Package 'dataRetrieval'

July 22, 2025

Type Package

```
Title Retrieval Functions for USGS and EPA Hydrology and Water Quality
      Data
Version 2.7.20
Description Collection of functions to help retrieve U.S. Geological Survey
      and U.S. Environmental Protection Agency water quality and
      hydrology data from web services.
License CC0
Copyright This software is in the public domain because it contains
      materials that originally came from the United States
      Geological Survey, an agency of the United States Department of
      Interior.
Depends R (>= 4.1.0)
Imports curl (>= 6.0.0), lubridate (>= 1.5.0), stats, utils, xml2,
      readr (>= 1.4.0), jsonlite, httr2, whisker, sf
Suggests covr, dplyr, knitr, rmarkdown, testthat
Encoding UTF-8
BuildVignettes true
VignetteBuilder knitr
BugReports https://github.com/DOI-USGS/dataRetrieval/issues
RoxygenNote 7.3.2
NeedsCompilation no
Author Laura DeCicco [aut, cre] (ORCID:
       <https://orcid.org/0000-0002-3915-9487>),
      Robert Hirsch [aut] (ORCID: <a href="https://orcid.org/0000-0002-4534-075X">https://orcid.org/0000-0002-4534-075X</a>),
      David Lorenz [aut],
      Jordan Read [ctb],
      Jordan Walker [ctb],
      Lindsay Platt [ctb],
      David Watkins [aut] (ORCID: <a href="https://orcid.org/0000-0002-7544-0700">https://orcid.org/0000-0002-7544-0700</a>),
      David Blodgett [aut] (ORCID: <a href="https://orcid.org/0000-0001-9489-1710">https://orcid.org/0000-0001-9489-1710</a>),
```

2 Contents

Mike Johnson [aut] (ORCID: https://orcid.org/0000-0002-5288-8350), Aliesha Krall [ctb] (ORCID: https://orcid.org/0000-0003-2521-5043), Lee Stanish [ctb] (ORCID: https://orcid.org/0000-0008-1463-6313), Elise Hinman [ctb] (ORCID: https://orcid.org/0000-0001-5396-1583), Michael Mahoney [ctb] (ORCID: https://orcid.org/0000-0003-2402-304X)

Maintainer Laura DeCicco <ldecicco@usgs.gov>

Repository CRAN

Date/Publication 2025-07-15 05:10:05 UTC

Contents

ddWaterYear	3
alcWaterYear	4
heckWQPdates	5
heck_waterdata_sample_params	5
onstructNWISURL	6
onstructUseURL	8
onstructWQPURL	9
ountyCd	10
ountyCdLookup	10
reate_NWIS_bib	
reate_WQP_bib	
ndNLDI	12
etQuerySummary	14
etWebServiceData	15
et_nldi_sources	16
mportNGWMN	16
mportRDB1	17
mportWaterML1	19
mportWaterML2	22
mportWQP	23
s_dataRetrieval_user	24
arameterCdFile	
arse_WQP	25
code_to_name	26
eadNGWMNdata	26
eadNGWMNlevels	
eadNGWMNsites	
eadNWISdata	
eadNWISdv	
eadNWISgwl	35
eadNWISmeas	37
eadNWISpCode	39
eadNWISpeak	
eadNWISrating	41
and NWIS site	

addWaterYear 3

	readNWISstat	
	readNWISuse	46
	readNWISuv	47
	readWQPdata	50
	readWQPqw	55
	readWQPsummary	57
	read_waterdata	58
	read_waterdata_daily	60
	read_waterdata_latest_continuous	63
	read_waterdata_metadata	66
	read_waterdata_monitoring_location	
	read_waterdata_parameter_codes	
	read_waterdata_samples	
	read waterdata ts meta	
	renameNWISColumns	
	setAccess	
	stateCd	
	stateCdLookup	
	summarize_waterdata_samples	
	whatNWISdata	
	whatNWISsites	
	whatWQPdata	
	whatWQPsamples	
	wqp_check_status	
	zeroPad	93
Index		94
illucx		,
addWa	aterYear add a water year column	

Description

Add a column to the dataRetrieval data frame with the water year. WQP queries will return a water year column for the start and end dates of the data.

Usage

addWaterYear(rawData)

Arguments

rawData

the daily- or unit-values datset retrieved from NWISweb. Must have at least one of the following columns to add the new water year columns: dateTime, Date, ActivityStartDate, or ActivityEndDate. The date column(s) can be character, POSIXct, Date. They cannot be numeric.

4 calcWaterYear

Value

data.frame with an additional integer column with "WY" appended to the date column name. For WQP, there will be 2 columns: ActivityStartDateWY and ActivityEndDateWY.

Examples

```
nwisData <- readNWISdv("04085427", "00060", "2022-01-01", "2022-06-30")
nwisData <- addWaterYear(nwisData)
wqpData <- readWQPqw("USGS-01594440", "01075", "", "")
wqpData <- addWaterYear(wqpData)</pre>
```

calcWaterYear

Extract WY from a date

Description

Determine the correct water year based on a calendar date.

Usage

```
calcWaterYear(dateVec)
```

Arguments

dateVec

vector of dates as character ("YYYY-DD-MM"), Date, or POSIXct. Numeric does not work.

Details

This function calculates a water year based on the USGS definition that a water year starts on October 1 of the year before, and ends on September 30. For example, water year 2015 started on 2014-10-01 and ended on 2015-09-30.

Value

numeric vector indicating the water year

```
x <- seq(as.Date("2010-01-01"), as.Date("2010-12-31"), by = "month")
calcWaterYear(x)

y <- c("2010-01-01", "1994-02", "1980", "2009-11-01", NA)
calcWaterYear(y)</pre>
```

checkWQPdates 5

checkWQPdates

Date Check for Water Quality Portal

Description

Checks date format for inputs to the Water Quality Portal. Used in readWQPqw and readWQPdata.

Usage

```
checkWQPdates(values)
```

Arguments

values

named list with arguments to send to the Water Quality Portal

Value

values named list with corrected arguments to send to the Water Quality Portal

Examples

```
values <- list(
  startDateLo = "01-01-2002",
  characteristicName = "Phosphorous",
  endDate = as.Date("2014-01-01")
)
values <- checkWQPdates(values)</pre>
```

check_waterdata_sample_params

Check values from codeservice

Description

Call a service to check on values from: https://api.waterdata.usgs.gov/samples-data/codeservice/docs.

Usage

```
check_waterdata_sample_params(service = "characteristicgroup", ...)
```

Arguments

```
service Options are: "characteristicgroup", "states", "countries", "sitetype", "samplemedia", "characteristics", "observedproperty"
... Optional additional query arguments. Only "characteristics" and "observedproperty" have additional parameters options.
```

6 constructNWISURL

Value

List, structure depends on service.

Examples

constructNWISURL

Construct NWIS url for data retrieval

Description

Using USGS water web services to construct urls.

Usage

```
constructNWISURL(
   siteNumbers,
   parameterCd = "00060",
   startDate = "",
   endDate = "",
   service,
   statCd = "00003",
   format = "xml",
   expanded = TRUE,
   ratingType = "base",
   statReportType = "daily",
   statType = "mean"
)
```

constructNWISURL 7

Arguments

siteNumbers string or vector of strings USGS site number. This is usually an 8 digit number parameterCd string or vector of USGS parameter code. This is usually an 5 digit number. startDate character starting date for data retrieval in the form YYYY-MM-DD. Default is "" which indicates retrieval for the earliest possible record. endDate character ending date for data retrieval in the form YYYY-MM-DD. Default is "" which indicates retrieval for the latest possible record. string USGS service to call. Possible values are "dv" (daily values), "uv" (unit/instantaneous service values), "gwlevels" (groundwater), and "rating" (rating curve), "peak", "meas" (discrete streamflow measurements), "stat" (statistics web service BETA). statCd string or vector USGS statistic code only used for daily value service. This is usually 5 digits. Daily mean (00003) is the default. format string, can be "tsv" or "xml", and is only applicable for daily and unit value requests. "tsv" returns results faster, but there is a possibility that an incomplete file is returned without warning. XML is slower, but will offer a warning if the file was incomplete (for example, if there was a momentary problem with the internet connection). It is possible to safely use the "tsv" option, but the user must carefully check the results to see if the data returns matches what is expected. The default is therefore "xml". expanded logical defaults to TRUE. If TRUE, retrieves additional information, only applicable for qw data. ratingType can be "base", "corr", or "exsa". Only applies to rating curve data. statReportType character Only used for statistics service requests. Time division for statistics: daily, monthly, or annual. Default is daily. Note that daily provides statistics for each calendar day over the specified range of water years, i.e. no more than 366 data points will be returned for each site/parameter. Use readNWISdata or readNWISdv for daily averages. Also note that "annual" returns statistics for the calendar year. Use readNWISdata for water years. Monthly and yearly provide statistics for each month and year within the range individually. statType character Only used for statistics service requests. Type(s) of statistics to output for daily values. Default is mean, which is the only option for monthly and yearly report types. See the statistics service documentation at https:

//waterservices.usgs.gov/docs/statistics/ for a full list of codes.

Value

url string

```
site_id <- "01594440"
startDate <- "1985-01-01"
endDate <- ""
pCode <- c("00060", "00010")
url_daily <- constructNWISURL(site_id, pCode,
    startDate, endDate, "dv",</pre>
```

8 constructUseURL

constructUseURL

Construct URL for NWIS water use data service

Description

Reconstructs URLs to retrieve data from here: https://waterdata.usgs.gov/nwis/wu

Usage

```
constructUseURL(years, stateCd, countyCd, categories)
```

Arguments

years	integer Years for data retrieval. Must be years ending in 0 or 5, or "ALL", which retrieves all available years.
stateCd	could be character (full name, abbreviation, id), or numeric (id)
countyCd	could be numeric (County IDs from countyCdLookup) or character ("ALL")
categories	character Two-letter cateogory abbreviation(s)

Value

url string

```
url <- constructUseURL(
  years = c(1990, 1995),
  stateCd = "Ohio",
  countyCd = c(1, 3),
  categories = "ALL"
)</pre>
```

constructWQPURL 9

constructWQPURL

Construct WQP url for data retrieval

Description

Construct WQP url for data retrieval. This function gets the data from here: https://www.waterqualitydata.us

Usage

```
constructWQPURL(siteNumbers, parameterCd, startDate, endDate, legacy = TRUE)
```

Arguments

string or vector of strings USGS site number.

string or vector of USGS parameter code. This is usually an 5 digit number.

startDate character starting date for data retrieval in the form YYYY-MM-DD. Default is

"" which indicates retrieval for the earliest possible record.

endDate character ending date for data retrieval in the form YYYY-MM-DD. Default is

"" which indicates retrieval for the latest possible record.

legacy Logical. If TRUE, uses legacy WQP services. Default is TRUE. Setting legacy

= FALSE uses WQX3.0 WQP services, which are in-development, use with caution.

Value

url string

```
site_ids <- c("USGS-02292010", "USGS-02276877")
startDate <- "2020-01-01"
endDate <- ""
pCode <- c("80154", "00613")
url_wqp <- constructWQPURL(</pre>
  site_ids,
  pCode,
  startDate, endDate
)
url_wqp
charNames <- c(
  "Temperature",
  "Temperature, sample",
  "Temperature, water",
  "Temperature, water, deg F"
)
obs_url_orig <- constructWQPURL(</pre>
  siteNumbers = c(
```

10 countyCdLookup

```
"IIDFG-41WSSPAHS",
"USGS-02352560"
),
parameterCd = charNames,
startDate, ""
)
obs_url_orig
```

countyCd

US County Code Lookup Table

Description

Classic lookup table for counties. Has been replaced in functions with check_waterdata_sample_params("counties").

Value

countyCd data frame.

Name	Type	Description
STUSAB	character	State abbreviation
STATE	character	two-digit ANSI code
COUNTY	character	three-digit county code
COUNTY_NAME	character	County full name
COUNTY ID	character	County id

Examples

head(countyCd)

countyCdLookup	US county code look up

Description

Function to simplify finding county and county code definitions. Used in readNWISdata and readNWISuse. Currently only has US counties.

Usage

```
countyCdLookup(state, county, outputType = "fips")
```

Arguments

```
state could be character (full name, abbreviation, id), or numeric (id) county could be character (name, with or without "County") or numeric (id) outputType character can be "fullName", "tableIndex", "id", or "fullEntry".
```

create_NWIS_bib

Examples

```
fips <- countyCdLookup(state = "WI", county = "Dane")
id <- countyCdLookup(state = "WI", county = "Dane", outputType = "id")
name <- countyCdLookup(state = "OH", county = 13, output = "fullName")
entry <- countyCdLookup(state = "Pennsylvania", county = "ALLEGHENY COUNTY", output = "fullEntry")
fromIDs <- countyCdLookup(state = 13, county = 5, output = "fullName")</pre>
```

create_NWIS_bib

Create NWIS data citation

Description

Uses attributes from the NWIS functions to create data citations.

Usage

```
create_NWIS_bib(x)
```

Arguments

Х

Any data returned from an NWIS function, must include "queryTime" and "url" attributes, which should come with the data by default.

Details

See ?bibentry for more information.

Value

bibentry object to use for citing the data.

```
nwisData <- readNWISdv("04085427", "00060", "2012-01-01", "2012-06-30")
nwis_citation <- create_NWIS_bib(nwisData)
nwis_citation

print(nwis_citation, style = "Bibtex")
print(nwis_citation, style = "citation")</pre>
```

12 findNLDI

create_WQP_bib

Create WQP data citation

Description

Uses attributes from the WQP functions to create data citations.

Usage

```
create_WQP_bib(x)
```

Arguments

Χ

Any data returned from an NWIS function, must include "queryTime" and "url" attributes, which should come with the data by default.

Details

See ?bibentry for more information.

Value

bibentry object to use for citing the data.

Examples

findNLDI

R Client for the Network Linked Data Index

Description

Provides a formal client to the USGS Network Linked Data Index.

findNLDI 13

Usage

```
findNLDI(
  comid = NULL,
  nwis = NULL,
  wqp = NULL,
  huc12 = NULL,
  location = NULL,
  origin = NULL,
  nav = NULL,
  find = c("flowlines"),
  distance_km = 100,
  no_sf = FALSE,
  warn = TRUE
)
```

Arguments

C	omid	numeric or character. An NHDPlusV2 COMID
n۱	wis	numeric or character. A USGS NWIS surface water siteID
W	qp	numeric or character. A water quality point ID
h	uc12	numeric or character. A WBD HUC12 unit ID
1	ocation	numeric vector. Coordinate pair in WGS84 SRS ordered lng/lat (X,Y)
0	rigin	named list. Specifying a feature type and ID (e.g. list("comid" = 101))
n	av	character vector. where to navigate from the starting point. Options include along the upper mainsteam (UM), upstream tributary (UT), downstream mainstem (DM) and downstream divergences (DD). You may select one or more of the abbreviations ("UM", "UT", DM", "DD").
f	ind	character vector. Define what resources to find along the navigation path(s) (see get_nldi_sources()\$source). Can also include 'basin' or 'flowline', which will return the upstream basin of the starting feature or flowlines along the navigation respectively. The default is "flowlines". If you provide any other resource, AND want flowlines, then flowlines must be explicitly requested.
d	istance_km	numeric. Define how far to look along the navigation path in kilometers (default $= 100$)
n	o_sf	if available, should sf be used for parsing, defaults to TRUE if sf is locally installed
W	arn	(default TRUE) should warnings be printed

Details

The function is useful for topology and location based feature discovery. A user must specify an origin feature, optional navigation direction(s) along the network, as well as features to identify along the navigated paths. Valid starting options can be given by one of the following arguments: comid, nwis, huc12, wqp, location, and start.

14 getQuerySummary

Value

a list of data.frames if sf is not installed, a list of sf objects if it is

Examples

```
# Find Features / Define origin features
## Find feature by COMID
findNLDI(comid = 101)
## Find feature by NWIS ID
findNLDI(nwis = "11120000")
## Find feature by LOCATION
findNLDI(location = c(-115, 40))
## GENERAL ORIGIN: COMID
findNLDI(origin = list("comid" = 101))
# Navigation (flowlines will be returned if find is unspecified)
# UPPER MAINSTEM of USGS-11120000
findNLDI(nwis = "11120000", nav = "UM")
# MULTI-REQUEST
# UPPER MAINSTEM and TRIBUTARY of USGS-11120000
findNLDI(nwis = "11120000", nav = c("UT", "UM"))
# Discover Features(flowlines will not be returned unless included in find)
## Find feature(s) on the upper tributary of USGS-11120000
findNLDI(nwis = "11120000", nav = "UT", find = c("nwis"))
## Find upstream basin boundary and of USGS-11120000
findNLDI(nwis = "11120000", find = "basin")
# Control Distance
## Limit search to 50 km
findNLDI(comid = 101, nav = "DM", find = c("nwis", "flowlines"), distance_km = 50)
```

getQuerySummary

getting header information from a WQP query

Description

getting header information from a WQP query

getWebServiceData 15

Usage

```
getQuerySummary(url)
```

Arguments

url

the query url

getWebServiceData

Function to return data from web services

Description

This function accepts a url parameter, and returns the raw data.

Usage

```
getWebServiceData(obs_url, ...)
```

Arguments

obs_url character containing the url for the retrieval ... information to pass to header request

Details

To add a custom user agent, create an environmental variable: CUSTOM_DR_UA

Value

Returns xml, json, or text depending on the requested data.

```
siteNumber <- "02177000"
startDate <- "2012-09-01"
endDate <- "2012-10-01"
offering <- "00003"
property <- "00060"
obs_url <- constructNWISURL(siteNumber, property, startDate, endDate, "dv")
rawData <- getWebServiceData(obs_url)</pre>
```

16 importNGWMN

get_nldi_sources

Get current NLDI offerings

Description

Used to query the current resources available through the NLDI

Usage

```
get_nldi_sources(url = pkg.env$nldi_base)
```

Arguments

url

URL for NLDI sources. Default is supplied by package environment.

Value

data.frame

Examples

```
get_nldi_sources()
```

importNGWMN

Function to return data from the National Ground Water Monitoring Network waterML2 format

Description

This function accepts a url parameter for a WaterML2 getObservation. This function is still under development, but the general functionality is correct.

Usage

```
importNGWMN(input, asDateTime = FALSE, tz = "UTC")
```

importRDB1

Arguments

input character or raw, containing the url for the retrieval or a path to the data file, or

raw XML.

asDateTime logical, if TRUE returns date and time as POSIXct, if FALSE, character

tz character to set timezone attribute of dateTime. Default is "UTC", and converts

the date times to UTC, properly accounting for daylight savings times based on the data's provided time zone offset. Possible values to provide are "America/New_York", "America/Chicago", "America/Denver", "America/Los_Angeles", "America/Anchorage", as well as the following which do not use daylight savings time: "America/Honolulu", "America/Jamaica", "America/Managua", "America/Phoenix", and "America/Metlakatla". See also OlsonNames() for more in-

formation on time zones.

Value

mergedDF a data frame source, time, value, uom, uomTitle, comment, gmlID

Examples

importRDB1

Function to return data from the NWIS RDB 1.0 format

Description

This function accepts a url parameter that already contains the desired NWIS site, parameter code, statistic, startdate and enddate. It is not recommended to use the RDB format for importing multisite data.

18 importRDB1

Usage

```
importRDB1(obs_url, asDateTime = TRUE, convertType = TRUE, tz = "UTC")
```

Arguments

obs_url character containing the url for the retrieval or a file path to the data file.

asDateTime logical, if TRUE returns date and time as POSIXct, if FALSE, Date

convertType logical, defaults to TRUE. If TRUE, the function will convert the data to dates,

datetimes, numerics based on a standard algorithm. If false, everything is re-

turned as a character

tz character to set timezone attribute of datetime. Default converts the datetimes

to UTC (properly accounting for daylight savings times based on the data's provided tz_cd column). Recommended US values include "UTC", "America/New_York", "America/Chicago", "America/Denver", "America/Los_Angeles", "America/Anchorage", "America/Honolulu", "America/Jamaica", "America/Managua",

"America/Phoenix", and "America/Metlakatla". For a complete list, see https:

//en.wikipedia.org/wiki/List_of_tz_database_time_zones

Value

A data frame with the following columns:

Name Type Description

agency_cd character The NWIS code for the agency reporting the data

site_no character The USGS site number

datetime POSIXct The date and time of the value converted to UTC (if asDateTime = TRUE

character or raw character string (if asDateTime = FALSE)

tz_cd character The time zone code for datetime

code character Any codes that qualify the corresponding value

value numeric The numeric value for the parameter

tz_cd_reported The originally reported time zone

Note that code and value are repeated for the parameters requested. The names are of the form XD_P_S, where X is literal, D is an option description of the parameter, P is the parameter code, and S is the statistic code (if applicable). If a date/time (dt) column contained incomplete date and times, a new column of dates and time was inserted. This could happen when older data was reported as dates, and newer data was reported as a date/time.

There are also several useful attributes attached to the data frame:

Name Type Description

url character The url used to generate the data queryTime POSIXct The time the data was returned comment character Header comments from the RDB file

importWaterML1 19

Examples

```
site_id <- "02177000"
startDate <- "2012-09-01"
endDate <- "2012-10-01"
offering <- "00003"
property <- "00060"
obs_url <- constructNWISURL(site_id, property,</pre>
  startDate, endDate, "dv",
  format = "tsv"
data <- importRDB1(obs_url)</pre>
urlMultiPcodes <- constructNWISURL("04085427", c("00060", "00010"),
  startDate, endDate, "dv",
  statCd = c("00003", "00001"), "tsv"
)
multiData <- importRDB1(urlMultiPcodes)</pre>
unitDataURL <- constructNWISURL(site_id, property,</pre>
  "2020-10-30", "2020-11-01", "uv",
  format = "tsv"
) # includes timezone switch
unitData <- importRDB1(unitDataURL, asDateTime = TRUE)</pre>
iceSite <- "04024000"
start <- "2015-11-09"
end <- "2015-11-24"
urlIce <- constructNWISURL(iceSite, "00060", start, end, "uv", format = "tsv")</pre>
ice <- importRDB1(urlIce, asDateTime = TRUE)</pre>
iceNoConvert <- importRDB1(urlIce, convertType = FALSE)</pre>
# User file:
filePath <- system.file("extdata", package = "dataRetrieval")</pre>
fileName <- "RDB1Example.txt"</pre>
fullPath <- file.path(filePath, fileName)</pre>
importUserRDB <- importRDB1(fullPath)</pre>
```

importWaterML1

Function to return data from the NWISWeb WaterML1.1 service

Description

This function accepts a url parameter that already contains the desired NWIS site, parameter code, statistic, startdate and enddate.

20 importWaterML1

Usage

```
importWaterML1(obs_url, asDateTime = FALSE, tz = "UTC")
```

Arguments

obs_url character or raw, containing the url for the retrieval or a file path to the data file,

or raw XML.

asDateTime logical, if TRUE returns date and time as POSIXct, if FALSE, Date

tz character to set timezone attribute of datetime. Default converts the datetimes

to UTC (properly accounting for daylight savings times based on the data's provided tz_cd column). Recommended US values include "UTC", "America/New_York", "America/Chicago", "America/Denver", "America/Los_Angeles", "America/Anchorage", "America/Honolulu", "America/Jamaica", "America/Managua",

"America/Phoenix", and "America/Metlakatla". For a complete list, see https:

//en.wikipedia.org/wiki/List_of_tz_database_time_zones

Value

A data frame with the following columns:

Name	Type	Description
agency_cd	character	The NWIS code for the agency reporting the data
site_no	character	The USGS site number
	POSIXct	The date and time of the value converted to UTC (if asDateTime = TRUE),
	character	or raw character string (if asDateTime = FALSE)
tz_cd	character	The time zone code for
code	character	Any codes that qualify the corresponding value
value	numeric	The numeric value for the parameter

Note that code and value are repeated for the parameters requested. The names are of the form X_D_P_S, where X is literal, D is an option description of the parameter, P is the parameter code, and S is the statistic code (if applicable).

There are also several useful attributes attached to the data frame:

Name	Type	Description
url	character	The url used to generate the data
siteInfo	data.frame	A data frame containing information on the requested sites
variableInfo	data.frame	A data frame containing information on the requested parameters
statisticInfo	data.frame	A data frame containing information on the requested statistics on the data
queryTime	POSIXct	The time the data was returned

See Also

renameNWISColumns()

importWaterML1 21

```
site_id <- "02177000"
startDate <- "2012-09-01"
endDate <- "2012-10-01"
offering <- "00003"
property <- "00060"
obs_url <- constructNWISURL(site_id, property, startDate, endDate, "dv")
data <- importWaterML1(obs_url, asDateTime = TRUE)</pre>
unitDataURL <- constructNWISURL(</pre>
  site_id, property,
  "2013-11-03", "2013-11-03", "uv"
unitData <- importWaterML1(unitDataURL, TRUE)</pre>
# Two sites, two pcodes, one site has two data descriptors:
siteNumber <- c("01480015", "04085427")
obs_url <- constructNWISURL(</pre>
  siteNumber, c("00060", "00010"),
  startDate, endDate, "dv"
data <- importWaterML1(obs_url)</pre>
data$dateTime <- as.Date(data$dateTime)</pre>
data <- renameNWISColumns(data)</pre>
names(attributes(data))
attr(data, "url")
attr(data, "disclaimer")
inactiveSite <- "05212700"</pre>
inactiveSite <- constructNWISURL(inactiveSite, "00060",</pre>
                                    "2014-01-01", "2014-01-10", "dv")
inactiveSite <- importWaterML1(inactiveSite)</pre>
inactiveAndAcitive <- c("07334200", "05212700")</pre>
inactiveAndAcitive <- constructNWISURL(inactiveAndAcitive,</pre>
                           "00060", "2014-01-01", "2014-01-10", "dv")
inactiveAndAcitive <- importWaterML1(inactiveAndAcitive)</pre>
# Timezone change with specified local timezone:
tzURL <- constructNWISURL("04027000", c("00300", "63680"),
                            "2011-11-05", "2011-11-07", "uv")
tzIssue <- importWaterML1(tzURL,</pre>
  asDateTime = TRUE, tz = "America/Chicago"
filePath <- system.file("extdata", package = "dataRetrieval")</pre>
fileName <- "WaterML1Example.xml"</pre>
fullPath <- file.path(filePath, fileName)</pre>
importFile <- importWaterML1(fullPath, TRUE)</pre>
```

22 importWaterML2

importWaterML2

Parse the WaterML2 timeseries portion of a waterML2 file

Description

Returns data frame columns of all information with each time series measurement; Anything defined as a default, is returned as an attribute of that data frame.

Usage

```
importWaterML2(input, asDateTime = FALSE, tz = "UTC")
```

Arguments

input XML with only the wml2:MeasurementTimeseries node and children asDateTime logical, if TRUE returns date and time as POSIXct, if FALSE, character

tz character to set timezone attribute of datetime. Default is an empty quote, which

converts the datetimes to UTC (properly accounting for daylight savings times based on the data's provided time zone offset). Possible values are "America/New_York", "America/Chicago", "America/Denver", "America/Los_Angeles", "America/Anchorage", "America/Honolulu", "America/Jamaica", "America/Managua",

"America/Phoenix", and "America/Metlakatla"

importWQP 23

|--|

Description

Imports data from the Water Quality Portal based on a specified url.

Usage

```
importWQP(obs_url, tz = "UTC", csv = TRUE, convertType = TRUE)
```

Arguments

obs_url	character URL to Water Quality Portal#' @keywords data import USGS web service
tz	character to set timezone attribute of datetime. Default is UTC (properly accounting for daylight savings times based on the data's provided tz_cd column). Possible values include "America/New_York", "America/Chicago", "America/Denver", "America/Los_An "America/Anchorage", "America/Honolulu", "America/Jamaica", "America/Managua", "America/Phoenix", and "America/Metlakatla"
csv	logical. Is the data coming back with a csv or tsv format. Default is FALSE. Currently, the summary service does not support tsv, for other services tsv is the safer choice.
convertType	logical, defaults to TRUE. If TRUE, the function will convert the data to dates, datetimes, numerics based on a standard algorithm. If false, everything is returned as a character.

Value

retval dataframe raw data returned from the Water Quality Portal. Additionally, a POSIXct dateTime column is supplied for start and end times, and converted to UTC. See https://www.waterqualitydata.us/portal_userguide/ for more information.

See Also

```
readWQPdata(), readWQPqw(), whatWQPsites()
```

```
# These examples require an internet connection to run
## Examples take longer than 5 seconds:
rawSampleURL <- constructWQPURL("USGS-01594440", "01075", "", "")
rawSample <- importWQP(rawSampleURL)</pre>
```

24 parameterCdFile

```
STORETex <- constructWQPURL("WIDNR_WQX-10032762", "Specific conductance", "", "")
STORETdata <- importWQP(STORETex)
STORETdata_char <- importWQP(STORETex, convertType = FALSE)</pre>
```

is_dataRetrieval_user Is this a dataRetrieval user

Description

Reveals if this is a user or not

Usage

```
is_dataRetrieval_user()
```

Examples

is_dataRetrieval_user()

parameterCdFile

List of USGS parameter codes

Description

Complete list of USGS parameter codes as of Oct. 24, 2024.

Value

parameterData data frame with information about USGS parameters.

Name	Type	Description
parameter_cd	character	5-digit USGS parameter code
parameter_group_nm	character	USGS parameter group name
parameter_nm	character	USGS parameter name
casrn	character	Chemical Abstracts Service (CAS) Registry Number
srsname	character	Substance Registry Services Name
parameter_units	character	Parameter units

```
head(parameterCdFile[, 1:2])
```

parse_WQP 25

Consent WOR columns to connect turns

parse_WQP

Convert WQP columns to correct types

Description

Takes the character results and converts to numeric and dates.

Usage

```
parse_WQP(retval, tz = "UTC")
```

Arguments

retval Data frame from WQP

tz character to set timezone attribute of datetime. Default is UTC (properly ac-

counting for daylight savings times based on the associated "TimeZone" column). Possible values include "America/New_York", "America/Chicago", "America/Chicago", "America/Chicago", "America/Chicago", "America/New_York", "America/New

ica/Denver", "America/Los_Angeles", "America/Anchorage", "America/Honolulu", "America/Jamaica", "America/Anchorage", "America/Honolulu", "America/Jamaica", "America/Anchorage", "America/Anchorage", "America/Honolulu", "America/Jamaica", "America/Anchorage", "America/Honolulu", "America/Jamaica", "America/Anchorage", "America/Anchorage", "America/Honolulu", "America/Jamaica", "America/Anchorage", "America/

"America/Phoenix", and "America/Metlakatla"

Value

data frame retval with converted columns

```
# These examples require an internet connection to run
rawSampleURL <- constructWQPURL("USGS-01594440", "01075", "", "")
## Examples take longer than 5 seconds:

rawSample <- importWQP(rawSampleURL, convertType = FALSE)
convertedSample <- parse_WQP(rawSample)</pre>
```

26 readNGWMNdata

pcode_to_name

Parameter code to characteristic name

Description

This function is useful to fine what characteristic name, result sample fraction, unit code, and other parameters are mapped with USGS parameter codes. This information is useful for converting workflows from a more traditional NWIS water quality retrieval to a Water Quality Portal retrieval.

Usage

```
pcode_to_name(parameterCd = "all")
```

Arguments

parameterCd

character that contains the code for a character vector of 5-digit parameter codes. Default is "all" which will return a complete list of parameter codes that have been mapped to a characteristic name.

Value

a data frame with columns "parm_cd", "description", "characteristicname", "measureunitcode", "resultsamplefraction", "resulttemperaturebasis", "resultsatisticalbasis", "resulttimebasis", "resultweightbasis", "resultparticlesizebasis", "last_rev_dt"

Examples

```
pcodes <- c("00070", "00075", "00430", "52642")
all <- pcode_to_name()
some <- pcode_to_name(pcodes)</pre>
```

readNGWMNdata

Import data from the National Groundwater Monitoring Network.

Description

Only water level data and site locations and names are currently available through the web service.

Usage

```
readNGWMNdata(service, ..., asDateTime = TRUE, tz = "UTC")
```

readNGWMNlevels 27

Arguments

service char Service for the request - "observation" and "featureOfInterest" are imple-

mented.

. . . Other parameters to supply, namely siteNumbers or bbox

asDateTime logical if TRUE, will convert times to POSIXct format. Currently defaults to

FALSE since time zone information is not included.

tz character to set timezone attribute of dateTime. Default is "UTC", and converts

the date times to UTC, properly accounting for daylight savings times based on the data's provided time zone offset. Possible values to provide are "America/New_York", "America/Chicago", "America/Denver", "America/Los_Angeles", "America/Anchorage", as well as the following which do not use daylight savings time: "America/Honolulu", "America/Jamaica", "America/Managua", "America/Phoenix", and "America/Metlakatla". See also OlsonNames() for more in-

formation on time zones.

Examples

```
# one site
site <- "USGS.430427089284901"
#oneSite <- readNGWMNdata(siteNumbers = site, service = "observation")</pre>
# multiple sites
sites <- c("USGS.272838082142201", "USGS.404159100494601", "USGS.401216080362703")
# Very slow:
# multiSiteData <- readNGWMNdata(siteNumbers = sites, service = "observation")</pre>
# attributes(multiSiteData)
# non-USGS site
# accepts colon or period between agency and ID
site <- "MBMG:702934"
# data <- readNGWMNdata(siteNumbers = site, service = "featureOfInterest")</pre>
# bounding box
# bboxSites <- readNGWMNdata(service = "featureOfInterest", bbox = c(30, -102, 31, 99))</pre>
# retrieve sites. Set asDateTime to false since one site has an invalid date
# Verv slow:
# bboxData <- readNGWMNdata(service = "observation", siteNumbers = bboxSites$site[1:3],</pre>
                             asDateTime = FALSE)
```

readNGWMNlevels

Retrieve groundwater levels from the National Ground Water Monitoring Network.

28 readNGWMNlevels

Description

Retrieve groundwater levels from the National Ground Water Monitoring Network.

Usage

```
readNGWMNlevels(siteNumbers, asDateTime = TRUE, tz = "UTC")
```

Arguments

siteNumbers character Vector of feature IDs formatted with agency code and site number

separated by a period or semicolon, e.g. USGS. 404159100494601.

asDateTime logical Should dates and times be converted to date/time objects, or returned as

character? Defaults to TRUE. Must be set to FALSE if a site contains non-standard

dates.

tz character to set timezone attribute of dateTime. Default is "UTC", and converts

the date times to UTC, properly accounting for daylight savings times based on the data's provided time zone offset. Possible values to provide are "America/New_York", "America/Chicago", "America/Denver", "America/Los_Angeles", "America/Anchorage", as well as the following which do not use daylight savings time: "America/Honolulu", "America/Jamaica", "America/Managua", "America/Phoenix", and "America/Metlakatla". See also OlsonNames() for more in-

formation on time zones.

```
# one site
site <- "USGS.430427089284901"
# oneSite <- readNGWMNlevels(siteNumbers = site)

# multiple sites
sites <- c("USGS:272838082142201", "USGS:404159100494601", "USGS:401216080362703")
# multiSiteData <- readNGWMNlevels(sites)

# non-USGS site
site <- "MBMG.103306"
# data <- readNGWMNlevels(siteNumbers = site, asDateTime = FALSE)

# site with no data returns empty data frame
noDataSite <- "UTGS.401544112060301"
# noDataSite <- readNGWMNlevels(siteNumbers = noDataSite)</pre>
```

readNGWMNsites 29

readNGWMNsites	Retrieve site data from the National Ground Water Monitoring Network.

Description

Retrieve site data from the National Ground Water Monitoring Network.

Usage

```
readNGWMNsites(siteNumbers)
```

Arguments

siteNumbers character Vector of feature IDs formatted with agency code and site number separated by a period or semicolon, e.g. USGS.404159100494601.

Value

A data frame the following columns: #'

Name	Type	Description
site	char	Site FID
description	char	Site description
dec lat va. dec lon va	numeric	Site latitude and longitude

```
# one site
site <- "USGS.430427089284901"
#oneSite <- readNGWMNsites(siteNumbers = site)
# non-USGS site
site <- "MBMG.103306"
#siteInfo <- readNGWMNsites(siteNumbers = site)</pre>
```

30 readNWISdata

readNWISdata

General Data Import from NWIS

Description

Returns data from the NWIS web service. Arguments to the function should be based on https://waterservices.usgs.gov service calls. See examples below for ideas of constructing queries.

Usage

```
readNWISdata(..., asDateTime = TRUE, convertType = TRUE, tz = "UTC")
```

Arguments

... see https://waterservices.usgs.gov/docs/site-service/foracomplete

list of options. A list of arguments can also be supplied. One important argument to include is "service". Possible values are "iv" (for instantaneous), "dv" (for daily values), "gwlevels" (for groundwater levels), "site" (for site service), "measurement", and "stat" (for statistics service). Note: "measurement" calls go to: https://nwis.waterdata.usgs.gov/usa/nwis for data requests, and use different call requests schemes. The statistics service has a limited selection of

arguments (see https://waterservices.usgs.gov/docs/site-service/).

asDateTime logical, if TRUE returns date and time as POSIXct, if FALSE, Date

convertType logical, defaults to TRUE. If TRUE, the function will convert the data to dates,

datetimes, numerics based on a standard algorithm. If false, everything is re-

turned as a character

tz character to set timezone attribute of dateTime. Default is "UTC", and converts

the date times to UTC, properly accounting for daylight savings times based on the data's provided tz_cd column. Possible values to provide are "America/New_York", "America/Chicago", "America/Denver", "America/Los_Angeles", "America/Anchorage", as well as the following which do not use daylight savings time: "America/Honolulu", "America/Jamaica", "America/Managua", "America/Phoenix", and "America/Metlakatla". See also OlsonNames() for more in-

formation on time zones.

Details

This function requires users to create their own arguments based on the NWIS web services. It is a more complicated function to use compared to other NWIS functions such as readNWISdv(), readNWISuv(), readNWISgwl(), etc. However, this function adds a lot of flexibility to the possible queries. This function will also behave exactly as NWIS when it comes to date queries. NWIS by default will only return the latest value for the daily and instantaneous services. So if you do not provide a starting date, you will only get back the latest value. If you want the full period of record, you can use "startDate = '1900-01-01'". Other options for dates are periods, such as "period = 'P7D'" which translates to a period of 7 days. For period, use only a positive ISO-8601 duration format, which should not be expressed in periods of less than a day, or in increments of months M

readNWISdata 31

or years Y. period returns data for a site generally from now to a time in the past. Note that when period is used all data up to the most recent value are returned.

Value

A data frame with the following columns:

Name	Type	Description
agency	character	The NWIS code for the agency reporting the data
site	character	The USGS site number
dateTime	POSIXct	The date and time (if applicable) of the measurement, converted to UTC for unit value data. R only al
tz_cd	character	The time zone code for dateTime column
code	character	Any codes that qualify the corresponding value
value	numeric	The numeric value for the parameter

Note that code and value are repeated for the parameters requested. The names are of the form X_D_P_S, where X is literal, D is an option description of the parameter, P is the parameter code, and S is the statistic code (if applicable).

There are also several useful attributes attached to the data frame:

Name	Type	Description
url	character	The url used to generate the data
siteInfo	data.frame	A data frame containing information on the requested sites
variableInfo	data.frame	A data frame containing information on the requested parameters
statisticInfo	data.frame	A data frame containing information on the requested statistics on the data
queryTime	POSIXct	The time the data was returned

See Also

```
read_waterdata()
```

```
# Examples not run for time considerations
instFlow <- readNWISdata(
    sites = "05114000", service = "iv",
    parameterCd = "00060",
    startDate = "2014-05-01T00:00Z", endDate = "2014-05-01T12:00Z"
)
instFlowCDT <- readNWISdata(
    sites = "05114000", service = "iv",
    parameterCd = "00060",
    startDate = "2014-05-01T00:00", endDate = "2014-05-01T12:00",
    tz = "America/Chicago"
)</pre>
```

32 readNWISdata

```
multiSite <- readNWISdata(</pre>
  sites = c("04025500", "040263491"),
  service = "iv", parameterCd = "00060"
)
GWL <- readNWISdata(site_no = c("392725077582401",</pre>
                                  "375907091432201"),
                     parameterCd = "62610",
                     service = "gwlevels")
levels <- readNWISdata(stateCd = "WI",</pre>
                        service = "gwlevels",
                        startDate = "2024-05-01",
                        endDate = "2024-05-30")
meas <- readNWISdata(</pre>
  state_cd = "WI", service = "measurements",
  format = "rdb_expanded"
)
waterYearStat <- readNWISdata(</pre>
  site = c("01646500"),
  service = "stat",
  statReportType = "annual",
  statYearType = "water",
  missingData = "on"
)
monthlyStat <- readNWISdata(</pre>
  site = c("01646500"),
  service = "stat",
  statReportType = "monthly"
)
dailyStat <- readNWISdata(</pre>
  site = c("01646500"),
  service = "stat",
  statReportType = "daily",
  statType = c("p25", "p50", "p75", "min", "max"),
  parameterCd = "00060"
)
arg.list <- list(</pre>
  site = "03111548",
  statReportType = "daily",
  statType = c("p25", "p50", "p75", "min", "max"),
  parameterCd = "00060"
)
allDailyStats_2 <- readNWISdata(arg.list, service = "stat")</pre>
site_id <- "01594440"
```

readNWISdv 33

```
rating_curve <- readNWISdata(service = "rating", site_no = site_id, file_type = "base")
all_sites_base <- readNWISdata(service = "rating", file_type = "base")</pre>
all_sites_core <- readNWISdata(service = "rating", file_type = "corr")</pre>
all_sites_exsa <- readNWISdata(service = "rating", file_type = "exsa")</pre>
all_sites_24hrs <- readNWISdata(service = "rating", file_type = "exsa", period = 24)
peak_data <- readNWISdata(</pre>
 service = "peak",
 site_no = c("01594440", "040851325"),
 range_selection = "data_range"
)
peak_data <- readNWISdata(</pre>
 service = "peak",
 state_cd = "PA"
peak_data <- readNWISdata(</pre>
 service = "peak",
 huc2\_cd = "20"
```

 ${\tt readNWISdv}$

Daily Value USGS NWIS Data Retrieval

Description

Imports data from NWIS daily web service. This function gets the data from here: https://waterservices.usgs.gov/docs/dv-service/daily-values-service-details/ Inputs to this function are just USGS site ids, USGS parameter codes, USGS statistic codes, and start and end date. For a more complex query, use readNWISdata(), with an argument service = "dv". Data coming the daily web services are aggregates of the instantaneous (sensor) web services. Not all statistical codes are available for all data. Use the function whatNWISdata() to discover what data is available for a USGS site. The column data_type_cd with the values "dv" returned from whatNWISdata()) are available from this service.

Usage

```
readNWISdv(
   siteNumbers,
   parameterCd,
   startDate = "",
   endDate = "",
   statCd = "00003"
)
```

34 readNWISdv

Arguments

siteNumbers	character USGS site number. This is usually an 8 digit number. Multiple sites can be requested with a character vector.
parameterCd	character of USGS parameter code(s). This is usually an 5 digit number.
startDate	character starting date for data retrieval in the form YYYY-MM-DD. Default is "" which indicates retrieval for the earliest possible record. Date arguments are always specified in local time.
endDate	character ending date for data retrieval in the form YYYY-MM-DD. Default is "" which indicates retrieval for the latest possible record. Date arguments are always specified in local time.
statCd	character USGS statistic code. This is usually 5 digits. Daily mean (00003) is the default.

Details

More information on the web service can be found here: https://waterservices.usgs.gov/test-tools, choosing the "Daily Value Service".

Value

A data frame with the following columns:

Name	Type	Description
agency	character	The NWIS code for the agency reporting the data
site	character	The USGS site number
Date	Date	The date of the value
code	character	Any codes that qualify the corresponding value
value	numeric	The numeric value for the parameter

Note that code and value are repeated for the parameters requested. The names are of the form $X_D_P_S$, where X is literal, D is an option description of the parameter, P is the parameter code, and S is the statistic code (if applicable).

There are also several useful attributes attached to the data frame:

Name	Туре	Description
url	character	The url used to generate the data
siteInfo	data.frame	A data frame containing information on the requested sites
variableInfo	data.frame	A data frame containing information on the requested parameters
statisticInfo	data.frame	A data frame containing information on the requested statistics on the data
queryTime	POSIXct	The time the data was returned

See Also

read_waterdata_daily()

readNWISgwl 35

Examples

```
# see ?read_waterdata_daily

#site_id <- "04085427"

#startDate <- "2012-01-01"

#endDate <- "2012-06-30"

#pCode <- "00060"

#
#rawDailyQ <- readNWISdv(site_id, pCode, startDate, endDate)</pre>
```

readNWISgwl

Groundwater level measurements retrieval from USGS (NWIS)

Description

Imports groundwater level data from NWIS web service. This function gets the data from here: https://waterservices.usgs.gov/docs/groundwater-levels/groundwater-levels-details/
Inputs to this function are just USGS site ids, USGS parameter codes, and start and end date. For a more complex query, use readNWISdata(), including an argument service="gwlevels". Not all parameter codes are available for all data. Use the function whatNWISdata() to discover what data is available for a USGS site. The column data_type_cd with the values "gw" returned from whatNWISdata()) are available from this service.

Usage

```
readNWISgwl(
   siteNumbers,
   startDate = "",
   endDate = "",
   parameterCd = NA,
   convertType = TRUE,
   tz = "UTC"
)
```

Arguments

character USGS site number (or multiple sites). This is usually an 8 digit number character starting date for data retrieval in the form YYYY-MM-DD. Default is "" which indicates retrieval for the earliest possible record.

endDate character ending date for data retrieval in the form YYYY-MM-DD. Default is "" which indicates retrieval for the latest possible record.

parameterCd character USGS parameter code. This is usually an 5 digit number. Default is "".

convertType logical, defaults to TRUE. If TRUE, the function will convert the data to dates, datetimes, numerics based on a standard algorithm. If false, everything is returned as a character

36 readNWISgwl

tz

character to set timezone attribute of dateTime. Default is "UTC", and converts the date times to UTC, properly accounting for daylight savings times based on the data's provided tz_cd column. Possible values to provide are "America/New_York", "America/Chicago", "America/Denver", "America/Los_Angeles", "America/Anchorage", as well as the following which do not use daylight savings time: "America/Honolulu", "America/Jamaica", "America/Managua", "America/Phoenix", and "America/Metlakatla". See also OlsonNames() for more information on time zones.

Details

More information on the web service can be found here: https://waterservices.usgs.gov/test-tools, choosing the "Groundwater Levels Value Service".

Mixed date/times come back from the service depending on the year that the data was collected. See https://waterdata.usgs.gov/usa/nwis/gw for details about groundwater. By default the returned dates are converted to date objects, unless convertType is specified as FALSE. Sites with non-standard date formats (i.e. lacking a day) can be affected (see examples). See https://waterservices.usgs.gov/docs/groundwater-levels/ for more information.

Value

A data frame with the following columns:

Name	Type	Description
agency_cd	character	The NWIS code for the agency reporting the data
site_no	character	The USGS site number
site_tp_cd	character	Site type code
lev_dt	Date	Date level measured
lev_tm	character	Time level measured
lev_tz_cd	character	Time datum
lev_va	numeric	Water level value in feet below land surface
sl_lev_va	numeric	Water level value in feet above specific vertical datum
lev_status_cd	character	The status of the site at the time the water level was measured
lev_agency_cd	character	The agency code of the person measuring the water level

There are also several useful attributes attached to the data frame:

Name	Type	Description
url	character	The url used to generate the data
queryTime	POSIXct	The time the data was returned
comment	character	Header comments from the RDB file
siteInfo	data.frame	A data frame containing information on the requested sites

See Also

constructNWISURL(), importRDB1()

readNWISmeas 37

Examples

```
site_id <- "434400121275801"

data <- readNWISgwl(site_id)
sites <- c("434400121275801", "375907091432201")
data2 <- readNWISgwl(sites, "", "")
data3 <- readNWISgwl("420125073193001", "", "")
# handling of data where date has no day
data4 <- readNWISgwl("425957088141001", startDate = "1980-01-01")
data5 <- readNWISgwl("263819081585801", parameterCd = "72019")</pre>
```

readNWISmeas

Surface-water measurement data retrieval from USGS (NWIS)

Description

Reads surface-water measurement data from NWISweb. Data is retrieved from https://waterdata.usgs.gov/nwis. See https://waterdata.usgs.gov/usa/nwis/sw for details about surface water.

Usage

```
readNWISmeas(
   siteNumbers,
   startDate = "",
   endDate = "",
   tz = "UTC",
   expanded = FALSE,
   convertType = TRUE
)
```

Arguments

character USGS site number (or multiple sites). This is usually an 8 digit number character starting date for data retrieval in the form YYYY-MM-DD. Default is "" which indicates retrieval for the earliest possible record.

endDate character ending date for data retrieval in the form YYYY-MM-DD. Default is "" which indicates retrieval for the latest possible record.

tz character to set timezone attribute of dateTime. Default is "UTC", and converts the date times to UTC, properly accounting for daylight savings times based on the data's provided tz_cd column. Possible values to provide are "America/New_York", "America/Chicago", "America/Denver", "America/Los_Angeles",

38 readNWISmeas

"America/Anchorage", as well as the following which do not use daylight savings time: "America/Honolulu", "America/Jamaica", "America/Managua", "America/Phoenix", and "America/Metlakatla". See also OlsonNames() for more in-

formation on time zones.

expanded logical. Whether or not (TRUE or FALSE) to call the expanded data.

convertType logical, defaults to TRUE. If TRUE, the function will convert the data to dates,

datetimes, numerics based on a standard algorithm. If false, everything is re-

turned as a character

Value

A data frame with at least the following columns:

Name Type Description

agency_cd character The NWIS code for the agency reporting the data

site_no character The USGS site number

measurement_dt POSIXct The date and time (in POSIXct) of the measurement. Unless specified with the tz parameter, the

tz_cd character The time zone code for the measurement_dt column

See https://waterdata.usgs.gov/usa/nwis/sw for details about surface water, and https://waterdata.usgs.gov/nwis/help?output_formats_help for help on the columns and codes.

There are also several useful attributes attached to the data frame:

Name Type Description

urlcharacterThe url used to generate the dataqueryTimePOSIXctThe time the data was returnedcommentcharacterHeader comments from the RDB file

siteInfo data.frame A data frame containing information on the requested sites

tz_cd_reported The originally reported time zone

See Also

```
constructNWISURL(), importRDB1()
```

```
site_ids <- c("01594440", "040851325")

data <- readNWISmeas(site_ids)
Meas05316840 <- readNWISmeas("05316840")
Meas05316840.ex <- readNWISmeas("05316840", expanded = TRUE)
Meas07227500.ex <- readNWISmeas("07227500", expanded = TRUE)
Meas07227500.exRaw <- readNWISmeas("07227500", expanded = TRUE, convertType = FALSE)</pre>
```

readNWISpCode 39

readNWISpCode	USGS Parameter Data Retrieval	

Description

Imports data from NWIS about measured parameter based on user-supplied parameter code or codes. This function gets the data from here: https://nwis.waterdata.usgs.gov/nwis/pmcodes

Usage

readNWISpCode(parameterCd)

Arguments

parameterCd character of USGS parameter codes (or multiple parameter codes). These are 5

digit number codes. To get a complete list of all current parameter codes in the

USGS, use "all" as the input.

Value

parameterData data frame with the following information:

Name	Type	Description
parameter_cd	character	5-digit USGS parameter code
parameter_group_nm	character	USGS parameter group name
parameter_nm	character	USGS parameter name
casrn	character	Chemical Abstracts Service (CAS) Registry Number
srsname	character	Substance Registry Services Name

parameter_units character Parameter units

See Also

importRDB1()

	readNWISpeak	Peak flow data from USGS (NWIS)	
--	--------------	---------------------------------	--

Description

Reads peak flow from NWISweb. Data is retrieved from https://waterdata.usgs.gov/nwis. In some cases, the specific date of the peak data is not know. This function will default to converting complete dates to a "Date" object, and converting incomplete dates to "NA". If those incomplete dates are needed, set the asDateTime argument to FALSE. No dates will be converted to R Date objects.

40 readNWISpeak

Usage

```
readNWISpeak(
   siteNumbers,
   startDate = "",
   endDate = "",
   asDateTime = TRUE,
   convertType = TRUE)
```

Arguments

siteNumbers	character USGS site number(or multiple sites). This is usually an 8 digit number.
startDate	character starting date for data retrieval in the form YYYY-MM-DD. Default is "" which indicates retrieval for the earliest possible record.
endDate	character ending date for data retrieval in the form YYYY-MM-DD. Default is "" which indicates retrieval for the latest possible record.
asDateTime	logical default to TRUE. When TRUE, the peak_dt column is converted to a Date object, and incomplete dates are removed. When FALSE, no columns are removed, but no dates are converted.
convertType	logical, defaults to TRUE. If TRUE, the function will convert the data to dates, datetimes, numerics based on a standard algorithm. If false, everything is returned as a character

Value

A data frame with the following columns:

Name	Type	Description
agency_cd	character	The NWIS code for the agency reporting the data
site_no	character	The USGS site number
peak_dt	Date	Date of peak streamflow
peak_tm	character	Time of peak streamflow as character
peak_va	numeric	Annual peak streamflow value in cfs
peak_cd	character	Peak Discharge-Qualification codes (see comment for more information)
gage_ht	numeric	Gage height for the associated peak streamflow in feet
gage_ht_cd	character	Gage height qualification codes
year_last_pk	numeric	Peak streamflow reported is the highest since this year
ag_dt	Date	Date of maximum gage-height for water year (if not concurrent with peak)
ag_tm	character	Time of maximum gage-height for water year (if not concurrent with peak)
ag_gage_ht	numeric	maximum Gage height for water year in feet (if not concurrent with peak)
ag_gage_ht_cd	character	maximum Gage height code

There are also several useful attributes attached to the data frame:

Name	Type	Description
url	character	The url used to generate the data

readNWISrating 41

queryTime	POSIXct	The time the data was returned	
comment	character	Header comments from the RDB file	
	1		

siteInfo data.frame A data frame containing information on the requested sites

See Also

```
constructNWISURL(), importRDB1()
```

Examples

```
site_ids <- c("01594440", "040851325")

data <- readNWISpeak(site_ids)
data2 <- readNWISpeak(site_ids, asDateTime = FALSE)
stations <- c("06011000")
peakdata <- readNWISpeak(stations, convertType = FALSE)</pre>
```

readNWISrating

Rating table for an active USGS streamgage retrieval

Description

Reads current rating table for an active USGS streamgage from NWISweb. Data is retrieved from https://waterdata.usgs.gov/nwis.

Usage

```
readNWISrating(siteNumber, type = "base", convertType = TRUE)
```

Arguments

siteNumber character USGS site number. This is usually an 8 digit number

type character can be "base", "corr", or "exsa"

convertType logical, defaults to TRUE. If TRUE, the function will convert the data to dates,

datetimes, numerics based on a standard algorithm. If false, everything is re-

turned as a character

Value

A data frame. If type is "base, " then the columns are INDEP, typically the gage height, in feet; DEP, typically the streamflow, in cubic feet per second; and STOR, where "*" indicates that the pair are a fixed point of the rating curve. If type is "exsa," then an additional column, SHIFT, is included that indicates the current shift in the rating for that value of INDEP. If type is "corr," then the columns are INDEP, typically the gage height, in feet; CORR, the correction for that value; and

42 readNWISsite

CORRINDEP, the corrected value for CORR.

If type is "base," then the data frame has an attribute called "RATING" that describes the rating curve is included.

There are also several useful attributes attached to the data frame:

Name	Type	Description
url	character	The url used to generate the data
queryTime	POSIXct	The time the data was returned
comment	character	Header comments from the RDB file
siteInfo	data.frame	A data frame containing information on the requested sites
RATING	character	Rating information

Note

Not all active USGS streamgages have traditional rating curves that relate flow to stage.

See Also

```
constructNWISURL(), importRDB1()
```

Examples

```
site_id <- "01594440"

data <- readNWISrating(site_id, "base")
attr(data, "RATING")</pre>
```

 ${\tt readNWISsite}$

USGS Site File Data Retrieval

Description

```
Imports data from USGS site file site. This function gets data from here: https://waterservices.usgs.gov/
```

Usage

```
readNWISsite(siteNumbers)
```

Arguments

siteNumbers

character USGS site number (or multiple sites). This is usually an 8 digit number

readNWISsite 43

Value

A data frame with at least the following columns:

Name	Type	Description
agency_cd	character	The NWIS code for the agency reporting the data
site_no	character	The USGS site number
station_nm	character	Site name
site_tp_cd	character	Site type
lat_va	numeric	DMS latitude
long_va	numeric	DMS longitude
dec_lat_va	numeric	Decimal latitude
dec_long_va	numeric	Decimal longitude
coord_meth_cd	character	Latitude-longitude method
coord_acy_cd	character	Latitude-longitude accuracy
coord_datum_cd	character	Latitude-longitude datum
dec_coord_datum_cd	character	Decimal Latitude-longitude datum
district_cd	character	District code
state_cd	character	State code
county_cd	character	County code
country_cd	character	Country code
land_net_ds	character	Land net location description
map_nm	character	Name of location map
map_scale_fc	character	Scale of location map
alt_va	numeric	Altitude of Gage/land surface
alt_meth_cd	character	Method altitude determined
alt_acy_va	numeric	Altitude accuracy
alt_datum_cd	character	Altitude datum
huc_cd	character	Hydrologic unit code
basin_cd	character	Drainage basin code
topo_cd	character	Topographic setting code
instruments_cd	character	Flags for instruments at site
construction_dt	character	Date of first construction
inventory_dt	character	Date site established or inventoried
drain_area_va	numeric	Drainage area
contrib_drain_area_va	numeric	Contributing drainage area
tz_cd	character	Time Zone abbreviation
local_time_fg	character	Site honors Daylight Savings Time
reliability_cd	character	Data reliability code
gw_file_cd	character	Data-other GW files
nat_aqfr_cd	character	National aquifer code
aqfr_cd	character	Local aquifer code
aqfr_type_cd	character	Local aquifer type code
well_depth_va	numeric	Well depth
hole_depth_va	numeric	Hole depth
depth_src_cd	character	Source of depth data
project_no	character	Project number

44 readNWISstat

There are also several useful attributes attached to the data frame:

Name	Type	Description
url	character	The url used to generate the data
queryTime	POSIXct	The time the data was returned
comment	character	Header comments from the RDB file

See Also

```
read_waterdata_monitoring_location()
```

Examples

```
# see ?read_waterdata_monitoring_location
# siteINFOMulti <- readNWISsite(c("05114000", "09423350"))</pre>
```

readNWISstat

Site statistics retrieval from USGS (NWIS)

Description

Retrieves site statistics from the USGS Statistics Web Service beta. See https://waterservices.usgs.gov/docs/statistics/ for more information.

Usage

```
readNWISstat(
   siteNumbers,
   parameterCd,
   startDate = "",
   endDate = "",
   convertType = TRUE,
   statReportType = "daily",
   statType = "mean"
)
```

Arguments

siteNumbers character USGS site number (or multiple sites). This is usually an 8 digit num-

ber.

parameterCd character USGS parameter code. This is usually a 5 digit number.

startDate character starting date for data retrieval in the form YYYY, YYYY-MM, or

YYYY-MM-DD. Dates cannot be more specific than the statReportType, i.e. startDate for monthly statReportTypes cannot include days, and annual statReportTypes cannot include days or months. Months and days are optional for the

readNWISstat 45

daily statReportType. Default is "" which indicates retrieval for the earliest possible record. For daily data, this indicates the start of the period the statistics

will be computed over.

endDate character ending date for data retrieval in the form YYYY, YYYY-MM, or

YYYY-MM-DD. Default is "" which indicates retrieval for the latest possible record. For daily data, this indicates the end of the period the statistics will be

computed over. The same restrictions as startDate apply.

convertType logical, defaults to TRUE. If TRUE, the function will convert the data to numerics

based on a standard algorithm. Years, months, and days (if applicable) are also returned as numerics in separate columns. If convertType is false, everything is

returned as a character.

statReportType character time division for statistics: daily, monthly, or annual. Default is daily.

Note that daily provides statistics for each calendar day over the specified range of water years, i.e. no more than 366 data points will be returned for each site/parameter. Use readNWISdata or readNWISdv for daily averages. Also note that 'annual' returns statistics for the calendar year. Use readNWISdata for water years. Monthly and yearly provide statistics for each month and year

within the range indivually.

statType character type(s) of statistics to output for daily values. Default is mean, which

is the only option for monthly and yearly report types. See the statistics service documentation at https://waterservices.usgs.gov/docs/statistics/for

a full list of codes.

Value

A data frame with the following columns:

Name Type Description

agency_cd character The NWIS code for the agency report site_no character The USGS site number

parameter cd character The USGS parameter code

Other columns will be present depending on statReportType and statType

See Also

```
constructNWISURL(), importRDB1()
```

```
x1 <- readNWISstat(
    siteNumbers = c("02319394"),
    parameterCd = c("00060"),
    statReportType = "annual"
)

# all the annual mean discharge data for two sites
x2 <- readNWISstat(
    siteNumbers = c("02319394", "02171500"),</pre>
```

46 readNWISuse

```
parameterCd = c("00010", "00060"),
    statReportType = "annual"
)

# Request p25, p75, and mean values for temperature and discharge for the 2000s
# Note that p25 and p75 were not available for temperature, and return NAs
x <- readNWISstat(
    siteNumbers = c("02171500"),
    parameterCd = c("00010", "00060"),
    statReportType = "daily",
    statType = c("mean", "median"),
    startDate = "2000", endDate = "2010"
)</pre>
```

readNWISuse

Water use data retrieval from USGS (NWIS)

Description

Retrieves water use data from USGS Water Use Data for the Nation. See https://waterdata.usgs.gov/nwis/wu for more information. All available use categories for the supplied arguments are retrieved.

Usage

```
readNWISuse(
  stateCd,
  countyCd,
  years = "ALL",
  categories = "ALL",
  convertType = TRUE,
  transform = FALSE
)
```

Arguments

stateCd could be character (full name, abbreviation, id), or numeric (id). Only one is

accepted per query.

countyCd could be character (name, with or without "County", or "ALL"), numeric (id),

or NULL, which will return state or national data depending on the stateCd argument. "ALL" may also be supplied, which will return data for every county in a

state. Can be a vector of counties in the same state.

years integer Years for data retrieval. Must be years ending in 0 or 5. Default is all

available years.

readNWISuv 47

categories character categories of water use. Defaults to "ALL". Specific categories must

be supplied as two- letter abbreviations as seen in the URL when using the NWIS water use web interface. Note that there are different codes for national and state

level data.

convertType logical defaults to TRUE. If TRUE, the function will convert the data to numerics

based on a standard algorithm. Years, months, and days (if applicable) are also returned as numerics in separate columns. If convertType is false, everything is

returned as a character.

transform logical only intended for use with national data. Defaults to FALSE, with data

being returned as presented by the web service. If TRUE, data will be transformed and returned with column names, which will reformat national data to be similar

to state data.

Value

A data frame with at least the year of record, and all available statistics for the given geographic parameters. County and state fields will be included as appropriate.

```
# All data for a county
allegheny <- readNWISuse(stateCd = "Pennsylvania", countyCd = "Allegheny")

# Data for an entire state for certain years
ohio <- readNWISuse(years = c(2000, 2005, 2010), stateCd = "OH", countyCd = NULL)

# Data for an entire state, county by county
pr <- readNWISuse(years = c(2000, 2005, 2010), stateCd = "PR", countyCd = "ALL")

# All national-scale data, transforming data frame to named columns from named rows
national <- readNWISuse(stateCd = NULL, countyCd = NULL, transform = TRUE)

# Washington, DC data
dc <- readNWISuse(stateCd = "DC", countyCd = NULL)

# data for multiple counties, with different input formatting
paData <- readNWISuse(stateCd = "42", countyCd = c("Allegheny County", "BUTLER", 1, "031"))

# retrieving two specific categories for an entire state
ks <- readNWISuse(stateCd = "KS", countyCd = NULL, categories = c("IT", "LI"))</pre>
```

48 readNWISuv

Description

Imports data from NWIS web service. This function gets the data from here: https://waterservices.usgs.gov/docs/instantaneous-values/instantaneous-values-details/ Inputs to this function are just USGS site ids, USGS parameter codes, and start and end date. For a more complex query, use readNWISdata(), including an arguement service="uv". Not all parameter codes are available for all data. Use the function whatNWISdata() to discover what data is available for a USGS site. The column data_type_cd with the values "uv" returned from whatNWISdata()) are available from this service.

Usage

```
readNWISuv(siteNumbers, parameterCd, startDate = "", endDate = "", tz = "UTC")
```

Arguments

character USGS site number (or multiple sites). This is usually an 8 digit number character USGS parameter code. This is usually an 5 digit number.

character starting date for data retrieval in the form YYYY-MM-DD. Default is "" which indicates retrieval for the earliest possible record. Simple date arguments are specified in local time. See more information here: https://waterservices.usgs.gov/docs/instantaneous-values/.

endDate

character ending date for data retrieval in the form YYYY-MM-DD. Default is "" which indicates retrieval for the latest possible record. Simple date arguments are specified in local time. See more information here: https://waterservices.usgs.gov/docs/instantaneous-values/.

tz

character to set timezone attribute of dateTime. Default is "UTC", and converts the date times to UTC, properly accounting for daylight savings times based on the data's provided tz_cd column. Possible values to provide are "America/New_York", "America/Chicago", "America/Denver", "America/Los_Angeles", "America/Anchorage", as well as the following which do not use daylight savings time: "America/Honolulu", "America/Jamaica", "America/Managua", "America/Phoenix", and "America/Metlakatla". See also OlsonNames() for more information on time zones.

Details

More information on the web service can be found here: https://waterservices.usgs.gov/test-tools, choosing the "Instantaneous Value Service".

Value

A data frame with the following columns:

Name	Type	Description
agency_cd	character	The NWIS code for the agency reporting the data
site_no	character	The USGS site number
dateTime	POSIXct	The date and time of the value converted to UTC

readNWISuv 49

tz_cd	character	The time zone code for dateTime
code	character	Any codes that qualify the corresponding value
value	numeric	The numeric value for the parameter

Note that code and value are repeated for the parameters requested. The names are of the form: $X_D_P_S$, where X is literal, D is an option description of the parameter, P is the parameter code, and S is the statistic code (if applicable).

There are also several useful attributes attached to the data frame:

Name	Туре	Description
url	character	The url used to generate the data
siteInfo	data.frame	A data frame containing information on the requested sites
variableInfo	data.frame	A data frame containing information on the requested parameters
statisticInfo	data.frame	A data frame containing information on the requested statistics on the data
queryTime	POSIXct	The time the data was returned

See Also

```
renameNWISColumns(), importWaterML1()
```

```
site_id <- "05114000"
parameterCd <- "00060"
startDate <- "2014-10-10"
endDate <- "2014-10-10"
rawData <- readNWISuv(site_id, parameterCd, startDate, endDate)</pre>
rawData_today <- readNWISuv(site_id, parameterCd, Sys.Date(), Sys.Date())</pre>
timeZoneChange <- readNWISuv(</pre>
  c("04024430", "04024000"), parameterCd, "2013-11-03", "2013-11-03"
)
centralTime <- readNWISuv(site_id, parameterCd,</pre>
  "2014-10-10T12:00", "2014-10-10T23:59",
  tz = "America/Chicago"
\# Adding 'Z' to the time indicates to the web service to call the data with UTC time:
GMTdata <- readNWISuv(</pre>
  site_id, parameterCd,
  "2014-10-10T00:00Z", "2014-10-10T23:59Z"
)
```

readWQPdata

General Data Import from Water Quality Portal

Description

Imports data from Water Quality Portal web service. This function gets the data from here: https: //www.waterqualitydata.us.

Usage

```
readWQPdata(
 service = "Result".
 querySummary = FALSE,
  tz = "UTC",
  ignore_attributes = FALSE,
  convertType = TRUE
)
```

Arguments

see https://www.waterqualitydata.us/webservices_documentation for a complete list of options. A list of arguments can also be supplied. For more information see the above description for this help file. One way to figure out how to construct a WQP query is to go to the "Advanced" form in the Water Quality Portal. Use the form to discover what parameters are available. Once the query is set in the form, scroll down to the "Query URL". You will see the parameters after "https://www.waterqualitydata.us/#". For example, if you chose "Nutrient" in the Characteristic Group dropdown, you will see characteristicType=Nutrient in the Query URL. The corresponding argument for dataRetrieval is characteristicType = "Nutrient". dataRetrieval users do not need to include mimeType, and providers is optional (these arguments are picked automatically).

service

character. See Details for more information.

querySummary

logical to only return the number of records and unique sites that will be returned from this query. Choosing TRUE is deprecated, readWQPsummary is recommended instead.

tz

character to set timezone attribute of dateTime. Default is "UTC", and converts the date times to UTC, properly accounting for daylight savings times based on the data's provided tz_cd column. Possible values to provide are "America/New_York", "America/Chicago", "America/Denver", "America/Los_Angeles", "America/Anchorage", as well as the following which do not use daylight sav-

ings time: "America/Honolulu", "America/Jamaica", "America/Managua", "America/Phoenix",

and "America/Metlakatla". See also OlsonNames() for more information on

time zones.

ignore_attributes

logical to choose to ignore fetching site and status attributes. Default is FALSE.

convertType logical, defaults to TRUE. If TRUE, the function will convert the data to dates,

datetimes, numerics based on a standard algorithm. If false, everything is re-

turned as a character.

Details

This function uses ... as a query input, which can be very flexible, but also has a steeper learning curve. For a quick overview, scroll down to the Examples in this help file to see many query options.

There are currently 10 legacy options for data provided by the Water Quality Portal:

Legacy:

WQP Radio Button	service argument	Base URL
Sample Results	Result	/data/Result/search
Site Data Only	Station	/data/Station/search
Sampling Activity	Activity	/data/Activity/search
Sampling Activity Metrics	ActivityMetric	/data/ActivityMetric/search
Site Summary (not advertised on WQP)	SiteSummary	/data/summary/monitoringLocation/se
Project Data	Project	/data/Project/search
Project Monitoring Location Weighting Data	ProjectMonitoringLocationWeighting	/data/ProjectMonitoringLocationWeig
Result Detection Quantitation Limit Data	ResultDetectionQuantitationLimit	/data/ResultDetectionQuantitationLin
Biological Habitat Metrics	BiologicalMetric	/data/BiologicalMetric/search
Organization Data	Organization	/data/Organization/search

There are 4 WQX3 options. These are still in-development, and should be used with caution.

WQP Radio Button	service argument	Base URL	dataProfile
Monitoring Locations	StationWQX3	/wqx3/Station/search	
Full Physical Chemical	ResultWQX3	/wqx3/Result/search	fullPhysChem
Narrow	ResultWQX3	/wqx3/Result/search	narrow
Basic Physical Chemical	ResultWQX3	/wqx3/Result/search	basicPhysChem
Sampling Activity	ActivityWQX3	/wqx3/Activity/search	

Value

A data frame, the specific columns will depend on the "service" and/or "dataProfile".

There are also several useful attributes attached to the data frame:

Name	Туре	Description
url	character	The url used to generate the data
siteInfo	data.frame	A data frame containing information on the requested sites
headerInfo	data.frame	A data frame returned from the WQP status service
queryTime	POSIXct	The time the data was returned

```
# Legacy:
nameToUse <- "pH"</pre>
pHData <- readWQPdata(siteid = "USGS-04024315",</pre>
                       characteristicName = nameToUse)
ncol(pHData)
attr(pHData, "siteInfo")
attr(pHData, "queryTime")
attr(pHData, "url")
# WQX3:
pHData_wqx3 <- readWQPdata(siteid = "USGS-04024315",</pre>
                            characteristicName = nameToUse,
                            service = "ResultWQX3",
                            dataProfile = "basicPhysChem")
attr(pHData_wqx3, "url")
# More examples:
# querying by county
DeWitt <- readWQPdata(</pre>
  statecode = "Illinois",
  countycode = "DeWitt",
  characteristicName = "Nitrogen"
)
attr(DeWitt, "url")
DeWitt_wqx3 <- readWQPdata(</pre>
   statecode = "Illinois",
   countycode = "DeWitt",
   characteristicName = "Nitrogen",
   service = "ResultWQX3",
   dataProfile = "basicPhysChem",
   ignore_attributes = TRUE)
attr(DeWitt_wqx3, "url")
# Data profile: "Sampling Activity"
activity <- readWQPdata(</pre>
  siteid = "USGS-04024315",
  service = "Activity"
)
attr(activity, "url")
# activity_wqx3 <- readWQPdata(</pre>
# siteid = "USGS-04024315",
   service = "ActivityWQX3"
# )
# attr(activity_wqx3, "url")
```

```
Dane_activity <- readWQPdata(</pre>
  statecode = "Wisconsin",
  countycode = "Dane",
  startDateLo = "2023-01-01",
  startDateHi = "2023-12-31",
  service = "Activity"
)
attr(Dane_activity, "url")
# Dane_activity_wqx3 <- readWQPdata(</pre>
# statecode = "Wisconsin",
  countycode = "Dane",
   startDateLo = "2023-01-01",
   startDateHi = "2023-12-31",
# service = "ActivityWQX3"
#)
# attr(Dane_activity_wqx3, "url")
# Additional examples:
# Data profiles: "Organization Data"
org_data <- readWQPdata(</pre>
  statecode = "WI",
  countycode = "Dane"
  service = "Organization"
)
# Data profiles: "Project Data"
project_data <- readWQPdata(</pre>
  statecode = "WI",
  countycode = "Dane",
  service = "Project"
# Data profiles: "Project Monitoring Location Weighting Data"
proj_mlwd <- readWQPdata(</pre>
  statecode = "WI",
  countycode = "Dane",
  service = "ProjectMonitoringLocationWeighting"
)
# Data profiles: "Sample Results (physical/chemical metadata)"
samp_data <- readWQPdata(</pre>
  siteid = "USGS-04024315",
  dataProfile = "resultPhysChem",
  service = "Result"
)
# Data profiles: "Sample Results (biological metadata)"
samp_bio <- readWQPdata(</pre>
  siteid = "USGS-04024315",
```

```
dataProfile = "biological",
     service = "Result"
)
# Data profiles: "Sample Results (narrow)"
samp_narrow <- readWQPdata(</pre>
     siteid = "USGS-04024315",
     service = "Result",
     dataProfile = "narrowResult"
)
# samp_narrow_wqx3 <- readWQPdata(</pre>
# siteid = "USGS-04024315",
        service = "ResultWQX3",
# dataProfile = "narrow"
#)
# Data profiles: "Sampling Activity"
samp_activity <- readWQPdata(</pre>
     siteid = "USGS-04024315",
     dataProfile = "activityAll",
     service = "Activity"
)
# Data profile: "Sampling Activity Metrics"
act_metrics <- readWQPdata(</pre>
     statecode = "WI",
     countycode = "Dane",
     service = "ActivityMetric"
)
# Data profile: "Result Detection Quantitation Limit Data"
dl_data <- readWQPdata(</pre>
     siteid = "USGS-04024315",
     service = "ResultDetectionQuantitationLimit"
)
# other options:
Phosphorus <- readWQPdata(</pre>
     statecode = "WI", countycode = "Dane",
     characteristicName = "Phosphorus",
     startDateLo = "2023-01-01",
     ignore_attributes = TRUE,
     convertType = FALSE
rawPHsites\_legacy <- readWQPdata(siteid = c("USGS-05406450", "USGS-05427949", "WIDNR_WQX-133040"), and the second of the secon
                                                                   characteristicName = "pH",
                                                                   service = "Result",
                                                                   dataProfile = "narrowResult" )
```

readWQPqw 55

```
# rawPHsites <- readWQPdata(siteid = c("USGS-05406450", "USGS-05427949", "WIDNR_WQX-133040"),
# characteristicName = "pH",
# service = "ResultWQX3",
# dataProfile = "narrow" )</pre>
```

readWQPqw

Raw Data Import for Water Quality Portal

Description

Imports data from the Water Quality Portal. This function gets the data from here: https://www.waterqualitydata.us. There are four required input arguments: siteNumbers, parameterCd, startDate, and endDate. parameterCd can either be a USGS 5-digit code, or a characteristic name. The sites can be either USGS, or other Water Quality Portal offered sites. It is required to use the 'full' site name, such as 'USGS-01234567'.

Usage

```
readWQPqw(
    siteNumbers,
    parameterCd,
    startDate = "",
    endDate = "",
    tz = "UTC",
    legacy = TRUE,
    querySummary = FALSE,
    ignore_attributes = FALSE,
    convertType = TRUE
)
```

Arguments

siteNumbers	character site number. This needs to include the full agency code prefix.
parameterCd	vector of USGS 5-digit parameter code or characteristicNames. Leaving this blank will return all of the measured values during the specified time period.
startDate	character starting date for data retrieval in the form YYYY-MM-DD. Default is "" which indicates retrieval for the earliest possible record. Date arguments are always specified in local time.
endDate	character ending date for data retrieval in the form YYYY-MM-DD. Default is "" which indicates retrieval for the latest possible record. Date arguments are always specified in local time.

56 readWQPqw

tz	character to set timezone attribute of dateTime. Default is "UTC", and con-
	verts the date times to UTC, properly accounting for daylight savings times
	based on the data provided tz_cd column. Possible values to provide are "Amer-
	ica/New_York", "America/Chicago", "America/Denver", "America/Los_Angeles",
	"America/Anchorage", as well as the following which do not use daylight sav-

ings time: "America/Honolulu", "America/Jamaica", "America/Managua", "America/Phoenix",

and "America/Metlakatla". See also OlsonNames() for more information on

time zones.

legacy Logical. If TRUE, uses legacy WQP services. Default is TRUE. Setting legacy

= FALSE uses WQX3.0 WQP services, which are in-development, use with

caution.

querySummary logical to look at number of records and unique sites that will be returned from

this query.

ignore_attributes

logical to choose to ignore fetching site and parameter attributes. Default is

FALSE.

convertType logical, defaults to TRUE. If TRUE, the function will convert the data to dates,

datetimes, numerics based on a standard algorithm. If false, everything is re-

turned as a character.

Value

A data frame derived from the default data profile.

There are also several useful attributes attached to the data frame:

Name Type Description

url character The url used to generate the data

siteInfo data.frame A data frame containing information on the requested sites variableInfo data.frame A data frame containing information on the requested parameters

queryTime POSIXct The time the data was returned

See Also

```
readWQPdata(), whatWQPsites(), and importWQP()
```

readWQPsummary 57

readWQPsummary

Summary of Data Available from Water Quality Portal

Description

Returns a list of sites with year-by-year information on what data is available. The function gets the data from: https://www.waterqualitydata.us. Arguments to the function should be based on https://www.waterqualitydata.us/webservices_documentation. The information returned from this function describes the available data at the WQP sites, and some metadata on the sites themselves.

Usage

```
readWQPsummary(...)
```

Arguments

. . .

see https://www.waterqualitydata.us/webservices_documentation for a complete list of options. A list of arguments can also be supplied. One way to figure out how to construct a WQP query is to go to the "Advanced" form in the Water Quality Portal: https://www.waterqualitydata.us/#mimeType=csv&providers=NWIS&providers=STORET Use the form to discover what parameters are available. Once the query is set in the form, scroll down to the "Query URL". You will see the parameters after "https://www.waterqualitydata.us/#". For example, if you chose "Nutrient" in the Characteristic Group dropdown, you will see characteristicType=Nutrient in the Query URL. The corresponding argument for dataRetrieval is characteristicType = "Nutrient". dataRetrieval users do not need to include mimeType, and providers is optional (these arguments are picked automatically).

Value

A data frame from the data returned from the Water Quality Portal about the data available for the query parameters.

58 read_waterdata

See Also

whatWQPsites whatWQPdata

Examples

```
# Summary of a single site for the last 5 years:
site_5 <- readWQPsummary(</pre>
  siteid = "USGS-07144100",
  summaryYears = 5
)
# Summary of a single site for the full period of record:
site_all <- readWQPsummary(</pre>
  siteid = "USGS-07144100",
  summaryYears = "all"
)
# Summary of the data available from streams in a single county:
dane_county_data <- readWQPsummary(</pre>
  countycode = "US:55:025",
  summaryYears = 5,
  siteType = "Stream"
)
# Summary of the data all available from lakes in a single county:
lake_sites <- readWQPsummary(</pre>
  siteType = "Lake, Reservoir, Impoundment",
  countycode = "US:55:025"
# Summary of the data available for the last 5 years in New Jersey:
state1 <- readWQPsummary(</pre>
  statecode = "NJ",
  summaryYears = 5,
  siteType = "Stream"
)
```

read_waterdata

Generalized USGS Water Data API retrieval function

Description

Function that allows complex CQL queries. See https://api.waterdata.usgs.gov/docs/ogcapi/complex-queries/ for more information.

read_waterdata 59

Usage

```
read_waterdata(service, CQL, ..., convertType = TRUE)
```

Arguments

character, can be any existing collection such as "daily", "monitoring-locations",
"time-series-metadata"

CQL A string in a Common Query Language format.

Additional arguments to send to the request.

convertType logical, defaults to TRUE. If TRUE, the function will convert the data to dates and qualifier to string vector.

```
cql <- '{
"op": "and",
"args": [
  {
    "op": "in",
    "args": [
      { "property": "parameter_code" },
      [ "00060", "00065" ]
    ]
  },
 {
    "op": "in",
    "args": [
      { "property": "monitoring_location_id" },
      [ "USGS-07367300", "USGS-03277200" ]
  }
]
}'
dv_data <- read_waterdata(service = "daily",</pre>
                           CQL = cq1,
                           time = c("2023-01-01", "2024-01-01"))
# A wildcard in CQL2 is %
# Here's how to get HUCs that fall within 02070010
cql_huc_wildcard <- '{</pre>
"op": "like",
"args": [
  { "property": "hydrologic_unit_code" },
  "02070010%"
]
}'
what_huc_sites <- read_waterdata(service = "monitoring-locations",</pre>
```

```
CQL = cql_huc_wildcard)
```

read_waterdata_daily Get USGS Daily Data

Description

Daily data provide one data value to represent water conditions for the day. Throughout much of the history of the USGS, the primary water data available was daily data collected manually at the monitoring location once each day. With improved availability of computer storage and automated transmission of data, the daily data published today are generally a statistical summary or metric of the continuous data collected each day, such as the daily mean, minimum, or maximum value. Daily data are automatically calculated from the continuous data of the same parameter code and are described by parameter code and a statistic code. These data have also been referred to as "daily values" or "DV".

Usage

```
read_waterdata_daily(
 monitoring_location_id = NA_character_,
 parameter_code = NA_character_,
  statistic_id = NA_character_,
  properties = NA_character_,
  time_series_id = NA_character_,
  daily_id = NA_character_,
  approval_status = NA_character_,
  unit_of_measure = NA_character_,
  qualifier = NA_character_,
  value = NA,
  last_modified = NA_character_,
  skipGeometry = NA,
  time = NA_character_,
  bbox = NA,
  limit = NA,
 max_results = NA,
  convertType = TRUE
)
```

Arguments

```
monitoring_location_id
```

A unique identifier representing a single monitoring location. This corresponds to the id field in the monitoring-locations endpoint. Monitoring location IDs are created by combining the agency code of the agency responsible for the monitoring location (e.g. USGS) with the ID number of the monitoring location (e.g. 02238500), separated by a hyphen (e.g. USGS-02238500).

read_waterdata_daily

parameter_code Parameter codes are 5-digit codes used to identify the constituent measured and

the units of measure. A complete list of parameter codes and associated groupings can be found at https://help.waterdata.usgs.gov/codes-and-parameters/

61

parameters.

statistic_id A code corresponding to the statistic an observation represents. Example codes

> include 00001 (max), 00002 (min), and 00003 (mean). A complete list of codes and their descriptions can be found at https://help.waterdata.usgs.gov/

code/stat_cd_nm_query?stat_nm_cd=%25&fmt=html.

properties A vector of requested columns to be returned from the query. Available options are: geometry, id, time_series_id, monitoring_location_id, parameter_code, statis-

tic_id, time, value, unit_of_measure, approval_status, qualifier, last_modified

A unique identifier representing a single time series. This corresponds to the id time_series_id

field in the time-series-metadata endpoint.

daily_id A universally unique identifier (UUID) representing a single version of a record. It is not stable over time. Every time the record is refreshed in our database (which may happen as part of normal operations and does not imply any change to the data itself) a new ID will be generated. To uniquely identify a single

> observation over time, compare the time and time_series_id fields; each time series will only have a single observation at a given time.

approval_status

Some of the data that you have obtained from this U.S. Geological Survey database may not have received Director's approval. Any such data values are qualified as provisional and are subject to revision. Provisional data are released on the condition that neither the USGS nor the United States Government may be held liable for any damages resulting from its use. This field reflects the approval status of each record, and is either "Approved", meaning processing review has been completed and the data is approved for publication, or "Provisional" and subject to revision. For more information about provisional data, go to https://waterdata.usgs.gov/provisional-data-statement/.

unit_of_measure

A human-readable description of the units of measurement associated with an observation.

qualifier

This field indicates any qualifiers associated with an observation, for instance if a sensor may have been impacted by ice or if values were estimated.

The value of the observation. Values are transmitted as strings in the JSON

response format in order to preserve precision.

The last time a record was refreshed in our database. This may happen due to regular operational processes and does not necessarily indicate anything about the measurement has changed. You can query this field using date-times or intervals, adhering to RFC 3339, or using ISO 8601 duration objects. Intervals may be bounded or half-bounded (double-dots at start or end). Examples:

- A date-time: "2018-02-12T23:20:50Z"
- A bounded interval: "2018-02-12T00:00:00Z/2018-03-18T12:31:12Z"
- Half-bounded intervals: "2018-02-12T00:00:00Z/.." or "../2018-03-18T12:31:12Z"
- Duration objects: "P1M" for data from the past month or "PT36H" for the last 36 hours

value

last_modified

read_waterdata_daily

62

Only features that have a last_modified that intersects the value of datetime are selected. If a feature has multiple temporal properties, it is the decision of the server whether only a single temporal property is used to determine the extent or all relevant temporal properties.

skipGeometry

This option can be used to skip response geometries for each feature. The returning object will be a data frame with no spatial information.

time

The date an observation represents. You can query this field using date-times or intervals, adhering to RFC 3339, or using ISO 8601 duration objects. Intervals may be bounded or half-bounded (double-dots at start or end). Examples:

- A date-time: "2018-02-12T23:20:50Z"
- A bounded interval: "2018-02-12T00:00:00Z/2018-03-18T12:31:12Z"
- Half-bounded intervals: "2018-02-12T00:00:00Z/.." or "../2018-03-18T12:31:12Z"
- Duration objects: "P1M" for data from the past month or "PT36H" for the last 36 hours

Only features that have a time that intersects the value of datetime are selected. If a feature has multiple temporal properties, it is the decision of the server whether only a single temporal property is used to determine the extent or all relevant temporal properties.

bbox

Only features that have a geometry that intersects the bounding box are selected. The bounding box is provided as four or six numbers, depending on whether the coordinate reference system includes a vertical axis (height or depth). Coordinates are assumed to be in crs 4326. The expected format is a numeric vector structured: c(xmin,ymin,xmax,ymax). Another way to think of it is c(Western-most longitude, Southern-most latitude, Eastern-most longitude, Northern-most longitude).

limit

The optional limit parameter is used to control the subset of the selected features that should be returned in each page. The maximum allowable limit is 10000. It may be beneficial to set this number lower if your internet connection is spotty. The default (NA) will set the limit to the maximum allowable limit for the service.

max_results

The optional maximum number of rows to return. This value must be less than

the requested limit.

convertType

logical, defaults to TRUE. If TRUE, the function will convert the data to dates and qualifier to string vector.

```
dv_data_trim <- read_waterdata_daily(monitoring_location_id = site,</pre>
                           parameter_code = "00060",
                           properties = c("monitoring_location_id",
                                           "value",
                                           "time"),
                           time = c("2021-01-01", "2022-01-01"))
dv_data <- read_waterdata_daily(monitoring_location_id = site,</pre>
                            parameter_code = "00060",
                            skipGeometry = TRUE)
dv_data_period <- read_waterdata_daily(monitoring_location_id = site,</pre>
                                    parameter_code = "00060",
                                    time = "P7D")
multi_site <- read_waterdata_daily(monitoring_location_id = c("USGS-01491000",</pre>
                                                             "USGS-01645000"),
                               parameter_code = c("00060", "00010"),
                               limit = 500,
                               time = c("2023-01-01", "2024-01-01"))
```

read_waterdata_latest_continuous

Get Latest Continuous USGS Water Data

Description

This endpoint provides the most recent observation for each time series of continuous data. Continuous data are collected via automated sensors installed at a monitoring location. They are collected at a high frequency and often at a fixed 15-minute interval. Depending on the specific monitoring location, the data may be transmitted automatically via telemetry and be available on WDFN within minutes of collection, while other times the delivery of data may be delayed if the monitoring location does not have the capacity to automatically transmit data. Continuous data are described by parameter name and parameter code. These data might also be referred to as "instantaneous values" or "IV"

Usage

```
read_waterdata_latest_continuous(
  monitoring_location_id = NA_character_,
  parameter_code = NA_character_,
  statistic_id = NA_character_,
  properties = NA_character_,
  time_series_id = NA_character_,
  latest_continuous_id = NA_character_,
```

```
approval_status = NA_character_,
  unit_of_measure = NA_character_,
  qualifier = NA_character_,
  value = NA,
  last_modified = NA_character_,
  skipGeometry = NA,
  time = NA_character_,
  bbox = NA,
 limit = NA.
 max_results = NA,
 convertType = TRUE
)
```

Arguments

monitoring_location_id

A unique identifier representing a single monitoring location. This corresponds to the id field in the monitoring-locations endpoint. Monitoring location IDs are created by combining the agency code of the agency responsible for the monitoring location (e.g. USGS) with the ID number of the monitoring location (e.g. 02238500), separated by a hyphen (e.g. USGS-02238500).

parameter_code Parameter codes are 5-digit codes used to identify the constituent measured and the units of measure. A complete list of parameter codes and associated groupings can be found at https://help.waterdata.usgs.gov/codes-and-parameters/ parameters.

statistic_id

A code corresponding to the statistic an observation represents. Example codes include 00001 (max), 00002 (min), and 00003 (mean). A complete list of codes and their descriptions can be found at https://help.waterdata.usgs.gov/ code/stat_cd_nm_query?stat_nm_cd=%25&fmt=html.

properties

A vector of requested columns to be returned from the query. Available options are: geometry, id, time_series_id, monitoring_location_id, parameter_code, statistic_id, time, value, unit_of_measure, approval_status, qualifier, last_modified

time_series_id A unique identifier representing a single time series. This corresponds to the id field in the time-series-metadata endpoint.

latest_continuous_id

A universally unique identifier (UUID) representing a single version of a record. It is not stable over time. Every time the record is refreshed in our database (which may happen as part of normal operations and does not imply any change to the data itself) a new ID will be generated. To uniquely identify a single observation over time, compare the time and time_series_id fields; each time series will only have a single observation at a given time.

approval_status

Some of the data that you have obtained from this U.S. Geological Survey database may not have received Director's approval. Any such data values are qualified as provisional and are subject to revision. Provisional data are released on the condition that neither the USGS nor the United States Government may be held liable for any damages resulting from its use. This field reflects the approval status of each record, and is either "Approved", meaining processing review has been completed and the data is approved for publication, or "Provisional" and subject to revision. For more information about provisional data, go to https://waterdata.usgs.gov/provisional-data-statement/.

unit_of_measure

A human-readable description of the units of measurement associated with an observation.

qualifier

This field indicates any qualifiers associated with an observation, for instance if a sensor may have been impacted by ice or if values were estimated.

value

The value of the observation. Values are transmitted as strings in the JSON response format in order to preserve precision.

last_modified

The last time a record was refreshed in our database. This may happen due to regular operational processes and does not necessarily indicate anything about the measurement has changed. You can query this field using date-times or intervals, adhering to RFC 3339, or using ISO 8601 duration objects. Intervals may be bounded or half-bounded (double-dots at start or end). Examples:

- A date-time: "2018-02-12T23:20:50Z"
- A bounded interval: "2018-02-12T00:00:00Z/2018-03-18T12:31:12Z"
- Half-bounded intervals: "2018-02-12T00:00:00Z/.." or "../2018-03-18T12:31:12Z"
- Duration objects: "P1M" for data from the past month or "PT36H" for the last 36 hours

Only features that have a last_modified that intersects the value of datetime are selected. If a feature has multiple temporal properties, it is the decision of the server whether only a single temporal property is used to determine the extent or all relevant temporal properties.

skipGeometry

This option can be used to skip response geometries for each feature. The returning object will be a data frame with no spatial information.

time

The date an observation represents. You can query this field using date-times or intervals, adhering to RFC 3339, or using ISO 8601 duration objects. Intervals may be bounded or half-bounded (double-dots at start or end). Examples:

- A date-time: "2018-02-12T23:20:50Z"
- A bounded interval: "2018-02-12T00:00:00Z/2018-03-18T12:31:12Z"
- Half-bounded intervals: "2018-02-12T00:00:00Z/.." or "../2018-03-18T12:31:12Z"
- Duration objects: "P1M" for data from the past month or "PT36H" for the last 36 hours

Only features that have a time that intersects the value of datetime are selected. If a feature has multiple temporal properties, it is the decision of the server whether only a single temporal property is used to determine the extent or all relevant temporal properties.

bbox

Only features that have a geometry that intersects the bounding box are selected. The bounding box is provided as four or six numbers, depending on whether the coordinate reference system includes a vertical axis (height or depth). Coordinates are assumed to be in crs 4326. The expected format is a numeric vector structured: c(xmin,ymin,xmax,ymax). Another way to think of it is c(Western-most longitude, Southern-most latitude, Eastern-most longitude, Northern-most longitude).

The optional limit parameter is used to control the subset of the selected features that should be returned in each page. The maximum allowable limit is 10000. It may be beneficial to set this number lower if your internet connection is spotty. The default (NA) will set the limit to the maximum allowable limit for the service.

The optional maximum number of rows to return. This value must be less than the requested limit.

ConvertType logical, defaults to TRUE. If TRUE, the function will convert the data to dates and qualifier to string vector.

```
site <- "USGS-451605097071701"
pcode <- "72019"
uv_data_sf <- read_waterdata_latest_continuous(monitoring_location_id = site,</pre>
                               parameter_code = pcode)
uv_data_trim <- read_waterdata_latest_continuous(monitoring_location_id = site,</pre>
                           parameter_code = pcode,
                           properties = c("monitoring_location_id",
                                           "value",
                                           "time"))
uv_data <- read_waterdata_latest_continuous(monitoring_location_id = site,</pre>
                            parameter_code = pcode,
                            skipGeometry = TRUE)
uv_data_period <- read_waterdata_latest_continuous(monitoring_location_id = site,</pre>
                                    parameter_code = pcode,
                                    time = "P7D")
multi_site <- read_waterdata_latest_continuous(monitoring_location_id = c("USGS-451605097071701",</pre>
                                                             "USGS-14181500"),
                               parameter_code = c("00060", "72019"),
                               skipGeometry = TRUE)
# Only return data that has been modified in last 7 days
multi_site2 <- read_waterdata_latest_continuous(monitoring_location_id = c("USGS-451605097071701",</pre>
                                                                          "USGS-14181500").
                                                 parameter_code = c("00060", "72019"),
                                                 last_modified = "P7D")
```

Description

Function to get metadata from Water Data API. These are useful to get the human readable words and other metadata associated with USGS codes.

Usage

```
read_waterdata_metadata(collection, max_results = NA, limit = NA)
```

Arguments

collection character, can be any existing collection such as "parameter-codes", "agency-codes", "altitude-datums", "aquifer-codes", "aquifer-types", "coordinate-accuracy-codes", "coordinate-datum-codes", "coordinate-method-codes", "hydrologic-unit-codes", "medium-codes", "national-aquifer-codes", "reliability-codes", "site-types", "statistic-codes", "topographic-codes", "time-zone-codes".

The optional maximum number of rows to return. This value must be less than the requested limit.

The optional limit parameter is used to control the subset of the selected features that should be returned in each page. The maximum allowable limit is 10000. It may be beneficial to set this number lower if your internet connection is spotty. The default (NA) will set the limit to the maximum allowable limit for the service.

```
agency_codes <- read_waterdata_metadata("agency-codes")
altitude_datums <- read_waterdata_metadata("altitude-datums")
aquifer_codes <- read_waterdata_metadata("aquifer-codes")
aquifer_types <- read_waterdata_metadata("aquifer-types")
coordinate_accuracy_codes <- read_waterdata_metadata("coordinate-accuracy-codes")
coordinate_datum_codes <- read_waterdata_metadata("coordinate-datum-codes")
coordinate_method_codes <- read_waterdata_metadata("coordinate-method-codes")
national_aquifer_codes <- read_waterdata_metadata("national-aquifer-codes")
parameter_codes <- read_waterdata_metadata("parameter-codes")
reliability_codes <- read_waterdata_metadata("reliability-codes")
site_types <- read_waterdata_metadata("site-types")
statistic_codes <- read_waterdata_metadata("topographic-codes")
topographic_codes <- read_waterdata_metadata("time-zone-codes")
```

Description

Location information is basic information about the monitoring location including the name, identifier, agency responsible for data collection, and the date the location was established. It also includes information about the type of location, such as stream, lake, or groundwater, and geographic information about the location, such as state, county, latitude and longitude, and hydrologic unit code (HUC).

Usage

```
read_waterdata_monitoring_location(
 monitoring_location_id = NA_character_,
  agency_code = NA_character_,
 agency_name = NA_character_,
 monitoring_location_number = NA_character_,
 monitoring_location_name = NA_character_,
  district_code = NA_character_,
  country_code = NA_character_,
  country_name = NA_character_,
  state_code = NA_character_,
  state_name = NA_character_,
  county_code = NA_character_,
  county_name = NA_character_,
 minor_civil_division_code = NA_character_,
  site_type_code = NA_character_,
  site_type = NA_character_,
  hydrologic_unit_code = NA_character_,
  basin_code = NA_character_,
  altitude = NA_character_,
  altitude_accuracy = NA_character_,
  altitude_method_code = NA_character_,
  altitude_method_name = NA_character_,
  vertical_datum = NA_character_,
 vertical_datum_name = NA_character_,
  horizontal_positional_accuracy_code = NA_character_,
  horizontal_positional_accuracy = NA_character_,
  horizontal_position_method_code = NA_character_,
  horizontal_position_method_name = NA_character_,
  original_horizontal_datum = NA_character_,
  original_horizontal_datum_name = NA_character_,
  drainage_area = NA_character_,
  contributing_drainage_area = NA_character_,
  time_zone_abbreviation = NA_character_,
  uses_daylight_savings = NA_character_,
  construction_date = NA_character_,
  aquifer_code = NA_character_,
  national_aquifer_code = NA_character_,
  aquifer_type_code = NA_character_,
 well_constructed_depth = NA_character_,
```

```
hole_constructed_depth = NA_character_,
depth_source_code = NA_character_,
properties = NA_character_,
bbox = NA,
limit = NA,
max_results = NA,
skipGeometry = NA
```

Arguments

monitoring_location_id

A unique identifier representing a single monitoring location. This corresponds to the id field in the monitoring-locations endpoint. Monitoring location IDs are created by combining the agency code of the agency responsible for the monitoring location (e.g. USGS) with the ID number of the monitoring location (e.g. 02238500), separated by a hyphen (e.g. USGS-02238500).

agency_code

The agency that is reporting the data. Agency codes are fixed values assigned by the National Water Information System (NWIS). A list of agency codes is available at this link.

agency_name The name of the agency that is reporting the data. monitoring_location_number

Each monitoring location in the USGS data base has a unique 8- to 15-digit identification number. Monitoring location numbers are assigned based on this logic.

monitoring_location_name

This is the official name of the monitoring location in the database. For well information this can be a district-assigned local number.

district_code

The Water Science Centers (WSCs) across the United States use the FIPS state code as the district code. In some case, monitoring locations and samples may be managed by a water science center that is adjacent to the state in which the monitoring location actually resides. For example a monitoring location may have a district code of 30 which translates to Montana, but the state code could be 56 for Wyoming because that is where the monitoring location actually is located.

country_code
country_name

The code for the country in which the monitoring location is located.

The name of the country in which the monitoring location is located.

state_code

State code. A two-digit ANSI code (formerly FIPS code) as defined by the American National Standards Institute, to define States and equivalents. A three-digit ANSI code is used to define counties and county equivalents. A lookup table is available. The only countries with political subdivisions other than the US are Mexico and Canada. The Mexican states have US state codes ranging from 81-86 and Canadian provinces have state codes ranging from 90-98.

state_name

The name of the state or state equivalent in which the monitoring location is located.

county_code

The code for the county or county equivalent (parish, borough, etc.) in which the monitoring location is located. A list of codes is available.

county_name The name of the county or county equivalent (parish, borough, etc.) in which the monitoring location is located. A list of codes is available.

minor_civil_division_code

Codes for primary governmental or administrative divisions of the county or county equivalent in which the monitoring location is located.

site_type_code A code describing the hydrologic setting of the monitoring location. A list of codes is available.

site_type A description of the hydrologic setting of the monitoring location. A list of codes is available.

hydrologic_unit_code

The United States is divided and sub-divided into successively smaller hydrologic units which are classified into four levels: regions, sub-regions, accounting units, and cataloging units. The hydrologic units are arranged within each other, from the smallest (cataloging units) to the largest (regions). Each hydrologic unit is identified by a unique hydrologic unit code (HUC) consisting of two to eight digits based on the four levels of classification in the hydrologic unit system.

The Basin Code or "drainage basin code" is a two-digit code that further subdivides the 8-digit hydrologic-unit code. The drainage basin code is defined by the USGS State Office where the monitoring location is located.

altitude Altitude of the monitoring location referenced to the specified Vertical Datum. altitude_accuracy

Accuracy of the altitude, in feet. An accuracy of +/- 0.1 foot would be entered as ".1". Many altitudes are interpolated from the contours on topographic maps; accuracies determined in this way are generally entered as one-half of the contour interval.

altitude_method_code

Codes representing the method used to measure altitude. A list of codes is available.

altitude_method_name

The name of the the method used to measure altitude. A list of codes is available.

vertical_datum The datum used to determine altitude and vertical position at the monitoring location. A list of codes is available.

vertical datum name

The datum used to determine altitude and vertical position at the monitoring location. A list of codes is available.

horizontal_positional_accuracy_code

Indicates the accuracy of the latitude longitude values. A list of codes is available.

horizontal_positional_accuracy

Indicates the accuracy of the latitude longitude values. A list of codes is available.

horizontal_position_method_code

Indicates the method used to determine latitude longitude values. A list of codes is available.

horizontal_position_method_name

Indicates the method used to determine latitude longitude values. A list of codes is available.

original_horizontal_datum

Coordinates are published in EPSG:4326 / WGS84 / World Geodetic System 1984. This field indicates the original datum used to determine coordinates before they were converted. A list of codes is available.

original_horizontal_datum_name

Coordinates are published in EPSG:4326 / WGS84 / World Geodetic System 1984. This field indicates the original datum used to determine coordinates before they were converted. A list of codes is available.

drainage_area The area enclosed by a topographic divide from which direct surface runoff from precipitation normally drains by gravity into the stream above that point.

contributing_drainage_area

The contributing drainage area of a lake, stream, wetland, or estuary monitoring location, in square miles. This item should be present only if the contributing area is different from the total drainage area. This situation can occur when part of the drainage area consists of very porous soil or depressions that either allow all runoff to enter the groundwater or traps the water in ponds so that rainfall does not contribute to runoff. A transbasin diversion can also affect the total drainage area.

time_zone_abbreviation

A short code describing the time zone used by a monitoring location.

uses_daylight_savings

A flag indicating whether or not a monitoring location uses daylight savings.

construction_date

Date the well was completed.

aquifer_code

Local aquifers in the USGS water resources data base are identified by a geohydrologic unit code (a three-digit number related to the age of the formation, followed by a 4 or 5 character abbreviation for the geologic unit or aquifer name). Additional information is available at this link.

national_aquifer_code

National aquifers are the principal aquifers or aquifer systems in the United States, defined as regionally extensive aquifers or aquifer systems that have the potential to be used as a source of potable water. Not all groundwater monitoring locations can be associated with a National Aquifer. Such monitoring locations will not be retrieved using this search criteria. A list of National aquifer codes and names is available.

aquifer_type_code

Groundwater occurs in aquifers under two different conditions. Where water only partly fills an aquifer, the upper surface is free to rise and decline. These aquifers are referred to as unconfined (or water-table) aquifers. Where water completely fills an aquifer that is overlain by a confining bed, the aquifer is referred to as a confined (or artesian) aquifer. When a confined aquifer is penetrated by a well, the water level in the well will rise above the top of the aquifer (but not necessarily above land surface). Additional information is available at this link.

well_constructed_depth

The depth of the finished well, in feet below land surface datum. Note: Not all groundwater monitoring locations have information on Well Depth. Such monitoring locations will not be retrieved using this search criteria.

hole_constructed_depth

The total depth to which the hole is drilled, in feet below land surface datum. Note: Not all groundwater monitoring locations have information on Hole Depth. Such monitoring locations will not be retrieved using this search criteria.

depth_source_code

A code indicating the source of water-level data. A list of codes is available.

properties

A vector of requested columns to be returned from the query. Available options are: geometry, id, agency_code, agency_name, monitoring_location_number, monitoring_location_name, district_code, country_code, country_name, state_code, state_name, county_code, county_name, minor_civil_division_code, site_type_code, site_type, hydrologic_unit_code, basin_code, altitude, altitude_accuracy, altitude_method_code, altitude_method_name, vertical_datum, vertical_datum_name, horizontal_positional_accuracy_code, horizontal_positional_accuracy, horizon-

tal_position_method_code, horizontal_position_method_name, original_horizontal_datum,

original_horizontal_datum_name, drainage_area, contributing_drainage_area, time_zone_abbreviation,

uses_daylight_savings, construction_date, aquifer_code, national_aquifer_code,

aquifer_type_code, well_constructed_depth, hole_constructed_depth, depth_source_code.

bbox

Only features that have a geometry that intersects the bounding box are selected. The bounding box is provided as four or six numbers, depending on whether the coordinate reference system includes a vertical axis (height or depth). Coordinates are assumed to be in crs 4326. The expected format is a numeric vector structured: c(xmin,ymin,xmax,ymax). Another way to think of it is c(Western-most longitude, Southern-most latitude, Eastern-most longitude, Northern-

most longitude).

limit

The optional limit parameter is used to control the subset of the selected features that should be returned in each page. The maximum allowable limit is 10000. It may be beneficial to set this number lower if your internet connection is spotty. The default (NA) will set the limit to the maximum allowable limit for the service.

max_results

The optional maximum number of rows to return. This value must be less than

the requested limit.

skipGeometry

This option can be used to skip response geometries for each feature. The returning object will be a data frame with no spatial information.

read_waterdata_parameter_codes

Get USGS Parameter Code Information

Description

Parameter codes are 5-digit codes and associated descriptions used to identify the constituent measured and the units of measure. Some parameter code definitions include information about the sampling matrix, fraction, and methods used to measure the constituent. Some parameters are fixed-value (fxd) numeric codes having textual meaning (for example: parameter code 00041 is a weather code parameter, code of 60 means rain), but more commonly represent a numeric value for chemical, physical, or biological data.

Usage

```
read_waterdata_parameter_codes(
  parameter_code = NA_character_,
  parameter_name = NA_character_,
  unit_of_measure = NA_character_,
  parameter_group_code = NA_character_,
  parameter_description = NA_character_,
  medium = NA_character_,
  statistical_basis = NA_character_,
  weight_basis = NA_character_,
  sample_fraction = NA_character_,
  temperature_basis = NA_character_,
  epa_equivalence = NA_character_,
```

```
properties = NA_character_,
limit = NA,
max_results = NA
)
```

Arguments

parameter_code Parameter code.
parameter_name Parameter short name.
unit_of_measure

Parameter reporting units defined to cooperate with descriptions by USEPA.

parameter_group_code

Categorical groupings of parameters by water-quality data type for display and

report ordering parameter_description

Parameter description.

Parameter medium.

statistical_basis

medium

Parameter statistical basis.

weight_basis Parameter weight basis.

sample_fraction

Parameter fraction.

temperature_basis

Parameter temperature basis.

epa_equivalence

Indicates the relationship of the USGS parameter code to the EPA code.

properties A vector of requested columns to be returned from the query. Available options

are: geometry, id, parameter_name, unit_of_measure, parameter_group_code, parameter_description, medium, statistical_basis, time_basis, weight_basis, parameter_description, medium, statistical_basis, time_basis, weight_basis, parameter_description.

ticle_size_basis, sample_fraction, temperature_basis, epa_equivalence.

limit The optional limit parameter is used to control the subset of the selected features

that should be returned in each page. The maximum allowable limit is 10000. It may be beneficial to set this number lower if your internet connection is spotty. The default (NA) will set the limit to the maximum allowable limit for the service.

max_results The optional maximum number of rows to return. This value must be less than

the requested limit.

```
pcode <- "00060"
pcode_info <- read_waterdata_parameter_codes(parameter_code = pcode)

pcodes <- read_waterdata_parameter_codes(parameter_code = c("00660", "00060"))
# equivalent to read_waterdata_metadata("parameter-codes")</pre>
```

read_waterdata_samples

USGS Samples Data

Description

This function creates the call and gets the data for discrete water quality samples data service described at https://waterdata.usgs.gov/download-samples/.

Usage

```
read_waterdata_samples(
 monitoringLocationIdentifier = NA,
  siteTypeCode = NA,
  boundingBox = NA,
  hydrologicUnit = NA,
  activityMediaName = NA,
  characteristicGroup = NA,
  characteristic = NA,
  characteristicUserSupplied = NA,
  activityStartDateLower = NA,
  activityStartDateUpper = NA,
  countryFips = NA,
  stateFips = NA,
  countyFips = NA,
  projectIdentifier = NA,
  recordIdentifierUserSupplied = NA,
  siteTypeName = NA,
  usgsPCode = NA,
  pointLocationLatitude = NA,
  pointLocationLongitude = NA,
  pointLocationWithinMiles = NA,
  dataType = "results",
  dataProfile = NA,
  tz = "UTC",
```

```
convertType = TRUE
)
read_USGS_samples(
  monitoringLocationIdentifier = NA,
  siteTypeCode = NA,
  boundingBox = NA,
  hydrologicUnit = NA,
  activityMediaName = NA,
  characteristicGroup = NA,
  characteristic = NA,
  characteristicUserSupplied = NA,
  activityStartDateLower = NA,
  activityStartDateUpper = NA,
  countryFips = NA,
  stateFips = NA,
  countyFips = NA,
  projectIdentifier = NA,
  recordIdentifierUserSupplied = NA,
  siteTypeName = NA,
  usgsPCode = NA,
  pointLocationLatitude = NA,
  pointLocationLongitude = NA,
  pointLocationWithinMiles = NA,
  dataType = "results",
  dataProfile = NA,
  tz = "UTC",
  convertType = TRUE
)
```

Arguments

monitoringLocationIdentifier

A monitoring location identifier has two parts: the agency code and the location number, separated by a dash (-). Location identifiers should be separated with commas, for example: AZ014-320821110580701, CAX01-15304600, USGS-040851385. Location numbers without an agency prefix are assumed to have the prefix USGS.

siteTypeCode

Site type code query parameter. See available options by running check_waterdata_sample_params("s

boundingBox

North and South are latitude values; East and West are longitude values. A vector of 4 (west, south, east, north) is expected. An example would be: c(-92.8, 44.2, -88.9, 46.0).

hydrologicUnit Hydrologic Unit Codes (HUCs) identify physical areas within the US that drain to a certain portion of the stream network. This filter accepts values containing 2, 4, 6, 8, 10 or 12 digits.

activityMediaName

Sample media refers to the environmental medium that was sampled or analyzed.

characteristicGroup

Characteristic group is a broad category describing the sample. See available options by running check_waterdata_sample_params("characteristicgroup")\$characteristicGroup"

characteristic Characteristic is a specific category describing the sample. See available options

by running check_waterdata_sample_params("characteristics")\$characteristicName.

characteristicUserSupplied

Observed property is the USGS term for the constituent sampled and the property name gives a detailed description of what was sampled. Observed property is mapped to characteristicUserSupplied and replaces the parameter name and pcode USGS previously used to describe discrete sample data. Find more information in the Observed Properties and Parameter Codes section of the Code Dictionary found here: https://waterdata.usgs.gov/code-dictionary/.

activityStartDateLower

The service will return records with dates earlier than the value entered for activityStartDateUpper. Can be an R Date object, or a string with format YYYY-MM-DD. The logic is inclusive, i.e. it will also return records that match the date.

activityStartDateUpper

The service will return records with dates later than the value entered for activityStartDateLower. Can be an R Date object, or a string with format YYYY-MM-DD. The logic is inclusive, i.e. it will also return records that match the date.

countryFips

Country query parameter. Do not set redundant parameters. If another query parameter contains the country information, leave this parameter set to the default NA. See available options by running check_waterdata_sample_params("countries"), where the "id" field contains the value to use in the countryFips input.

stateFips

State query parameter. To get a list of available state fips, run check_waterdata_sample_params("state The "fips" can be created using the function stateCdLookup - for example: stateCdLookup("WI", "fips"). FIPs codes for states take the format: CountryAbbrev:StateNumber, like US:55 for Wisconsin.

countyFips

County query parameter. To get a list of available counties, run check_waterdata_sample_params("county CdLookup are using the function countyCdLookup for example: countyCdLookup("WI", "Dane", "fips") for Dane County, WI. FIPs codes for counties take the format: CountryAbbrev:StateNumber:CountyNumber, like US:55:025 for Dane County, WI.

projectIdentifier

Project identifier query parameter. This information would be needed from prior project information.

recordIdentifierUserSupplied

Record identifier, user supplied identifier. This information would be needed from the data supplier.

siteTypeName usgsPCode

Site type name query parameter. See available options by running check_param("sitetype")\$typeNameUSGS parameter code. See available options by running check_waterdata_sample_params("characte

pointLocationLatitude

Latitude for a point/radius query (decimal degrees). Must be used with pointLocationLongitude and pointLocationWithinMiles.

pointLocationLongitude

Longitude for a point/radius query (decimal degrees). Must be used with point-LocationLatitude and pointLocationWithinMiles.

pointLocationWithinMiles

Radius for a point/radius query. Must be used with pointLocationLatitude and pointLocationLongitude

dataType Options include: "Results", "Monitoring locations", "Activities", "Projects", and

"Organizations".

dataProfile Profile depends on type. Options for "results" dataType are: "fullphyschem",

"basicphyschem", "fullbio", "basicbio", "narrow", "resultdetectionquantitation-limit", "labsampleprep", "count". Options for "locations" are: "site" and "count". Options for "activities" are "sampact", "actmetric", "actgroup", and "count". Options for "projects" are: "project" and "projectmonitoringlocationweight". Op-

tions for "organizations" are: "organization" and "count".

tz character to set timezone attribute of datetime. Default is UTC (properly ac-

counting for daylight savings times based on the data's provided tz_cd column).

Possible values include "America/New_York", "America/Chicago", "America/Denver", "America/Los_An "America/Anchorage", "America/Honolulu", "America/Jamaica", "America/Managua",

America/America/nonormu , America/Jamaica , America/Mai

"America/Phoenix", and "America/Metlakatla"

convertType logical, defaults to TRUE. If TRUE, the function will convert the data to dates,

datetimes, numerics based on a standard algorithm. If false, everything is re-

turned as a character.

```
read_waterdata_ts_meta
```

Get USGS Time Series Metadata

Description

Daily data and continuous measurements are grouped into time series, which represent a collection of observations of a single parameter, potentially aggregated using a standard statistic, at a single monitoring location. This endpoint provides metadata about those time series, including their operational thresholds, units of measurement, and when the earliest and most recent observations in a time series occurred.

Usage

```
read_waterdata_ts_meta(
 monitoring_location_id = NA_character_,
 parameter_code = NA_character_,
 parameter_name = NA_character_,
  properties = NA_character_,
  statistic_id = NA_character_,
  last_modified = NA_character_,
  begin = NA_character_,
 end = NA_character_,
  unit_of_measure = NA_character_,
  computation_period_identifier = NA_character_,
  computation_identifier = NA_character_,
  thresholds = NA,
  sublocation_identifier = NA_character_,
  primary = NA_character_,
  time_series_id = NA_character_,
 web_description = NA_character_,
  skipGeometry = NA,
  limit = NA,
 max_results = NA,
 bbox = NA,
  convertType = FALSE
)
```

Arguments

```
monitoring_location_id
```

A unique identifier representing a single monitoring location. This corresponds to the id field in the monitoring-locations endpoint. Monitoring location IDs are created by combining the agency code of the agency responsible for the monitoring location (e.g. USGS) with the ID number of the monitoring location (e.g. 02238500), separated by a hyphen (e.g. USGS-02238500).

parameter_code Parameter codes are 5-digit codes used to identify the constituent measured and the units of measure. A complete list of parameter codes and associated groupings can be found at https://help.waterdata.usgs.gov/codes-and-parameters/ parameters.

parameter_name A human-understandable name corresponding to parameter_code.

properties

A vector of requested columns to be returned from the query. Available options are: geometry, id, unit_of_measure, parameter_name, parameter_code, statistic_id, last_modified, begin, end, computation_period_identifier, computation_identifier, thresholds, sublocation_identifier, primary, monitoring_location_id, web description, parameter description

statistic id

A code corresponding to the statistic an observation represents. Example codes include 00001 (max), 00002 (min), and 00003 (mean). A complete list of codes and their descriptions can be found at https://help.waterdata.usgs.gov/ code/stat_cd_nm_query?stat_nm_cd=%25&fmt=html.

last modified

The last time a record was refreshed in our database. This may happen due to regular operational processes and does not necessarily indicate anything about the measurement has changed. You can query this field using date-times or intervals, adhering to RFC 3339, or using ISO 8601 duration objects. Intervals may be bounded or half-bounded (double-dots at start or end). Examples:

- A date-time: "2018-02-12T23:20:50Z"
- A bounded interval: "2018-02-12T00:00:00Z/2018-03-18T12:31:12Z"
- Half-bounded intervals: "2018-02-12T00:00:00Z/.." or "../2018-03-18T12:31:12Z"
- Duration objects: "P1M" for data from the past month or "PT36H" for the last 36 hours

Only features that have a last_modified that intersects the value of datetime are selected. If a feature has multiple temporal properties, it is the decision of the server whether only a single temporal property is used to determine the extent or all relevant temporal properties.

begin

The datetime of the earliest observation in the time series. Together with end, this field represents the period of record of a time series. Note that some time series may have large gaps in their collection record. This field is currently in the local time of the monitoring location. We intend to update this in version v0 to use UTC with a time zone.

end

The datetime of the most recent observation in the time series. Data returned by this endpoint updates at most once per day, and potentially less frequently than that, and as such there may be more recent observations within a time series than the time series end value reflects. Together with begin, this field represents the period of record of a time series. It is additionally used to determine whether a time series is "active". We intend to update this **in version v0** to use UTC with a time zone.

unit_of_measure

A human-readable description of the units of measurement associated with an observation.

computation_period_identifier

Indicates the period of data used for any statistical computations.

computation_identifier

Indicates whether the data from this time series represent a specific statistical computation.

thresholds

Thresholds represent known numeric limits for a time series, for example the historic maximum value for a parameter or a level below which a sensor is non-operative. These thresholds are sometimes used to automatically determine if an observation is erroneous due to sensor error, and therefore shouldn't be included in the time series.

sublocation identifier

An optional human-readable identifier used to specify where measurements are recorded at a monitoring location.

primary

A flag identifying if the time series is a "primary" time series. "Primary" time series (which have this flag) are standard observations which undergo Bureau review and approval processes. Non-primary time series, which will have missing values for "primary", are provisional datasets made available to meet the need for timely best science and to assist with daily operations which need real-time information. Non-primary time series data are only retained by this system for 120 days. See the USGS Provisional Data Statement for more information.

time_series_id A unique identifier representing a single time series. This corresponds to the id field in the time-series-metadata endpoint.

web_description

A description of what this time series represents, as used by WDFN and other USGS data dissemination products.

skipGeometry

This option can be used to skip response geometries for each feature. The returning object will be a data frame with no spatial information.

limit

The optional limit parameter is used to control the subset of the selected features that should be returned in each page. The maximum allowable limit is 10000. It may be beneficial to set this number lower if your internet connection is spotty. The default (NA) will set the limit to the maximum allowable limit for the service.

max_results

The optional maximum number of rows to return. This value must be less than the requested limit.

bbox

Only features that have a geometry that intersects the bounding box are selected. The bounding box is provided as four or six numbers, depending on whether the coordinate reference system includes a vertical axis (height or depth). Coordinates are assumed to be in crs 4326. The expected format is a numeric vector structured: c(xmin,ymin,xmax,ymax). Another way to think of it is c(Western-most longitude, Southern-most latitude, Eastern-most longitude, Northern-most longitude).

convertType

logical, defaults to TRUE. If TRUE, the function will convert the data to dates and qualifier to string vector.

Examples

site <- "USGS-02238500"
meta_1 <- read_waterdata_ts_meta(monitoring_location_id = site)</pre>

82 renameNWISColumns

renameNWISColumns

renameColumns

Description

Rename columns coming back from NWIS data retrievals. Daily and unit value columns have names derived from their data descriptor, parameter, and statistic codes. This function reads information from the header and the arguments in the call to to rename those columns.

Usage

```
renameNWISColumns(
    rawData,
    p00010 = "Wtemp",
    p00045 = "Precip",
    p00060 = "Flow",
    p00065 = "GH",
    p00095 = "SpecCond",
    p00300 = "DO",
    p00400 = "pH",
    p62611 = "GWL",
    p63680 = "Turb",
    p72019 = "WLBLS",
    ...
)
```

Arguments

rawData	the daily- or unit-values datset retrieved from NWISweb.
p00010	the base name for parameter code 00010.
p00045	the base name for parameter code 00045.
p00060	the base name for parameter code 00060.
p00065	the base name for parameter code 00065.
p00095	the base name for parameter code 00095.

renameNWISColumns 83

p00300	the base name for parameter code 00300.
p00400	the base name for parameter code 00400.
p62611	the base name for parameter code 62611.
p63680	the base name for parameter code 63680.
p72019	the base name for parameter code 72019.
• • •	named arguments for the base name for any other parameter code. The form of the name must be like pXXXXX, where XXXXX is the parameter code.

Value

A dataset like data with selected columns renamed.

Note

The following statistics codes are converted by renameNWISColumns.

```
00000 Instantaneous Value, suffix: Inst
00001 Maximum value, suffix: Max
00002 Minimum value, suffix: Min
00003 Mean value, no suffix
00006 Sum of values, suffix: Sum
00007 Modal value, suffix: Mode
00008 Median value, suffix: Median
00012 Equivalent mean value, suffix: EqMean
00021 Tidal high-high value, suffix: HiHiTide
00022 Tidal low-high value, suffix: LoHiTide
00023 Tidal high-low value, suffix: HiLoTide
00024 Tidal low-low value, suffix: LoLoTide
```

See Also

```
readNWISdv(), readNWISuv()
```

```
siteWithTwo <- "01480015"
startDate <- "2012-09-01"
endDate <- "2012-10-01"

twoResults <- readNWISdv(siteWithTwo, "00060", startDate, endDate)
names(twoResults)
renamedCols <- renameNWISColumns(twoResults)
names(renamedCols)
# Custom names:
newNames <- renameNWISColumns(twoResults, p00060 = "Discharge")
names(newNames)</pre>
```

84 stateCd

setAccess

Set data endpoint

Description

access Indicate which dataRetrieval access code you want to use options: c('public', 'internal')

Usage

```
setAccess(access = "public")
```

Arguments

access

code for data access. Options are: "public", "internal", "cooperator", or "USGS".

- "internal" represents Access=3 ...for a single water science center
- "USGS" represents Access=2 ...for all water science centers
- "cooperator" represents Access=1
- "public" represents Access=0, public access

Author(s)

Luke Winslow, Jordan S Read

Examples

```
setAccess("internal")
setAccess("public")
```

stateCd

US State Code Lookup Table

Description

Classic lookup table for states. Has been replaced in functions with check_waterdata_sample_params("states").

stateCdLookup 85

Value

stateCd data frame.

Name Type Description STATE character FIPS State Code

STUSAB character Official United States Postal Service (USPS) Code

STATE_NAME character State Name

STATENS character Geographic Names Information System Identifier (GNISID)

Examples

head(stateCd)

|--|--|

Description

Function to simplify finding state and state code definitions. Used in readNWISdata and readWQPdata.

Usage

```
stateCdLookup(input, outputType = "postal", country = "US")
```

Arguments

```
input could be character (full name, abbreviation, id), or numeric (id) outputType character can be "postal", "fullName", "tableIndex", or "id". description
```

```
fullName <- stateCdLookup("wi", "fullName")
abbriev <- stateCdLookup("Wisconsin", "postal")
id <- stateCdLookup("WI", "id")
name <- stateCdLookup(55, "fullName")
fips <- stateCdLookup("WI", "fips")
canada_st <- stateCdLookup(13, "fullName", country = "CA")
mexico_st <- stateCdLookup(13, "fullName", country = "MX")
stateCdLookup(c("West Virginia", "Wisconsin", 200, 55, "MN"))</pre>
```

86 whatNWISdata

```
summarize\_waterdata\_samples \\ USGS\ Samples\ Summary\ Data
```

Description

This function creates the call and gets the data for discrete water quality samples summary data service described at https://api.waterdata.usgs.gov/samples-data/docs.

Usage

```
summarize_waterdata_samples(monitoringLocationIdentifier)
summarize_USGS_samples(monitoringLocationIdentifier)
```

Arguments

monitoringLocationIdentifier

A monitoring location identifier has two parts, separated by a dash (-): the agency code and the location number. Location identifiers should be separated with commas, for example: AZ014-320821110580701, CAX01-15304600, USGS-040851385. Location numbers without an agency prefix are assumed to have the prefix USGS.

Value

data frame with summary of data available based on the monitoringLocationIdentifier

Examples

```
monitoringLocationIdentifier <- "USGS-04074950"
what_data <- summarize_waterdata_samples(monitoringLocationIdentifier)</pre>
```

whatNWISdata

USGS data availability

Description

Imports a table of available parameters, period of record, and count. See https://waterservices.usgs.gov/docs/site-service/ for more information.

whatNWISdata 87

Usage

```
whatNWISdata(..., convertType = TRUE)
```

Arguments

... see https://waterservices.usgs.gov/docs/site-service/ for a complete

list of options. A list of arguments can also be supplied.

convertType logical, defaults to TRUE. If TRUE, the function will convert the data to dates,

datetimes, numerics based on a standard algorithm. If false, everything is re-

turned as a character

Details

This function requires users to create their own arguments based on the NWIS web services. It is a more complicated function to use compared to other NWIS functions such as readNWISdv(), readNWISuv(), etc. However, this function adds a lot of flexibility to the possible queries. If the "service" argument is included, the results will be filtered to the proper data_type_cd. This is a great function to use before a large data set, by filtering down the number of sites that have useful data.

Value

A data frame with the following columns:

Name	Type	Description
agency_cd	character	The NWIS code for the agency reporting the data
site_no	character	The USGS site number
station nm	character	Site name
site_tp_cd	character	Site type
dec_lat_va	numeric	Decimal latitude
dec_long_va	numeric	Decimal longitude
coord_acy_cd	character	Latitude-longitude accuracy
dec_coord_datum_cd		Decimal Latitude-longitude datum
alt_va	character	Altitude of Gage or land surface
alt_acy_va	character	Altitude accuracy
alt_datum_cd	character	Altitude datum
huc_cd	character	Hydrologic unit code
data_type_cd	character	Data type
parm_cd	character	Parameter code
stat_cd	character	Statistical code
dd_nu	character	Internal database key
loc_web_ds	character	Additional measurement description
medium_grp_cd	character	Medium group code
parm_grp_cd	character	Parameter group code
srs_id	character	SRS ID
access_cd	character	Access code
begin_date	Date	Begin date
end_date	Date	End date
count nu	integer	Record count
	8	

88 whatNWISsites

parameter_group_nm character Parameter group name parameter_nm character Parameter name

casrn character Chemical Abstracts Service (CAS) Registry Number

srsname character Substance Registry Services

parameter_units character Parameter units

There are also several useful attributes attached to the data frame:

Name Type Description
url character The url used to generate the data

comment character Header comments from the RDB file queryTime POSIXct The time the data was returned

See Also

```
read_waterdata_ts_meta()
```

Examples

whatNWISsites

Site Data Import from NWIS

Description

Returns a list of sites from the NWIS web service. This function gets the data from: https://waterservices.usgs.gov/docs/site-service/. Mapper format is used

Usage

```
whatNWISsites(...)
```

whatWQPdata 89

Arguments

see https://waterservices.usgs.gov/docs/site-service/ for a complete list of options. A list (or lists) can also be supplied.

Value

A data frame with at least the following columns:

Name	Type	Description
agency_cd	character	The NWIS code for the agency reporting the data
site_no	character	The USGS site number
station_nm	character	Station name
site_tp_cd	character	Site type code
dec_lat_va	numeric	Decimal latitude
dec_long_va	numeric	Decimal longitude
queryTime	POSIXct	Query time

There are also several useful attributes attached to the data frame:

Name	Type	Description
url	character	The url used to generate the data
queryTime	POSIXct	The time the data was returned

See Also

```
read_waterdata_monitoring_location()
```

Examples

```
# see ?read_waterdata_monitoring_location
#siteListPhos <- whatNWISsites(stateCd = "OH", parameterCd = "00665")
#oneSite <- whatNWISsites(sites = "05114000")</pre>
```

whatWQPdata

Data Available from Water Quality Portal

Description

Returns a list of sites from the Water Quality Portal web service. This function gets the data from: https://www.waterqualitydata.us. Arguments to the function should be based on https://www.waterqualitydata.us/webservices_documentation. The information returned from whatWQP-data describes the available data at the WQP sites, and some metadata on the sites themselves. For example, a row is returned for each individual site that fulfills this query. In that we can learn how many sampling activities and results are available for the query. It does not break those results down by any finer grain. For example, if you ask for "Nutrients" (characteristicGroup), you will not learn what specific nutrients are available at that site. For that kind of data discovery see readWQPsummary.

90 whatWQPdata

Usage

```
whatWQPdata(..., convertType = TRUE)
```

Arguments

. . .

see https://www.waterqualitydata.us/webservices_documentation for a complete list of options. A list of arguments can also be supplied. One way to figure out how to construct a WQP query is to go to the "Advanced" form in the Water Quality Portal: https://www.waterqualitydata.us/#mimeType=csv&providers=NWIS&providers=STORET Use the form to discover what parameters are available. Once the query is set in the form, scroll down to the "Query URL". You will see the parameters after "https://www.waterqualitydata.us/#". For example, if you chose "Nutrient" in the Characteristic Group dropdown, you will see characteristicType=Nutrient in the Query URL. The corresponding argument for dataRetrieval is characteristicType = "Nutrient". dataRetrieval users do not need to include mimeType, and providers is optional (these arguments are picked automatically).

convertType

logical, defaults to TRUE. If TRUE, the function will convert the data to dates, datetimes, numerics based on a standard algorithm. If false, everything is returned as a character.

Value

A data frame that returns basic data availability such as sites, number of results, and number of sampling activities from the query parameters for the Water Quality Portal.

See Also

whatWQPsites readWQPsummary readWQPdata

whatWQPsamples 91

whatWQPsamples

Site Data Import from Water Quality Portal

Description

Returns a list of sites from the Water Quality Portal web service. This function gets the data from: https://www.waterqualitydata.us. Arguments to the function should be based on https://www.waterqualitydata.us/webservices_documentation. The return from this function returns the basic metadata on WQP sites. It is generally faster than the whatWQPdata() function, but does not return information on what data was collected at the site.

Usage

```
whatWQPsamples(..., convertType = TRUE, legacy = TRUE)
whatWQPmetrics(..., convertType = TRUE)
whatWQPsites(..., legacy = TRUE, convertType = TRUE)
```

Arguments

. . .

see https://www.waterqualitydata.us/webservices_documentation for a complete list of options. A list of arguments can also be supplied. One way to figure out how to construct a WQP query is to go to the "Advanced" form in the Water Quality Portal: https://www.waterqualitydata.us/#mimeType=csv&providers=NWIS&providers=STORET Use the form to discover what parameters are available. Once the query is set in the form, scroll down to the "Query URL". You will see the parameters after "https://www.waterqualitydata.us/#". For example, if you chose "Nutrient" in the Characteristic Group dropdown, you will see characteristicType=Nutrient in the Query URL. The corresponding argument for dataRetrieval is characteristicType = "Nutrient". dataRetrieval users do not need to include mimeType, and providers is optional (these arguments are picked automatically).

convertType

logical, defaults to TRUE. If TRUE, the function will convert the data to dates, datetimes, numerics based on a standard algorithm. If false, everything is returned as a character.

legacy

Logical. If TRUE, uses legacy WQP services. Default is TRUE. Setting legacy = FALSE uses WQX3.0 WQP services, which are in-development, use with caution.

Value

A data frame with information on the sampling activity available from the Water Quality Portal for the query parameters.

data frame that includes information on site metadata.

92 wqp_check_status

See Also

```
whatWQPdata readWQPsummary whatNWISdata
```

Examples

```
site1 <- whatWQPsamples(siteid = "USGS-01594440")</pre>
type <- "Stream"
sites <- whatWQPsamples(countycode = "US:55:025", siteType = type)</pre>
lakeSites_samples <- whatWQPsamples(siteType = "Lake, Reservoir, Impoundment",</pre>
                                       countycode = "US:55:025")
type <- "Stream"
sites <- whatWQPmetrics(countycode = "US:55:025", siteType = type)</pre>
lakeSites_metrics <- whatWQPmetrics(siteType = "Lake, Reservoir, Impoundment",</pre>
                                       countycode = "US:55:025")
site1 <- whatWQPsites(siteid = "USGS-01594440")</pre>
type <- "Stream"</pre>
sites <- whatWQPsites(</pre>
  countycode = "US:55:025",
  characteristicName = "Phosphorus",
  siteType = type
)
```

wqp_check_status

Get WOP service metadata

Description

The information from this request is only available for a limited time after the original query from the WQP. In the readWQPdata and readWQPqw functions, the results from this function will be attached as an attribute to the data.

Usage

```
wqp_check_status(wqp_request_id)
```

zeroPad 93

Arguments

wqp_request_id A character returned from the header of a WQP request.

Value

a list generated from the WQP describing what data was returned.

Examples

zeroPad

Pad string with leading zeros

Description

Function to pad a string with leading zeros. Useful for parameter codes and USGS site IDs.

Usage

```
zeroPad(x, padTo)
```

Arguments

x character

padTo number Final desired length of the character

Value

x character returned with leading zeros

```
pCode <- "10"
correctPCode <- zeroPad(pCode, 5)
pCodes <- c("100", "1000", "0", "12345", "1565465465465465")
correctPCodes <- zeroPad(pCodes, 5)
pCodeNA <- c(1, 2, NA)
padPCodeNA <- zeroPad(pCodeNA, 4)</pre>
```

Index

10	INDUT C. 47
* IO	readNWISuv, 47
renameNWISColumns, 82	readWQPdata, 50
* USGS	readWQPqw, 55
constructNWISURL, 6	whatNWISdata, 86
countyCd, 10	whatWQPdata, 89
readNWISdv, 33	whatWQPsamples, 91
readNWISpCode, 39	zeroPad, 93
readNWISsite, 42	* manip
readNWISuv, 47	renameNWISColumns, 82
readWQPqw, 55	* nldi
stateCd, 84	findNLDI, 12
whatNWISdata, 86	<pre>get_nldi_sources, 16</pre>
zeroPad, 93	* service
* WQP	constructNWISURL, 6
${\sf constructWQPURL}, 9$	${\sf constructWQPURL}, 9$
readWQPdata, 50	readNWISdv, 33
whatWQPdata, 89	readNWISpCode, 39
whatWQPsamples, 91	readNWISsite, 42
* countyCd	readNWISuv,47
countyCd, 10	readWQPdata, 50
* data	readWQPqw, 55
constructNWISURL, 6	whatNWISdata, 86
constructWQPURL, 9	whatWQPdata, 89
readNWISdv, 33	whatWQPsamples, 91
readNWISpCode, 39	zeroPad, 93
readNWISsite, 42	* stateCd
readNWISuv, 47	stateCd, 84
readWQPdata, 50	* web
readWQPqw, 55	constructNWISURL, 6
whatNWISdata, 86	constructWQPURL, 9
whatWQPdata, 89	readNWISdv, 33
whatWQPsamples, 91	readNWISpCode, 39
zeroPad, 93	readNWISsite, 42
* import	readNWISuv, 47
constructNWISURL, 6	readWQPdata, 50
constructWQPURL, 9	readWQPqw, 55
readNWISdv, 33	whatNWISdata, 86
readNWISpCode, 39	whatWQPdata, 89
readNWISsite, 42	whatWQPsamples, 91
1 Cadimi 1991 CC, 72	whather samples, 71

INDEX 95

zeroPad, 93	read_waterdata_ts_meta(), 88
	readNGWMNdata, 26
addWaterYear, 3	readNGWMNlevels, 27
	readNGWMNsites,29
calcWaterYear, 4	readNWISdata, 30
<pre>check_waterdata_sample_params, 5</pre>	readNWISdata(), 33, 35, 48
checkWQPdates, 5	readNWISdv, 33
constructNWISURL, 6	readNWISdv(), 30, 83, 87
constructNWISURL(), 36, 38, 41, 42, 45	readNWISgwl, 35
constructUseURL, 8	readNWISgwl(), 30
constructWQPURL, 9	readNWISmeas, 37
countyCd, 10	readNWISpCode, 39
countyCdLookup, 10	readNWISpeak, 39
create_NWIS_bib, 11	readNWISrating, 41
create_WQP_bib, 12	readNWISsite, 42
	readNWISstat, 44
findNLDI, 12	readNWISstat, 44
	•
get_nldi_sources, 16	readNWISuv, 47
getQuerySummary, 14	readNWISuv(), 30, 83, 87
getWebServiceData, 15	readWQPdata, 50
	readWQPdata(), 23, 56
importNGWMN, 16	readWQPqw, 55
importRDB1, 17	readWQPqw(), 23
importRDB1(), 36, 38, 39, 41, 42, 45	readWQPsummary, 57
importWaterML1, 19	renameNWISColumns, 82
<pre>importWaterML1(), 49</pre>	renameNWISColumns(), $20, 49$
importWaterML2, 22	
importWQP, 23	setAccess, 84
<pre>importWQP(), 56</pre>	stateCd, 84
is_dataRetrieval_user, 24	stateCdLookup, 85
	summarize_USGS_samples
parameterCdFile, 24	(summarize_waterdata_samples)
parse_WQP, 25	86
pcode_to_name, 26	summarize_waterdata_samples, 86
read_USGS_samples	whatNWISdata, 86
(read_waterdata_samples), 75	whatNWISdata(), 33 , 35 , 48
read_waterdata, 58	whatNWISsites, 88
read_waterdata(), 31	whatWQPdata, 89
read_waterdata_daily, 60	whatWQPdata(), 91
read_waterdata_daily(), 34	whatWQPmetrics(whatWQPsamples), 91
read_waterdata_latest_continuous, 63	whatWQPsamples, 91
read_waterdata_metadata, 66	whatWQPsites(whatWQPsamples), 91
read_waterdata_monitoring_location, 67	whatWQPsites(), $23,56$
read_waterdata_monitoring_location(),	wqp_check_status, 92
44, 89	– – ,
read_waterdata_parameter_codes, 73	zeroPad, 93
read_waterdata_samples, 75	
read_waterdata_ts_meta, 79	
r caa_water aata_t3_meta, //	