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2 ebreg

ebreg Implements the empirical Bayes method in high-dimensional linear
model setting for inference and prediction

Description

The function ebreg implements the method first presented in Martin, Mess, and Walker (2017) for
Bayesian inference and variable selection in the high-dimensional sparse linear regression problem.
The chief novelty is the manner in which the prior distribution for the regression coefficients de-
pends on data; more details, with a focus on the prediction problem, are given in Martin and Tang
(2019).

Usage

ebreg(
y,
X,
XX,
standardized = TRUE,
alpha = 0.99,
gam = 0.005,
sig2,
prior = TRUE,
igpar = c(0.01, 4),
log.f,
M,
sample.beta = FALSE,
pred = FALSE,
conf.level = 0.95

)

Arguments

y vector of response variables for regression

X matrix of predictor variables

XX vector to predict outcome variable, if pred=TRUE

standardized logical. If TRUE, the data provided has already been standardized

alpha numeric value between 0 and 1, likelihood fraction. Default is 0.99

gam numeric value between 0 and 1, conditional prior precision parameter. Default
is 0.005

sig2 numeric value for error variance. If NULL (default), variance is estimated from
data

prior logical. If TRUE, a prior is used for the error variance

igpar the parameters for the inverse gamma prior on the error variance. Default is
(0.01,4)
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log.f log of the prior for the model size

M integer value to indicate the Monte Carlo sample size (burn-in of size 0.2 * M
automatically added)

sample.beta logical. If TRUE, samples of beta are obtained

pred logical. If TRUE, predictions are obtained

conf.level numeric value between 0 and 1, confidence level for the marginal credible inter-
val if sample.beta=TRUE, and for the prediction interval if pred=TRUE

Details

Consider the classical regression problem

y = Xβ + σϵ,

where y is a n-vector of responses, X is a n × p matrix of predictor variables, β is a p-vector of
regression coefficients, σ > 0 is a scale parameter, and ϵ is a n-vector of independent and identically
distributed standard normal random errors. Here we allow p ≥ n (or even p ≫ n) and accommodate
the high dimensionality by assuming β is sparse in the sense that most of its components are zero.
The approach described in Martin, Mess, and Walker (2017) and in Martin and Tang (2019) starts
by decomposing the full β vector as a pair (S, βS) where S is a subset of indices 1, 2, . . . , p that
represents the location of active variables and βS is the |S|-vector of non-zero coefficients. The
approach proceeds by specifying a prior distribution for S and then a conditional prior distribution
for βS , given S. This latter prior distribution here is taken to depend on data, hence "empirical". A
prior distribution for σ2 can also be introduced, and this option is included in the function.

Value

A list with components

• beta - matrix with rows containing sampled beta, if sample.beta=TRUE, otherwise NULL

• beta.mean - vector containing the posterior mean of beta, if sample.beta=TRUE, otherwise
NULL

• ynew - matrix containing predicted responses, if pred=TRUE, otherwise NULL

• ynew.mean - vector containing the predictions for the predictor values tested, XX, if pred=TRUE,
otherwise NULL

• S - matrix with rows containing the sampled models

• incl.prob - vector containing inclusion probabilities of the predictors

• sig2 - estimated error variance, if prior=FALSE, otherwise NULL

• PI - prediction interval, confidence level specified by the user, if pred=TRUE, otherwise NULL

• CI - matrix containing marginal credible intervals, confidence level specified by the user, if
sample.beta=TRUE, otherwise NULL

Author(s)
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Examples

n <- 70
p <- 100
beta <- rep(1, 5)
s0 <- length(beta)
sig2 <- 1
d <- 1
log.f <- function(x) -x * (log(1) + 0.05 * log(p)) + log(x <= n)
X <- matrix(rnorm(n * p), nrow=n, ncol=p)
X.new <- matrix(rnorm(p), nrow=1, ncol=p)
y <- as.numeric(X[, 1:s0] %*% beta[1:s0]) + sqrt(sig2) * rnorm(n)

o<-ebreg(y, X, X.new, TRUE, .99, .005, NULL, FALSE, igpar=c(0.01, 4),
log.f, M=5000, TRUE, FALSE, .95)

incl.pr <- o$incl.prob
plot(incl.pr, xlab="Variable Index", ylab="Inclusion Probability", type="h", ylim=c(0,1))
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