rate.mat, c(1:6))
R2 will only allow transitions between 1 and 2
R2 <- dropStateMatPars(rate.mat, c(3,4))
R1 and R2 will transtion at equal rates (i.e. the parameter process will be ER)
P <- getRateCatMat(2)
P <- equateStateMatPars(P, c(1,2))
combine our state-dependnet processes and parameter process
HMM <- getFullMat(list(R1, R2), P)
plot the input
plotMKmodel(HMM, rate.cat = 2)

This can now be used in a corHMM model
CustomModel <- corHMM(phy = phy, data = data, rate.cat = 2, rate.mat = HMM, node.states = "none")
plot the output
plotMKmodel(CustomModel)

plotRECON Plot ancestral state reconstructions

Description

Plots maximum likelihood ancestral state estimates on tree

Usage

plotRECON(phy, likelihoods, piecolors=NULL, cex=0.5, pie.cex=0.25, file=NULL,
height=11, width=8.5, show.tip.label=TRUE, title=NULL, ...)

plotRECON 21

Arguments

phy a phylogenetic tree, in ape “phylo” format.

likelihoods likelihoods for ancestral states (see Details).

piecolors a vector of colors for states.

cex specifies the size of the font for labels (if used).

pie.cex specifies the size of the symbols to plot on tree.

file filename to which a pdf is saved.

height height of plot.

width width of plot.

show.tip.label a logical indicating whether to draw tip labels to tree. The default is TRUE.

title an optional title for the plot.

... Additional arguments to be passed to the plot device

Details

Plots ancestral state estimates on provided tree. The likelihoods can be the states of an object
of class rayDISC or class corDISC, or the lik.anc of an object of class ace (from the ape package).

Value

A plot indicating the maximum likelihood ancestral states at each internal node.

Author(s)

Jeffrey C. Oliver

See Also

corDISC, rayDISC

Examples

data(rayDISC.example)
Perform ancestral state estimation, using a single rate of evolution and marginal
reconstruction of ancestral states
recon <- rayDISC(rayDISC.example$tree,rayDISC.example$trait,model="ER",
node.states="marginal")
Plot reconstructions on tree
plotRECON(rayDISC.example$tree,recon$states,title="rayDISC Example")

22 rayDISC

rayDISC Evolution of categorical traits

Description

Fits a model of evolution for categorical traits, allowing for multi-state characters, polymorphisms,
missing data, and incompletely resolved trees

Usage

rayDISC(phy,data, ntraits=1, charnum=1, rate.mat=NULL, model=c("ER","SYM","ARD"),
node.states=c("joint", "marginal", "scaled", "none"), state.recon=c("subsequently"),
lewis.asc.bias=FALSE, p=NULL, root.p="yang", ip=NULL, lb=1e-9, ub=100, verbose=TRUE,
diagn=FALSE)

Arguments

phy a phylogenetic tree, in ape “phylo” format.

data a data matrix containing species information (see Details).

ntraits specifies the number of traits to included in the analysis.

charnum specified the character to analyze.

rate.mat a user-supplied rate matrix index of parameters to be optimized.

model specifies the underlying model.

node.states method used to calculate ancestral states at internal nodes.

state.recon whether to reconstruct states jointly with the rates or subsequent to the rates
being optimized.

lewis.asc.bias a logical indicating whether the ascertainment bias correction of Lewis et al.
2001 should be used. The default is FALSE.

p a vector of transition rates. Allows the user to calculate the likelihood given a
specified set of parameter values to specified as fixed and calculate the likeli-
hood.

root.p a vector used to fix the probabilities at the root, but “yang” and “maddfitz” can
also be supplied to use the method of Yang (2006) and FitzJohn et al (2009),
respectively (see details).

ip initial values used for the likelihood search. Can be a single value or a vector of
unique values for each parameter. The default is ip=1.

lb lower bound for the likelihood search. The default is lb=0.

ub upper bound for the likelihood search. The default is ub=100.

verbose a logical indicating whether progress should be printed to the screen.

diagn logical indicating whether diagnostic tests should be performed. The default is
FALSE.

rayDISC 23

Details

__THIS FUNCTION IS NO LONGER NECESSARY AS IT IS NOW ENTIRELY SUBSUMED
WITHIN__ corHMM (see _Generalized corHMM_ vignette). But we still provide it for those that
are more comfortable using it than exploring the new corHMM function. As before, rayDISC takes
a tree and a trait file and estimates transition rates and ancestral states for binary or multistate
characters. The first column of the trait file must contain the species labels to match to the tree, with
the second, third, fourth, and so on, corresponding to the traits of interest. Use the charnum variable
to select the trait for analysis. Also, the input phylogeny need not be bifurcating as the algorithm is
implemented to handle multifucations. Polytomies are allowed by generalizing Felsenstein’s (1981)
pruning algorithm to be the product of the probability of observing the tip states of n descendant
nodes, rather than two, as in the completely bifurcating case.

The user can fix the root state probabilities by supplying a vector to the root.p. If the user supplies
the flag root.p=“yang”, then the estimated transition rates are used to set the weights at the root
(see pg. 124 Yang 2006), whereas specifying root.p=“maddfitz” employs the same procedure
described by Maddison et al. (2007) and FitzJohn et al. (2009). Note that the default root.p=NULL
assumes equal weighting among all possible states.

Ambiguities (polymorphic taxa or taxa missing data) are assigned likelihoods following Felsenstein
(2004, p. 255). Taxa with missing data are coded “?” with all states observed at a tip. Polymorphic
taxa are coded with states separated by an “&”. For example, if a trait has four states and taxonA
is observed to be in state 1 and 3, the character would be coded as “1&3”. corHMM then uses this
information to assign a likelihood of 1.0 to both states. Missing data are treated as ambiguous for
all states, thus all states for taxa missing data are assigned a likelihood of 1.0. For example, for a
four-state character (i.e. DNA), a taxon missing data will have likelihoods of all four states equal to
1.0 [e.g. L(A)=1.0, L(C)=1.0, L(G)=1.0, L(T)=1.0].

In all ancestral state reconstruction implementations, the rates are first estimated, and subsequently,
the MLE estimates of the rates are used to determine either the state probabilities (i.e., marginal or
"scaled") or maximum likelihood states at nodes. This is the default – i.e., the state.recon="subsequently"
argument. However, for this function only, we also allow for both rates and states to be estimated
jointly. This can be done with state.recon="estimate". We also allow for a hypothesis about states at
all or even some nodes to help fixed, with the rates (and in some cases some of the states) being esti-
mated. This is state.recon="given". For more information please see Vignette "Getting Likelihoods
From Reconstructions".

Value

rayDISC returns an object of class rayDISC. This is a list with elements:

$loglik the maximum negative log-likelihood.

$AIC Akaike information criterion.

$AICc Akaike information criterion corrected for sample size.

$ntraits The number of traits specified.

$solution a matrix containing the maximum likelihood estimates of the transition rates.

$solution.se a matrix containing the approximate standard errors of the transition rates. The
standard error is calculated as the square root of the diagonal of the inverse of
the Hessian matrix.

24 rayDISC

$index.mat The indices of the parameters being estimated are returned. The numbers corre-
spond to the row in the eigvect and can useful for identifying the parameters
that are causing the objective function to be at a saddlepoint.

$lewis.asc.bias

The setting describing whether or not the Lewis ascertainment bias correction
was used.

$opts Internal settings of the likelihood search.

$data User-supplied dataset.

$phy User-supplied tree.

$states The likeliest states at each internal node.

$tip.states NULL

$iterations The number of iterations used by the optimization routine.

$eigval The eigenvalues from the decomposition of the Hessian of the likelihood func-
tion. If any eigval<0 then one or more parameters were not optimized during
the likelihood search.

$eigvect The eigenvectors from the decomposition of the Hessian of the likelihood func-
tion is returned.

$bound.hit A logical for diagnosing if rate parameters were constrained by lb or ub values
during optimization.

$message.tree A list of taxa which were listed in the data matrix, but were not present in the
passed phylo object. These taxa will be excluded from the analysis. message.tree
is null if all taxa in data are included in tree.

$message.data A list of taxa which were present in the passed phylo object, but lacked data
in the passed data matrix. These taxa will be coded as missing data (all states
equally likely). message.data is null if all taxa in tree have entries in data
matrix.

Author(s)

Jeffrey C. Oliver and Jeremy M. Beaulieu

References

Felsenstein, J. 1981. A likelihood approach to character weighting and what it tells us about parsi-
mony and compatibility. Biological Journal of the Linnean Society 16: 183-196.

Felsenstein J. 2004. Inferring phylogenies. Sunderland MA: Sinauer Associates.

FitzJohn, R.G., W.P. Maddison, and S.P. Otto. 2009. Estimating trait-dependent speciation and
extinction rates from incompletely resolved phylogenies. Systematic Biology 58:595-611.

Lewis, P.O. 2001. A likelihood approach to estimating phylogeny from discrete morphological
character data. Systematic Biology 50:913-925.

Maddison, W.P., P.E. Midford, and S.P. Otto. 2007. Estimating a binary characters effect on speci-
ation and extinction. Systematic Biology 56:701-710.

rayDISC 25

See Also

plotRECON

Examples

Example 1
data(rayDISC.example)
Perform ancestral state estimation, using an asymmetric model of evolution and marginal
reconstruction of ancestral states
recon <- rayDISC(rayDISC.example$tree,rayDISC.example$trait,model="ARD",
node.states="marginal")

Plot reconstructions on tree
plotRECON(rayDISC.example$tree,recon$states)

Example 2
Perform ancestral state estimation on second character, using a single-rate model of
evolution, marginal reconstruction of ancestral states, and setting the lower bound for
parameter estimates to 0.01
recon <- rayDISC(rayDISC.example$tree,rayDISC.example$trait,charnum=2,model="ER",
node.states="marginal",lb=0.01)

Example 3
Perform ancestral state estimation on third character, using a single-rate model of
evolution and joint reconstruction of ancestral states
recon <- rayDISC(rayDISC.example$tree,rayDISC.example$trait,charnum=3,
model="ER",node.states="joint")

Index

∗ datasets
examples, 11

∗ models
corDISC, 5
corHMM, 7
getFullMat, 13
getStateMat4Dat, 15
makeSimmap, 17
rayDISC, 22

∗ plot
plotMKmodel, 19
plotRECON, 20

∗ reconstructions
ancRECON, 2

ancRECON, 2

ConvertPhangornReconstructions, 4
corDISC, 5, 21
corHMM, 7

dev.raydisc (rayDISC), 22
dropStateMatPars (getFullMat), 13

equateStateMatPars (getFullMat), 13
examples, 11

fitCorrelationTest, 12

getFullMat, 13
getRateCatMat (getFullMat), 13
getStateMat4Dat, 15

makeSimmap, 17

plotMKmodel, 19
plotRECON, 20, 25
primates (examples), 11

rayDISC, 21, 22
rayDISC.example (examples), 11

26

	ancRECON
	ConvertPhangornReconstructions
	corDISC
	corHMM
	examples
	fitCorrelationTest
	getFullMat
	getStateMat4Dat
	makeSimmap
	plotMKmodel
	plotRECON
	rayDISC
	Index

