Package 'countSTAR'

July 22, 2025

Type Package

Title Flexible Modeling of Count Data

Version 1.0.2

Description For Bayesian and classical inference and prediction with count-valued data, Simultaneous Transformation and Rounding (STAR) Models provide a flexible, interpretable, and easy-to-use approach. STAR models the observed count data using a rounded continuous data model and incorporates a transformation for greater flexibility. Implicitly, STAR formalizes the commonly-applied yet incoherent procedure of

- (i) transforming count-valued data and subsequently
- (ii) modeling the transformed data using Gaussian models.

STAR is well-defined for count-valued data, which is reflected in predictive accuracy, and is designed to account for zero-inflation, bounded or censored data, and overor underdispersion.

Importantly, STAR is easy to combine with existing MCMC or point estimation methods for continuous data, which allows seamless adaptation of continuous data models (such as linear regressions, additive models, BART, random forests, and gradient boosting machines) for count-valued data. The package also includes several methods for modeling count time series data, namely via warped Dynamic Linear Models.

For more details and background on these methodologies, see the works of

Kowal and Canale (2020) <doi:10.1214/20-EJS1707>,

Kowal and Wu (2022) <doi:10.1111/biom.13617>,

King and Kowal (2022) <doi:10.48550/arXiv.2110.14790>, and

Kowal and Wu (2023) <doi:10.48550/arXiv.2110.12316>.

License GPL (>= 2)

Encoding UTF-8

LinkingTo Rcpp, RcppArmadillo

Imports stats, utils, coda, dbarts, FastGP, gbm, graphics, Matrix, spikeSlabGAM, splines2, randomForest, Rcpp, TruncatedNormal, truncdist, KFAS

RoxygenNote 7.2.3

Suggests knitr, rmarkdown, bayesplot, mgcv

VignetteBuilder knitr

2 Contents

<pre>URL https://bking124.github.io/countSTAR/</pre>
https://github.com/bking124/countSTAR
BugReports https://github.com/bking124/countSTAR/issues
Depends R (>= 2.10)
LazyData true
NeedsCompilation yes
Author Brian King [aut, cre], Dan Kowal [aut]
Maintainer Brian King <bri> Sprianking 387@gmail.com></bri>
Repository CRAN
Date/Publication 2023-06-30 18:30:08 UTC

Contents

_]	. 3
am_star	. 4
art_star	6
lm_star	. 10
onfint.lmstar	. 12
redBands	. 13
rgMean	14
bm_star	. 14
enEM_star	. 17
enMCMC_star	20
etEffSize	23
_bc	23
_bnp	. 24
_cdf	25
_inv_approx	26
_inv_bc	. 27
nit_lm_gprior	. 28
n_star	29
lot_coef	31
lot_fitted	. 32
lot_pmf	. 32
redict.lmstar	. 33
vals	34
andomForest_star	35
paches	. 38
ound_floor . .	38
ample_lm_gprior	39
mBaS	40
mulate_nb_friedman	41
mulate nh lm	42

a_j		3
	spline_star	
Index		48
a_j	Inverse rounding function	

Description

Define the intervals associated with y = j based on the flooring function. The function returns -Inf for j = 0 (or smaller) and Inf for any $j \ge y_max + 1$, where y_max is a known upper bound on the data y (if specified).

Usage

```
a_{j(j, y_{max} = Inf)}
```

Arguments

```
j the integer-valued input(s)y_max a fixed and known upper bound for all observations; default is Inf
```

Value

The (lower) interval endpoint(s) associated with j.

Examples

```
# Standard cases:
a_j(1)
a_j(20)

# Boundary cases:
a_j(0)
a_j(20, y_max = 15)
```

4 bam_star

bam_star

Fit Bayesian Additive STAR Model with MCMC

Description

Run the MCMC algorithm for a STAR Bayesian additive model The transformation can be known (e.g., log or sqrt) or unknown (Box-Cox or estimated nonparametrically) for greater flexibility.

Usage

```
bam_star(
   y,
   X_lin,
   X_nonlin,
   splinetype = "orthogonal",
   transformation = "np",
   y_max = Inf,
   nsave = 5000,
   nburn = 5000,
   nskip = 2,
   save_y_hat = FALSE,
   verbose = TRUE
)
```

Arguments

splinetype

n x 1 vector of observed counts

X_lin n x pL matrix of predictors to be modelled as linear

X_nonlin n x pNL matrix of predictors to be modelled as nonlinear

_\text{nonline} \text{if \text{\$\tind{\text{\$\exititt{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\texitittit{\$\text{\$\texitt{\$\text{\$\text{\$\texitt{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{

Type of spline to use for modelling the nonlinear predictors; must be either "orthogonal" (orthogonalized splines—the default) or "thinplate" (low-rank thin

plate splines)

transformation transformation to use for the latent data; must be one of

- "identity" (identity transformation)
- "log" (log transformation)
- "sqrt" (square root transformation)
- "np" (nonparametric transformation estimated from empirical CDF)
- "pois" (transformation for moment-matched marginal Poisson CDF)
- "neg-bin" (transformation for moment-matched marginal Negative Binomial CDF)
- "box-cox" (box-cox transformation with learned parameter)
- "ispline" (transformation is modeled as unknown, monotone function using I-splines)

y_max a fixed and known upper bound for all observations; default is Inf

bam_star 5

nsave number of MCMC iterations to save nburn number of MCMC iterations to discard

nskip number of MCMC iterations to skip between saving iterations, i.e., save every

(nskip + 1)th draw

save_y_hat logical; if TRUE, compute and save the posterior draws of the expected counts,

E(y), which may be slow to compute

verbose logical; if TRUE, print time remaining

Details

STAR defines a count-valued probability model by (1) specifying a Gaussian model for continuous *latent* data and (2) connecting the latent data to the observed data via a *transformation and rounding* operation.

Posterior and predictive inference is obtained via a Gibbs sampler that combines (i) a latent data augmentation step (like in probit regression) and (ii) an existing sampler for a continuous data model.

There are several options for the transformation. First, the transformation can belong to the *Box-Cox* family, which includes the known transformations 'identity', 'log', and 'sqrt', as well as a version in which the Box-Cox parameter is inferred within the MCMC sampler ('box-cox'). Second, the transformation can be estimated (before model fitting) using the empirical distribution of the data y. Options in this case include the empirical cumulative distribution function (CDF), which is fully nonparametric ('np'), or the parametric alternatives based on Poisson ('pois') or Negative-Binomial ('neg-bin') distributions. For the parametric distributions, the parameters of the distribution are estimated using moments (means and variances) of y. Third, the transformation can be modeled as an unknown, monotone function using I-splines ('ispline'). The Robust Adaptive Metropolis (RAM) sampler is used for drawing the parameter of the transformation function.

Value

a list with at least the following elements:

- coefficients: the posterior mean of the coefficients
- fitted.values: the posterior mean of the conditional expectation of the counts y
- post.coefficients: posterior draws of the coefficients
- post.fitted.values: posterior draws of the conditional mean of the counts y
- post.pred: draws from the posterior predictive distribution of y
- post.lambda: draws from the posterior distribution of lambda
- post.sigma: draws from the posterior distribution of sigma
- post.log.like.point: draws of the log-likelihood for each of the n observations
- WAIC: Widely-Applicable/Watanabe-Akaike Information Criterion
- p_waic: Effective number of parameters based on WAIC

In the case of transformation="ispline", the list also contains

- post.g: draws from the posterior distribution of the transformation g
- post.sigma.gamma: draws from the posterior distribution of sigma.gamma, the prior standard deviation of the transformation g() coefficients

Examples

```
# Simulate data with count-valued response y:
sim_dat = simulate_nb_friedman(n = 100, p = 5, seed=32)
y = sim_dat$y; X = sim_dat$X
# Linear and nonlinear components:
X_{lin} = as.matrix(X[,-(1:3)])
X_{nonlin} = as.matrix(X[,(1:3)])
# STAR: nonparametric transformation
fit <- bam_star(y,X_lin, X_nonlin, nburn=1000, nskip=0)</pre>
# Posterior mean of each coefficient:
coef(fit)
# WAIC:
fit$WAIC
# MCMC diagnostics:
plot(as.ts(fit$post.coefficients[,1:3]))
# Posterior predictive check:
hist(apply(fit$post.pred, 1,
           function(x) mean(x==0)), main = 'Proportion of Zeros', xlab='');
abline(v = mean(y==0), lwd=4, col ='blue')
```

bart_star

MCMC Algorithm for BART-STAR

Description

Run the MCMC algorithm for a BART model for count-valued responses using STAR. The transformation can be known (e.g., log or sqrt) or unknown (Box-Cox or estimated nonparametrically) for greater flexibility.

Usage

```
bart_star(
   y,
   X,
   X_test = NULL,
   y_test = NULL,
   transformation = "np",
   y_max = Inf,
   n.trees = 200,
   sigest = NULL,
   sigdf = 3,
```

```
sigquant = 0.9,
k = 2,
power = 2,
base = 0.95,
nsave = 5000,
nburn = 5000,
nskip = 2,
save_y_hat = FALSE,
verbose = TRUE
)
```

Arguments

y n x 1 vector of observed counts

X n x p matrix of predictors

X_test n0 x p matrix of predictors for test data

y_test n0 x 1 vector of the test data responses (used for computing log-predictive scores)

transformation transformation to use for the latent process; must be one of

- "identity" (identity transformation)
- "log" (log transformation)
- "sqrt" (square root transformation)
- "np" (nonparametric transformation estimated from empirical CDF)
- "pois" (transformation for moment-matched marginal Poisson CDF)
- "neg-bin" (transformation for moment-matched marginal Negative Binomial CDF)
- "box-cox" (box-cox transformation with learned parameter)
- "ispline" (transformation is modeled as unknown, monotone function using I-splines)

y_max a fixed and known upper bound for all observations; default is Inf

n. trees number of trees to use in BART; default is 200

sigest positive numeric estimate of the residual standard deviation (see ?bart)

sigdf degrees of freedom for error variance prior (see ?bart)

signuant quantile of the error variance prior that the rough estimate (signst) is placed at.

The closer the quantile is to 1, the more aggressive the fit will be (see ?bart)

k the number of prior standard deviations E(Y|x) = f(x) is away from +/- 0.5. The

response is internally scaled to range from -0.5 to 0.5. The bigger k is, the more

conservative the fitting will be (see ?bart)

power parameter for tree prior (see ?bart)
base base parameter for tree prior (see ?bart)
nsave number of MCMC iterations to save
number of MCMC iterations to discard

nskip number of MCMC iterations to skip between saving iterations, i.e., save every

(nskip + 1)th draw

save_y_hat logical; if TRUE, compute and save the posterior draws of the expected counts,

E(y), which may be slow to compute

verbose logical; if TRUE, print time remaining

Details

STAR defines a count-valued probability model by (1) specifying a Gaussian model for continuous *latent* data and (2) connecting the latent data to the observed data via a *transformation and rounding* operation. Here, the model in (1) is a Bayesian additive regression tree (BART) model.

Posterior and predictive inference is obtained via a Gibbs sampler that combines (i) a latent data augmentation step (like in probit regression) and (ii) an existing sampler for a continuous data model.

There are several options for the transformation. First, the transformation can belong to the *Box-Cox* family, which includes the known transformations 'identity', 'log', and 'sqrt', as well as a version in which the Box-Cox parameter is inferred within the MCMC sampler ('box-cox'). Second, the transformation can be estimated (before model fitting) using the empirical distribution of the data y. Options in this case include the empirical cumulative distribution function (CDF), which is fully nonparametric ('np'), or the parametric alternatives based on Poisson ('pois') or Negative-Binomial ('neg-bin') distributions. For the parametric distributions, the parameters of the distribution are estimated using moments (means and variances) of y. Third, the transformation can be modeled as an unknown, monotone function using I-splines ('ispline'). The Robust Adaptive Metropolis (RAM) sampler is used for drawing the parameter of the transformation function.

Value

a list with the following elements:

- post.pred: draws from the posterior predictive distribution of y
- post.sigma: draws from the posterior distribution of sigma
- post.log.like.point: draws of the log-likelihood for each of the n observations
- WAIC: Widely-Applicable/Watanabe-Akaike Information Criterion
- p_waic: Effective number of parameters based on WAIC
- post.pred.test: draws from the posterior predictive distribution at the test points X_test (NULL if X_test is not given)
- post.fitted.values.test: posterior draws of the conditional mean at the test points X_test (NULL if X_test is not given)
- post.mu.test: draws of the conditional mean of z_star at the test points X_test (NULL if X_test is not given)
- post.log.pred.test: draws of the log-predictive distribution for each of the n0 test cases (NULL if X_test is not given)
- fitted.values: the posterior mean of the conditional expectation of the counts y (NULL if save_y_hat=FALSE)
- post.fitted.values: posterior draws of the conditional mean of the counts y (NULL if save_y_hat=FALSE)

In the case of transformation="ispline", the list also contains

- post.g: draws from the posterior distribution of the transformation g
- post.sigma.gamma: draws from the posterior distribution of sigma.gamma, the prior standard deviation of the transformation g() coefficients

If transformation="box-cox", then the list also contains

• post.lambda: draws from the posterior distribution of lambda

Examples

```
# Simulate data with count-valued response y:
sim_dat = simulate_nb_friedman(n = 100, p = 10)
y = sim_dat y; X = sim_dat X
# BART-STAR with log-transformation:
fit_log = bart_star(y = y, X = X, transformation = 'log',
                    save_y_hat = TRUE, nburn=1000, nskip=0)
# Fitted values
plot_fitted(y = sim_dat$Ey,
            post_y = fit_log$post.fitted.values,
            main = 'Fitted Values: BART-STAR-log')
# WAIC for BART-STAR-log:
fit_log$WAIC
# MCMC diagnostics:
plot(as.ts(fit_log$post.fitted.values[,1:10]))
# Posterior predictive check:
hist(apply(fit_log$post.pred, 1,
           function(x) mean(x==0)), main = 'Proportion of Zeros', xlab='');
abline(v = mean(y==0), lwd=4, col = 'blue')
# BART-STAR with nonparametric transformation:
fit = bart_star(y = y, X = X,
                     transformation = 'np', save_y_hat = TRUE)
# Fitted values
plot_fitted(y = sim_dat$Ey,
            post_y = fit$post.fitted.values,
            main = 'Fitted Values: BART-STAR-np')
# WAIC for BART-STAR-np:
fit$WAIC
# MCMC diagnostics:
plot(as.ts(fit$post.fitted.values[,1:10]))
# Posterior predictive check:
hist(apply(fit$post.pred, 1,
           function(x) mean(x==0)), main = 'Proportion of Zeros', xlab='');
abline(v = mean(y==0), lwd=4, col ='blue')
```

blm_star

blm_star

STAR Bayesian Linear Regression

Description

Posterior inference for STAR linear model

Usage

```
blm_star(
  у,
  Χ,
  X_{test} = NULL
  transformation = "np",
  y_max = Inf,
  prior = "gprior",
  use\_MCMC = TRUE,
  nsave = 5000,
  nburn = 5000,
  nskip = 0,
  method_sigma = "mle",
  approx_Fz = FALSE,
  approx_Fy = FALSE,
  psi = NULL,
  compute_marg = FALSE
)
```

Arguments

y n x 1 vector of observed counts

X n x p matrix of predictors

X_test n0 x p matrix of predictors for test data

transformation transformation to use for the latent process; must be one of

- "identity" (identity transformation)
- "log" (log transformation)
- "sqrt" (square root transformation)
- "np" (nonparametric transformation estimated from empirical CDF)
- "pois" (transformation for moment-matched marginal Poisson CDF)
- "neg-bin" (transformation for moment-matched marginal Negative Binomial CDF)
- "box-cox" (box-cox transformation with learned parameter)

blm_star 11

 "ispline" (transformation is modeled as unknown, monotone function using I-splines)

• "bnp" (Bayesian nonparametric transformation using the Bayesian bootstrap)

y_max a fixed and known upper bound for all observations; default is Inf

prior prior to use for the latent linear regression; currently implemented options are

"gprior", "horseshoe", and "ridge". Not all modeling options and transforma-

tions are available with the latter two priors.

 $use_MCMC = TRUE,$

nsave number of MCMC iterations to save (or MC samples to draw if use_MCMC=FALSE)

nburn number of MCMC iterations to discard

nskip number of MCMC iterations to skip between saving iterations, i.e., save every

(nskip + 1)th draw

method_sigma method to estimate the latent data standard deviation in exact sampler; must be

one of

• "mle" use the MLE from the STAR EM algorithm

• "mmle" use the marginal MLE (Note: slower!)

approx_Fz logical; in BNP transformation, apply a (fast and stable) normal approximation

for the marginal CDF of the latent data

approx_Fy logical; in BNP transformation, approximate the marginal CDF of y using the

empirical CDF

psi prior variance (g-prior)

compute_marg logical; if TRUE, compute and return the marginal likelihood (only available

when using exact sampler, i.e. use_MCMC=FALSE)

Details

STAR defines a count-valued probability model by (1) specifying a Gaussian model for continuous *latent* data and (2) connecting the latent data to the observed data via a *transformation and rounding* operation. Here, the continuous latent data model is a linear regression.

There are several options for the transformation. First, the transformation can belong to the *Box-Cox* family, which includes the known transformations 'identity', 'log', and 'sqrt', as well as a version in which the Box-Cox parameter is inferred within the MCMC sampler ('box-cox'). Second, the transformation can be estimated (before model fitting) using the empirical distribution of the data y. Options in this case include the empirical cumulative distribution function (CDF), which is fully nonparametric ('np'), or the parametric alternatives based on Poisson ('pois') or Negative-Binomial ('neg-bin') distributions. For the parametric distributions, the parameters of the distribution are estimated using moments (means and variances) of y. The distribution-based transformations approximately preserve the mean and variance of the count data y on the latent data scale, which lends interpretability to the model parameters. Lastly, the transformation can be modeled using the Bayesian bootstrap ('bnp'), which is a Bayesian nonparametric model and incorporates the uncertainty about the transformation into posterior and predictive inference.

The Monte Carlo sampler (use_MCMC=FALSE) produces direct, discrete, and joint draws from the posterior distribution and the posterior predictive distribution of the linear regression model with a g-prior.

12 confint.lmstar

Value

a list with at least the following elements:

- coefficients: the posterior mean of the regression coefficients
- post.beta: posterior draws of the regression coefficients
- post.pred: draws from the posterior predictive distribution of y
- post.log.like.point: draws of the log-likelihood for each of the n observations
- WAIC: Widely-Applicable/Watanabe-Akaike Information Criterion
- p_waic: Effective number of parameters based on WAIC

If test points are passed in, then the list will also have post.predtest, which contains draws from the posterior predictive distribution at test points.

Other elements may be present depending on the choice of prior, transformation, and sampling approach.

Note

The 'bnp' transformation (without the Fy approximation) is slower than the other transformations because of the way the TruncatedNormal sampler must be updated as the lower and upper limits change (due to the sampling of g). Thus, computational improvements are likely available.

confint.lmstar

Compute asymptotic confidence intervals for STAR linear regression

Description

For a linear regression model within the STAR framework, compute (asymptotic) confidence intervals for a regression coefficient of interest. Confidence intervals are computed by inverting the likelihood ratio test and profiling the log-likelihood.

Usage

```
## S3 method for class 'lmstar'
confint(object, parm, level = 0.95, ...)
```

Arguments

object	Object of class "lmstar" as output by lm_star
parm	a specification of which parameters are to be given confidence intervals, either a vector of numbers or a vector of names. If missing, all parameters are considered.
level	confidence level; default is 0.95
	Ignored

credBands 13

Value

A matrix (or vector) with columns giving lower and upper confidence limits for each parameter. These will be labelled as (1-level)/2 and 1 - (1-level)/2 in

Examples

```
#Simulate data with count-valued response y:
sim_dat = simulate_nb_lm(n = 100, p = 2)
y = sim_dat$y; X = sim_dat$X

#Select a transformation:
transformation = 'np'

#Estimate model
fit = lm_star(y~X, transformation=transformation)
#Confidence interval for all parameters
confint(fit)
```

credBands

Compute Simultaneous Credible Bands

Description

Compute (1-alpha)% credible BANDS for a function based on MCMC samples using Crainiceanu et al. (2007)

Usage

```
credBands(sampFuns, alpha = 0.05)
```

Arguments

alpha confidence level

Value

m x 2 matrix of credible bands; the first column is the lower band, the second is the upper band

Note

The input needs not be curves: the simultaneous credible "bands" may be computed for vectors. The resulting credible intervals will provide joint coverage at the (1-alpha) level across all components of the vector.

gbm_star

ergMean

Compute the ergodic (running) mean.

Description

Compute the ergodic (running) mean.

Usage

```
ergMean(x)
```

Arguments

Χ

vector for which to compute the running mean

Value

A vector y with each element defined by y[i] = mean(x[1:i])

Examples

```
# Compare:
ergMean(1:10)
mean(1:10)

# Running mean for iid N(5, 1) samples:
x = rnorm(n = 10^4, mean = 5, sd = 1)
plot(ergMean(x))
abline(h=5)
```

gbm_star

Fitting STAR Gradient Boosting Machines via EM algorithm

Description

Compute the MLEs and log-likelihood for the Gradient Boosting Machines (GBM) STAR model. The STAR model requires a *transformation* and an *estimation function* for the conditional mean given observed data. The transformation can be known (e.g., log or sqrt) or unknown (Box-Cox or estimated nonparametrically) for greater flexibility. The estimator in this case is a GBM. Standard function calls including fitted and residuals apply.

gbm_star 15

Usage

```
gbm_star(
   y,
   X,
   X.test = NULL,
   transformation = "np",
   y_max = Inf,
   sd_init = 10,
   tol = 10^-10,
   max_iters = 1000,
   n.trees = 100,
   interaction.depth = 1,
   shrinkage = 0.1,
   bag.fraction = 1
)
```

Arguments

y n x 1 vector of observed counts

X n x p matrix of predictors

X. test m x p matrix of out-of-sample predictors

transformation transformation to use for the latent data; must be one of

- "identity" (identity transformation)
- "log" (log transformation)
- "sqrt" (square root transformation)
- "np" (nonparametric transformation estimated from empirical CDF)
- "pois" (transformation for moment-matched marginal Poisson CDF)
- "neg-bin" (transformation for moment-matched marginal Negative Binomial CDF)
- "box-cox" (box-cox transformation with learned parameter)

y_max a fixed and known upper bound for all observations; default is Inf

sd_init add random noise for EM algorithm initialization scaled by sd_init times the

Gaussian MLE standard deviation; default is 10

tol tolerance for stopping the EM algorithm; default is 10^-10;

max_iters maximum number of EM iterations before stopping; default is 1000

Integer specifying the total number of trees to fit. This is equivalent to the num-

ber of iterations and the number of basis functions in the additive expansion.

Default is 100.

interaction.depth

Integer specifying the maximum depth of each tree (i.e., the highest level of variable interactions allowed). A value of 1 implies an additive model, a value of 2 implies a model with up to 2-way interactions, etc. Default is 1.

shrinkage

n.trees

a shrinkage parameter applied to each tree in the expansion. Also known as the learning rate or step-size reduction; 0.001 to 0.1 usually work, but a smaller learning rate typically requires more trees. Default is 0.1.

16 gbm_star

bag.fraction

the fraction of the training set observations randomly selected to propose the next tree in the expansion. This introduces randomnesses into the model fit. If bag.fraction < 1 then running the same model twice will result in similar but different fits. Default is 1 (for a deterministic prediction).

Details

STAR defines a count-valued probability model by (1) specifying a Gaussian model for continuous *latent* data and (2) connecting the latent data to the observed data via a *transformation and rounding* operation. The Gaussian model in this case is a GBM.

Value

a list with the following elements:

- fitted.values: the fitted values at the MLEs (training)
- fitted.values.test: the fitted values at the MLEs (testing)
- g.hat a function containing the (known or estimated) transformation
- sigma. hat the MLE of the standard deviation
- mu. hat the MLE of the conditional mean (on the transformed scale)
- z.hat the estimated latent data (on the transformed scale) at the MLEs
- residuals the Dunn-Smyth residuals (randomized)
- residuals_rep the Dunn-Smyth residuals (randomized) for 10 replicates
- logLik the log-likelihood at the MLEs
- logLik0 the log-likelihood at the MLEs for the *unrounded* initialization
- lambda the Box-Cox nonlinear parameter
- gbm0bj: the object returned by gbm() at the MLEs
- and other parameters that (1) track the parameters across EM iterations and (2) record the model specifications

Note

Infinite latent data values may occur when the transformed Gaussian model is highly inadequate. In that case, the function returns the *indices* of the data points with infinite latent values, which are significant outliers under the model. Deletion of these indices and re-running the model is one option, but care must be taken to ensure that (i) it is appropriate to treat these observations as outliers and (ii) the model is adequate for the remaining data points.

References

Kowal, D. R., & Wu, B. (2021). Semiparametric count data regression for self-reported mental health. *Biometrics*. doi:10.1111/biom.13617

genEM_star 17

Examples

```
# Simulate data with count-valued response y:
sim_dat = simulate_nb_friedman(n = 100, p = 10)
y = sim_dat$y; X = sim_dat$X
# EM algorithm for STAR (using the log-link)
fit_em = gbm_star(y = y, X = X,
                 transformation = 'log')
# Evaluate convergence:
plot(fit_em$logLik_all, type='1', main = 'GBM-STAR-log', xlab = 'Iteration', ylab = 'log-lik')
# Fitted values:
y_hat = fitted(fit_em)
plot(y_hat, y);
# Residuals:
plot(residuals(fit_em))
qqnorm(residuals(fit_em)); qqline(residuals(fit_em))
# Log-likelihood at MLEs:
fit_em$logLik
```

genEM_star

Generalized EM estimation for STAR

Description

Compute MLEs and log-likelihood for a generalized STAR model. The STAR model requires a *transformation* and an *estimation function* for the conditional mean given observed data. The transformation can be known (e.g., log or sqrt) or unknown (Box-Cox or estimated nonparametrically) for greater flexibility. The estimator can be any least squares estimator, including nonlinear models. Standard function calls including coefficients(), fitted(), and residuals() apply.

Usage

```
genEM_star(
   y,
   estimator,
   transformation = "np",
   y_max = Inf,
   sd_init = 10,
   tol = 10^-10,
   max_iters = 1000
)
```

18 genEM_star

Arguments

y n x 1 vector of observed counts

estimator a function that inputs data y and outputs a list with two elements:

1. The fitted values fitted.values

2. The parameter estimates coefficients

transformation transformation to use for the latent data; must be one of

• "identity" (identity transformation)

• "log" (log transformation)

• "sqrt" (square root transformation)

• "np" (nonparametric transformation estimated from empirical CDF)

• "pois" (transformation for moment-matched marginal Poisson CDF)

"neg-bin" (transformation for moment-matched marginal Negative Binomial CDF)

• "box-cox" (box-cox transformation with learned parameter)

y_max a fixed and known upper bound for all observations; default is Inf

sd_init add random noise for EM algorithm initialization scaled by sd_init times the

Gaussian MLE standard deviation; default is 10

tol tolerance for stopping the EM algorithm; default is 10^-10;

max_iters maximum number of EM iterations before stopping; default is 1000

Details

STAR defines a count-valued probability model by (1) specifying a Gaussian model for continuous *latent* data and (2) connecting the latent data to the observed data via a *transformation and rounding* operation.

The expectation-maximization (EM) algorithm is used to produce maximum likelihood estimators (MLEs) for the parameters defined in the estimator function, such as linear regression coefficients, which define the Gaussian model for the continuous latent data. Fitted values (point predictions), residuals, and log-likelihood values are also available. Inference for the estimators proceeds via classical maximum likelihood. Initialization of the EM algorithm can be randomized to monitor convergence. However, the log-likelihood is concave for all transformations (except 'box-cox'), so global convergence is guaranteed.

There are several options for the transformation. First, the transformation can belong to the *Box-Cox* family, which includes the known transformations 'identity', 'log', and 'sqrt', as well as a version in which the Box-Cox parameter is estimated within the EM algorithm ('box-cox'). Second, the transformation can be estimated (before model fitting) using the empirical distribution of the data y. Options in this case include the empirical cumulative distribution function (CDF), which is fully nonparametric ('np'), or the parametric alternatives based on Poisson ('pois') or Negative-Binomial ('neg-bin') distributions. For the parametric distributions, the parameters of the distribution are estimated using moments (means and variances) of y.

genEM_star 19

Value

a list with the following elements:

- coefficients the MLEs of the coefficients
- fitted.values the fitted values at the MLEs
- g.hat a function containing the (known or estimated) transformation
- sigma. hat the MLE of the standard deviation
- mu. hat the MLE of the conditional mean (on the transformed scale)
- z.hat the estimated latent data (on the transformed scale) at the MLEs
- residuals the Dunn-Smyth residuals (randomized)
- residuals_rep the Dunn-Smyth residuals (randomized) for 10 replicates
- logLik the log-likelihood at the MLEs
- logLik0 the log-likelihood at the MLEs for the *unrounded* initialization
- lambda the Box-Cox nonlinear parameter
- and other parameters that (1) track the parameters across EM iterations and (2) record the model specifications

Note

Infinite latent data values may occur when the transformed Gaussian model is highly inadequate. In that case, the function returns the *indices* of the data points with infinite latent values, which are significant outliers under the model. Deletion of these indices and re-running the model is one option, but care must be taken to ensure that (i) it is appropriate to treat these observations as outliers and (ii) the model is adequate for the remaining data points.

References

Kowal, D. R., & Wu, B. (2021). Semiparametric count data regression for self-reported mental health. *Biometrics*. doi:10.1111/biom.13617

Examples

20 genMCMC_star

```
# Fitted coefficients:
coef(fit_em)

# Fitted values:
y_hat = fitted(fit_em)
plot(y_hat, y);

# Log-likelihood at MLEs:
fit_em$logLik
```

genMCMC_star

Generalized MCMC Algorithm for STAR

Description

Run the MCMC algorithm for STAR given

- 1. a function to initialize model parameters; and
- 2. a function to sample (i.e., update) model parameters.

The transformation can be known (e.g., log or sqrt) or unknown (Box-Cox or estimated nonparametrically) for greater flexibility.

Usage

```
genMCMC_star(
   y,
   sample_params,
   init_params,
   transformation = "np",
   y_max = Inf,
   nsave = 5000,
   nburn = 5000,
   nskip = 0,
   save_y_hat = FALSE,
   verbose = TRUE
)
```

Arguments

y n x 1 vector of observed counts

sample_params

a function that inputs data y and a named list params containing

- 1. mu: the n x 1 vector of conditional means (fitted values)
- 2. sigma: the conditional standard deviation
- 3. coefficients: a named list of parameters that determine mu

genMCMC_star 21

and outputs an updated list params of samples from the full conditional posterior distribution of coefficients and sigma (and updates mu)

init_params an initializing function that inputs data y and initializes the named list params

of mu, sigma, and coefficients

transformation transformation to use for the latent data; must be one of

• "identity" (identity transformation)

• "log" (log transformation)

• "sqrt" (square root transformation)

• "np" (nonparametric transformation estimated from empirical CDF)

• "pois" (transformation for moment-matched marginal Poisson CDF)

"neg-bin" (transformation for moment-matched marginal Negative Binomial CDF)

• "box-cox" (box-cox transformation with learned parameter)

y_max a fixed and known upper bound for all observations; default is Inf

nsave number of MCMC iterations to save nburn number of MCMC iterations to discard

nskip number of MCMC iterations to skip between saving iterations, i.e., save every

(nskip + 1)th draw

save_y_hat logical; if TRUE, compute and save the posterior draws of the expected counts,

E(y), which may be slow to compute

verbose logical; if TRUE, print time remaining

Details

STAR defines a count-valued probability model by (1) specifying a Gaussian model for continuous *latent* data and (2) connecting the latent data to the observed data via a *transformation and rounding* operation.

Posterior and predictive inference is obtained via a Gibbs sampler that combines (i) a latent data augmentation step (like in probit regression) and (ii) an existing sampler for a continuous data model.

There are several options for the transformation. First, the transformation can belong to the *Box-Cox* family, which includes the known transformations 'identity', 'log', and 'sqrt', as well as a version in which the Box-Cox parameter is inferred within the MCMC sampler ('box-cox'). Second, the transformation can be estimated (before model fitting) using the empirical distribution of the data y. Options in this case include the empirical cumulative distribution function (CDF), which is fully nonparametric ('np'), or the parametric alternatives based on Poisson ('pois') or Negative-Binomial ('neg-bin') distributions. For the parametric distributions, the parameters of the distribution are estimated using moments (means and variances) of y.

Value

a list with at least the following elements:

- post.pred: draws from the posterior predictive distribution of y
- post.sigma: draws from the posterior distribution of sigma

22 genMCMC_star

- post.log.like.point: draws of the log-likelihood for each of the n observations
- WAIC: Widely-Applicable/Watanabe-Akaike Information Criterion
- p_waic: Effective number of parameters based on WAIC
- post.lambda: draws from the posterior distribution of lambda (NULL unless transformation='box-cox')
- fitted.values: the posterior mean of the conditional expectation of the counts y (NULL if save_y_hat=FALSE)
- post.fitted.values: posterior draws of the conditional mean of the counts y (NULL if save_y_hat=FALSE)

If the coefficients list from init_params and sample_params contains a named element beta, e.g. for linear regression, then the function output contains

- coefficients: the posterior mean of the beta coefficients
- post. beta: draws from the posterior distribution of beta
- post.othercoefs: draws from the posterior distribution of any other sampled coefficients, e.g. variance terms

If no beta exists in the parameter coefficients, then the output list just contains

- coefficients: the posterior mean of all coefficients
- post.beta: draws from the posterior distribution of all coefficients

Additionally, if init_params and sample_params have output mu_test, then the sampler will output post.predtest, which contains draws from the posterior predictive distribution at test points.

Examples

```
# Simulate data with count-valued response y:
sim_dat = simulate_nb_lm(n = 100, p = 5)
y = sim_dat$y; X = sim_dat$X
# STAR: log-transformation:
fit_log = genMCMC_star(y = y,
                      sample_params = function(y, params) sample_lm_gprior(y, X, params),
                         init_params = function(y) init_lm_gprior(y, X),
                         transformation = 'log')
# Posterior mean of each coefficient:
coef(fit_log)
# WAIC for STAR-log:
fit_log$WAIC
# MCMC diagnostics:
plot(as.ts(fit_log$post.beta[,1:3]))
# Posterior predictive check:
hist(apply(fit_log$post.pred, 1,
           function(x) mean(x==0)), main = 'Proportion of Zeros', xlab='');
abline(v = mean(y==0), lwd=4, col ='blue')
```

getEffSize 23

getEffSize

Summarize of effective sample size

Description

Compute the summary statistics for the effective sample size (ESS) across posterior samples for possibly many variables

Usage

```
getEffSize(postX)
```

Arguments

postX

An array of arbitrary dimension (nsims x ... x ...), where nsims is the number of posterior samples

Value

Table of summary statistics using the function summary().

Examples

```
# ESS for iid simulations:
rand_iid = rnorm(n = 10^4)
getEffSize(rand_iid)

# ESS for several AR(1) simulations with coefficients 0.1, 0.2,...,0.9:
rand_ar1 = sapply(seq(0.1, 0.9, by = 0.1), function(x) arima.sim(n = 10^4, list(ar = x)))
getEffSize(rand_ar1)
```

g_bc

Box-Cox transformation

Description

Evaluate the Box-Cox transformation, which is a scaled power transformation to preserve continuity in the index lambda at zero. Negative values are permitted.

Usage

```
g_bc(t, lambda)
```

24 g_bnp

Arguments

t argument(s) at which to evaluate the function

lambda Box-Cox parameter

Value

The evaluation(s) of the Box-Cox function at the given input(s) t.

Note

Special cases include the identity transformation (lambda = 1), the square-root transformation (lambda = 1/2), and the log transformation (lambda = 0).

Examples

```
# Log-transformation:
g_bc(1:5, lambda = 0); log(1:5)
# Square-root transformation: note the shift and scaling
g_bc(1:5, lambda = 1/2); sqrt(1:5)
```

g_bnp

Bayesian bootstrap-based transformation

Description

Compute one posterior draw from the smoothed transformation implied by (separate) Bayesian bootstrap models for the CDFs of y and X.

Usage

```
g_bnp(
   y,
   xtSigmax = rep(0, length(y)),
   zgrid = NULL,
   sigma_epsilon = 1,
   approx_Fz = FALSE
)
```

Arguments

```
y n x 1 vector of observed counts

xtSigmax n x 1 vector of t(X_i) Sigma_theta X_i, where Sigma_theta is the prior variance

zgrid optional vector of grid points for evaluating the CDF of z (Fz)
```

g_cdf 25

```
sigma_epsilon latent standard deviation
approx_Fz logical; if TRUE, use a normal approximation for Fz, the marginal CDF of the latent z, which is faster and more stable
```

Value

A smooth monotone function which can be used for evaluations of the transformation at each posterior draw.

Examples

```
# Sample some data:
y = rpois(n = 200, lambda = 5)
# Compute 200 draws of g on a grid:
t = seq(0, max(y), length.out = 100) # grid
g_post = t(sapply(1:500, function(s) g_bnp(y, approx_Fz = TRUE)(t)))
# Plot together:
plot(t, t, ylim = range(g_post), type='n', ylab = 'g(t)', main = 'Bayesian bootstrap posterior: g')
apply(g_post, 1, function(g) lines(t, g, col='gray'))
# And the posterior mean of g:
lines(t, colMeans(g_post), lwd=3)
```

g_cdf

Cumulative distribution function (CDF)-based transformation

Description

Compute a CDF-based transformation using the observed count data. The CDF can be estimated nonparametrically or parametrically based on the Poisson or Negative Binomial distributions. In the parametric case, the parameters are determined based on the moments of y. Note that this is a fixed quantity and does not come with uncertainty quantification.

Usage

```
g_cdf(y, distribution = "np")
```

Arguments

• "neg-bin" (moment-matched marginal Negative Binomial CDF)

Value

A smooth monotone function which can be used for evaluations of the transformation.

26 g_inv_approx

Examples

```
# Sample some data:
y = rpois(n = 500, lambda = 5)

# Empirical CDF version:
g_np = g_cdf(y, distribution = 'np')

# Poisson version:
g_pois = g_cdf(y, distribution = 'pois')

# Negative binomial version:
g_negbin = g_cdf(y, distribution = 'neg-bin')

# Plot together:
t = 1:max(y) # grid
plot(t, g_np(t), type='1')
lines(t, g_pois(t), lty = 2)
lines(t, g_negbin(t), lty = 3)
```

g_inv_approx

Approximate inverse transformation

Description

Compute the inverse function of a transformation g based on a grid search.

Usage

```
g_inv_approx(g, t_grid)
```

Arguments

g the transformation function

t_grid grid of arguments at which to evaluate the transformation function

Value

A function which can be used for evaluations of the (approximate) inverse transformation function.

Examples

```
# Sample some data:
y = rpois(n = 500, lambda = 5)
# Empirical CDF transformation:
g_np = g_cdf(y, distribution = 'np')
# Grid for approximation:
```

g_inv_bc 27

```
t_grid = seq(1, max(y), length.out = 100)

# Approximate inverse:
g_inv = g_inv_approx(g = g_np, t_grid = t_grid)

# Check the approximation:
plot(t_grid, g_inv(g_np(t_grid)), type='p')
lines(t_grid, t_grid)
```

g_inv_bc

Inverse Box-Cox transformation

Description

Evaluate the inverse Box-Cox transformation. Negative values are permitted.

Usage

```
g_inv_bc(s, lambda)
```

Arguments

s argument(s) at which to evaluate the function

lambda Box-Cox parameter

Value

The evaluation(s) of the inverse Box-Cox function at the given input(s) s.

Note

Special cases include the identity transformation (lambda = 1), the square-root transformation (lambda = 1/2), and the log transformation (lambda = 0).

```
#' @examples # (Inverse) log-transformation: g_inv_bc(1:5, lambda = 0); exp(1:5)
```

(Inverse) square-root transformation: note the shift and scaling g_inv_bc(1:5, lambda = 1/2); (1:5)^2

28 init_lm_gprior

init_lm_gprior

Initialize linear regression parameters assuming a g-prior

Description

Initialize the parameters for a linear regression model assuming a g-prior for the coefficients.

Usage

```
init_lm_gprior(y, X, X_test = NULL)
```

Arguments

```
y n x 1 vector of data

X n x p matrix of predictors

X_test n0 x p matrix of predictors at test points (default is NULL)
```

Value

a named list params containing at least

- 1. mu: vector of conditional means (fitted values)
- 2. sigma: the conditional standard deviation
- 3. coefficients: a named list of parameters that determine mu

Additionally, if X_{test} is not NULL, then the list includes an element mu_test, the vector of conditional means at the test points

Note

The parameters in coefficients are:

• beta: the p x 1 vector of regression coefficients components of beta

Examples

```
# Simulate data for illustration:
sim_dat = simulate_nb_lm(n = 100, p = 5)
y = sim_dat$y; X = sim_dat$X
# Initialize:
params = init_lm_gprior(y = y, X = X)
names(params)
names(params$coefficients)
```

lm_star 29

lm_star

Fitting frequentist STAR linear model via EM algorithm

Description

Compute the MLEs and log-likelihood for the STAR linear model. The regression coefficients are estimated using least squares within an EM algorithm.

Usage

```
lm_star(
  formula,
  data = NULL,
  transformation = "np",
  y_max = Inf,
  sd_init = 10,
  tol = 10^-10,
  max_iters = 1000
)
```

Arguments

formula an object of class "formula" (see lm for details on model specification)
data an optional data frame, list or environment (or object coercible by as.data.frame

to a data frame) containing the variables in the model; like lm, if not found in data, the variables are taken from environment(formula)

transformation transformation to use for the latent data; must be one of

- "identity" (identity transformation)
- "log" (log transformation)
- "sqrt" (square root transformation)
- "np" (nonparametric transformation estimated from empirical CDF)
- "pois" (transformation for moment-matched marginal Poisson CDF)
- "neg-bin" (transformation for moment-matched marginal Negative Binomial CDF)
- "box-cox" (box-cox transformation with learned parameter)

y_max a fixed and known upper bound for all observations; default is Inf

sd_init add random noise for EM algorithm initialization scaled by sd_init times the

Gaussian MLE standard deviation; default is 10

tol tolerance for stopping the EM algorithm; default is 10^-10;

max_iters maximum number of EM iterations before stopping; default is 1000

Details

Standard function calls including coefficients, fitted, and residuals apply. Fitted values are the expectation at the MLEs, and as such are not necessarily count-valued.

30 lm_star

Value

an object of class "lmstar", which is a list with the following elements:

- coefficients the MLEs of the coefficients
- fitted.values the fitted values at the MLEs
- g.hat a function containing the (known or estimated) transformation
- ginv.hat a function containing the inverse of the transformation
- sigma. hat the MLE of the standard deviation
- mu.hat the MLE of the conditional mean (on the transformed scale)
- z.hat the estimated latent data (on the transformed scale) at the MLEs
- residuals the Dunn-Smyth residuals (randomized)
- residuals_rep the Dunn-Smyth residuals (randomized) for 10 replicates
- logLik the log-likelihood at the MLEs
- logLik0 the log-likelihood at the MLEs for the *unrounded* initialization
- lambda the Box-Cox nonlinear parameter
- and other parameters that (1) track the parameters across EM iterations and (2) record the model specifications

Note

Infinite latent data values may occur when the transformed Gaussian model is highly inadequate. In that case, the function returns the *indices* of the data points with infinite latent values, which are significant outliers under the model. Deletion of these indices and re-running the model is one option, but care must be taken to ensure that (i) it is appropriate to treat these observations as outliers and (ii) the model is adequate for the remaining data points.

References

Kowal, D. R., & Wu, B. (2021). Semiparametric count data regression for self-reported mental health. *Biometrics*. doi:10.1111/biom.13617

Examples

```
# Simulate data with count-valued response y:
sim_dat = simulate_nb_lm(n = 100, p = 3)
y = sim_dat$y; X = sim_dat$X

# Fit model
fit_em = lm_star(y~X)

# Fitted coefficients:
coef(fit_em)
# Fitted values:
y_hat = fitted(fit_em)
plot(y_hat, y);
```

plot_coef 31

```
# Residuals:
plot(residuals(fit_em))
qqnorm(residuals(fit_em)); qqline(residuals(fit_em))
```

plot_coef

Plot the estimated regression coefficients and credible intervals

Description

Plot the estimated regression coefficients and credible intervals for the linear effects in up to two models.

Usage

```
plot_coef(
  post_coefficients_1,
  post_coefficients_2 = NULL,
  alpha = 0.05,
  labels = NULL
)
```

Arguments

post_coefficients_1

Nsims x p matrix of simulations from the posterior distribution of the p coefficients, where Nsims is the number of simulations

post_coefficients_2

Nsims x p matrix of simulations from the posterior distribution of the p coefficients from another model

alpha confidence level for the credible intervals

labels p dimensional string of labels for the coefficient names

Value

A plot of regression coefficients and credible intervals for 1-2 models

32 plot_pmf

plot_fitted	Plot the fitted values and the data	
-------------	-------------------------------------	--

Description

Plot the fitted values, plus pointwise credible intervals, against the data. For simulations, one may use the true values in place of the data.

Usage

```
plot_fitted(y, post_y, y_hat = NULL, alpha = 0.05, ...)
```

Arguments

У	n x 1 vector of data
post_y	Nsims x n matrix of simulated fitted values, where Nsims is the number of simulations
y_hat	n x 1 vector of fitted values; if NULL, use the pointwise sample mean $colMeans(post_y)$
alpha	confidence level for the credible intervals
	other arguments for plotting

Value

A plot with the fitted values and the credible intervals against the data

plot_pmf	Plot the empirical and model-based probability mass functions

Description

Plot the empirical probability mass function, i.e., the proportion of data values y that equal j for each $j=0,1,\ldots$, together with the model-based estimate of the probability mass function based on the posterior predictive distribution.

Usage

```
plot_pmf(y, post.pred, error.bars = FALSE, alpha = 0.05)
```

Arguments

У	n x 1 vector of data
post.pred	nsave draws from the posterior predictive distribution of y
error.bars	logical; if TRUE, include errors bars on the model-based PMF
alpha	confidence level for the credible intervals

predict.Imstar 33

Value

A plot of the empirical PMF of y along with a PMF estimate from the model posterior predictive distribution

predict.lmstar	Predict method for response in STAR linear model
·	

Description

Outputs predicted values based on an Imstar fit and optionally prediction intervals based on the the (plug-in) predictive distribution for the STAR linear model

Usage

```
## S3 method for class 'lmstar'
predict(object, newdata = NULL, interval = FALSE, level = 0.95, N = 1000, ...)
```

Arguments

object	Object of class "Imstar" as output by lm_star
newdata	An optional matrix/data frame in which to look for variables with which to predict. If omitted, the fitted values are used.
interval	logical; whether or not to include prediction intervals (default FALSE)
level	Level for prediction intervals
N	number of Monte Carlo samples from the posterior predictive distribution used to approximate intervals; default is 1000
	Ignored

Details

If interval=TRUE, then predict.lmstar uses a Monte Carlo approach to estimating the (plug-in) predictive distribution for the STAR linear model. The algorithm iteratively samples (i) the latent data given the observed data, (ii) the latent predictive data given the latent data from (i), and (iii) (inverse) transforms and rounds the latent predictive data to obtain a draw from the integer-valued predictive distribution.

The appropriate quantiles of these Monte Carlo draws are computed and reported as the prediction interval.

Value

Either a a vector of predictions (if interval=FALSE) or a matrix of predictions and bounds with column names fit, lwr, and upr

34 pvals

Note

The "plug-in" predictive distribution is a crude approximation. Better approaches are available using the Bayesian models, e.g. blm_star, which provide samples from the posterior predictive distribution.

For highly skewed responses, prediction intervals especially at lower levels may not include the predicted value itself, since the mean is often much larger than the median.

Examples

```
# Simulate data with count-valued response y:
x = seq(0, 1, length.out = 100)
y = rpois(n = length(x), lambda = exp(1.5 + 5*(x -.5)^2))

# Estimate model--assume a quadratic effect (better for illustration purposes)
fit = lm_star(y~x+I(x^2), transformation = 'sqrt')

#Compute the predictive draws for the test points (same as observed points here)
#Also compute intervals using plug-in predictive distribution
y_pred = predict(fit, interval=TRUE)

# Plot the results
plot(x, y, ylim = range(y, y_pred), main = 'STAR: Predictions and 95% PI')
lines(x,y_pred[,"fit"], col='black', type='s', lwd=4)
lines(x, y_pred[,"lwr"], col='darkgray', type='s', lwd=4)
lines(x, y_pred[,"upr"], col='darkgray', type='s', lwd=4)
```

pvals

Compute coefficient p-values for STAR linear regression using likelihood ratio test

Description

For a linear regression model within the STAR framework, compute p-values for regression coefficients using a likelihood ratio test. It also computes a p-value for excluding all predictors, akin to a (partial) F test.

Usage

```
pvals(object)
```

Arguments

object

Object of class "lmstar" as output by lm_star

Value

a list of p+1 p-values, one for each predictor as well as the joint p-value excluding all predictors

randomForest_star 35

Examples

```
# Simulate data with count-valued response y:
sim_dat = simulate_nb_lm(n = 100, p = 2)
y = sim_dat$y; X = sim_dat$X

# Select a transformation:
transformation = 'np'

#Estimate model
fit = lm_star(y~X, transformation = transformation)
#Compute p-values
pvals(fit)
```

randomForest_star

Fit Random Forest STAR with EM algorithm

Description

Compute the MLEs and log-likelihood for the Random Forest STAR model. The STAR model requires a *transformation* and an *estimation function* for the conditional mean given observed data. The transformation can be known (e.g., log or sqrt) or unknown (Box-Cox or estimated nonparametrically) for greater flexibility. The estimator in this case is a random forest. Standard function calls including fitted and residuals apply.

Usage

```
randomForest_star(
   y,
   X,
   X.test = NULL,
   transformation = "np",
   y_max = Inf,
   sd_init = 10,
   tol = 10^-10,
   max_iters = 1000,
   ntree = 500,
   mtry = max(floor(ncol(X)/3), 1),
   nodesize = 5
)
```

Arguments

```
y n x 1 vector of observed counts
X n x p matrix of predictors
X.test m x p matrix of out-of-sample predictors
```

36 randomForest star

transformation transformation to use for the latent data; must be one of

- "identity" (identity transformation)
- "log" (log transformation)
- "sqrt" (square root transformation)
- "np" (nonparametric transformation estimated from empirical CDF)
- "pois" (transformation for moment-matched marginal Poisson CDF)
- "neg-bin" (transformation for moment-matched marginal Negative Binomial CDF)
- "box-cox" (box-cox transformation with learned parameter)

	(
y_max	a fixed and known upper bound for all observations; default is Inf
sd_init	add random noise for EM algorithm initialization scaled by sd_init times the Gaussian MLE standard deviation; default is 10
tol	tolerance for stopping the EM algorithm; default is 10^-10;
max_iters	maximum number of EM iterations before stopping; default is 1000
ntree	Number of trees to grow. This should not be set to too small a number, to ensure that every input row gets predicted at least a few times. Default is 500.
mtry	Number of variables randomly sampled as candidates at each split. Default is $p/3$.
nodesize	Minimum size of terminal nodes. Setting this number larger causes smaller trees

Details

STAR defines a count-valued probability model by (1) specifying a Gaussian model for continuous *latent* data and (2) connecting the latent data to the observed data via a *transformation and rounding* operation.

to be grown (and thus take less time). Default is 5.

The expectation-maximization (EM) algorithm is used to produce maximum likelihood estimators (MLEs) for the parameters defined in the The fitted values are computed using out-of-bag samples. As a result, the log-likelihood is based on out-of-bag prediction, and it is similarly straightforward to compute out-of-bag squared and absolute errors.

Value

a list with the following elements:

- fitted.values: the fitted values at the MLEs based on out-of-bag samples (training)
- fitted.values.test: the fitted values at the MLEs (testing)
- g.hat a function containing the (known or estimated) transformation
- sigma. hat the MLE of the standard deviation
- mu. hat the MLE of the conditional mean (on the transformed scale)
- z.hat the estimated latent data (on the transformed scale) at the MLEs
- residuals the Dunn-Smyth residuals (randomized)
- residuals_rep the Dunn-Smyth residuals (randomized) for 10 replicates

randomForest star 37

- logLik the log-likelihood at the MLEs
- logLik0 the log-likelihood at the MLEs for the *unrounded* initialization
- lambda the Box-Cox nonlinear parameter
- rf0bj: the object returned by randomForest() at the MLEs
- and other parameters that (1) track the parameters across EM iterations and (2) record the model specifications

Note

Since the random forest produces random predictions, the EM algorithm will never converge exactly.

Infinite latent data values may occur when the transformed Gaussian model is highly inadequate. In that case, the function returns the *indices* of the data points with infinite latent values, which are significant outliers under the model. Deletion of these indices and re-running the model is one option, but care must be taken to ensure that (i) it is appropriate to treat these observations as outliers and (ii) the model is adequate for the remaining data points.

References

Kowal, D. R., & Wu, B. (2021). Semiparametric count data regression for self-reported mental health. *Biometrics*. doi:10.1111/biom.13617

Examples

38 round_floor

roaches	Data on the efficacy of a pest management system at reducing the num-
	ber of roaches in urban apartments.

Description

Data on the efficacy of a pest management system at reducing the number of roaches in urban apartments.

Usage

roaches

Format

```
## 'roaches' A data frame with 262 obs. of 6 variables:
```

y Number of roaches caught

roach1 Pretreatment number of roaches

treatment Treatment indicator

senior Indicator for only elderly residents in building

exposure2 Number of days for which the roach traps were used

Source

Gelman and Hill (2007); package 'rstanarm'

Description

Define the rounding operator associated with the floor function. The function also returns zero whenever the input is negative and caps the value at y_max, where y_max is a known upper bound on the data y (if specified).

Usage

```
round_floor(z, y_max = Inf)
```

Arguments

z the real-valued input(s)

y_max a fixed and known upper bound for all observations; default is Inf

sample_lm_gprior 39

Value

The count-valued output(s) from the rounding function.

Examples

```
# Floor function:
round_floor(1.5)
round_floor(0.5)

# Special treatmeant of negative numbers:
round_floor(-1)
```

sample_lm_gprior

Sample the linear regression parameters assuming a g-prior

Description

Sample the parameters for a linear regression model assuming a g-prior for the coefficients.

Usage

```
sample_lm_gprior(y, X, params, psi = NULL, XtX = NULL, X_test = NULL)
```

Arguments

У	n x 1 vector of data
Χ	n x p matrix of predictors
params	the named list of parameters containing
	1. mu: vector of conditional means (fitted values)
	2. sigma: the conditional standard deviation
	3. coefficients: a named list of parameters that determine mu
psi	the prior variance for the g-prior
XtX	the p x p matrix of crossprod(X) (one-time cost); if NULL, compute within the function $\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \$
X_test	matrix of predictors at test points (default is NULL)

Value

The updated named list params with draws from the full conditional distributions of sigma and coefficients (along with updated mu and mu_test if applicable).

Note

The parameters in coefficients are:

• beta: the p x 1 vector of regression coefficients components of beta

40 simBaS

Examples

```
# Simulate data for illustration:
sim_dat = simulate_nb_lm(n = 100, p = 5)
y = sim_dat$y; X = sim_dat$X
# Initialize:
params = init_lm_gprior(y = y, X = X)
# Sample:
params = sample_lm_gprior(y = y, X = X, params = params)
names(params)
names(params$coefficients)
```

simBaS

Compute Simultaneous Band Scores (SimBaS)

Description

Compute simultaneous band scores (SimBaS) from Meyer et al. (2015, Biometrics). SimBaS uses MC(MC) simulations of a function of interest to compute the minimum alpha such that the joint credible bands at the alpha level do not include zero. This quantity is computed for each grid point (or observation point) in the domain of the function.

Usage

```
simBaS(sampFuns)
```

Arguments

sampFuns

Nsims x m matrix of Nsims MCMC samples and m points along the curve

Value

m x 1 vector of simBaS

Note

The input needs not be curves: the simBaS may be computed for vectors to achieve a multiplicity adjustment.

The minimum of the returned value, PsimBaS_t, over the domain t is the Global Bayesian P-Value (GBPV) for testing whether the function is zero everywhere.

simulate_nb_friedman 41

Description

Simulate data from a negative-binomial distribution with nonlinear mean function.

Usage

```
simulate_nb_friedman(
    n = 100,
    p = 10,
    r_nb = 1,
    b_int = log(1.5),
    b_sig = log(5),
    sigma_true = sqrt(2 * log(1)),
    seed = NULL
)
```

Arguments

n	number of observations
р	number of predictors
r_nb	the dispersion parameter of the Negative Binomial dispersion; smaller values imply greater overdispersion, while larger values approximate the Poisson distribution.
b_int	intercept; default is log(1.5).
b_sig	regression coefficients for true signals; default is log(5.0).
sigma_true	standard deviation of the Gaussian innovation; default is zero.
seed	optional integer to set the seed for reproducible simulation; default is NULL which results in a different dataset after each run

Details

The log-expected counts are modeled using the Friedman (1991) nonlinear function with interactions, possibly with additional Gaussian noise (on the log-scale). We assume that half of the predictors are associated with the response, i.e., true signals. For sufficiently large dispersion parameter r_n b, the distribution will approximate a Poisson distribution. Here, the predictor variables are simulated from independent uniform distributions.

Value

A named list with the simulated count response y, the simulated design matrix X, and the true expected counts Ey.

42 simulate_nb_lm

Note

Specifying sigma_true = sqrt(2*log(1+a)) implies that the expected counts are inflated by 100*a% (relative to exp(X*beta)), in addition to providing additional overdispersion.

Examples

```
# Simulate and plot the count data:
sim_dat = simulate_nb_friedman(n = 100, p = 10);
plot(sim_dat$y)
```

simulate_nb_lm

Simulate count data from a linear regression

Description

Simulate data from a negative-binomial distribution with linear mean function.

Usage

```
simulate_nb_lm(
    n = 100,
    p = 10,
    r_nb = 1,
    b_int = log(1.5),
    b_sig = log(2),
    sigma_true = sqrt(2 * log(1)),
    ar1 = 0,
    intercept = FALSE,
    seed = NULL
)
```

Arguments

n	number of observations
p	number of predictors (including the intercept)
r_nb	the dispersion parameter of the Negative Binomial dispersion; smaller values imply greater overdispersion, while larger values approximate the Poisson distribution.
b_int	intercept; default is $log(1.5)$, which implies the expected count is 1.5 when all predictors are zero
b_sig	regression coefficients for true signals; default is $\log(2.0)$, which implies a twofold increase in the expected counts for a one unit increase in x
sigma_true	standard deviation of the Gaussian innovation; default is zero.
ar1	the autoregressive coefficient among the columns of the X matrix; default is zero.

spline_star 43

intercept a Boolean indicating whether an intercept column should be included in the

returned design matrix; default is FALSE

seed optional integer to set the seed for reproducible simulation; default is NULL

which results in a different dataset after each run

Details

The log-expected counts are modeled as a linear function of covariates, possibly with additional Gaussian noise (on the log-scale). We assume that half of the predictors are associated with the response, i.e., true signals. For sufficiently large dispersion parameter r_nb, the distribution will approximate a Poisson distribution. Here, the predictor variables are simulated from independent standard normal distributions.

Value

A named list with the simulated count response y, the simulated design matrix X (possibly including the intercept), the true expected counts Ey, and the true regression coefficients beta_true.

Note

Specifying sigma_true = sqrt(2*log(1 + a)) implies that the expected counts are inflated by 100*a% (relative to exp(X*beta)), in addition to providing additional overdispersion.

Examples

```
# Simulate and plot the count data:
sim_dat = simulate_nb_lm(n = 100, p = 10);
plot(sim_dat$y)
```

spline_star

Estimation for Bayesian STAR spline regression

Description

Compute samples from the predictive distributions of a STAR spline regression model using either a Gibbs sampling approach or exact Monte Carlo sampling (default is Gibbs sampling which scales better for large n)

Usage

```
spline_star(
   y,
   tau = NULL,
   transformation = "np",
   y_max = Inf,
   psi = NULL,
   approx_Fz = FALSE,
```

44 spline_star

```
approx_Fy = FALSE,
  nsave = 1000,
  use_MCMC = TRUE,
  nburn = 1000,
  nskip = 0,
  verbose = TRUE,
  method_sigma = "mle"
)
```

Arguments

y n x 1 vector of observed counts

tau n x 1 vector of observation points; if NULL, assume equally-spaced on [0,1]

transformation transformation to use for the latent data; must be one of

- "identity" (identity transformation)
- "log" (log transformation)
- "sqrt" (square root transformation)
- "bnp" (Bayesian nonparametric transformation using the Bayesian bootstrap)
- "np" (nonparametric transformation estimated from empirical CDF)
- "pois" (transformation for moment-matched marginal Poisson CDF)
- "neg-bin" (transformation for moment-matched marginal Negative Binomial CDF)

y_max a fixed and known upper bound for all observations; default is Inf

psi prior variance (1/smoothing parameter); if NULL, update in MCMC

approx_Fz logical; in BNP transformation, apply a (fast and stable) normal approximation

for the marginal CDF of the latent data

approx_Fy logical; in BNP transformation, approximate the marginal CDF of y using the

empirical CDF

nsave number of MCMC iterations to save (or number of Monte Carlo simulations)

use_MCMC logical; whether to run Gibbs sampler or Monte Carlo (default is TRUE)

nburn number of MCMC iterations to discard

nskip number of MCMC iterations to skip between saving iterations, i.e., save every

(nskip + 1)th draw

verbose logical; if TRUE, print time remaining

method_sigma method to estimate the latent data standard deviation (only applicable if use_MCMC=FALSE);

must be one of

- "mle" use the MLE from the STAR EM algorithm (default)
- "mmle" use the marginal MLE (Note: slower!)

spline_star 45

Details

STAR defines a count-valued probability model by (1) specifying a Gaussian model for continuous *latent* data and (2) connecting the latent data to the observed data via a *transformation and rounding* operation. Here, the continuous latent data model is a spline regression.

There are several options for the transformation. First, the transformation can belong to the *Box-Cox* family, which includes the known transformations 'identity', 'log', and 'sqrt'. Second, the transformation can be estimated (before model fitting) using the empirical distribution of the data y. Options in this case include the empirical cumulative distribution function (CDF), which is fully nonparametric ('np'), or the parametric alternatives based on Poisson ('pois') or Negative-Binomial ('neg-bin') distributions. For the parametric distributions, the parameters of the distribution are estimated using moments (means and variances) of y. The distribution-based transformations approximately preserve the mean and variance of the count data y on the latent data scale, which lends interpretability to the model parameters. Lastly, the transformation can be modeled using the Bayesian bootstrap ('bnp'), which is a Bayesian nonparametric model and incorporates the uncertainty about the transformation into posterior and predictive inference.

Value

a list with the following elements:

- post_ytilde: nsave x n samples from the posterior predictive distribution at the observation points tau
- marg_like: the marginal likelihood (only if use_MCMC=FALSE; otherwise NULL)

Note

For the 'bnp' transformation (without the Fy approximation), there are numerical stability issues when psi is modeled as unknown. In this case, it is better to fix psi at some positive number.

Examples

```
# Simulate some data:
n = 100
tau = seq(0,1, length.out = n)
y = round_floor(exp(1 + rnorm(n)/4 + poly(tau, 4)%*%rnorm(n=4, sd = 4:1)))
# Sample from the predictive distribution of a STAR spline model:
fit = spline_star(y = y, tau = tau)
# Compute 90% prediction intervals:
pi_y = t(apply(fit$post_ytilde, 2, quantile, c(0.05, .95)))
# Plot the results: intervals, median, and smoothed mean
plot(tau, y, ylim = range(pi_y, y))
polygon(c(tau, rev(tau)),c(pi_y[,2], rev(pi_y[,1])),col='gray', border=NA)
lines(tau, apply(fit$post_ytilde, 2, median), lwd=5, col ='black')
lines(tau, smooth.spline(tau, apply(fit$post_ytilde, 2, mean))$y, lwd=5, col='blue')
lines(tau, y, type='p')
```

46 warpDLM

warpDLM

Posterior Inference for warpDLM model with latent structural DLM

Description

This function outputs posterior quantities and forecasts from a univariate warpDLM model. Currently two latent DLM specifications are supported: local level and the local linear trend.

Usage

```
warpDLM(
   y,
   type = c("level", "trend"),
   transformation = c("np", "identity", "log", "sqrt", "pois", "neg-bin"),
   y_max = Inf,
   R0 = 10,
   nsave = 5000,
   nburn = 5000,
   nskip = 1,
   n.ahead = 1
)
```

Arguments

y the count-valued time series

type the type of latent DLM (must be either level or trend)

transformation transformation to use for the latent process (default is np); must be one of

- "identity" (identity transformation)
- "log" (log transformation)
- "sqrt" (square root transformation)
- "np" (nonparametric transformation estimated from empirical CDF)
- "pois" (transformation for moment-matched marginal Poisson CDF)
- "neg-bin" (transformation for moment-matched marginal Negative Binomial CDF)

	mar CDI)
y_max	a fixed and known upper bound for all observations; default is Inf
RØ	the variance for the initial state theta_0; default is 10
nsave	number of MCMC iterations to save
nburn	number of MCMC iterations to discard
nskip	number of MCMC iterations to skip between saving iterations, i.e., save every $(nskip+1)th \; draw$
n.ahead	number of steps to forecast ahead

warpDLM 47

Value

A list with the following elements:

- V_post: posterior draws of the observation variance
- W_post: posterior draws of the state update variance(s)
- fc_post: draws from the forecast distribution (of length n.ahead)
- post_pred: draws from the posterior predictive distribution of y
- g_func: transformation function
- g_inv_func: inverse transformation function
- KFAS_mod: the final KFAS model representing the latent DLM

Index

residuals, 14, 29, 35

```
* datasets
                                                  roaches, 38
    roaches, 38
                                                  round_floor, 38
a_j, 3
                                                  {\tt sample\_lm\_gprior}, \\ 39
                                                  simBaS, 40
bam_star, 4
                                                  simulate_nb_friedman, 41
bart_star, 6
                                                  simulate_nb_lm, 42
blm_star, 10, 34
                                                  spline_star, 43
coefficients, 29
                                                  warpDLM, 46
confint.lmstar, 12
credBands, 13
ergMean, 14
fitted, 14, 29, 35
formula, 29
g_bc, 23
g_bnp, 24
g_cdf, 25
g_inv_approx, 26
g_inv_bc, 27
gbm_star, 14
genEM_star, 17
genMCMC_star, 20
getEffSize, 23
init_lm_gprior, 28
1m, 29
lm_star, 12, 29, 33, 34
plot_coef, 31
plot_fitted, 32
plot_pmf, 32
predict.lmstar, 33
pvals, 34
randomForest_star, 35
```