Package 'dcortools'

July 22, 2025

- **Title** Providing Fast and Flexible Functions for Distance Correlation Analysis
- Description Provides methods for distance covariance and distance correlation (Szekely, et al. (2007) <doi:10.1214/009053607000000505>), generalized version thereof (Sejdinovic, et al. (2013) <doi:10.1214/13-AOS1140>) and corresponding tests (Berschneider, Bottcher (2018) <doi:10.48550/arXiv.1808.07280>. Distance standard deviation methods (Edelmann, et al. (2020) <doi:10.1214/19-AOS1935>) and distance correlation methods for survival endpoints (Edelmann, et al. (2021) <doi:10.1111/biom.13470>) are also included.

Version 0.1.6

Depends Rdpack, R (>= 3.3.3), Rcpp (>= 0.11.0), Rfast

Imports ggplot2, pheatmap, Hmisc, stats

RdMacros Rdpack

LinkingTo RcppArmadillo, Rcpp, RcppEigen

License GPL-3

Encoding UTF-8

RoxygenNote 7.2.2

NeedsCompilation yes

Author Dominic Edelmann [aut, cre], Jochen Fiedler [aut]

Maintainer Dominic Edelmann <dominic.edelmann@dkfz-heidelberg.de>

Repository CRAN

Date/Publication 2022-12-09 23:50:07 UTC

Contents

dematrix								•																	2
dcorgaussianbiv	•							•																	6
dcsis																		•							6
distcor																									8
distcov				•	•	•		•		•	•	•				•	•		•			•		•	10

dcmatrix

distcov.test	13
distsd	16
extract_np	18
hsplot	18
ipcw.dcor	19
ipcw.dcov	21
ipcw.dcov.test	23
plot.dcmatrix	25
	26

Index

dcmatrix

Description

Calculates distance covariance and distance correlation matrices

Usage

```
dcmatrix(
 Х,
  Y = NULL,
 calc.dcov = TRUE,
  calc.dcor = TRUE,
  calc.cor = "none",
  calc.pvalue.cor = FALSE,
  return.data = TRUE,
  test = "none",
  adjustp = "none",
 b = 499,
 affine = FALSE,
  standardize = FALSE,
 bias.corr = FALSE,
  group.X = NULL,
  group.Y = NULL,
 metr.X = "euclidean",
 metr.Y = "euclidean",
 use = "all",
  algorithm = "auto",
  fc.discrete = FALSE,
  calc.dcor.pw = FALSE,
  calc.dcov.pw = FALSE,
  test.pw = "none",
 metr.pw.X = "euclidean",
 metr.pw.Y = "euclidean"
)
```

Calculates distance covariance and distance correlation matrices

dcmatrix

Х	A data.frame or matrix.
Υ	Either NULL or a data.frame or a matrix with the same number of rows as X. If only X is provided, distance covariances/correlations are calculated between all groups in X. If X and Y are provided, distance covariances/correlations are calculated between all groups in X and all groups of Y.
calc.dcov	logical; specifies if the distance covariance matrix is calculated.
calc.dcor	logical; specifies if the distance correlation matrix is calculated.
calc.cor	If set as "pearson", "spearman" or "kendall", a corresponding correlation matrix is additionally calculated.
calc.pvalue.cor	
	logical; IF TRUE, a p-value based on the Pearson or Spearman correlation ma- trix is calculated (not implemented for calc.cor ="kendall") using Hmisc::rcorr.
return.data	logical; specifies if the dcmatrix object should contain the original data.
test	specifies the type of test that is performed, "permutation" performs a Monte Carlo Permutation test. "gamma" performs a test based on a gamma approxima- tion of the test statistic under the null. "conservative" performs a conservative two-moment approximation. "bb3" performs a quite precise three-moment ap- proximation and is recommended when computation time is not an issue.
adjustp	If setting this parameter to "holm", "hochberg", "hommel", "bonferroni", "BH", "BY" or "fdr", corresponding adjusted p-values are additionally returned for the distance covariance test.
b	specifies the number of random permutations used for the permutation test. Ignored for all other tests.
affine	logical; indicates if the affinely transformed distance covariance should be cal- culated or not.
standardize	specifies if data should be standardized dividing each component by its standard deviations. No effect when affine = TRUE.
bias.corr	logical; specifies if the bias corrected version of the sample distance covariance (Huo and Szekely 2016) should be calculated.
group.X	A vector, each entry specifying the group membership of the respective column in X. Each group is handled as one sample for calculating the distance covari- ance/correlation matrices. If NULL, every sample is handled as an individual group.
group.Y	A vector, each entry specifying the group membership of the respective column in Y. Each group is handled as one sample for calculating the distance covari- ance/correlation matrices. If NULL, every sample is handled as an individual group.
metr.X	Either a single metric or a list providing a metric for each group in X (see examples).
metr.Y	see metr.X.
use	"all" uses all observations, "complete.obs" excludes NAs, "pairwise.complete.obs" uses pairwise complete observations for each comparison.

algorithm	specifies the algorithm used for calculating the distance covariance.
	"fast" uses an O(n log n) algorithm if the observations are one-dimensional and metr.X and metr.Y are either "euclidean" or "discrete", see also Huo and Szekely
	(2016).
	"memsave" uses a memory saving version of the standard algorithm with computational complexity $O(n^2)$ but requiring only $O(n)$ memory.
	"standard" uses the classical algorithm. User-specified metrics always use the classical algorithm.
	"auto" chooses the best algorithm for the specific setting using a rule of thumb. "memsave" is typically very inefficient for dcmatrix and should only be applied in exceptional cases.
fc.discrete	logical; If TRUE, "discrete" metric is applied automatically on samples of type "factor" or "character".
calc.dcor.pw	logical; If TRUE, a distance correlation matrix between the univariate observa- tions/columns is additionally calculated. Not meaningful if group.X and group.Y are not specified.
calc.dcov.pw	logical; If TRUE, a distance covariance matrix between the univariate observa- tions/columns is additionally calculated. Not meaningful if group.X and group.Y are not specified.
test.pw	specifies a test (see argument "test") that is performed between all single observations.
<pre>metr.pw.X</pre>	Either a single metric or a list providing a metric for each single observation/column in X (see metr.X).
<pre>metr.pw.Y</pre>	See metr.pw.Y.

S3 object of class "dcmatrix" with the following components

name X, Y	description original data (if return.data = TRUE).					
name dcov, dcor	distance covariance/correlation matrices between the groups specified in group.X/group.Y (if calc.dcov/calc.dcor = TRUE).					
name corr	correlation matrix between the univariate observations/columns (if cal.cor is "pearson", "spearman" or "kendall").					
name pvalue	matrix of p-values based on a corresponding distance covariance test based on the entries in dcov (if argument test is not "none").					
<pre>name pvalue.adj</pre>	name pvalue.adj					
	matrix of p-values adjusted for multiple comparisons using the method specified in argument adjustp.					
<pre>name pvalue.cor</pre>						
	matrix of pvalues based on "pearson"/"spearman" correlation (if calc.cor is "pearson" or "spearman" and calc.pvalue.cor = TRUE).					
name dcov.pw, dcor.pw						
	distance covariance/correlation matrices between the univariate observations (if calc.dcov.pw/calc.dcor.pw = TRUE.)					
name pvalue.pw	matrix of p-values based on a corresponding distance covariance test based on the entries in dcov.pw (if argument test is not "none").					

dcmatrix

References

Berschneider G, Bottcher B (2018). "On complex Gaussian random fields, Gaussian quadratic forms and sample distance multivariance." *arXiv preprint arXiv:1808.07280*.

Bottcher B, Keller-Ressel M, Schilling RL (2018). "Detecting independence of random vectors: generalized distance covariance and Gaussian covariance." *Modern Stochastics: Theory and Applications*, **3**, 353–383.

Dueck J, Edelmann D, Gneiting T, Richards D (2014). "The affinely invariant distance correlation." *Bernoulli*, **20**, 2305–2330.

Huang C, Huo X (2017). "A statistically and numerically efficient independence test based on random projections and distance covariance." *arXiv preprint arXiv:1701.06054*.

Huo X, Szekely GJ (2016). "Fast computing for distance covariance." *Technometrics*, **58**(4), 435–447.

Lyons R (2013). "Distance covariance in metric spaces." The Annals of Probability, 41, 3284–3305.

Sejdinovic D, Sriperumbudur B, Gretton A, Fukumizu K (2013). "Equivalence of distance-based and RKHS-based statistics in hypothesis testing." *The Annals of Statistics*, **41**, 2263–2291.

Szekely GJ, Rizzo ML, Bakirov NK (2007). "Measuring and testing dependence by correlation of distances." *The Annals of Statistics*, **35**, 2769–2794.

Szekely GJ, Rizzo ML (2009). "Brownian distance covariance." *The Annals of Applied Statistics*, **3**, 1236–1265.

Examples

```
X <- matrix(rnorm(1000), ncol = 10)</pre>
dcm <- dcmatrix(X, test="bb3",calc.cor = "pearson",</pre>
 calc.pvalue.cor = TRUE, adjustp = "BH")
dcm <- dcmatrix(X, test="bb3",calc.cor = "pearson",</pre>
 calc.pvalue.cor = TRUE, adjustp = "BH",
 group.X = c(rep(1, 5), rep(2, 5)),
 calc.dcor.pw = TRUE, test.pw = "bb3")
Y \leq matrix(rnorm(600), ncol = 6)
Y[,6] <- rbinom(100, 4, 0.3)
dcm <- dcmatrix(X, Y, test="bb3",calc.cor = "pearson",</pre>
 calc.pvalue.cor = TRUE, adjustp = "BH")
dcm <- dcmatrix(X, Y, test="bb3",calc.cor = "pearson",</pre>
 calc.pvalue.cor = TRUE, adjustp = "BH",
 group.X = c(rep("group1", 5), rep("group2", 5)),
 group.Y = c(rep("group1", 5), "group2"),
 metr.X = "gaussauto",
 metr.Y = list("group1" = "gaussauto", "group2" = "discrete"))
```

dcorgaussianbiv

Description

Calculates distance correlation from Pearson correlation under assumption of a bivariate normal distribution

Usage

dcorgaussianbiv(rho)

Arguments

rho Pearson correlation.

Value

Distance correlation assuming a bivariate normal distribution

dcsis	Performs distance correlation sure independence screening (Li et al.
	2012) with some additional options (such as calculating correspond-
	ing tests).

Description

Performs distance correlation sure independence screening (Li et al. 2012) with some additional options (such as calculating corresponding tests).

Usage

```
dcsis(
    X,
    Y,
    k = floor(nrow(X)/log(nrow(X))),
    threshold = NULL,
    calc.cor = "spearman",
    calc.pvalue.cor = FALSE,
    return.data = FALSE,
    test = "none",
    adjustp = "none",
    b = 499,
    bias.corr = FALSE,
    use = "all",
    algorithm = "auto"
)
```

dcsis

Arguments

Х	A dataframe or matrix.
Y	A vector-valued response having the same length as the number of rows of X.
k	Number of variables that are selected (only used when threshold is not pro- vided).
threshold	If provided, variables with a distance correlation larger than threshold are se- lected.
calc.cor	If set as "pearson", "spearman" or "kendall", a corresponding correlation matrix is additionally calculated.
calc.pvalue.cor	
	logical; IF TRUE, a p-value based on the Pearson or Spearman correlation ma- trix is calculated (not implemented for calc.cor = "kendall") using Hmisc::rcorr.
return.data	logical; specifies if the dematrix object should contain the original data.
test	Allows for additionally calculating a test based on distance Covariance. Spec- ifies the type of test that is performed, "permutation" performs a Monte Carlo Permutation test. "gamma" performs a test based on a gamma approximation of the test statistic under the null. "conservative" performs a conservative two- moment approximation. "bb3" performs a quite precise three-moment approxi- mation and is recommended when computation time is not an issue.
adjustp	If setting this parameter to "holm", "hochberg", "hommel", "bonferroni", "BH", "BY" or "fdr", corresponding adjusted p-values are additionally returned for the distance covariance test.
b	specifies the number of random permutations used for the permutation test. Ig- nored for all other tests.
bias.corr	logical; specifies if the bias corrected version of the sample distance covariance (Huo and Szekely 2016) should be calculated.
use	"all" uses all observations, "complete.obs" excludes NAs, "pairwise.complete.obs" uses pairwise complete observations for each comparison.
algorithm	specifies the algorithm used for calculating the distance covariance.
	"fast" uses an O(n log n) algorithm if the observations are one-dimensional and metr.X and metr.Y are either "euclidean" or "discrete", see also Huo and Szekely (2016).
	"memsave" uses a memory saving version of the standard algorithm with computational complexity $O(n^2)$ but requiring only $O(n)$ memory.
	"standard" uses the classical algorithm. User-specified metrics always use the classical algorithm.
	"auto" chooses the best algorithm for the specific setting using a rule of thumb.
	"memsave" is typically very inefficient for dcsis and should only be applied in exceptional cases.

Value

dcmatrix object with the following two additional slots:

name selected description indices of selected variables. name dcor.selected

distance correlation of the selected variables and the response Y.

References

Berschneider G, Bottcher B (2018). "On complex Gaussian random fields, Gaussian quadratic forms and sample distance multivariance." *arXiv preprint arXiv:1808.07280*. Dueck J, Edelmann D, Gneiting T, Richards D (2014). "The affinely invariant distance correlation." *Bernoulli*, **20**, 2305–2330.

Huang C, Huo X (2017). "A statistically and numerically efficient independence test based on random projections and distance covariance." *arXiv preprint arXiv:1701.06054*.

Huo X, Szekely GJ (2016). "Fast computing for distance covariance." *Technometrics*, **58**(4), 435–447.

Li R, Zhong W, Zhu L (2012). "Feature screening via distance correlation learning." *Journal of the American Statistical Association*, **107**(499), 1129–1139.

Szekely GJ, Rizzo ML, Bakirov NK (2007). "Measuring and testing dependence by correlation of distances." *The Annals of Statistics*, **35**, 2769–2794.

Szekely GJ, Rizzo ML (2009). "Brownian distance covariance." *The Annals of Applied Statistics*, **3**, 1236–1265.

Examples

```
X <- matrix(rnorm(1e5), ncol = 1000)
Y <- sapply(1:100, function(u) sum(X[u, 1:50])) + rnorm(100)
a <- dcsis(X, Y)</pre>
```

distcor	Calculates the distance correlation (Szekely et al. 2007; Szekely and
	<i>Rizzo 2009</i>).

Description

Calculates the distance correlation (Szekely et al. 2007; Szekely and Rizzo 2009).

Usage

```
distcor(
   X,
   Y,
   affine = FALSE,
   standardize = FALSE,
   bias.corr = FALSE,
   type.X = "sample",
   type.Y = "sample",
   metr.X = "euclidean",
```

distcor

```
metr.Y = "euclidean",
use = "all",
algorithm = "auto"
)
```

Х	contains either the first sample or its corresponding distance matrix.
	In the first case, X can be provided either as a vector (if one-dimensional), a
	matrix or a data.frame (if two-dimensional or higher).
	In the second case, the input must be a distance matrix corresponding to the sample of interest.
	If X is a sample, type.X must be specified as "sample". If X is a distance matrix, type.X must be specified as "distance".
Y	see X.
affine	logical; specifies if the affinely invariant distance correlation (Dueck et al. 2014) should be calculated or not.
standardize	logical; specifies if X and Y should be standardized dividing each component by its standard deviations. No effect when affine = TRUE.
bias.corr	logical; specifies if the bias corrected version of the sample distance correlation (Huo and Szekely 2016) should be calculated.
type.X	For "distance", X is interpreted as a distance matrix. For "sample", X is interpreted as a sample.
type.Y	see type.X.
metr.X	specifies the metric which should be used to compute the distance matrix for X (ignored when type.X = "distance").
	Options are "euclidean", "discrete", "alpha", "minkowski", "gaussian", "gaussauto", "boundsq" or user-specified metrics (see examples).
	For "alpha", "minkowski", "gaussian", "gaussauto" and "boundsq", the corresponding parameters are specified via "c(metric, parameter)", e.g. c("gaussian", 3) for a Gaussian metric with bandwidth parameter 3; the default parameter is 2 for "minkowski" and "1" for all other metrics.
	See Lyons (2013); Sejdinovic et al. (2013); Bottcher et al. (2018) for details.
metr.Y	see metr.X.
use	specifies how to treat missing values. "complete.obs" excludes observations containing NAs, "all" uses all observations.
algorithm	specifies the algorithm used for calculating the distance correlation.
	"fast" uses an O(n log n) algorithm if the observations are one-dimensional and metr.X and metr.Y are either "euclidean" or "discrete", see also Huo and Szekely (2016).
	"memsave" uses a memory saving version of the standard algorithm with com- putational complexity $O(n^2)$ but requiring only $O(n)$ memory.
	"standard" uses the classical algorithm. User-specified metrics always use the classical algorithm.
	"auto" chooses the best algorithm for the specific setting using a rule of thumb.

numeric; the distance correlation between samples X and Y.

References

Bottcher B, Keller-Ressel M, Schilling RL (2018). "Detecting independence of random vectors: generalized distance covariance and Gaussian covariance." *Modern Stochastics: Theory and Applications*, **3**, 353–383.

Dueck J, Edelmann D, Gneiting T, Richards D (2014). "The affinely invariant distance correlation." *Bernoulli*, **20**, 2305–2330.

Huo X, Szekely GJ (2016). "Fast computing for distance covariance." *Technometrics*, **58**(4), 435–447.

Lyons R (2013). "Distance covariance in metric spaces." The Annals of Probability, 41, 3284–3305.

Sejdinovic D, Sriperumbudur B, Gretton A, Fukumizu K (2013). "Equivalence of distance-based and RKHS-based statistics in hypothesis testing." *The Annals of Statistics*, **41**, 2263–2291.

Szekely GJ, Rizzo ML, Bakirov NK (2007). "Measuring and testing dependence by correlation of distances." *The Annals of Statistics*, **35**, 2769–2794.

Szekely GJ, Rizzo ML (2009). "Brownian distance covariance." *The Annals of Applied Statistics*, **3**, 1236–1265.

Examples

```
X <- rnorm(200)
Y <- rnorm(200)
Z <- X + rnorm(200)
dim(X) <- dim(Y) <- dim(Z) <- c(20, 10)
#Demonstration that biased-corrected distance correlation is
#often more meaningful than without using bias-correction</pre>
```

distcor(X, Y)
distcor(X, Z)
distcor(X, Y, bias.corr = TRUE)
distcor(X, Z, bias.corr = TRUE)

```
#For more examples of the different options,
#see the documentation of distcov.
```

distcov

Calculates the distance covariance (Szekely et al. 2007; Szekely and Rizzo 2009).

Description

Calculates the distance covariance (Szekely et al. 2007; Szekely and Rizzo 2009).

distcov

Usage

```
distcov(
   X,
   Y,
   affine = FALSE,
   standardize = FALSE,
   bias.corr = FALSE,
   type.X = "sample",
   type.Y = "sample",
   metr.X = "euclidean",
   metr.Y = "euclidean",
   use = "all",
   algorithm = "auto"
)
```

Х	contains either the first sample or its corresponding distance matrix.
	In the first case, X can be provided either as a vector (if one-dimensional), a matrix or a data.frame (if two-dimensional or higher).
	In the second case, the input must be a distance matrix corresponding to the sample of interest.
	If X is a sample, type.X must be specified as "sample". If X is a distance matrix, type.X must be specified as "distance".
Υ	see X.
affine	logical; specifies if the affinely invariant distance covariance (Dueck et al. 2014) should be calculated or not.
standardize	logical; specifies if X and Y should be standardized dividing each component by its standard deviations. No effect when affine = TRUE.
bias.corr	logical; specifies if the bias corrected version of the sample distance covariance (Huo and Szekely 2016) should be calculated.
type.X	For "distance", X is interpreted as a distance matrix. For "sample", X is interpreted as a sample.
type.Y	see type.X.
metr.X	specifies the metric which should be used to compute the distance matrix for X (ignored when type.X = "distance").
	Options are "euclidean", "discrete", "alpha", "minkowski", "gaussian", "gaussauto", "boundsq" or user-specified metrics (see examples).
	For "alpha", "minkowski", "gaussian", "gaussauto" and "boundsq", the corresponding parameters are specified via "c(metric, parameter)", e.g. c("gaussian", 3) for a Gaussian metric with bandwidth parameter 3; the default parameter is 2 for "minkowski" and "1" for all other metrics.
	See Lyons (2013); Sejdinovic et al. (2013); Bottcher et al. (2018) for details.
metr.Y	see metr.X.

use	specifies how to treat missing values. "complete.obs" excludes observations containing NAs, "all" uses all observations.
algorithm	specifies the algorithm used for calculating the distance covariance. "fast" uses an O(n log n) algorithm if the observations are one-dimensional and metr.X and metr.Y are either "euclidean" or "discrete", see also Huo and Szekely (2016).
	 "memsave" uses a memory saving version of the standard algorithm with computational complexity O(n^2) but requiring only O(n) memory. "standard" uses the classical algorithm. User-specified metrics always use the classical algorithm. "auto" chooses the best algorithm for the specific setting using a rule of thumb.

numeric; the distance covariance between samples X and Y.

References

Bottcher B, Keller-Ressel M, Schilling RL (2018). "Detecting independence of random vectors: generalized distance covariance and Gaussian covariance." *Modern Stochastics: Theory and Applications*, **3**, 353–383.

Dueck J, Edelmann D, Gneiting T, Richards D (2014). "The affinely invariant distance correlation." *Bernoulli*, **20**, 2305–2330.

Huo X, Szekely GJ (2016). "Fast computing for distance covariance." *Technometrics*, **58**(4), 435–447.

Lyons R (2013). "Distance covariance in metric spaces." The Annals of Probability, 41, 3284–3305.

Sejdinovic D, Sriperumbudur B, Gretton A, Fukumizu K (2013). "Equivalence of distance-based and RKHS-based statistics in hypothesis testing." *The Annals of Statistics*, **41**, 2263–2291.

Szekely GJ, Rizzo ML, Bakirov NK (2007). "Measuring and testing dependence by correlation of distances." *The Annals of Statistics*, **35**, 2769–2794.

Szekely GJ, Rizzo ML (2009). "Brownian distance covariance." *The Annals of Applied Statistics*, **3**, 1236–1265.

Examples

```
X <- rnorm(100)
Y <- X + 3 * rnorm(100)
distcov(X, Y) # standard distance covariance
distcov(X, Y, metr.X = "gaussauto", metr.Y = "gaussauto")
# Gaussian distance with bandwidth choice based on median heuristic
distcov(X, Y, metr.X = c("alpha", 0.5), metr.Y = c("alpha", 0.5))
# alpha distance covariance with alpha = 0.5.
```

#Define a user-specified (slow) version of the alpha metric

```
alpha_user <- function(X, prm = 1, kernel = FALSE) {</pre>
    as.matrix(dist(X)) ^ prm
}
distcov(X, Y, metr.X = c("alpha", 0.5), metr.Y = c("alpha", 0.5))
# Gives the same result as before.
#User-specified Gaussian kernel function
gauss_kernel <- function(X, prm = 1, kernel = TRUE) {</pre>
    exp(as.matrix(dist(X)) ^ 2 / 2 / prm ^ 2)
}
distcov(X, Y, metr.X = c("gauss_kernel", 2), metr.Y = c("gauss_kernel", 2))
# calculates the distance covariance using the corresponding kernel-induced metric
distcov(X, Y, metr.X = c("gaussian", 2), metr.Y = c("gaussian", 2))
# same result
Y <- matrix(nrow = 100, ncol = 2)</pre>
X <- rnorm(300)
dim(X) <- c(100, 3)
Z <- rnorm(100)
Y <- matrix(nrow = 100, ncol = 2)</pre>
Y[, 1] <- X[, 1] + Z
Y[, 2] <- 3 * Z
distcov(X, Y)
distcov(X, Y, affine = TRUE)
# affinely invariant distance covariance
distcov(X, Y, standardize = TRUE)
## distance covariance standardizing the components of X and Y
```

distcov.test *Performs a distance covariance test.*

Description

Performs a distance covariance test.

Usage

```
distcov.test(
   X,
   Y,
```

```
method = "permutation",
b = 499L,
ln = 20,
affine = FALSE,
standardize = FALSE,
bias.corr = FALSE,
type.X = "sample",
type.Y = "sample",
metr.X = "euclidean",
metr.Y = "euclidean",
use = "all",
return.data = FALSE,
algorithm = "auto"
```

Arguments

Х	contains either the first sample or its corresponding distance matrix. In the first case, X can be provided either as a vector (if one-dimensional), a matrix or a data frame (if two-dimensional or higher)
	In the second case, the input must be a distance matrix corresponding to the sample of interest.
	If X is a sample, type.X must be specified as "sample". If X is a distance matrix, type.X must be specified as "distance".
Υ	see X.
method	specifies the type of test that is performed.
	"permutation" performs a Monte Carlo Permutation test.
	"gamma" performs a test based on a gamma approximation of the test statistic under the null (Huang and Huo 2017). This test tends to be anti-conservative, if the "real" p-value is small
	"conservative" performs a conservative two-moment approximation (Berschneider and Bottcher 2018).
	"bb3" performs a three-moment approximation (Berschneider and Bottcher 2018). This is the most precise parametric option, but only available with the standard algorithm.
	"wildbs1" and "wilbs2" perform wild bootstrap tests (Chwialkowski et al. 2014); experimental at the moment.
b	integer; specifies the number of random permutations/bootstrap samples used for the permutation or wild bootstraps tests. Ignored for other tests.
ln	numeric; block size parameter for wild bootstrap tests. Ignored for other tests.
affine	logical; specifies if the affinely invariant distance covariance (Dueck et al. 2014) should be calculated or not.
standardize	logical; specifies if X and Y should be standardized dividing each component by its standard deviations. No effect when affine = TRUE.
bias.corr	logical; specifies if the bias corrected version of the sample distance covariance (Huo and Szekely 2016) should be calculated.

14

type.X	For "distance", X is interpreted as a distance matrix. For "sample", X is interpreted as a sample.
type.Y	see type.X.
metr.X	specifies the metric which should be used to compute the distance matrix for X (ignored when type.X = "distance").
	Options are "euclidean", "discrete", "alpha", "minkowski", "gaussian", "gaussauto", "boundsq" or user-specified metrics (see examples).
	For "alpha", "minkowski", "gauss", "gaussauto" and "boundsq", the correspond- ing parameters are specified via "c(metric, parameter)", c("gaussian", 3) for ex- ample uses a Gaussian metric with bandwidth parameter 3; the default parameter is 2 for "minkowski" and "1" for all other metrics.
	See Lyons (2013); Sejdinovic et al. (2013); Bottcher et al. (2018) for details.
metr.Y	see metr.X.
use	specifies how to treat missing values. "complete.obs" excludes NAs, "all" uses all observations.
return.data	logical; specifies if the test object should contain the original data.
algorithm	specifies the algorithm used for calculating the distance covariance.
	"fast" uses an O(n log n) algorithm if the observations are one-dimensional and metr.X and metr.Y are either "euclidean" or "discrete", see also Huo and Szekely (2016).
	"memsave" uses a memory saving version of the standard algorithm with computational complexity $O(n^2)$ but requiring only $O(n)$ memory.
	"standard" uses the classical algorithm. User-specified metrics always use the classical algorithm.
	"auto" chooses the best algorithm for the specific setting using a rule of thumb.

distcov.test object

References

Berschneider G, Bottcher B (2018). "On complex Gaussian random fields, Gaussian quadratic forms and sample distance multivariance." *arXiv preprint arXiv:1808.07280*.

Bottcher B, Keller-Ressel M, Schilling RL (2018). "Detecting independence of random vectors: generalized distance covariance and Gaussian covariance." *Modern Stochastics: Theory and Applications*, **3**, 353–383.

Chwialkowski KP, Sejdinovic D, Gretton A (2014). "A wild bootstrap for degenerate kernel tests." In *Advances in neural information processing systems*, 3608–3616.

Dueck J, Edelmann D, Gneiting T, Richards D (2014). "The affinely invariant distance correlation." *Bernoulli*, **20**, 2305–2330.

Huang C, Huo X (2017). "A statistically and numerically efficient independence test based on random projections and distance covariance." *arXiv preprint arXiv:1701.06054*.

Huo X, Szekely GJ (2016). "Fast computing for distance covariance." *Technometrics*, **58**(4), 435–447.

Lyons R (2013). "Distance covariance in metric spaces." *The Annals of Probability*, **41**, 3284–3305. Sejdinovic D, Sriperumbudur B, Gretton A, Fukumizu K (2013). "Equivalence of distance-based and RKHS-based statistics in hypothesis testing." *The Annals of Statistics*, **41**, 2263–2291.

Szekely GJ, Rizzo ML, Bakirov NK (2007). "Measuring and testing dependence by correlation of distances." *The Annals of Statistics*, **35**, 2769–2794.

Szekely GJ, Rizzo ML (2009). "Brownian distance covariance." *The Annals of Applied Statistics*, **3**, 1236–1265.

distsd

Calculates the distance standard deviation (Edelmann et al. 2020).

Description

Calculates the distance standard deviation (Edelmann et al. 2020).

Usage

```
distsd(
   X,
   affine = FALSE,
   standardize = FALSE,
   bias.corr = FALSE,
   type.X = "sample",
   metr.X = "euclidean",
   use = "all",
   algorithm = "auto"
)
```

Arguments

Х	contains either the sample or its corresponding distance matrix.
	In the first case, X can be provided either as a vector (if one-dimensional), a matrix or a data.frame (if two-dimensional or higher).
	In the second case, the input must be a distance matrix corresponding to the sample of interest.
	If X is a sample, type.X must be specified as "sample". If X is a distance matrix, type.X must be specified as "distance".
affine	logical; specifies if the affinely invariant distance standard deviation (Dueck et al. 2014) should be calculated or not.
standardize	logical; specifies if X and Y should be standardized dividing each component by its standard deviations. No effect when affine = TRUE.
bias.corr	logical; specifies if the bias corrected version of the sample distance standard deviation (Huo and Szekely 2016) should be calculated.
type.X	For "distance", X is interpreted as a distance matrix. For "sample", X is interpreted as a sample.

16

distsd

metr.X	specifies the metric which should be used to compute the distance matrix for X (ignored when type.X = "distance").
	Options are "euclidean", "discrete", "alpha", "minkowski", "gaussian", "gaussauto", "boundsq" or user-specified metrics (see examples).
	 For "alpha", "minkowski", "gaussian", "gaussauto" and "boundsq", the corresponding parameters are specified via "c(metric, parameter)", e.g. c("gaussian", 3) for a Gaussian metric with bandwidth parameter 3; the default parameter is 2 for "minkowski" and "1" for all other metrics.
	See Lyons (2013); Sejdinovic et al. (2013); Bottcher et al. (2018) for details.
use	specifies how to treat missing values. "complete.obs" excludes observations containing NAs, "all" uses all observations.
algorithm	specifies the algorithm used for calculating the distance standard deviation.
	"fast" uses an O(n log n) algorithm if the observations are one-dimensional and metr.X and metr.Y are either "euclidean" or "discrete", see also Huo and Szekely (2016).
	"memsave" uses a memory saving version of the standard algorithm with computational complexity $O(n^2)$ but requiring only $O(n)$ memory.
	"standard" uses the classical algorithm. User-specified metrics always use the classical algorithm.
	"auto" chooses the best algorithm for the specific setting using a rule of thumb.

Value

numeric; the distance standard deviation of X.

References

Bottcher B, Keller-Ressel M, Schilling RL (2018). "Detecting independence of random vectors: generalized distance covariance and Gaussian covariance." *Modern Stochastics: Theory and Applications*, **3**, 353–383.

Dueck J, Edelmann D, Gneiting T, Richards D (2014). "The affinely invariant distance correlation." *Bernoulli*, **20**, 2305–2330.

Edelmann D, Richards D, Vogel D (2020). "The Distance Standard Deviation." *The Annals of Statistics.*. Accepted for publication.

Huo X, Szekely GJ (2016). "Fast computing for distance covariance." *Technometrics*, **58**(4), 435–447.

Lyons R (2013). "Distance covariance in metric spaces." The Annals of Probability, 41, 3284–3305.

Sejdinovic D, Sriperumbudur B, Gretton A, Fukumizu K (2013). "Equivalence of distance-based and RKHS-based statistics in hypothesis testing." *The Annals of Statistics*, **41**, 2263–2291.

Szekely GJ, Rizzo ML, Bakirov NK (2007). "Measuring and testing dependence by correlation of distances." *The Annals of Statistics*, **35**, 2769–2794.

Szekely GJ, Rizzo ML (2009). "Brownian distance covariance." *The Annals of Applied Statistics*, **3**, 1236–1265.

Examples

```
X <- rnorm(100) distsd(X) \# for more examples on the options see the documentation of distcov.
```

extract_np

Extract the dimensions of X.

Description

Extract the dimensions of X.

Usage

extract_np(X, type.X)

Arguments

Х	a numeric vector or a numeric matrix.
type.X	either "sample" or "distance". If type.X = "sample", X must be a numeric vector or numeric matrix with the corresponding observations. If metr.X = "distance",
	X must be a distance matrix.

Value

The centralized distance matrix corresponding to X.

hsplot	Plots Pearson/Spearman/Kendall correlation against distance corre-
	lation (often resembling a horseshoe(hs)).

Description

Plots Pearson/Spearman/Kendall correlation against distance correlation (often resembling a horse-shoe(hs)).

Usage

```
hsplot(dcmat, maxcomp = 1e+05, col = "blue", alpha = 1, cortrafo = "none")
```

18

ipcw.dcor

Arguments

dcmat	A dematrix object.
maxcomp	Maximum number of associations, for which distance correlation is plotted against correlation. If the number of associations in the dcmat object is larger, only the maxcomp associations with the largest difference between distance cor- relation and absolute (Pearson/Spearman/Kendall) correlation are plotted.
col	color of the plot.
alpha	alpha parameter of the plot.
cortrafo	Either "none" or "gaussiandcor". If "gaussiandcor", the distance correlation un- der assumption of normality is calculated and plotted against the actual distance correlation.
	Note that this is only sensible for Pearson correlation!

Value

Plot of (possibly transformed) Pearson/Spearman/Kendall correlation against distance correlation.

ipcw.dcor	Calculates an inverse-probability-of-censoring weighted (IPCW) dis-
	tance correlation based on IPCW U-statistics (Datta et al. 2010).

Description

Calculates an inverse-probability-of-censoring weighted (IPCW) distance correlation based on IPCW U-statistics (Datta et al. 2010).

Usage

```
ipcw.dcor(
 Y,
 X,
 affine = FALSE,
 standardize = FALSE,
 timetrafo = "none",
 type.X = "sample",
 metr.X = "euclidean",
 use = "all",
 cutoff = NULL
)
```

Y	A matrix with two columns, where the first column contains the survival times and the second column the status indicators (a survival object will work)
х	A vector or matrix containing the covariate information.

affine	logical; specifies if X should be transformed such that the result is invariant under affine transformations of X
standardize	logical; should X be standardized using the standard deviations of single observations?. No effect when affine = TRUE.
timetrafo	specifies a transformation applied on the follow-up times. Can be "none", "log" or a user-specified function.
type.X	For "distance", X is interpreted as a distance matrix. For "sample", X is interpreted as a sample.
metr.X	specifies the metric which should be used to compute the distance matrix for X (ignored when type.X = "distance"). Options are "euclidean", "discrete", "alpha", "minkowski", "gaussian", "gaussauto", "boundsq" or user-specified metrics (see examples).
	For "alpha", "minkowski", "gaussian", "gaussauto" and "boundsq", the corresponding parameters are specified via "c(metric,parameter)", c("gaussian",3) for example uses a Gaussian metric with bandwidth parameter 3; the default parameter is 2 for "minkowski" and "1" for all other metrics.
use	specifies how to treat missing values. "complete.obs" excludes observations containing NAs, "all" uses all observations.
cutoff	If provided, all survival times larger than cutoff are set to the cutoff and all cor- responding status indicators are set to one. Under most circumstances, choosing a cutoff is highly recommended.

An inverse-probability of censoring weighted estimate for the distance correlation between X and the survival times.

References

Bottcher B, Keller-Ressel M, Schilling RL (2018). "Detecting independence of random vectors: generalized distance covariance and Gaussian covariance." *Modern Stochastics: Theory and Applications*, **3**, 353–383.

Datta S, Bandyopadhyay D, Satten GA (2010). "Inverse Probability of Censoring Weighted Ustatistics for Right-Censored Data with an Application to Testing Hypotheses." *Scandinavian Journal of Statistics*, **37**(4), 680–700.

Dueck J, Edelmann D, Gneiting T, Richards D (2014). "The affinely invariant distance correlation." *Bernoulli*, **20**, 2305–2330.

Huo X, Szekely GJ (2016). "Fast computing for distance covariance." *Technometrics*, **58**(4), 435–447.

Lyons R (2013). "Distance covariance in metric spaces." The Annals of Probability, 41, 3284–3305.

Sejdinovic D, Sriperumbudur B, Gretton A, Fukumizu K (2013). "Equivalence of distance-based and RKHS-based statistics in hypothesis testing." *The Annals of Statistics*, **41**, 2263–2291.

Szekely GJ, Rizzo ML, Bakirov NK (2007). "Measuring and testing dependence by correlation of distances." *The Annals of Statistics*, **35**, 2769–2794.

Szekely GJ, Rizzo ML (2009). "Brownian distance covariance." *The Annals of Applied Statistics*, **3**, 1236–1265.

ipcw.dcov

Examples

```
X <- rnorm(100)
survtime <- rgamma(100, abs(X))
cens <- rexp(100)
status <- as.numeric(survtime < cens)
time <- sapply(1:100, function(u) min(survtime[u], cens[u]))
surv <- cbind(time, status)
ipcw.dcor(surv, X)</pre>
```

ipcw.dcov

Calculates an inverse-probability-of-censoring weighted (IPCW) distance covariance based on IPCW U-statistics (Datta et al. 2010).

Description

Calculates an inverse-probability-of-censoring weighted (IPCW) distance covariance based on IPCW U-statistics (Datta et al. 2010).

Usage

```
ipcw.dcov(
 Y,
 X,
 affine = FALSE,
 standardize = FALSE,
 timetrafo = "none",
 type.X = "sample",
 metr.X = "euclidean",
 use = "all",
 cutoff = NULL
)
```

Y	A column with two rows, where the first row contains the survival times and the second row the status indicators (a survival object will work).
Х	A vector or matrix containing the covariate information.
affine	logical; indicates if X should be transformed such that the result is invariant under affine transformations of X
standardize	logical; should X be standardized using the standard deviations of single observations?. No effect when affine = TRUE.
timetrafo	specifies a transformation applied on the follow-up times. Can be "none", "log" or a user-specified function.
type.X	For "distance", X is interpreted as a distance matrix. For "sample" (or any other value), X is interpreted as a sample

metr.X	metr.X specifies the metric which should be used for X to analyze the distance covariance. Options are "euclidean", "discrete", "alpha", "minkowski", "gaussian", "gaussauto" and "boundsq". For "alpha", "minkowski", "gauss", "gaussauto" and "boundsq", the corresponding parameters are specified via "c(metric,parameter)' (see examples); the standard parameter is 2 for "minkowski" and "1" for all other metrics.
use	specifies how to treat missing values. "complete.obs" excludes observations containing NAs, "all" uses all observations.
cutoff	If provided, all survival times larger than cutoff are set to the cutoff and all cor- responding status indicators are set to one. Under most circumstances, choosing a cutoff is highly recommended.

An inverse-probability of censoring weighted estimate for the distance covariance between X and the survival times.

References

Bottcher B, Keller-Ressel M, Schilling RL (2018). "Detecting independence of random vectors: generalized distance covariance and Gaussian covariance." *Modern Stochastics: Theory and Applications*, **3**, 353–383.

Datta S, Bandyopadhyay D, Satten GA (2010). "Inverse Probability of Censoring Weighted Ustatistics for Right-Censored Data with an Application to Testing Hypotheses." *Scandinavian Journal of Statistics*, **37**(4), 680–700.

Dueck J, Edelmann D, Gneiting T, Richards D (2014). "The affinely invariant distance correlation." *Bernoulli*, **20**, 2305–2330.

Huo X, Szekely GJ (2016). "Fast computing for distance covariance." *Technometrics*, **58**(4), 435–447.

Lyons R (2013). "Distance covariance in metric spaces." The Annals of Probability, 41, 3284–3305.

Sejdinovic D, Sriperumbudur B, Gretton A, Fukumizu K (2013). "Equivalence of distance-based and RKHS-based statistics in hypothesis testing." *The Annals of Statistics*, **41**, 2263–2291.

Szekely GJ, Rizzo ML, Bakirov NK (2007). "Measuring and testing dependence by correlation of distances." *The Annals of Statistics*, **35**, 2769–2794.

Szekely GJ, Rizzo ML (2009). "Brownian distance covariance." *The Annals of Applied Statistics*, **3**, 1236–1265.

Examples

```
X <- rnorm(100)
survtime <- rgamma(100, abs(X))
cens <- rexp(100)
status <- as.numeric(survtime < cens)
time <- sapply(1:100, function(u) min(survtime[u], cens[u]))
surv <- cbind(time, status)
ipcw.dcov(surv, X)</pre>
```

ipcw.dcov.test

Description

Performs a permutation test based on the IPCW distance covariance.

Usage

```
ipcw.dcov.test(
    Y,
    X,
    affine = FALSE,
    standardize = FALSE,
    timetrafo = "none",
    type.X = "sample",
    metr.X = "euclidean",
    use = "all",
    cutoff = NULL,
    B = 499
)
```

Υ	A column with two rows, where the first row contains the survival times and the second row the status indicators (a survival object will work).
Х	A vector or matrix containing the covariate information.
affine	logical; indicates if X should be transformed such that the result is invariant under affine transformations of X.
standardize	logical; should X be standardized using the standard deviations of single observations. No effect when affine = TRUE.
timetrafo	specifies a transformation applied on the follow-up times. Can be "none", "log" or a user-specified function.
type.X	For "distance", X is interpreted as a distance matrix. For "sample" (or any other value), X is interpreted as a sample.
metr.X	metr.X specifies the metric which should be used for X to analyze the distance covariance. Options are "euclidean", "discrete", "alpha", "minkowski", "gaussian", "gaussauto" and "boundsq". For "alpha", "minkowski", "gauss", "gaussauto" and "boundsq", the corresponding parameters are specified via "c(metric,parameter)" (see examples); the standard parameter is 2 for "minkowski" and "1" for all other metrics.
use	specifies how to treat missing values. "complete.obs" excludes observations containing NAs, "all" uses all observations.

• •	
1DOLL	any taat
1111: W/ 11	COV IESI
100	001.0000

cutoff	If provided, all survival times larger than cutoff are set to the cutoff and all cor- responding status indicators are set to one. Under most circumstances, choosing a cutoff is highly recommended.
В	The number of permutations used for the permutation test

An list with two arguments, \$dcov contains the IPCW distance covariance, \$pvalue the corresponding p-value

References

Bottcher B, Keller-Ressel M, Schilling RL (2018). "Detecting independence of random vectors: generalized distance covariance and Gaussian covariance." *Modern Stochastics: Theory and Applications*, **3**, 353–383.

Datta S, Bandyopadhyay D, Satten GA (2010). "Inverse Probability of Censoring Weighted Ustatistics for Right-Censored Data with an Application to Testing Hypotheses." *Scandinavian Journal of Statistics*, **37**(4), 680–700.

Dueck J, Edelmann D, Gneiting T, Richards D (2014). "The affinely invariant distance correlation." *Bernoulli*, **20**, 2305–2330.

Huo X, Szekely GJ (2016). "Fast computing for distance covariance." *Technometrics*, **58**(4), 435–447.

Lyons R (2013). "Distance covariance in metric spaces." The Annals of Probability, 41, 3284–3305.

Sejdinovic D, Sriperumbudur B, Gretton A, Fukumizu K (2013). "Equivalence of distance-based and RKHS-based statistics in hypothesis testing." *The Annals of Statistics*, **41**, 2263–2291.

Szekely GJ, Rizzo ML, Bakirov NK (2007). "Measuring and testing dependence by correlation of distances." *The Annals of Statistics*, **35**, 2769–2794.

Szekely GJ, Rizzo ML (2009). "Brownian distance covariance." *The Annals of Applied Statistics*, **3**, 1236–1265.

Examples

```
X <- rnorm(100)
survtime <- rgamma(100, abs(X))
cens <- rexp(100)
status <- as.numeric(survtime < cens)
time <- sapply(1:100, function(u) min(survtime[u], cens[u]))
surv <- cbind(time, status)
ipcw.dcov.test(surv, X)
ipcw.dcov.test(surv, X, cutoff = quantile(time, 0.8))
# often better performance when using a cutoff time</pre>
```

plot.dcmatrix

Plots a heatmap from a dcmatrix object using the function "pheatmap" from the package "pheatmap".

Description

Plots a heatmap from a dematrix object using the function "pheatmap" from the package "pheatmap".

Usage

```
## S3 method for class 'dcmatrix'
plot(
    x,
    type = "dcor",
    trunc.up = NULL,
    trunc.low = NULL,
    cluster_rows = FALSE,
    cluster_cols = FALSE,
    display_numbers = TRUE,
    ...
)
```

Arguments

х	a dcmatrix object.
type	specifies what should be displayed in the heatmap. One of "dcor", "dcov", "logp" (-log10 of corresponding p-values), "cor", "abscor" (absolute correlation), "logp.cor", "dcor.pw", "dcov.pw" or "logp.pw".
trunc.up	truncates the values to be plotted; if set to numeric, all values larger than trunc.up are set to trunc.up.
trunc.low	truncates the values to be plotted; if set to numeric, all values smaller than trunc.low are set to trunc.low.
cluster_rows, cl	uster_cols,display_numbers
	passed to pheatmap().
	passed to pheatmap().

Value

a heatmap plotting the entries of the slot specified in type of the object specified in dcmat.

Index

dcmatrix, 2 dcorgaussianbiv, 6 dcsis, 6 distcor, 8 distcov, 10 distcov.test, 13 distsd, 16 extract_np, 18 hsplot, 18 ipcw.dcor, 19 ipcw.dcov, 21 ipcw.dcov.test, 23 plot.dcmatrix, 25