Package 'discord'

July 22, 2025

```
Type Package
Title Functions for Discordant Kinship Modeling
Version 1.2.4.1
Description Functions for discordant kinship modeling (and other sibling-based quasi-
     experimental designs). Contains data restructuring functions and functions for generating bio-
     metrically informed data for kin pairs. See [Garri-
     son and Rodgers, 2016 < doi:10.1016/j.intell.2016.08.008 > ], [Sims, Trattner, and Garri-
     son, 2024 <doi:10.3389/fpsyg.2024.1430978>] for empirical examples, and Garrison and col-
     leagues for theoretical work <a href="https://osf.io/zpdwt/">https://osf.io/zpdwt/>.
URL https://github.com/R-Computing-Lab/discord,
     https://r-computing-lab.github.io/discord/
License GPL-3
LazyData TRUE
RoxygenNote 7.3.2
Encoding UTF-8
Depends R (>= 3.50)
Imports stats
Suggests NlsyLinks, ggpedigree, BGmisc, broom, dplyr, grid, gridExtra,
     ggplot2, janitor, kableExtra, knitr, magrittr, rmarkdown,
     scales, stargazer, snakecase, testthat, tidyverse
VignetteBuilder knitr
NeedsCompilation no
Author S. Mason Garrison [aut, cre, cph] (ORCID:
       <https://orcid.org/0000-0002-4804-6003>),
     Jonathan Trattner [aut] (ORCID:
       <https://orcid.org/0000-0002-1097-7603>, url:
      https://www.jdtrat.com/),
     Yoo Ri Hwang [aut],
     Cermet Ream [ctb]
Maintainer S. Mason Garrison <garrissm@wfu.edu>
Repository CRAN
Date/Publication 2025-06-10 16:30:02 UTC
```

2 check_discord_errors

Contents

	check_discord_errors	2
	check_sibling_order	3
	data_flu_ses	3
	data_sample	
	discord_between_model	2
	discord_cond	5
	discord_data	ϵ
	discord_regression	8
	kinsim	g
	make_mean_diffs	12
Index		13
check	<pre>c_discord_errors</pre>	

Description

This function checks for common errors in the provided data, including the correct specification of identifiers (ID, sex, race) and their existence in the data.

Usage

```
check_discord_errors(data, id, sex, race, pair_identifiers)
```

Arguments

data	The data to perform a discord regression on.			
id	A unique kinship pair identifier.			
sex	A character string for the sex column name.			
race	A character string for the race column name.			
pair_identifiers				
	A character vector of length two that contains the variable identifier for each			

h kinship pair.

Value

An error message if one of the conditions are met.

check_sibling_order 3

Description

This function determines the order of sibling pairs based on an outcome variable. The function checks which of the two kinship pairs has more of a specified outcome variable. It adds a new column named 'order' to the dataset, indicating which sibling (identified as "s1" or "s2") has more of the outcome. If the two siblings have the same amount of the outcome, it randomly assigns one as having more.

Usage

```
check_sibling_order(..., fast = FALSE)
```

Arguments

... Additional arguments to be passed to the function.

fast Logical. If TRUE, uses a faster method for data processing.

Value

A one-row data frame with a new column order indicating which familial member (1, 2, or neither) has more of the outcome.

data_flu_ses

Flu Vaccination and SES Data

Description

A data frame that accompanies the regression vignette. It contains data on SES and flu vaccination.

Usage

```
data_flu_ses
```

Format

A data frame.

Kinship pairs and their relatedness, SES, and flu vaccination information.

Source

NLSY/R Lab

data_sample

Sample Data from NLSY

Description

A data frame output from the NlsyLinks package that contains data for kinship pairs' height and weight.

Usage

```
data_sample
```

Format

A data frame.

Kinship pairs and their relatedness, height, and weight information.

Source

NLSY/R Lab

discord_between_model Perform a Between-Family Linear Regression within the Discordant Kinship Framework

Description

Perform a Between-Family Linear Regression within the Discordant Kinship Framework

Usage

```
discord_between_model(
   data,
   outcome,
   predictors,
   demographics = NULL,
   id = NULL,
   sex = "sex",
   race = "race",
   pair_identifiers = c("_s1", "_s2"),
   data_processed = FALSE,
   coding_method = "none",
   fast = TRUE
)
```

5 discord_cond

Arguments

data

The data set with kinship pairs outcome A character string containing the outcome variable of interest. predictors A character vector containing the column names for predicting the outcome. demographics Indicator variable for if the data has the sex and race demographics. If both are present (default, and recommended), value should be "both". Other options include "sex", "race", or "none". Default's to NULL. If supplied, must specify the column name corresponding id to unique kinship pair identifiers. A character string for the sex column name. sex race A character string for the race column name. pair_identifiers A character vector of length two that contains the variable identifier for each kinship pair

data_processed Logical operator if data are already preprocessed by discord_data, default is

FALSE

A character string that indicates what kind of additional coding schemes should coding_method

be used. Default is none. Other options include "binary" and "multi".

fast Logical. If TRUE, uses a faster method for data processing.

Value

Resulting 'lm' object from performing the between-family regression.

Examples

```
discord_between_model(
 data = data_sample,
 outcome = "height",
 predictors = "weight",
 pair_identifiers = c("_s1", "_s2"),
 sex = NULL,
 race = NULL
)
```

discord_cond

Custom Conditions for the discord package

Description

Custom Conditions for the discord package

6 discord_data

Usage

```
discord_cond(type, msg, class = paste0("discord-", type), call = NULL, ...)
```

Arguments

type	One of the following conditions: c("error", "warning", "message")
msg	Message
class	Default is to prefix the 'type' argument with "discord", but can be more specific to the problem at hand.
call	What triggered the condition?
	Additional arguments that can be coerced to character or single condition object.

Value

A condition for discord.

Examples

```
## Not run:

derr <- function(x) discord_cond("error", x)
dwarn <- function(x) discord_cond("warning", x)
dmess <- function(x) discord_cond("message", x)

return_class <- function(func) {
   tryCatch(func,
        error = function(cond) class(cond),
        warning = function(cond) class(cond),
        message = function(cond) class(cond)
   )
}

return_class(derr("error-class"))
return_class(dwarn("warning-class"))
return_class(dmess("message-class"))

## End(Not run)</pre>
```

discord_data

Restructure Data to Determine Kinship Differences

Description

Restructure Data to Determine Kinship Differences

discord_data 7

Usage

```
discord_data(
  data,
  outcome,
  predictors,
  id = NULL,
  sex = "sex",
  race = "race",
  pair_identifiers,
  demographics = "both",
  coding_method = "none",
  fast = TRUE,
  ...
)
```

Arguments

data The data set with kinship pairs

outcome A character string containing the outcome variable of interest.

predictors A character vector containing the column names for predicting the outcome.

id Default's to NULL. If supplied, must specify the column name corresponding

to unique kinship pair identifiers.

sex A character string for the sex column name.

race A character string for the race column name.

pair_identifiers

A character vector of length two that contains the variable identifier for each

kinship pair

demographics Indicator variable for if the data has the sex and race demographics. If both

are present (default, and recommended), value should be "both". Other options

include "sex", "race", or "none".

coding_method A character string that indicates what kind of additional coding schemes should

be used. Default is none. Other options include "binary" and "multi".

fast Logical. If TRUE, uses a faster method for data processing.

... Additional arguments to be passed to the function.

Value

A data frame that contains analyzable, paired data for performing kinship regressions.

Examples

```
discord_data(
  data = data_sample,
  outcome = "height",
  predictors = "weight",
  pair_identifiers = c("_s1", "_s2"),
```

8 discord_regression

```
sex = NULL,
race = NULL,
demographics = "none"
)
```

discord_regression

Perform a Linear Regression within the Discordant Kinship Framework

Description

Perform a Linear Regression within the Discordant Kinship Framework

Usage

```
discord_regression(
  data,
 outcome,
  predictors,
  demographics = NULL,
  id = NULL,
  sex = "sex"
  race = "race",
  pair_identifiers = c("_s1", "_s2"),
  data_processed = FALSE,
  coding_method = "none",
  fast = TRUE
)
discord_within_model(
  data,
 outcome,
  predictors,
 demographics = NULL,
  id = NULL,
  sex = "sex"
  race = "race",
  pair_identifiers = c("_s1", "_s2"),
  data_processed = FALSE,
  coding_method = "none",
  fast = TRUE
)
```

Arguments

data

The data set with kinship pairs

kinsim 9

outcome A character string containing the outcome variable of interest.

predictors A character vector containing the column names for predicting the outcome.

demographics Indicator variable for if the data has the sex and race demographics. If both

are present (default, and recommended), value should be "both". Other options

include "sex", "race", or "none".

id Default's to NULL. If supplied, must specify the column name corresponding

to unique kinship pair identifiers.

sex A character string for the sex column name.

race A character string for the race column name.

pair_identifiers

A character vector of length two that contains the variable identifier for each

kinship pair

data_processed Logical operator if data are already preprocessed by discord_data , default is

FALSE

coding_method A character string that indicates what kind of additional coding schemes should

be used. Default is none. Other options include "binary" and "multi".

fast Logical. If TRUE, uses a faster method for data processing.

Value

Resulting 'lm' object from performing the discordant regression.

Examples

```
discord_regression(
  data = data_sample,
  outcome = "height",
  predictors = "weight",
  pair_identifiers = c("_s1", "_s2"),
  sex = NULL,
  race = NULL
)
```

kinsim

Simulate Biometrically Informed Multivariate Data

Description

Generates paired multivariate data for kinship pairs based on specified ACE (Additive genetic, Common environment, unique Environment) parameters with covariance structure.

10 kinsim

Usage

```
kinsim(
 r_all = c(1, 0.5),
 c_all = 1,
 npg_all = 500,
 npergroup_all = rep(npg_all, length(r_all)),
 mu_all = 0,
 variables = 2,
 mu_list = rep(mu_all, variables),
 r_vector = NULL,
 c_vector = NULL,
 ace_all = c(1, 1, 1),
 ace_list = matrix(rep(ace_all, variables), byrow = TRUE, nrow = variables),
 cov_a = 0,
 cov_c = 0,
 cov_e = 0,
)
```

Arguments

r_all	Numeric vector. Levels of genetic relatedness for each group; default is $c(1,0.5)$ representing MZ and DZ twins respectively.
c_all	Numeric. Default shared variance for common environment; default is 1.
npg_all	Integer. Default sample size per group; default is 500.
npergroup_all	Numeric vector. Sample sizes by group; default repeats npg_all for all groups in r_all.
mu_all	Numeric. Default mean value for all generated variables; default is 0.
variables	Integer. Number of variables to generate; default is 2. Currently limited to a maximum of two variables.
mu_list	Numeric vector. Means for each variable; default repeats mu_all for all variables.
r_vector	Numeric vector. Alternative specification providing genetic relatedness coefficients for the entire sample; default is NULL.
c_vector	Numeric vector. Alternative specification providing shared-environmental relatedness
ace_all	Numeric vector. Default variance components in order $c(a, c, e)$ for all variables; default is $c(1, 1, 1)$.
ace_list	Matrix. ACE variance components by variable, where each row represents a variable and columns are a, c, e components; default repeats ace_all for each variable.
cov_a	Numeric. Shared variance for additive genetics between variables; default is 0.
cov_c	Numeric. Shared variance for shared-environment between variables; default is 0.

kinsim 11

cov_e Numeric. Shared variance for non-shared-environment between variables; default is 0.... Additional arguments passed to other methods.

Details

This function extends the univariate ACE model to multivariate data, allowing simulation of correlated phenotypes across kinship pairs with different levels of genetic relatedness. It supports simulation of up to two phenotypic variables with specified genetic and environmental covariance structures.

Value

A data frame with the following columns:

- Ai_1 genetic component for variable i for kin1
- Ai_2 genetic component for variable i for kin2
- Ci_1 shared-environmental component for variable i for kin1
- Ci_2 shared-environmental component for variable i for kin2
- Ei_1 non-shared-environmental component for variable i for kin1
- Ei 2 non-shared-environmental component for variable i for kin2
- yi_1 generated variable i for kin1
- yi_2 generated variable i for kin2
- r level of relatedness for the kin pair
- id Unique identifier for each kinship pair

Examples

```
# Generate basic multivariate twin data with default parameters
twin data <- kinsim()</pre>
# Generate data with genetic correlation between variables
correlated_data <- kinsim(cov_a = 0.5)</pre>
# Generate data for different relatedness groups with custom parameters
family_data <- kinsim(</pre>
 r_all = c(1, 0.5, 0.25), # MZ twins, DZ twins, and half-siblings
 npergroup_all = c(100, 100, 150), # Sample sizes per group
 ace_list = matrix(
   c(
      1.5, 0.5, 1.0, # Variable 1 ACE components
      0.8, 1.2, 1.0
   ), # Variable 2 ACE components
   nrow = 2, byrow = TRUE
 ),
 cov_a = 0.3, # Genetic covariance
 cov_c = 0.2 # Shared environment covariance
)
```

make_mean_diffs

 ${\tt make_mean_diffs}$

Make Mean Differences

Description

This function calculates differences and means of a given variable for each kinship pair. The order of subtraction and the variables' names in the output dataframe depend on the order column set by check_sibling_order(). If the demographics parameter is set to "race", "sex", or "both", it also prepares demographic information accordingly, swapping the order of demographics as per the order column.

Usage

```
make_mean_diffs(..., fast = FALSE)
```

Arguments

... Additional arguments to be passed to the function.

fast Logical. If TRUE, uses a faster method for data processing.

Index