
Package ‘detectRUNS’
July 22, 2025

Type Package

Title Detect Runs of Homozygosity and Runs of Heterozygosity in
Diploid Genomes

Version 0.9.6

Date 2019-10-24

Description Detection of runs of homozygosity and of heterozygosity
in diploid genomes using two methods: sliding windows (Purcell et al (2007)
<doi:10.1086/519795>) and consecutive runs (Marras et al (2015)
<doi:10.1111/age.12259>).

Depends R (>= 3.0.0)

License GPL-3

LazyData TRUE

Encoding UTF-8

Imports plyr, iterators, itertools, ggplot2, reshape2, Rcpp,
gridExtra, data.table

RoxygenNote 6.1.1

Suggests testthat, knitr, rmarkdown, prettydoc

LinkingTo Rcpp

VignetteBuilder knitr

URL https://github.com/bioinformatics-ptp/detectRUNS/tree/master/detectRUNS

BugReports https://github.com/bioinformatics-ptp/detectRUNS/issues

NeedsCompilation yes

Author Filippo Biscarini [aut, cre],
Paolo Cozzi [aut],
Giustino Gaspa [aut],
Gabriele Marras [aut]

Maintainer Filippo Biscarini <filippo.biscarini@gmail.com>

Repository CRAN

Date/Publication 2019-10-24 13:40:02 UTC

1

https://doi.org/10.1086/519795
https://doi.org/10.1111/age.12259
https://github.com/bioinformatics-ptp/detectRUNS/tree/master/detectRUNS
https://github.com/bioinformatics-ptp/detectRUNS/issues

2 consecutiveRUNS.run

Contents
consecutiveRUNS.run . 2
consecutiveRunsCpp . 4
createRUNdf . 5
findOppositeAndMissing . 6
Froh_inbreeding . 6
Froh_inbreedingClass . 7
genoConvertCpp . 8
heteroZygotTest . 9
heteroZygotTestCpp . 9
homoZygotTest . 10
homoZygotTestCpp . 11
pedConvertCpp . 11
plot_DistributionRuns . 12
plot_InbreedingChr . 13
plot_manhattanRuns . 14
plot_PatternRuns . 15
plot_Runs . 16
plot_SnpsInRuns . 17
plot_StackedRuns . 18
plot_ViolinRuns . 19
readExternalRuns . 20
readPOPCpp . 21
reorderDF . 21
slidingRUNS.run . 22
slidingWindow . 23
slidingWindowCpp . 24
snpInRun . 25
snpInRunCpp . 25
snpInsideRuns . 26
snpInsideRunsCpp . 27
summaryRuns . 27
tableRuns . 28
writeRUN . 29

Index 31

consecutiveRUNS.run Main function to detect genomic RUNS (ROHom/ROHet) using the
consecutive method

Description

This is the main detectRUNS function to scan the genome for runs (of homozygosity or heterozy-
gosity) using the consecutive method (Marras et al. 2015, Animal Genetics 46(2):110-121). All pa-
rameters to detect runs (e.g. minimum n. of SNP, max n. of missing genotypes, max n. of opposite
genotypes etc.) are specified here. Input data are in the ped/map Plink format (https://www.cog-
genomics.org/plink/1.9/input#ped)

consecutiveRUNS.run 3

Usage

consecutiveRUNS.run(genotypeFile, mapFile, ROHet = FALSE,
maxOppRun = 0, maxMissRun = 0, minSNP = 15, minLengthBps = 1000,
maxGap = 10^6)

Arguments

genotypeFile genotype (.ped) file path

mapFile map file (.map) file path

ROHet should we look for ROHet or ROHom? (default = FALSE)

maxOppRun max n. of opposite genotype SNPs in the run (default = 0)

maxMissRun max n. of missing SNPs in the run (default = 0)

minSNP minimum n. of SNP in a RUN (default = 15)

minLengthBps minimum length of run in bps (defaults to 1000 bps = 1 kbps)

maxGap max distance between consecutive SNP in a window to be still considered a
potential run (defaults to 10^6)

Details

This function scans the genome (diploid) for runs using the consecutive method. This is a wrapper
function for many component functions that handle the input data (ped/map files), performs internal
conversions, accepts parameters specifications, selects the statistical method to detect runs (sliding
windows, consecutive loci) and whether runs of homozygosity (RoHom) or of heterozygosity (Ro-
Het) are looked for.

In the ped file, the groups samples belong to can be specified (first column). This is important if
comparisons between human ethnic groups or between animal breeds or plant varieties or biological
populations are to be performed. Also, if cases and controls are to be compared, this is the place
where this information needs to be specified.

This function returns a data frame with all runs detected in the dataset. This data frame can then be
written out to a csv file. The data frame is, in turn, the input for other functions of the detectRUNS
package that create plots and produce statistics of the results (see plot and statistic functions in this
manual, and/or refer to the vignette of detectRUNS).

Value

A dataframe with RUNs of Homozygosity or Heterozygosity in the analysed dataset. The returned
dataframe contains the following seven columns: "group", "id", "chrom", "nSNP", "from", "to",
"lengthBps" (group: population, breed, case/control etc.; id: individual identifier; chrom: chromo-
some on which the run is located; nSNP: number of SNPs in the run; from: starting position of the
run, in bps; to: end position of the run, in bps; lengthBps: size of the run)

Examples

getting map and ped paths
genotypeFile <- system.file("extdata", "Kijas2016_Sheep_subset.ped", package = "detectRUNS")
mapFile <- system.file("extdata", "Kijas2016_Sheep_subset.map", package = "detectRUNS")

4 consecutiveRunsCpp

calculating runs with consecutive run approach
Not run:
skipping runs calculation
runs <- consecutiveRUNS.run(genotypeFile, mapFile, minSNP = 15, ROHet = FALSE,
maxOppRun = 0, maxMissRun = 0, maxGap=10^6,
minLengthBps = 100000)

End(Not run)
loading pre-calculated data
runsFile <- system.file("extdata", "Kijas2016_Sheep_subset.consecutive.csv", package="detectRUNS")
colClasses <- c(rep("character", 3), rep("numeric", 4))
runs <- read.csv2(runsFile, header = TRUE, stringsAsFactors = FALSE,
colClasses = colClasses)

consecutiveRunsCpp Function to detect consecutive runs in a vector (individual’s geno-
types)

Description

This is a core function. It implements the consecutive method for detection of runs in diploid
genomes (see Marras et al. 2015)

Usage

consecutiveRunsCpp(indGeno, individual, mapFile, ROHet = TRUE,
minSNP = 3L, maxOppositeGenotype = 1L, maxMiss = 1L,
minLengthBps = 1000L, maxGap = 1000000L)

Arguments

indGeno vector of 0/1/NAs of individual genotypes (0: homozygote; 1: heterozygote)

individual list of group (breed, population, case/control etc.) and ID of individual sample

mapFile Plink map file (for SNP position)

ROHet shall we detect ROHet or ROHom?

minSNP minimum number of SNP in a run
maxOppositeGenotype

max n. of homozygous/heterozygous SNP

maxMiss max. n. of missing SNP

minLengthBps min length of a run in bps

maxGap max distance between consecutive SNP in a window to be still considered a
potential run

createRUNdf 5

Details

The consecutive method detect runs by consecutively scanning SNP loci along the genome. No
sliding windows are used. Checks on minimum n. of SNP, max n. of opposite and missing geno-
types, max gap between adjacent loci and minimum length of the run are implemented (as in the
sliding window method). Both runs of homozygosity (RoHom) and of heterozygosity (RoHet) can
be search for (option ROHet: TRUE/FALSE)

Value

A data frame of runs per individual sample

createRUNdf Function to create a dataframe of RUNS per individual animal Re-
quires a map file (other filename to read or R object) Parameters on
maximum number of missing and opposite genotypes in the run (not
the window) are implemented here

Description

Function to create a dataframe of RUNS per individual animal Requires a map file (other filename
to read or R object) Parameters on maximum number of missing and opposite genotypes in the run
(not the window) are implemented here

Usage

createRUNdf(snpRun, mapFile, minSNP = 3, minLengthBps = 1000,
minDensity = 1/10, oppositeAndMissingSNP, maxOppRun = NULL,
maxMissRun = NULL)

Arguments

snpRun vector of TRUE/FALSE (is the SNP in a RUN?)

mapFile Plink-like map file (data.frame)

minSNP minimum n. of SNP to call a RUN

minLengthBps minimum length of run in bps (defaults to 1000 bps = 1 kbps)

minDensity minimum n. of SNP per kbps (defaults to 0.1 = 1 SNP every 10 kbps)
oppositeAndMissingSNP

indexed array of missing and opposite genotypes (SNP order in the genome is
the index)

maxOppRun max n. of opposite genotype SNPs in the run (not in the window!)

maxMissRun max n. of missing SNPs in the run (not in the window!)

Value

a data.frame with RUNS per animal

6 Froh_inbreeding

findOppositeAndMissing

Function to calculate oppositeAndMissingGenotypes array

Description

This is an helper function, this will be called by another function

Usage

findOppositeAndMissing(data, ROHet = TRUE)

Arguments

data vector of 0/1/2 genotypes

ROHet TRUE in ROHet evaluation, FALSE for ROHom

Value

character array; names will be index in which opposite and missing snps are found in data array

Froh_inbreeding Function to calculated Froh genome-wide or chromosome-wide

Description

This function calculates the individual inbreeding coefficients based on runs of homozygosity (ROH),
either per-chromosome (chromosome-wide) or based on the entire genome (genome-wide). See de-
tails of calculations below

Usage

Froh_inbreeding(runs, mapFile, genome_wide = TRUE)

Arguments

runs R object (dataframe) with results on runs

mapFile Plink map file (to retrieve SNP position)

genome_wide vector of TRUE/FALSE (genome-wide or chromosome-wide; defaults to TRUE/genome-
wide)

Froh_inbreedingClass 7

Details

Froh is calculated as:

FROH =
∑

ROHlength

Lengthgenome

Depending on whether genome-wide or chromosome-wide calculations are required, the terms in
the numerator and denominator will refer to the entire genome or will be restricted to specific
chromosomes.

Value

A data frame with the inbreeding coefficients of each individual sample

Examples

getting map and ped paths
genotypeFile <- system.file("extdata", "Kijas2016_Sheep_subset.ped", package = "detectRUNS")
mapFile <- system.file("extdata", "Kijas2016_Sheep_subset.map", package = "detectRUNS")

calculating runs of Homozygosity
Not run:
skipping runs calculation
runs <- slidingRUNS.run(genotypeFile, mapFile, windowSize = 15, threshold = 0.1, minSNP = 15,
ROHet = FALSE, maxOppositeGenotype = 1, maxMiss = 1, minLengthBps = 100000, minDensity = 1/10000)

End(Not run)
loading pre-calculated data
runsFile <- system.file("extdata", "Kijas2016_Sheep_subset.sliding.csv", package="detectRUNS")
runsDF <- readExternalRuns(inputFile = runsFile, program = 'detectRUNS')

Froh_inbreeding(runs = runsDF, mapFile = mapFile)
Froh_inbreeding(runs = runsDF, mapFile = mapFile, genome_wide=FALSE)

Froh_inbreedingClass Function to calculated Froh using a ROH-class

Description

This function calculates the individual inbreeding coefficients based on runs of homozygosity (ROH)
using only ROH of specific size classes. The parameter class specify the size interval to split up
calculations. For example, if class = 2 Froh based on ROH 0-2, 2-4, 4-8, 80-16, >16 Mbps long
will be calculated.

Usage

Froh_inbreedingClass(runs, mapFile, Class = 2)

8 genoConvertCpp

Arguments

runs R object (dataframe) with ROH results
mapFile Plink map file (for SNP position)
Class base ROH-length interval (in Mbps) (default: 0-2, 2-4, 4-8, 8-16, >16)

Value

A data frame with individual inbreeding coefficients based on ROH-length of specific size. The
sum of ROH-length of specific size in each individual is reported alongside

Examples

getting map and ped paths
genotypeFile <- system.file("extdata", "Kijas2016_Sheep_subset.ped", package = "detectRUNS")
mapFile <- system.file("extdata", "Kijas2016_Sheep_subset.map", package = "detectRUNS")

calculating runs of Homozygosity
Not run:
skipping runs calculation
runs <- slidingRUNS.run(genotypeFile, mapFile, windowSize = 15, threshold = 0.1, minSNP = 15,
ROHet = FALSE, maxOppositeGenotype = 1, maxMiss = 1, minLengthBps = 100000, minDensity = 1/10000)

End(Not run)
loading pre-calculated data
runsFile <- system.file("extdata", "Kijas2016_Sheep_subset.sliding.csv", package="detectRUNS")
runsDF <- readExternalRuns(inputFile = runsFile, program = 'detectRUNS')

Froh_inbreedingClass(runs = runsDF, mapFile = mapFile, Class = 2)

genoConvertCpp Convert 0/1/2 genotypes to 0/1

Description

This is a utility function, that convert 0/1/2 genotypes (AA/AB/BB) into 0/1 (either homozy-
gous/heterozygous)

Usage

genoConvertCpp(genotype)

Arguments

genotype vector of 0/1/2 genotypes

Value

converted vector of genotypes (0/1)

heteroZygotTest 9

heteroZygotTest Function to check whether a window is (loosely) heterozygous or not

Description

This is a core function within the sliding-window workflow. Parameters on how to consider a
window heterozygous are here (maxHom, maxMiss)

Usage

heteroZygotTest(x, gaps, maxHom, maxMiss, maxGap, i, windowSize)

Arguments

x vector of 0/1 genotypes (from genoConvert())

gaps vector of differences between consecutive positions (gaps) in bps

maxHom max n. of homozygous SNP in a heterozygous window

maxMiss max n. of missing in a window

maxGap max distance between consecutive SNP in a window to be still considered a
potential run

i index along the genome (genome-vector for each individual)

windowSize size of window (n. of SNP)

Value

a list: i) TRUE/FALSE (whether a window is heterozygous or NOT); ii) indexes of "opposite and
missing" genotype

heteroZygotTestCpp Function to check whether a window is (loosely) heterozygous or not

Description

This is a core function. Parameters on how to consider a window heterozygous are here (maxHom,
maxMiss)

Usage

heteroZygotTestCpp(x, gaps, maxHom, maxMiss, maxGap)

10 homoZygotTest

Arguments

x vector of 0/1 genotypes (from genoConvert())

gaps vector of differences between consecutive positions (gaps) in bps

maxHom max n. of homozygous SNP in a heterozygous window

maxMiss max n. of missing in a window

maxGap max distance between consecutive SNP in a window to be still considered a
potential run

Value

TRUE/FALSE (whether a window is heterozygous or NOT)

homoZygotTest Function to check whether a window is (loosely) homozygous or not

Description

This is a core function. Parameters on how to consider a window homozygous are here (maxHet,
maxMiss)

Usage

homoZygotTest(x, gaps, maxHet, maxMiss, maxGap, i, windowSize)

Arguments

x vector of 0/1 genotypes (from genoConvert())

gaps vector of differences between consecutive positions (gaps) in bps

maxHet max n. of heterozygous SNP in a homozygous window

maxMiss max n. of missing in a window

maxGap max distance between consecutive SNP in a window to be still considered a
potential run

i index along the genome (genome-vector for each individual)

windowSize size of window (n. of SNP)

Value

a list: i) TRUE/FALSE (whether a window is heterozygous or NOT); ii) indexes of "opposite and
missing" genotype

homoZygotTestCpp 11

homoZygotTestCpp Function to check whether a window is (loosely) homozygous or not

Description

This is a core function. Parameters on how to consider a window homozygous are here (maxHet,
maxMiss)

Usage

homoZygotTestCpp(x, gaps, maxHet, maxMiss, maxGap)

Arguments

x vector of 0/1 genotypes (from genoConvert())

gaps vector of differences between consecutive positions (gaps) in bps

maxHet max n. of heterozygous SNP in a homozygous window

maxMiss max n. of missing in a window

maxGap max distance between consecutive SNP in a window to be still considered a
potential run

Value

TRUE/FALSE (whether a window is homozygous or NOT)

pedConvertCpp Convert ped genotypes to 0/1

Description

This is a utility function, that convert ped genotypes (AA/AB/BB) into 0/1 (either homozygous/heterozygous)

Usage

pedConvertCpp(genotype)

Arguments

genotype vector of pair of genotypes (01, AA, AG)

Value

converted vector of genotypes (0/1)

12 plot_DistributionRuns

plot_DistributionRuns Plot Distribution of runs

Description

This function the distribution of runs per group. The average run length per size-class, the average
run length per chromosome (and group), the percent distribution of runs per size-class and group,
and the proportion of runs per chromosome are plotted. With style="All" all three plots are
produced.

Usage

plot_DistributionRuns(runs, mapFile, groupSplit = TRUE,
style = c("MeanClass", "MeanChr", "RunsPCT", "RunsPCT_Chr", "All"),
savePlots = FALSE, outputName = NULL, plotTitle = NULL,
Class = 2)

Arguments

runs R object (dataframe) with results on detected runs

mapFile Plink map file (for SNP position)

groupSplit plots split by group (defaults to TRUE)

style type of plot: MeanClass, MeanChr, RunsPCT, RunsPCT_Chr, All (all plots)

savePlots should plots be saved out to files or plotted in the graphical terminal (default)?

outputName title prefix (the base name of graph, if savePlots is TRUE)#’

plotTitle title in plot (default NULL)

Class group of length (in Mbps) by class (default: 0-2, 2-4, 4-8, 8-16, >16)

Value

plot Distribution Runs

Examples

getting map and ped paths
genotypeFile <- system.file("extdata", "Kijas2016_Sheep_subset.ped", package = "detectRUNS")
mapFile <- system.file("extdata", "Kijas2016_Sheep_subset.map", package = "detectRUNS")

calculating runs of Homozygosity
Not run:
skipping runs calculation
runs <- slidingRUNS.run(genotypeFile, mapFile, windowSize = 15, threshold = 0.1, minSNP = 15,
ROHet = FALSE, maxOppositeGenotype = 1, maxMiss = 1, minLengthBps = 100000, minDensity = 1/10000)

End(Not run)
loading pre-calculated data

plot_InbreedingChr 13

runsFile <- system.file("extdata", "Kijas2016_Sheep_subset.sliding.csv", package="detectRUNS")
runsDF <- readExternalRuns(inputFile = runsFile, program = 'detectRUNS')

plot_InbreedingChr(runs = runsDF, mapFile = mapFile, style='All')

plot_InbreedingChr Plot Froh-based inbreeding coefficients by group

Description

The function plots the distribution of inbreeding/consanguinity coefficients per chromosome and/or
group. Three types of plots can be produces: barplots, boxplots, violin plots. With style="All"
all three plots are produced.

Usage

plot_InbreedingChr(runs, mapFile, groupSplit = TRUE,
style = c("ChrBarPlot", "ChrBoxPlot", "FrohBoxPlot", "All"),
outputName = NULL, plotTitle = NULL, savePlots = FALSE)

Arguments

runs R object (dataframe) with results on detected runs

mapFile Plink map file (for SNP position)

groupSplit plots split by group (defaults to TRUE)

style type of plot: ChrBarPlot, ChrBoxPlot, FrohBoxPlot, All (all plots)

outputName title prefix (the base name of graph, if savePlots is TRUE)

plotTitle title in plot (default NULL)

savePlots should plots be saved out to files or plotted in the graphical terminal (default)?

Value

plots of the distribution of inbreeding by chromosome and group

Examples

getting map and ped paths
genotypeFile <- system.file("extdata", "Kijas2016_Sheep_subset.ped", package = "detectRUNS")
mapFile <- system.file("extdata", "Kijas2016_Sheep_subset.map", package = "detectRUNS")

calculating runs of Homozygosity
Not run:
skipping runs calculation
runs <- slidingRUNS.run(genotypeFile, mapFile, windowSize = 15, threshold = 0.1, minSNP = 15,
ROHet = FALSE, maxOppositeGenotype = 1, maxMiss = 1, minLengthBps = 100000, minDensity = 1/10000)

14 plot_manhattanRuns

End(Not run)
loading pre-calculated data
runsFile <- system.file("extdata", "Kijas2016_Sheep_subset.sliding.csv", package="detectRUNS")
runsDF <- readExternalRuns(inputFile = runsFile, program = 'detectRUNS')

plot_InbreedingChr(runs = runsDF, mapFile = mapFile, style='All')

plot_manhattanRuns Plot the proportion of times SNPs are inside runs - MANHATTAN
PLOT

Description

Function to plot the proportion of times/percentage each SNP in inside a run (population-specific
signals) against SNP position in all chromosomes together Proportions on the y-axis, bps on the
x-axis for all analysed chromosomes This is similar to the familiar GWAS Manhattan plot

Usage

plot_manhattanRuns(runs, genotypeFile, mapFile, savePlots = FALSE,
outputName = NULL, plotTitle = NULL)

Arguments

runs a data.frame with runs per individual (group, id, chrom, nSNP, start, end, length)

genotypeFile genotype (.ped) file path

mapFile map file (.map) file path

savePlots should plots be saved out in files (default) or plotted in the graphical terminal?

outputName title prefix (the base name of graph, if savePlots is TRUE)

plotTitle title in plot (default)

Value

Manhattan plots of proportion of times SNPs are inside runs, per population (pdf files)

Examples

getting map and ped paths
genotypeFile <- system.file("extdata", "Kijas2016_Sheep_subset.ped", package = "detectRUNS")
mapFile <- system.file("extdata", "Kijas2016_Sheep_subset.map", package = "detectRUNS")

calculating runs of Homozygosity
Not run:
skipping runs calculation
runs <- slidingRUNS.run(genotypeFile, mapFile, windowSize = 15, threshold = 0.1, minSNP = 15,
ROHet = FALSE, maxOppositeGenotype = 1, maxMiss = 1, minLengthBps = 100000, minDensity = 1/10000)

plot_PatternRuns 15

End(Not run)
loading pre-calculated data
runsFile <- system.file("extdata", "Kijas2016_Sheep_subset.sliding.csv", package="detectRUNS")
runsDF <- readExternalRuns(inputFile = runsFile, program = 'detectRUNS')

plot runs per animal (interactive)
plot_manhattanRuns(runs = runsDF, genotypeFile = genotypeFile, mapFile = mapFile,
savePlots = FALSE, plotTitle = "ROHom")

plot_PatternRuns Plot sum of run-lengths (or average run-lengths) against the number
of runs per individual

Description

Function to plot the sum of run lengths (or the average run length) per individual against the average
number of runs per individual. Points can be differentially coloured by group/population. This plot
can be useful to identify patterns in the distribution of runs in different groups (e.g. few long runs
vs many short runs)

Usage

plot_PatternRuns(runs, mapFile, method = c("sum", "mean"),
outputName = NULL, savePlots = FALSE, plotTitle = NULL)

Arguments

runs a data.frame with runs per individual (group, id, chrom, nSNP, start, end, length)

mapFile map file (.map) file path

method "sum" or "mean" of run lengths per individual sample

outputName title prefix (the base name of graph, if savePlots is TRUE)#’

savePlots should plots be saved out to files or plotted in the graphical terminal (default)?

plotTitle title in plot (default NULL)

Value

plot of number of runs vs run-length sum/mean per individual sample

Examples

getting map and ped paths
genotypeFile <- system.file("extdata", "Kijas2016_Sheep_subset.ped", package = "detectRUNS")
mapFile <- system.file("extdata", "Kijas2016_Sheep_subset.map", package = "detectRUNS")

calculating runs of Homozygosity
Not run:

16 plot_Runs

skipping runs calculation
runs <- slidingRUNS.run(genotypeFile, mapFile, windowSize = 15, threshold = 0.1, minSNP = 15,
ROHet = FALSE, maxOppositeGenotype = 1, maxMiss = 1, minLengthBps = 100000, minDensity = 1/10000)

End(Not run)
loading pre-calculated data
runsFile <- system.file("extdata", "Kijas2016_Sheep_subset.sliding.csv", package="detectRUNS")
runsDF <- readExternalRuns(inputFile = runsFile, program = 'detectRUNS')

plot_PatternRuns(runs = runsDF, mapFile = mapFile, method = 'sum')
plot_PatternRuns(runs = runsDF, mapFile = mapFile, method = 'mean')

plot_Runs Function to plot runs per individual

Description

Function to plot runs per individual (see Williams et al. 2016, Animal Genetics, for an example
with animal data) Individual IDs on the y-axis, bps on the x-axis (position along the chromosome)

Usage

plot_Runs(runs, suppressInds = FALSE, savePlots = FALSE,
separatePlots = FALSE, outputName = NULL)

Arguments

runs a data.frame with runs per individual (group, id, chrom, nSNP, start, end, length)

suppressInds shall we suppress individual IDs on the y-axis? (defaults to FALSE)

savePlots should plots be saved out to files (one pdf file for all chromosomes) or plotted in
the graphical terminal (default)?

separatePlots should plots for each chromosome be saved out to separate files?

outputName title prefix (the base name of graph, if savePlots is TRUE)

Value

plot of runs by chromosome

Examples

getting map and ped paths
genotypeFile <- system.file("extdata", "Kijas2016_Sheep_subset.ped", package = "detectRUNS")
mapFile <- system.file("extdata", "Kijas2016_Sheep_subset.map", package = "detectRUNS")

calculating runs of Homozygosity
Not run:
skipping runs calculation

plot_SnpsInRuns 17

runs <- slidingRUNS.run(genotypeFile, mapFile, windowSize = 15, threshold = 0.1, minSNP = 15,
ROHet = FALSE, maxOppositeGenotype = 1, maxMiss = 1, minLengthBps = 100000, minDensity = 1/10000)

End(Not run)
loading pre-calculated data
runsFile <- system.file("extdata", "Kijas2016_Sheep_subset.sliding.csv", package="detectRUNS")
runsDF <- readExternalRuns(inputFile = runsFile, program = 'detectRUNS')

plot runs per animal (interactive)
plot_Runs(runs = runsDF, suppressInds = FALSE, savePlots = FALSE, outputName = "ROHom")

plot_SnpsInRuns Plot the number of times each SNP falls inside runs

Description

Function to plot the number of times/percentage each SNP is inside a run (population-specific sig-
nals) against the SNP positions in the genome. Proportions on the y-axis, bps on the x-axis

Usage

plot_SnpsInRuns(runs, genotypeFile, mapFile, savePlots = FALSE,
separatePlots = FALSE, outputName = NULL)

Arguments

runs a data.frame with runs per individual (group, id, chrom, nSNP, start, end, length)

genotypeFile genotype (.ped) file path

mapFile map file (.map) file path

savePlots should plots be saved out in files (default) or plotted in the graphical terminal?

separatePlots should plots for each chromosome be saved out to separate files?

outputName title prefix (the base name of graph, if savePlots is TRUE)

Value

plot number of times a SNP is in a run by chromosome and population (pdf files)

Examples

getting map and ped paths
genotypeFile <- system.file("extdata", "Kijas2016_Sheep_subset.ped", package = "detectRUNS")
mapFile <- system.file("extdata", "Kijas2016_Sheep_subset.map", package = "detectRUNS")

calculating runs of Homozygosity
skipping runs calculation
Not run:
runs <- slidingRUNS.run(genotypeFile, mapFile, windowSize = 15, threshold = 0.1, minSNP = 15,

18 plot_StackedRuns

ROHet = FALSE, maxOppositeGenotype = 1, maxMiss = 1, minLengthBps = 100000, minDensity = 1/10000)

End(Not run)
loading pre-calculated data
runsFile <- system.file("extdata", "Kijas2016_Sheep_subset.sliding.csv", package="detectRUNS")
runsDF <- readExternalRuns(inputFile = runsFile, program = 'detectRUNS')

plot runs per animal (interactive)
plot_SnpsInRuns(runs = runsDF, genotypeFile = genotypeFile, mapFile = mapFile,
savePlots = FALSE, outputName = "ROHom")

plot_StackedRuns Plot stacked runs

Description

Function to plot stacked runs along the chromosome (signaling presence of large numbers of runs
in specific regions of a chromosome) Counts on the y-axis, bps on the x-axis (position along the
chromosome)

Usage

plot_StackedRuns(runs, savePlots = FALSE, separatePlots = FALSE,
outputName = NULL)

Arguments

runs a data.frame with runs per individual (group, id, chrom, nSNP, start, end, length)

savePlots should plots be saved out in files (default) or plotted in the graphical terminal?

separatePlots should plots for chromosomes be saved out to separate files?

outputName title prefix (the base name of graph, if savePlots is TRUE)

Value

plot of stacked runs by population and by chromosome (pdf files)

Examples

getting map and ped paths
genotypeFile <- system.file("extdata", "Kijas2016_Sheep_subset.ped", package = "detectRUNS")
mapFile <- system.file("extdata", "Kijas2016_Sheep_subset.map", package = "detectRUNS")

calculating runs of Homozygosity
Not run:
skipping runs calculation
runs <- slidingRUNS.run(genotypeFile, mapFile, windowSize = 15, threshold = 0.1, minSNP = 15,
ROHet = FALSE, maxOppositeGenotype = 1, maxMiss = 1, minLengthBps = 100000, minDensity = 1/10000)

plot_ViolinRuns 19

End(Not run)
loading pre-calculated data
runsFile <- system.file("extdata", "Kijas2016_Sheep_subset.sliding.csv", package="detectRUNS")
runsDF <- readExternalRuns(inputFile = runsFile, program = 'detectRUNS')

plot runs per animal (interactive)
plot_StackedRuns(runs = runsDF, savePlots = FALSE, outputName = "ROHom")

plot_ViolinRuns Violin plot of run length per individual (either sum or mean)

Description

Function to produce violin plots of the distribution of runs lengths per group The sum of run lengths,
or its average, per individual sample is used to characterize the distribution of runs

Usage

plot_ViolinRuns(runs, method = c("sum", "mean"), outputName = NULL,
plotTitle = NULL, savePlots = FALSE)

Arguments

runs a data.frame with runs per individual (group, id, chrom, nSNP, start, end, length)

method "sum" or "mean" of run lengths per individual samples

outputName title prefix (the base name of graph, if savePlots is TRUE)

plotTitle title in plot (default NULL)

savePlots should plots be saved out to files or plotted in the graphical terminal (default)?

Value

Violin plot of the distribution of runs-lengths (sum or mean)

Examples

getting map and ped paths
genotypeFile <- system.file("extdata", "Kijas2016_Sheep_subset.ped", package = "detectRUNS")
mapFile <- system.file("extdata", "Kijas2016_Sheep_subset.map", package = "detectRUNS")

calculating runs of Homozygosity
Not run:
skipping runs calculation
runs <- slidingRUNS.run(genotypeFile, mapFile, windowSize = 15, threshold = 0.1, minSNP = 15,
ROHet = FALSE, maxOppositeGenotype = 1, maxMiss = 1, minLengthBps = 100000, minDensity = 1/10000)

End(Not run)

20 readExternalRuns

loading pre-calculated data
runsFile <- system.file("extdata", "Kijas2016_Sheep_subset.sliding.csv", package="detectRUNS")
runsDF <- readExternalRuns(inputFile = runsFile, program = 'detectRUNS')

plot_ViolinRuns(runs = runsDF, method = "sum" , savePlots = FALSE)
plot_ViolinRuns(runs = runsDF, method = "mean" , savePlots = FALSE)

readExternalRuns Read runs from external files

Description

Function to read in, from external files, the output of software for ROH:

1. detectRUNS: output saved out to a file (e.g. write.table)

2. Plink: output from the --homozyg option (.hom files)

3. BCFtools: output from the roh option

Usage

readExternalRuns(inputFile = NULL, program = c("plink", "BCFtools",
"detectRUNS"))

Arguments

inputFile name of (path to) external file

program source program that produced the ROH file (one of detectRUNS, Plink, BCFtools)

Value

dataframe in the correct format to be used with plots and statistics functions from detectRUNS

Examples

getting map and ped paths
Not run:
genotypeFile <- system.file("extdata", "Kijas2016_Sheep_subset.ped", package = "detectRUNS")
mapFile <- system.file("extdata", "Kijas2016_Sheep_subset.map", package = "detectRUNS")

calculating runs of Homozygosity
runs <- slidingRUNS.run(genotypeFile, mapFile, windowSize = 15, threshold = 0.1, minSNP = 15,
ROHet = FALSE, maxMissRun = 1, maxMissWindow = 1, minLengthBps = 100000, minDensity = 1/10000)

write.table(x= runs,file = 'RunsFileTest.txt', quote=F, row.names = F)
newData=readRunsFromFile(runsFile = 'RunsFileTest.txt', program = 'detectRUNS')

End(Not run)

readPOPCpp 21

readPOPCpp Function to return a dataframe of population (POP, ID)

Description

This is a core function. Read PED file and returns a data.frame with the first two columns

Usage

readPOPCpp(genotypeFile)

Arguments

genotypeFile genotype (.ped) file location

Value

a dataframe of POP, ID

reorderDF Function to reorder data frames by CHROMOSOME

Description

The data frame will be reordered according to chromosome: from 1 to n, then X, Y, XY, MT The
data frame needs to have a column with name "CHROMOSOME"

Usage

reorderDF(dfx)

Arguments

dfx data frame to be reordered (with column "CHROMOSOME")

Details

Reorder results based on chromosome

Value

A reordered data frame by chromosome

22 slidingRUNS.run

slidingRUNS.run Main function to detect RUNS (ROHom/ROHet) using sliding windows
(a la Plink)

Description

This is one of the main function of detectRUNS and is used to detect runs (of homozygosity or
heterozygosity) in the genome (diploid) with the sliding-window method. All parameters to de-
tect runs (e.g. minimum n. of SNP, max n. of missing genotypes, max n. of opposite geno-
types etc.) are specified here. Input data are in the ped/map Plink format (https://www.cog-
genomics.org/plink/1.9/input#ped)

Usage

slidingRUNS.run(genotypeFile, mapFile, windowSize = 15,
threshold = 0.05, minSNP = 3, ROHet = FALSE, maxOppWindow = 1,
maxMissWindow = 1, maxGap = 10^6, minLengthBps = 1000,
minDensity = 1/1000, maxOppRun = NULL, maxMissRun = NULL)

Arguments

genotypeFile genotype (.ped) file path

mapFile map file (.map) file path

windowSize the size of sliding window (number of SNP loci) (default = 15)

threshold the threshold of overlapping windows of the same state (homozygous/heterozygous)
to call a SNP in a RUN (default = 0.05)

minSNP minimum n. of SNP in a RUN (default = 3)

ROHet should we look for ROHet or ROHom? (default = FALSE)

maxOppWindow max n. of homozygous/heterozygous SNP in the sliding window (default = 1)

maxMissWindow max. n. of missing SNP in the sliding window (default = 1)

maxGap max distance between consecutive SNP to be still considered a potential run
(default = 10^6 bps)

minLengthBps minimum length of run in bps (defaults to 1000 bps = 1 kbps)

minDensity minimum n. of SNP per kbps (defaults to 0.1 = 1 SNP every 10 kbps)

maxOppRun max n. of opposite genotype SNPs in the run (optional)

maxMissRun max n. of missing SNPs in the run (optional)

Details

This function scans the genome (diploid) for runs using the sliding-window method. This is a
wrapper function for many component functions that handle the input data (ped/map files), per-
form internal conversions, accept parameters specifications, select whether runs of homozygosity
(RoHom) or of heterozygosity (RoHet) are looked for.

slidingWindow 23

In the ped file, the groups samples belong to can be specified (first column). This is important if
comparisons between human ethnic groups or between animal breeds or plant varieties or biological
populations are to be performed. Also, if cases and controls are to be compared, this is the place
where this information needs to be specified.

This function returns a data frame with all runs detected in the dataset. This data frame can then be
written out to a csv file. The data frame is, in turn, the input for other functions of the detectRUNS
package that create plots and produce statistics from the results (see plots and statistics functions in
this manual, and/or refer to the detectRUNS vignette).

Value

A dataframe with RUNs of Homozygosity or Heterozygosity in the analysed dataset. The returned
dataframe contains the following seven columns: "group", "id", "chrom", "nSNP", "from", "to",
"lengthBps" (group: population, breed, case/control etc.; id: individual identifier; chrom: chromo-
some on which the run is located; nSNP: number of SNPs in the run; from: starting position of the
run, in bps; to: end position of the run, in bps; lengthBps: size of the run)

Examples

getting map and ped paths
genotypeFile <- system.file("extdata", "Kijas2016_Sheep_subset.ped", package = "detectRUNS")
mapFile <- system.file("extdata", "Kijas2016_Sheep_subset.map", package = "detectRUNS")
calculating runs with sliding window approach
Not run:
skipping runs calculation
runs <- slidingRUNS.run(genotypeFile, mapFile, windowSize = 15, threshold = 0.1,
minSNP = 15, ROHet = FALSE, maxOppWindow = 1, maxMissWindow = 1, maxGap=10^6,
minLengthBps = 100000, minDensity = 1/10000)

End(Not run)
loading pre-calculated data
runsFile <- system.file("extdata", "Kijas2016_Sheep_subset.sliding.csv", package="detectRUNS")
colClasses <- c(rep("character", 3), rep("numeric", 4))
runs <- read.csv2(runsFile, header = TRUE, stringsAsFactors = FALSE,
colClasses = colClasses)

slidingWindow Function to slide a window over a vector (individual’s genotypes)

Description

This is a core function. The functions to detect RUNS are slid over the genome

Usage

slidingWindow(data, gaps, windowSize, step, maxGap, ROHet = TRUE,
maxOppositeGenotype = 1, maxMiss = 1)

24 slidingWindowCpp

Arguments

data vector of 0/1/2 genotypes

gaps vector of differences between consecutive positions (gaps) in bps

windowSize size of window (n. of SNP)

step by which (how many SNP) is the window slid

maxGap max distance between consecutive SNP in a window to be still considered a
potential run

ROHet shall we detect ROHet or ROHom?
maxOppositeGenotype

max n. of homozygous/heterozygous SNP

maxMiss max. n. of missing SNP

Value

vector of TRUE/FALSE (whether a window is homozygous or NOT)

slidingWindowCpp Function to slide a window over a vector (individual’s genotypes)

Description

This is a core function. The functions to detect RUNS are slid over the genome

Usage

slidingWindowCpp(data, gaps, windowSize, step, maxGap, ROHet = TRUE,
maxOppositeGenotype = 1L, maxMiss = 1L)

Arguments

data vector of 0/1/2 genotypes

gaps vector of differences between consecutive positions (gaps) in bps

windowSize size of window (n. of SNP)

step by which (how many SNP) is the window slid

maxGap max distance between consecutive SNP in a window to be still considered a
potential run

ROHet shall we detect ROHet or ROHom?
maxOppositeGenotype

max n. of homozygous/heterozygous SNP

maxMiss max. n. of missing SNP

Value

vector of TRUE/FALSE (whether a window is homozygous or NOT)

snpInRun 25

snpInRun Function to return a vector of T/F for whether a SNP is or not in a
RUN

Description

This is a core function. The function to determine whether a SNP is or not in a RUN. The ratio
between homozygous/heterozygous windows and total n. of windows is computed here

Usage

snpInRun(RunVector, windowSize, threshold)

Arguments

RunVector vector of TRUE/FALSE (is a window homozygous/heterozygous?)

windowSize size of window (n. of SNP)

threshold threshold to call a SNP in a RUN

Value

vector of TRUE/FALSE (whether a SNP is in a RUN or NOT)

snpInRunCpp Function to return a vector of T/F for whether a SNP is or not in a
RUN

Description

This is a core function. The function to determine whether a SNP is or not in a RUN. The ratio
between homozygous/heterozygous windows and total n. of windows is computed here

Usage

snpInRunCpp(RunVector, windowSize, threshold)

Arguments

RunVector vector of TRUE/FALSE (is a window homozygous/heterozygous?)

windowSize size of window (n. of SNP)

threshold threshold to call a SNP in a RUN

Value

vector of TRUE/FALSE (whether a SNP is in a RUN or NOT)

26 snpInsideRuns

snpInsideRuns Function to count number of times a SNP is in a RUN

Description

Function to count number of times a SNP is in a RUN

Usage

snpInsideRuns(runsChrom, mapChrom, genotypeFile)

Arguments

runsChrom R object (dataframe) with results per chromosome (column names:"POPULATION","IND","CHROMOSOME","COUNT","START","END","LENGTH")

mapChrom R object (dataframe) with SNP name and position per chromosome (map file)
(column names: "CHR","SNP_NAME","x","POSITION")

genotypeFile genotype (.ped) file location

Value

dataframe with counts per SNP in runs (per population)

Examples

getting map and ped paths
genotypeFile <- system.file("extdata", "Kijas2016_Sheep_subset.ped", package = "detectRUNS")
mapFile <- system.file("extdata", "Kijas2016_Sheep_subset.map", package = "detectRUNS")

defining mapChrom
mappa <- data.table::fread(mapFile, header = FALSE)
names(mappa) <- c("CHR","SNP_NAME","x","POSITION")
mappa$x <- NULL
chrom <- "24"
mapChrom <- mappa[mappa$CHR==chrom,]

calculating runs of Homozygosity
Not run:
skipping runs calculation
runs <- slidingRUNS.run(genotypeFile, mapFile, windowSize = 15, threshold = 0.1, minSNP = 15,
ROHet = FALSE, maxOppositeGenotype = 1, maxMiss = 1, minLengthBps = 100000, minDensity = 1/10000)

End(Not run)
loading pre-calculated data
runsFile <- system.file("extdata", "Kijas2016_Sheep_subset.sliding.csv", package="detectRUNS")
colClasses <- c(rep("character", 3), rep("numeric", 4))
runs <- read.csv2(runsFile, header = TRUE, stringsAsFactors = FALSE,
colClasses = colClasses)

fix column names and define runsChrom

snpInsideRunsCpp 27

names(runs) <- c("POPULATION","IND","CHROMOSOME","COUNT","START","END","LENGTH")
runsChrom <- runs[runs$CHROMOSOME==chrom,]

snpInsideRuns(runsChrom, mapChrom, genotypeFile)

snpInsideRunsCpp Function to count number of times a SNP is in a RUN

Description

Function to count number of times a SNP is in a RUN

Usage

snpInsideRunsCpp(runsChrom, mapChrom, genotypeFile)

Arguments

runsChrom R object (dataframe) with results per chromosome
mapChrom R map object with SNP per chromosome
genotypeFile genotype (.ped) file location

Value

dataframe with counts per SNP in runs (per population)

summaryRuns Summary statistics on detected runs

Description

This function processes the results from slidingRUNS.run and consecutiveRUNS.run and pro-
duces a number of interesting descriptives statistics on results.

Usage

summaryRuns(runs, mapFile, genotypeFile, Class = 2, snpInRuns = FALSE)

Arguments

runs R object (dataframe) with results on detected runs
mapFile Plink map file (for SNP position)
genotypeFile Plink ped file (for SNP position)
Class group of length (in Mbps) by class (default: 0-2, 2-4, 4-8, 8-16, >16)
snpInRuns TRUE/FALSE (default): should the function snpInsideRuns be called to com-

pute the proportion of times each SNP falls inside a run in the group/population?

28 tableRuns

Details

summaryRuns calculates: i) the number of runs per chromosome and group/population; ii) the per-
cent distribution of runs per chromosome and group; iii) the number of runs per size-class and
group; iv) the percent distribution of runs per size-class and group; v) the mean length of runs
per chromosome and group; vi) the mean length of runs per size-class and group; vii) individual
inbreeding coefficient estimated from ROH; viii) individual inbreeding coefficient estimated from
ROH per chromosome; ix) individual inbreeding coefficient estimated from ROH per size-class

Value

A list of dataframes containing the most relevant descriptives statistics on detected runs. The list
conveniently contains 9 dataframes that can be used for further processing and visualization, or can
be written out to text files

Examples

getting map and ped paths
genotypeFile <- system.file("extdata", "Kijas2016_Sheep_subset.ped", package = "detectRUNS")
mapFile <- system.file("extdata", "Kijas2016_Sheep_subset.map", package = "detectRUNS")

calculating runs of Homozygosity
Not run:
skipping runs calculation
runs <- slidingRUNS.run(genotypeFile, mapFile, windowSize = 15, threshold = 0.1, minSNP = 15,
ROHet = FALSE, maxOppositeGenotype = 1, maxMiss = 1, minLengthBps = 100000, minDensity = 1/10000)

End(Not run)
loading pre-calculated data
runsFile <- system.file("extdata", "Kijas2016_Sheep_subset.sliding.csv", package="detectRUNS")
runsDF <- readExternalRuns(inputFile = runsFile, program = 'detectRUNS')

summaryRuns(runs = runsDF, mapFile = mapFile, genotypeFile = genotypeFile, Class = 2,
snpInRuns = FALSE)

tableRuns Function to retrieve most common runs in the population

Description

This function takes in input either the run results or the output from the function snpInsideRuns
(proportion of times a SNP is inside a run) in the population/group, and returns a subset of the runs
most commonly found in the group/population. The parameter threshold controls the definition
of most common (e.g. in at least 50%, 70% etc. of the sampled individuals)

Usage

tableRuns(runs = NULL, SnpInRuns = NULL, genotypeFile, mapFile,
threshold = 0.5)

writeRUN 29

Arguments

runs R object (dataframe) with results on detected runs

SnpInRuns dataframe with the proportion of times each SNP falls inside a run in the popu-
lation (output from snpInsideRuns)

genotypeFile Plink ped file (for SNP position)

mapFile Plink map file (for SNP position)

threshold value from 0 to 1 (default 0.7) that controls the desired proportion of individuals
carrying that run (e.g. 70%)

Value

A dataframe with the most common runs detected in the sampled individuals (the group/population,
start and end position of the run, chromosome and number of SNP included in the run are reported
in the output dataframe)

Examples

getting map and ped paths
genotypeFile <- system.file("extdata", "Kijas2016_Sheep_subset.ped", package = "detectRUNS")
mapFile <- system.file("extdata", "Kijas2016_Sheep_subset.map", package = "detectRUNS")

calculating runs of Homozygosity
Not run:
skipping runs calculation
runs <- slidingRUNS.run(genotypeFile, mapFile, windowSize = 15, threshold = 0.1, minSNP = 15,
ROHet = FALSE, maxOppositeGenotype = 1, maxMiss = 1, minLengthBps = 100000, minDensity = 1/10000)

End(Not run)
loading pre-calculated data
runsFile <- system.file("extdata", "Kijas2016_Sheep_subset.sliding.csv", package="detectRUNS")
runsDF = readExternalRuns(inputFile = runsFile, program = 'detectRUNS')

tableRuns(runs = runsDF, genotypeFile = genotypeFile, mapFile = mapFile, threshold = 0.5)

writeRUN Function to write out RUNS per individual animal

Description

Function to write out RUNS per individual animal

Usage

writeRUN(ind, dRUN, ROHet = TRUE, group, outputName)

30 writeRUN

Arguments

ind ID of animals

dRUN data.frame with RUNS per animal

ROHet shall we detect ROHet or ROHom?

group group (factor): population, breed, ethnicity, case/control etc.

outputName output filename

Value

TRUE/FALSE if RUNS are written out or not

Index

consecutiveRUNS.run, 2
consecutiveRunsCpp, 4
createRUNdf, 5

findOppositeAndMissing, 6
Froh_inbreeding, 6
Froh_inbreedingClass, 7

genoConvertCpp, 8

heteroZygotTest, 9
heteroZygotTestCpp, 9
homoZygotTest, 10
homoZygotTestCpp, 11

pedConvertCpp, 11
plot_DistributionRuns, 12
plot_InbreedingChr, 13
plot_manhattanRuns, 14
plot_PatternRuns, 15
plot_Runs, 16
plot_SnpsInRuns, 17
plot_StackedRuns, 18
plot_ViolinRuns, 19

readExternalRuns, 20
readPOPCpp, 21
reorderDF, 21

slidingRUNS.run, 22
slidingWindow, 23
slidingWindowCpp, 24
snpInRun, 25
snpInRunCpp, 25
snpInsideRuns, 26
snpInsideRunsCpp, 27
summaryRuns, 27

tableRuns, 28

writeRUN, 29

31

	consecutiveRUNS.run
	consecutiveRunsCpp
	createRUNdf
	findOppositeAndMissing
	Froh_inbreeding
	Froh_inbreedingClass
	genoConvertCpp
	heteroZygotTest
	heteroZygotTestCpp
	homoZygotTest
	homoZygotTestCpp
	pedConvertCpp
	plot_DistributionRuns
	plot_InbreedingChr
	plot_manhattanRuns
	plot_PatternRuns
	plot_Runs
	plot_SnpsInRuns
	plot_StackedRuns
	plot_ViolinRuns
	readExternalRuns
	readPOPCpp
	reorderDF
	slidingRUNS.run
	slidingWindow
	slidingWindowCpp
	snpInRun
	snpInRunCpp
	snpInsideRuns
	snpInsideRunsCpp
	summaryRuns
	tableRuns
	writeRUN
	Index

