Package 'crt2power'

July 22, 2025

```
Title Designing Cluster-Randomized Trials with Two Continuous
     Co-Primary Outcomes
Version 1.2.1
Description Provides methods for powering cluster-randomized trials with two continuous co-
     primary outcomes using five key design techniques. Includes functions for calculating re-
     quired sample size and statistical power. For more details on methodol-
     ogy, see Owen et al. (2025) <doi:10.1002/sim.70015>, Yang et al. (2022) <doi:10.1111/biom.13692>, Pocock et al. (1987) <
     erstaff et al. (2019) <doi:10.1186/s12874-019-0754-
     4>, and Li et al. (2020) <doi:10.1111/biom.13212>.
License GPL-3
Encoding UTF-8
URL https://github.com/melodyaowen/crt2power
Depends R (>= 4.3)
Imports devtools (>= 2.4.5), knitr (>= 1.43), rootSolve (>= 1.8.2.3),
     tidyverse (>= 2.0.0), tableone (>= 0.13.2), foreach (>= 1.5.2),
     mvtnorm (>= 1.2), tibble (>= 3.2.1), dplyr (>= 1.1.4), tidyr
     (>= 1.3.0), stats (>= 3.6.2)
RoxygenNote 7.3.2
Suggests testthat (>= 3.0.0)
Config/testthat/edition 3
NeedsCompilation no
Author Melody Owen [aut, cre]
Maintainer Melody Owen <melody.owen@yale.edu>
Repository CRAN
Date/Publication 2025-05-07 10:30:02 UTC
```

Type Package

Contents

	calc_K_comb_outcome	2
	calc_K_conj_test	4
	calc_K_disj_2dftest	
	calc_K_pval_adj	
	calc_K_single_1dftest	
	calc_m_comb_outcome	9
	calc_m_conj_test	11
	calc_m_disj_2dftest	12
	calc_m_pval_adj	14
	calc_m_single_1dftest	15
	calc_ncp_chi2	16
	calc_pwr_comb_outcome	17
	calc_pwr_conj_test	18
	calc_pwr_disj_2dftest	20
	calc_pwr_pval_adj	21
	calc_pwr_single_1dftest	23
	run_crt2_design	24
Index		26
illucx		20
		_
calc_	K_comb_outcome Calculate required number of clusters per treatment group for a	

Calculate required number of clusters per treatment group for a cluster-randomized trial with co-primary endpoints using a combined outcomes approach.

Description

Allows user to calculate the number of clusters per treatment arm of a cluster-randomized trial with two co-primary outcomes given a set of study design input values, including the number of clusters in each trial arm, and cluster size. Uses a combined outcomes approach where the two outcome effects are summed together.

```
calc_K_comb_outcome(
  dist = "Chi2",
  power,
  m,
  alpha = 0.05,
  beta1,
  beta2,
  varY1,
  varY2,
  rho01,
  rho02,
  rho1,
```

```
rho2,
r = 1
```

Arguments

dist	Specification of which distribution to base calculation on, either 'Chi2' for Chi-Squared or 'F' for F-Distribution.
power	Desired statistical power in decimal form; numeric.
m	Individuals per cluster; numeric.
alpha	Type I error rate; numeric.
beta1	Effect size for the first outcome; numeric.
beta2	Effect size for the second outcome; numeric.
varY1	Total variance for the first outcome; numeric.
varY2	Total variance for the second outcome; numeric.
rho01	Correlation of the first outcome for two different individuals in the same cluster; numeric.
rho02	Correlation of the second outcome for two different individuals in the same cluster; numeric.
rho1	Correlation between the first and second outcomes for two individuals in the same cluster; numeric.
rho2	Correlation between the first and second outcomes for the same individual; numeric.
r	Treatment allocation ratio - $K2 = rK1$ where $K1$ is number of clusters in experimental group; numeric.

Value

A data frame of numerical values.

Examples

```
calc_K_comb_outcome(power = 0.8, m = 300, alpha = 0.05,
beta1 = 0.1, beta2 = 0.1, varY1 = 0.23, varY2 = 0.25,
rho01 = 0.025, rho02 = 0.025, rho1 = 0.01, rho2 = 0.05)
```

4 calc_K_conj_test

calc_K_conj_test	Calculate required number of clusters per treatment group for a
	cluster-randomized trial with co-primary endpoints using the conjunc- tive intersection-union test approach.

Description

Allows user to calculate the required number of clusters per treatment group of a cluster-randomized trial with two co-primary outcomes given a set of study design input values, including the statistical power, and cluster size. Uses the conjunctive intersection-union test approach.Code is adapted from "calSampleSize_ttestIU()" from https://github.com/siyunyang/coprimary_CRT written by Siyun Yang.

Usage

```
calc_K_conj_test(
  dist = TT,
  power,
 m,
  alpha = 0.05,
 beta1,
 beta2,
  varY1,
  varY2,
  rho01,
  rho02,
  rho1,
  rho2,
  r = 1,
  cv = 0,
  deltas = c(0, 0),
  two_sided = FALSE
)
```

dist	Specification of which distribution to base calculation on, either 'T' for T-Distribution or 'MVN' for Multivariate Normal Distribution. Default is T-Distribution.
power	Desired statistical power in decimal form; numeric.
m	Individuals per cluster; numeric.
alpha	Type I error rate; numeric.
beta1	Effect size for the first outcome; numeric.
beta2	Effect size for the second outcome; numeric.
varY1	Total variance for the first outcome; numeric.
varY2	Total variance for the second outcome; numeric.

calc_K_disj_2dftest 5

rho01	Correlation of the first outcome for two different individuals in the same cluster; numeric.
rho02	Correlation of the second outcome for two different individuals in the same cluster; numeric.
rho1	Correlation between the first and second outcomes for two individuals in the same cluster; numeric.
rho2	Correlation between the first and second outcomes for the same individual; numeric.
r	Treatment allocation ratio - $K2 = rK1$ where $K1$ is number of clusters in experimental group; numeric.
CV	Cluster variation parameter, set to 0 if assuming all cluster sizes are equal; numeric.
deltas	Vector of non-inferiority margins, set to delta_1 = delta_2 = 0; numeric vector.
two_sided	Specification of whether to conduct two 2-sided tests, 'TRUE', or two 1-sided tests, 'FALSE', default is FALSE; boolean.

Value

A data frame of numerical values.

Examples

```
calc_K_conj_test(power = 0.8, m = 300, alpha = 0.05,
beta1 = 0.1, beta2 = 0.1, varY1 = 0.23, varY2 = 0.25,
rho01 = 0.025, rho02 = 0.025, rho1 = 0.01, rho2 = 0.05)
```

calc_K_disj_2dftest ${\it C}$

Calculate required number of clusters per treatment group for a cluster-randomized trial with co-primary endpoints using a disjunctive 2-DF test approach.

Description

Allows user to calculate the number of clusters per treatment arm of a cluster-randomized trial with two co-primary outcomes given a set of study design input values, including the statistical power, and cluster size. Uses the disjunctive 2-DF test approach. Code is adapted from "calSampleSize_omnibus()" from https://github.com/siyunyang/coprimary_CRT.

```
calc_K_disj_2dftest(
  dist = "Chi2",
  power,
  m,
  alpha = 0.05,
```

6 calc_K_disj_2dftest

```
beta1,
beta2,
varY1,
varY2,
rho01,
rho02,
rho1,
rho2,
r = 1
)
```

Arguments

dist	Specification of which distribution to base calculation on, either 'Chi2' for Chi-Squared or 'F' for F-Distribution.
power	Desired statistical power in decimal form; numeric.
m	Individuals per cluster; numeric.
alpha	Type I error rate; numeric.
beta1	Effect size for the first outcome; numeric.
beta2	Effect size for the second outcome; numeric.
varY1	Total variance for the first outcome; numeric.
varY2	Total variance for the second outcome; numeric.
rho01	Correlation of the first outcome for two different individuals in the same cluster; numeric.
rho02	Correlation of the second outcome for two different individuals in the same cluster; numeric.
rho1	Correlation between the first and second outcomes for two individuals in the same cluster; numeric.
rho2	Correlation between the first and second outcomes for the same individual; numeric.
r	Treatment allocation ratio - $K2 = rK1$ where $K1$ is number of clusters in experimental group; numeric.

Value

A data frame of numerical values.

Examples

```
calc_K_disj_2dftest(power = 0.8, m = 300, alpha = 0.05, beta1 = 0.1, beta2 = 0.1, varY1 = 0.23, varY2 = 0.25, rho01 = 0.025, rho02 = 0.025, rho1 = 0.01, rho2 = 0.05)
```

calc_K_pval_adj 7

calc_K_pval_adj	Calculate required number of clusters per treatment group for a cluster-randomized trial with co-primary endpoints using three common p-value adjustment methods
	mon p-value adjustment methods

Description

Allows user to calculate the number of clusters per treatment arm of a cluster-randomized trial with two co-primary endpoints given a set of study design input values, including the statistical power, and cluster size. Uses three common p-value adjustment methods.

Usage

```
calc_K_pval_adj(
    dist = "Chi2",
    power,
    m,
    alpha = 0.05,
    beta1,
    beta2,
    varY1,
    varY2,
    rho01,
    rho02,
    rho2,
    r = 1
)
```

dist	Specification of which distribution to base calculation on, either 'Chi2' for Chi-Squared or 'F' for F-Distribution.
power	Desired statistical power in decimal form; numeric.
m	Individuals per cluster; numeric.
alpha	Type I error rate; numeric.
beta1	Effect size for the first outcome; numeric.
beta2	Effect size for the second outcome; numeric.
varY1	Total variance for the first outcome; numeric.
varY2	Total variance for the second outcome; numeric.
rho01	Correlation of the first outcome for two different individuals in the same cluster; numeric.
rho02	Correlation of the second outcome for two different individuals in the same cluster; numeric.

rho2 Correlation between the first and second outcomes for the same individual; numeric.

r Treatment allocation ratio - K2 = rK1 where K1 is number of clusters in experimental group; numeric.

Value

A data frame of numerical values.

Examples

```
calc_K_pval_adj(power = 0.8, m = 300, alpha = 0.05,
beta1 = 0.1, beta2 = 0.1, varY1 = 0.23, varY2 = 0.25,
rho01 = 0.025, rho02 = 0.025, rho2 = 0.05)
```

calc_K_single_1dftest Calculate required number of clusters per treatment group for a cluster-randomized trial with co-primary endpoints using the single I-DF combined test approach.

Description

Allows user to calculate the number of clusters per treatment arm of a cluster-randomized trial with two co-primary endpoints given a set of study design input values, including the statistical power, and cluster size. Uses the single 1-DF combined test approach for clustered data and two outcomes.

```
calc_K_single_1dftest(
    dist = "Chi2",
    power,
    m,
    alpha = 0.05,
    beta1,
    beta2,
    varY1,
    varY2,
    rho01,
    rho02,
    rho1,
    rho2,
    r = 1
)
```

calc_m_comb_outcome 9

Arg	um	ents

dist	Specification of which distribution to base calculation on, either 'Chi2' for Chi-Squared or 'F' for F-Distribution.
power	Desired statistical power in decimal form; numeric.
m	Individuals per cluster; numeric.
alpha	Type I error rate; numeric.
beta1	Effect size for the first outcome; numeric.
beta2	Effect size for the second outcome; numeric.
varY1	Total variance for the first outcome; numeric.
varY2	Total variance for the second outcome; numeric.
rho01	Correlation of the first outcome for two different individuals in the same cluster; numeric.
rho02	Correlation of the second outcome for two different individuals in the same cluster; numeric.
rho1	Correlation between the first and second outcomes for two individuals in the same cluster; numeric.
rho2	Correlation between the first and second outcomes for the same individual; numeric.
r	Treatment allocation ratio - $K2 = rK1$ where $K1$ is number of clusters in experimental group; numeric.

Value

A data frame of numerical values.

Examples

```
calc_K_single_1dftest(power = 0.8, m = 300, alpha = 0.05,
beta1 = 0.1, beta2 = 0.1, varY1 = 0.23, varY2 = 0.25,
rho01 = 0.025, rho02 = 0.025, rho1 = 0.01, rho2 = 0.05)
```

calc_m_comb_outcome Calculate cluster size for a cluster-randomized trial with co-primary endpoints using a combined outcomes approach.

Description

Allows user to calculate the cluster size of a cluster-randomized trial with two co-primary endpoints given a set of study design input values, including the number of clusters in each trial arm, and statistical power. Uses a combined outcomes approach where the two outcome effects are summed together.

Usage

```
calc_m_comb_outcome(
    dist = "Chi2",
    power,
    K,
    alpha = 0.05,
    beta1,
    beta2,
    varY1,
    varY2,
    rho01,
    rho02,
    rho1,
    rho2,
    r = 1
)
```

Arguments

dist	Specification of which distribution to base calculation on, either 'Chi2' for Chi-Squared or 'F' for F-Distribution.
power	Desired statistical power in decimal form; numeric.
K	Number of clusters in treatment arm, and control arm under equal allocation; numeric.
alpha	Type I error rate; numeric.
beta1	Effect size for the first outcome; numeric.
beta2	Effect size for the second outcome; numeric.
varY1	Total variance for the first outcome; numeric.
varY2	Total variance for the second outcome; numeric.
rho01	Correlation of the first outcome for two different individuals in the same cluster; numeric.
rho02	Correlation of the second outcome for two different individuals in the same cluster; numeric.
rho1	Correlation between the first and second outcomes for two individuals in the same cluster; numeric.
rho2	Correlation between the first and second outcomes for the same individual; numeric.
r	Treatment allocation ratio - $K2 = rK1$ where $K1$ is number of clusters in experimental group; numeric.

Value

A numerical value.

calc_m_conj_test 11

Examples

```
calc_m_comb_outcome(power = 0.8, K = 15, alpha = 0.05, beta1 = 0.1, beta2 = 0.1, varY1 = 0.23, varY2 = 0.25, rho01 = 0.025, rho02 = 0.025, rho1 = 0.01, rho2 = 0.05)
```

calc_m_conj_test

Calculate cluster size for a cluster-randomized trial with co-primary endpoints using the conjunctive intersection-union test approach.

Description

Allows user to calculate the cluster size of a cluster-randomized trial with two co-primary endpoints given a set of study design input values, including the number of clusters in each trial arm, and statistical power. Uses the conjunctive intersection-union test approach.

Usage

```
calc_m_conj_test(
  dist = T^*
  power,
 Κ,
  alpha = 0.05,
  beta1,
  beta2,
  varY1,
  varY2,
  rho01,
  rho02,
  rho1,
  rho2,
  r = 1,
  cv = 0,
  deltas = c(0, 0),
  two_sided = FALSE
)
```

dist	or 'MVN' for Multivariate Normal Distribution. Default is T-Distribution.
power	Desired statistical power in decimal form; numeric.
K	Number of clusters in treatment arm, and control arm under equal allocation; numeric.
alpha	Type I error rate; numeric.
beta1	Effect size for the first outcome; numeric.

12 calc_m_disj_2dftest

beta2	Effect size for the second outcome; numeric.
varY1	Total variance for the first outcome; numeric.
varY2	Total variance for the second outcome; numeric.
rho01	Correlation of the first outcome for two different individuals in the same cluster; numeric.
rho02	Correlation of the second outcome for two different individuals in the same cluster; numeric.
rho1	Correlation between the first and second outcomes for two individuals in the same cluster; numeric.
rho2	Correlation between the first and second outcomes for the same individual; numeric.
r	Treatment allocation ratio - $K2 = rK1$ where $K1$ is number of clusters in experimental group; numeric.
CV	Cluster variation parameter, set to 0 if assuming all cluster sizes are equal; numeric.
deltas	Vector of non-inferiority margins, set to delta_1 = delta_2 = 0; numeric vector.
two_sided	Specification of whether to conduct two 2-sided tests, 'TRUE', or two 1-sided tests, 'FALSE', default is FALSE; boolean.

Value

A numerical value.

Examples

```
calc_m_conj_test(power = 0.8, K = 15, alpha = 0.05, beta1 = 0.1, beta2 = 0.1, varY1 = 0.23, varY2 = 0.25, rho01 = 0.025, rho02 = 0.025, rho1 = 0.01, rho2 = 0.05)
```

calc_m_disj_2dftest Calculate cluster size for a cluster-randomized trial with co-primary endpoints using a disjunctive 2-DF test approach.

Description

Allows user to calculate the cluster size of a cluster-randomized trial with two co-primary outcomes given a set of study design input values, including the number of clusters in each trial arm, and statistical power. Uses the disjunctive 2-DF test approach.

calc_m_disj_2dftest 13

Usage

```
calc_m_disj_2dftest(
    dist = "Chi2",
    power,
    K,
    alpha = 0.05,
    beta1,
    beta2,
    varY1,
    varY2,
    rho01,
    rho02,
    rho1,
    rho2,
    r = 1
)
```

Arguments

dist	Specification of which distribution to base calculation on, either 'Chi2' for Chi-Squared or 'F' for F-Distribution.
power	Desired statistical power in decimal form; numeric.
K	Number of clusters in treatment arm, and control arm under equal allocation; numeric.
alpha	Type I error rate; numeric.
beta1	Effect size for the first outcome; numeric.
beta2	Effect size for the second outcome; numeric.
varY1	Total variance for the first outcome; numeric.
varY2	Total variance for the second outcome; numeric.
rho01	Correlation of the first outcome for two different individuals in the same cluster; numeric.
rho02	Correlation of the second outcome for two different individuals in the same cluster; numeric.
rho1	Correlation between the first and second outcomes for two individuals in the same cluster; numeric.
rho2	Correlation between the first and second outcomes for the same individual; numeric.
r	Treatment allocation ratio - $K2 = rK1$ where $K1$ is number of clusters in experimental group; numeric.

Value

A numerical value.

14 calc_m_pval_adj

Examples

```
calc_m_disj_2dftest(power = 0.8, K = 15, alpha = 0.05,
beta1 = 0.1, beta2 = 0.1, varY1 = 0.23, varY2 = 0.25,
rho01 = 0.025, rho02 = 0.025, rho1 = 0.01, rho2 = 0.05)
```

calc_m_pval_adj

Calculate cluster size for a cluster-randomized trial with co-primary endpoints using three common p-value adjustment methods

Description

#' @description Allows user to calculate the cluster size of a cluster-randomized trial with two coprimary endpoints given a set of study design input values, including the number of clusters in each trial arm, and statistical power. Uses three common p-value adjustment methods.

Usage

```
calc_m_pval_adj(
    dist = "Chi2",
    power,
    K,
    alpha = 0.05,
    beta1,
    beta2,
    varY1,
    varY2,
    rho01,
    rho02,
    rho2,
    r = 1
)
```

dist	Specification of which distribution to base calculation on, either 'Chi2' for Chi-Squared or 'F' for F-Distribution.
power	Desired statistical power in decimal form; numeric.
K	Number of clusters in treatment arm, and control arm under equal allocation; numeric.
alpha	Type I error rate; numeric.
beta1	Effect size for the first outcome; numeric.
beta2	Effect size for the second outcome; numeric.
varY1	Total variance for the first outcome; numeric.
varY2	Total variance for the second outcome; numeric.

calc_m_single_1dftest 15

rho01	Correlation of the first outcome for two different individuals in the same cluster; numeric.
rho02	Correlation of the second outcome for two different individuals in the same cluster; numeric.
rho2	Correlation between the first and second outcomes for the same individual; numeric.
r	Treatment allocation ratio - $K2 = rK1$ where $K1$ is number of clusters in experimental group; numeric.

Value

A data frame of numerical values.

Examples

```
calc_m_pval_adj(power = 0.8, K = 15, alpha = 0.05,
beta1 = 0.1, beta2 = 0.1, varY1 = 0.23, varY2 = 0.25,
rho01 = 0.025, rho02 = 0.025, rho2 = 0.05)
```

calc_m_single_1dftest Calculate cluster size for a cluster-randomized trial with co-primary endpoints using the single 1-DF combined test approach.

Description

Allows user to calculate the cluster size of a cluster-randomized trial with two co-primary endpoints given a set of study design input values, including the number of clusters in each trial arm, and statistical power. Uses the single 1-DF combined test approach for clustered data and two outcomes.

```
calc_m_single_1dftest(
    dist = "Chi2",
    power,
    K,
    alpha = 0.05,
    beta1,
    beta2,
    varY1,
    varY2,
    rho01,
    rho02,
    rho1,
    rho2,
    r = 1
)
```

16 calc_ncp_chi2

Arguments

dist	Specification of which distribution to base calculation on, either 'Chi2' for Chi-Squared or 'F' for F-Distribution.
power	Desired statistical power in decimal form; numeric.
K	Number of clusters in treatment arm, and control arm under equal allocation; numeric.
alpha	Type I error rate; numeric.
beta1	Effect size for the first outcome; numeric.
beta2	Effect size for the second outcome; numeric.
varY1	Total variance for the first outcome; numeric.
varY2	Total variance for the second outcome; numeric.
rho01	Correlation of the first outcome for two different individuals in the same cluster; numeric.
rho02	Correlation of the second outcome for two different individuals in the same cluster; numeric.
rho1	Correlation between the first and second outcomes for two individuals in the same cluster; numeric.
rho2	Correlation between the first and second outcomes for the same individual; numeric.
r	Treatment allocation ratio - $K2 = rK1$ where $K1$ is number of clusters in experimental group; numeric.

Value

A numerical value.

Examples

```
calc_m_single_1dftest(power = 0.8, K = 15, alpha = 0.05, beta1 = 0.1, beta2 = 0.1, varY1 = 0.23, varY2 = 0.25, rho01 = 0.025, rho02 = 0.025, rho1 = 0.01, rho2 = 0.05)
```

calc_ncp_chi2 Find the non-centrality parameter corresponding to Type I error rate and statistical power

Description

Allows user to find the corresponding non-centrality parameter for power analysis based on the Type I error rate, statistical power, and degrees of freedom.

```
calc_ncp_chi2(alpha, power, df = 1)
```

Arguments

alpha Type I error rate; numeric.

power Desired statistical power in decimal form; numeric.

df Degrees of freedom; numeric.

Value

A number.

Examples

```
calc_ncp_chi2(alpha = 0.05, power = 0.8, df = 1)
```

calc_pwr_comb_outcome Calculate statistical power for a cluster-randomized trial with coprimary endpoints using a combined outcomes approach.

Description

Allows user to calculate the statistical power of a cluster-randomized trial with two co-primary outcomes given a set of study design input values, including the number of clusters in each trial arm, and cluster size. Uses a combined outcomes approach where the two outcome effects are summed together.

```
calc_pwr_comb_outcome(
    dist = "Chi2",
    K,
    m,
    alpha = 0.05,
    beta1,
    beta2,
    varY1,
    varY2,
    rho01,
    rho02,
    rho1,
    rho2,
    r = 1
)
```

18 calc_pwr_conj_test

Argumen	ts
---------	----

dist	Specification of which distribution to base calculation on, either 'Chi2' for Chi-Squared or 'F' for F-Distribution.
K	Number of clusters in treatment arm, and control arm under equal allocation; numeric.
m	Individuals per cluster; numeric.
alpha	Type I error rate; numeric.
beta1	Effect size for the first outcome; numeric.
beta2	Effect size for the second outcome; numeric.
varY1	Total variance for the first outcome; numeric.
varY2	Total variance for the second outcome; numeric.
rho01	Correlation of the first outcome for two different individuals in the same cluster; numeric.
rho02	Correlation of the second outcome for two different individuals in the same cluster; numeric.
rho1	Correlation between the first and second outcomes for two individuals in the same cluster; numeric.
rho2	Correlation between the first and second outcomes for the same individual; numeric.
r	Treatment allocation ratio - $K2 = rK1$ where $K1$ is number of clusters in experimental group; numeric.

Value

A numerical value.

Examples

```
calc_pwr_comb_outcome(K = 15, m = 300, alpha = 0.05, beta1 = 0.1, beta2 = 0.1, varY1 = 0.23, varY2 = 0.25, rho01 = 0.025, rho02 = 0.025, rho1 = 0.01, rho2 = 0.05)
```

Description

Allows user to calculate the statistical power of a cluster-randomized trial with two co-primary outcomes given a set of study design input values, including the number of clusters in each trial arm, and cluster size. Uses the conjunctive intersection-union test approach. Code is adapted from "calPower_ttestIU()" from https://github.com/siyunyang/coprimary_CRT written by Siyun Yang.

calc_pwr_conj_test 19

Usage

```
calc_pwr_conj_test(
  dist = "T",
  Κ,
  alpha = 0.05,
  beta1,
  beta2,
  varY1,
  varY2,
  rho01,
  rho02,
  rho1,
  rho2,
  r = 1,
  cv = 0,
  deltas = c(0, 0),
  two_sided = FALSE
)
```

dist	Specification of which distribution to base calculation on, either 'T' for T-Distribution or 'MVN' for Multivariate Normal Distribution. Default is T-Distribution.
K	Number of clusters in treatment arm, and control arm under equal allocation; numeric.
m	Individuals per cluster; numeric.
alpha	Type I error rate; numeric.
beta1	Effect size for the first outcome; numeric.
beta2	Effect size for the second outcome; numeric.
varY1	Total variance for the first outcome; numeric.
varY2	Total variance for the second outcome; numeric.
rho01	Correlation of the first outcome for two different individuals in the same cluster; numeric.
rho02	Correlation of the second outcome for two different individuals in the same cluster; numeric.
rho1	Correlation between the first and second outcomes for two individuals in the same cluster; numeric.
rho2	Correlation between the first and second outcomes for the same individual; numeric.
r	Treatment allocation ratio - $K2 = rK1$ where $K1$ is number of clusters in experimental group; numeric.
CV	Cluster variation parameter, set to 0 if assuming all cluster sizes are equal; numeric.

deltas Vector of non-inferiority margins, set to delta_1 = delta_2 = 0; numeric vector.

two_sided Specification of whether to conduct two 2-sided tests, 'TRUE', or two 1-sided

tests, 'FALSE', default is FALSE; boolean.

Value

A numerical value.

Examples

```
calc_pwr_conj_test(K = 15, m = 300, alpha = 0.05,
beta1 = 0.1, beta2 = 0.1, varY1 = 0.23, varY2 = 0.25,
rho01 = 0.025, rho02 = 0.025, rho1 = 0.01, rho2 = 0.05)
```

calc_pwr_disj_2dftest Calculate statistical power for a cluster-randomized trial with coprimary endpoints using a disjunctive 2-DF test approach.

Description

Allows user to calculate the statistical power of a cluster-randomized trial with two co-primary outcomes given a set of study design input values, including the number of clusters in each trial arm, and cluster size. Uses the disjunctive 2-DF test approach. Code is adapted from "calPower_omnibus()" from https://github.com/siyunyang/coprimary_CRT written by Siyun Yang.

```
calc_pwr_disj_2dftest(
    dist = "Chi2",
    K,
    m,
    alpha = 0.05,
    beta1,
    beta2,
    varY1,
    varY2,
    rho01,
    rho02,
    rho1,
    rho2,
    r = 1
)
```

calc_pwr_pval_adj 21

Arguments

dist	Specification of which distribution to base calculation on, either 'Chi2' for Chi-Squared or 'F' for F-Distribution.
K	Number of clusters in treatment arm, and control arm under equal allocation; numeric.
m	Individuals per cluster; numeric.
alpha	Type I error rate; numeric.
beta1	Effect size for the first outcome; numeric.
beta2	Effect size for the second outcome; numeric.
varY1	Total variance for the first outcome; numeric.
varY2	Total variance for the second outcome; numeric.
rho01	Correlation of the first outcome for two different individuals in the same cluster; numeric.
rho02	Correlation of the second outcome for two different individuals in the same cluster; numeric.
rho1	Correlation between the first and second outcomes for two individuals in the same cluster; numeric.
rho2	Correlation between the first and second outcomes for the same individual; numeric.
r	Treatment allocation ratio - $K2 = rK1$ where $K1$ is number of clusters in experimental group; numeric.

Value

A numerical value.

Examples

```
calc_pwr_disj_2dftest(K = 15, m = 300, alpha = 0.05,
beta1 = 0.1, beta2 = 0.1, varY1 = 0.23, varY2 = 0.25,
rho01 = 0.025, rho02 = 0.025, rho1 = 0.01, rho2 = 0.05)
```

calc_pwr_pval_adj Calculate statistical power for a cluster-randomized trial with coprimary endpoints using three common p-value adjustment methods

Description

Allows user to calculate the statistical power of a cluster-randomized trial with two co-primary endpoints given a set of study design input values, including the number of clusters in each trial arm, and cluster size. Uses three common p-value adjustment methods.

22 calc_pwr_pval_adj

Usage

```
calc_pwr_pval_adj(
    dist = "Chi2",
    K,
    m,
    alpha = 0.05,
    beta1,
    beta2,
    varY1,
    varY2,
    rho01,
    rho02,
    rho2,
    r = 1
)
```

Arguments

dist	Specification of which distribution to base calculation on, either 'Chi2' for Chi-Squared or 'F' for F-Distribution.
K	Number of clusters in treatment arm, and control arm under equal allocation; numeric.
m	Individuals per cluster; numeric.
alpha	Type I error rate; numeric.
beta1	Effect size for the first outcome; numeric.
beta2	Effect size for the second outcome; numeric.
varY1	Total variance for the first outcome; numeric.
varY2	Total variance for the second outcome; numeric.
rho01	Correlation of the first outcome for two different individuals in the same cluster; numeric.
rho02	Correlation of the second outcome for two different individuals in the same cluster; numeric.
rho2	Correlation between the first and second outcomes for the same individual; numeric.
r	Treatment allocation ratio - $K2 = rK1$ where $K1$ is number of clusters in experimental group; numeric.

Value

A data frame of numerical values.

Examples

```
calc_pwr_pval_adj(K = 15, m = 300, alpha = 0.05,
beta1 = 0.1, beta2 = 0.1, varY1 = 0.23, varY2 = 0.25,
rho01 = 0.025, rho02 = 0.025, rho2 = 0.05)
```

```
calc_pwr_single_1dftest
```

Calculate statistical power for a cluster-randomized trial with coprimary endpoints using the single 1-DF combined test approach.

Description

Allows user to calculate the statistical power of a cluster-randomized trial with two co-primary endpoints given a set of study design input values, including the number of clusters in each trial arm, and cluster size. Uses the single 1-DF combined test approach for clustered data and two outcomes.

Usage

```
calc_pwr_single_1dftest(
    dist = "Chi2",
    K,
    m,
    alpha = 0.05,
    beta1,
    beta2,
    varY1,
    varY2,
    rho01,
    rho02,
    rho1,
    rho2,
    r = 1
)
```

dist	Specification of which distribution to base calculation on, either 'Chi2' for Chi-Squared or 'F' for F-Distribution.
K	Number of clusters in treatment arm, and control arm under equal allocation; numeric.
m	Individuals per cluster; numeric.
alpha	Type I error rate; numeric.
beta1	Effect size for the first outcome; numeric.
beta2	Effect size for the second outcome; numeric.
varY1	Total variance for the first outcome; numeric.
varY2	Total variance for the second outcome; numeric.
rho01	Correlation of the first outcome for two different individuals in the same cluster; numeric.

24 run_crt2_design

rho02	Correlation of the second outcome for two different individuals in the same cluster; numeric.
rho1	Correlation between the first and second outcomes for two individuals in the same cluster; numeric.
rho2	Correlation between the first and second outcomes for the same individual; numeric.
r	Treatment allocation ratio - $K2 = rK1$ where $K1$ is number of clusters in experimental group; numeric.

Value

A numerical value.

Examples

```
calc_pwr_single_1dftest(K = 15, m = 300, alpha = 0.05, beta1 = 0.1, beta2 = 0.1, varY1 = 0.23, varY2 = 0.25, rho01 = 0.025, rho02 = 0.025, rho1 = 0.01, rho2 = 0.05)
```

run_crt2_design

Find study design output specifications based on all five CRT coprimary design methods.

Description

Allows user to calculate either statistical power, number of clusters per treatment group (K), or cluster size (m), given a set of input values for all five study design approaches.

```
run_crt2_design(
 output,
 power = NA,
 K = NA
 m = NA
  alpha = 0.05,
 beta1,
 beta2,
 varY1,
  varY2,
  rho01,
  rho02,
 rho1,
 rho2,
  r = 1
)
```

run_crt2_design 25

Arguments

output	Parameter to calculate, either "power", "K", or "m"; character.
power	Desired statistical power; numeric.
K	Number of clusters in each arm; numeric.
m	Individuals per cluster; numeric.
alpha	Type I error rate; numeric.
beta1	Effect size for the first outcome; numeric.
beta2	Effect size for the second outcome; numeric.
varY1	Total variance for the first outcome; numeric.
varY2	Total variance for the second outcome; numeric.
rho01	Correlation of the first outcome for two different individuals in the same cluster; numeric.
rho02	Correlation of the second outcome for two different individuals in the same cluster; numeric.
rho1	Correlation between the first and second outcomes for two individuals in the same cluster; numeric.
rho2	Correlation between the first and second outcomes for the same individual; numeric.
r	Treatment allocation ratio - $K2 = rK1$ where $K1$ is number of clusters in experimental group; numeric.

Value

A data frame of numerical values.

Examples

```
run_crt2_design(output = "power", K = 15, m = 300, alpha = 0.05, beta1 = 0.1, beta2 = 0.1, varY1 = 0.23, varY2 = 0.25, rho01 = 0.025, rho02 = 0.025, rho1 = 0.01, rho2 = 0.05)
```

Index

```
calc_K_comb_outcome, 2
calc_K_conj_test, 4
calc_K_disj_2dftest, 5
calc_K_pval_adj, 7
calc_K_single_1dftest, 8
calc_m_comb_outcome, 9
calc_m_conj_test, 11
{\tt calc\_m\_disj\_2dftest}, {\color{red} 12}
calc_m_pval_adj, 14
calc_m_single_1dftest, 15
calc_ncp_chi2, 16
calc_pwr_comb_outcome, 17
calc_pwr_conj_test, 18
{\tt calc\_pwr\_disj\_2dftest, \textcolor{red}{20}}
calc_pwr_pval_adj, 21
calc_pwr_single_1dftest, 23
run_crt2_design, 24
```