
Package ‘ecmwfr’
July 22, 2025

Title Interface to 'ECMWF' and 'CDS' Data Web Services

Version 2.0.3

Description Programmatic interface to the European Centre for Medium-Range
Weather Forecasts dataset web services (ECMWF; <https://www.ecmwf.int/>)
and Copernicus's Data Stores. Allows for easy downloads of weather
forecasts and climate reanalysis data in R. Data stores covered include the Cli-
mate Data Store (CDS;
<https://cds.climate.copernicus.eu>), Atmosphere Data Store (ADS;
<https://ads.atmosphere.copernicus.eu>) and Early Warning Data Store (CEMS;
<https://ewds.climate.copernicus.eu>).

URL https://github.com/bluegreen-labs/ecmwfr

BugReports https://github.com/bluegreen-labs/ecmwfr/issues

Depends R (>= 4.2)

Imports httr, memoise, getPass, R6, keyring, tools

License AGPL-3

ByteCompile true

RoxygenNote 7.3.1

Suggests rmarkdown, covr, xml2, testthat, terra, maps, ncdf4, knitr,
rlang, rstudioapi, jsonlite

VignetteBuilder knitr

Encoding UTF-8

NeedsCompilation no

Author Koen Hufkens [aut, cre, cph] (ORCID:
<https://orcid.org/0000-0002-5070-8109>),

Reto Stauffer [ctb] (ORCID: <https://orcid.org/0000-0002-3798-5507>),
Elio Campitelli [ctb] (ORCID: <https://orcid.org/0000-0002-7742-9230>),
BlueGreen Labs [fnd]

Maintainer Koen Hufkens <koen.hufkens@gmail.com>

Repository CRAN

Date/Publication 2025-02-10 12:00:02 UTC

1

https://www.ecmwf.int/
https://cds.climate.copernicus.eu
https://ads.atmosphere.copernicus.eu
https://ewds.climate.copernicus.eu
https://github.com/bluegreen-labs/ecmwfr
https://github.com/bluegreen-labs/ecmwfr/issues
https://orcid.org/0000-0002-5070-8109
https://orcid.org/0000-0002-3798-5507
https://orcid.org/0000-0002-7742-9230

2 wf_archetype

Contents
print.ecmwfr_archetype . 2
wf_archetype . 2
wf_check_request . 3
wf_datasets . 4
wf_dataset_info . 5
wf_delete . 6
wf_get_key . 7
wf_request . 8
wf_set_key . 10
wf_transfer . 11

Index 13

print.ecmwfr_archetype

Methods to deal with visualizing / printing requesting info from the
archetype constructor

Description

Methods to deal with visualizing / printing requesting info from the archetype constructor

Usage

S3 method for class 'ecmwfr_archetype'
print(x, ...)

Arguments

x archetype object

... additional parameters to pass on

wf_archetype Creates an archetype function

Description

Creates a universal MARS / CDS formatting function, in ways similar to wf_modify_request()
but the added advantage that you could code for the use of dynamic changes in the parameters
provided to the resulting custom function.

Usage

wf_archetype(request, dynamic_fields)

wf_check_request 3

Arguments

request a MARS or CDS request as an R list object.

dynamic_fields character vector of fields that could be changed.

Details

Contrary to a simple replacement as in wf_modify_request() the generated functions are consid-
ered custom user written. Given the potential for complex formulations and formatting commands
NO SUPPORT for the resulting functions can be provided. Only the generation of a valid function
will be guaranteed and tested for.

Value

a function that takes ‘dynamic_fields‘ as arguments and returns a request as an R list object.

Examples

Not run:

ERA <- wf_archetype(
request = list(
dataset_short_name = "reanalysis-era5-pressure-levels",
product_type = "reanalysis",
variable = "geopotential",
year = "2024",
month = "03",
day = "01",
time = "13:00",
pressure_level = "1000",
data_format = "grib",
target = "download.grib"

),
dynamic_fields = c("year", "day", "target")

)
print output of the function with below (new) parameters
str(ERA(2021, 3, "new_download.grip"))

End(Not run)

wf_check_request check ECMWF / CDS data requests

Description

Check the validity of a data request by comparing the main dataset to the list provided by wf_datasets

4 wf_datasets

Usage

wf_check_request(request)

Arguments

request nested list with query parameters following the layout as specified on the ECMWF
API page

Value

a data frame with the determined service and url service endpoint

Author(s)

Koen Hufkens

See Also

wf_set_key wf_transfer,wf_request, wf_transfer

wf_datasets List ECMWF Data Store dataset

Description

Returns a list of all ECMWF datasets, covering all Data Store services (i.e. CDS, ADS, CEMS).
This function is used to validate the datasets queried by wf_request. For optimization reasons and
limit API calls the function is cached and only called once per session (assuming that available
products and their information and endpoints aren’t updated on a regular sub-daily basis).

Usage

wf_datasets(service = c("cds", "ads", "cems"), simplify = TRUE)

Arguments

service which service to use, one of webapi, cds or ads (default = webapi)

simplify simplify the output, logical (default = TRUE). When not simplified the raw API
return is provided as a nested list, for debugging purposes mostly.

Value

returns a data frame with the ECMWF Data Store datasets

Author(s)

Koen Hufkens

wf_dataset_info 5

See Also

wf_transfer wf_request

Examples

Not run:
get a list of ECMWF Data Store datasets
wf_datasets()

End(Not run)

wf_dataset_info List ECMWF Data Store dataset information

Description

Shows and returns detailed product information about a specific data set (see wf_datasets). This
includes the list of sub-products in the collection as well as date and time ranges.

Usage

wf_dataset_info(dataset, simplify = TRUE)

Arguments

dataset character, name of the data set for which the product information should be
loaded

simplify boolean, default TRUE. If TRUE the description will be returned as tidy data in-
stead of a nested list.

Value

Downloads a tidy data frame with product descriptions from CDS. If simplify = FALSE a list with
product details will be returned.

Author(s)

Reto Stauffer, Koen Hufkens

See Also

wf_datasets.

6 wf_delete

Examples

Not run:
Return information
info <- wf_dataset_info("reanalysis-era5-single-levels")
names(info)

End(Not run)

wf_delete Delete ECMWF Data Store request

Description

Deletes a staged download from the queue when not using R6 methods.

Usage

wf_delete(url, user = "ecmwfr", verbose = TRUE)

Arguments

url url to query

user user, generally not set (default = "ecmwfr"), used by wf_set_key

verbose show feedback on processing

Author(s)

Koen Hufkens

See Also

wf_set_key wf_transfer wf_request

Examples

Not run:

demo query using a valid request (not shown)
file <- wf_request(request = request)

delete request
job_url <- file$get_url()
wf_delete(url = job_url)

End(Not run)

wf_get_key 7

wf_get_key Get secret ECMWF / CDS token

Description

Returns you token set by wf_set_key

Usage

wf_get_key(user = "ecmwfr")

Arguments

user user (email address) used to sign up for the ECMWF data service

Value

the key set using wf_set_key saved in the keychain

Author(s)

Koen Hufkens

See Also

wf_set_key

Examples

Not run:
set key
wf_set_key(key = "123")

get key
wf_get_key()

End(Not run)

8 wf_request

wf_request ECMWF Data Store (DS) request and download

Description

Stage a data request, and optionally download the data to disk. Alternatively you can only stage
requests, logging the request URLs to submit download queries later on using wf_transfer. Note
that the function will do some basic checks on the request input to identify possible problems.

Usage

wf_request(
request,
user = "ecmwfr",
transfer = TRUE,
path = tempdir(),
time_out = 3600,
retry = 30,
job_name,
verbose = TRUE

)

wf_request_batch(
request_list,
workers = 2,
user = "ecmwfr",
path = tempdir(),
time_out = 3600,
retry = 5,
total_timeout = length(request_list) * time_out/workers

)

Arguments

request nested list with query parameters following the layout as specified on the ECMWF
APIs page

user user (default = "ecmwf") provided by the ECMWF data service, used to retrieve
the token set by wf_set_key

transfer logical, download data TRUE or FALSE (default = TRUE)

path path were to store the downloaded data

time_out how long to wait on a download to start (default = 3600 seconds).

retry polling frequency of submitted request for downloading (default = 30 seconds).

job_name optional name to use as an RStudio job and as output variable name. It has to be
a syntactically valid name.

verbose show feedback on processing

wf_request 9

request_list a list of requests that will be processed in parallel.

workers maximum number of simultaneous request that will be submitted to the service.
Most ECMWF services are limited to 20 concurrent requests (default = 2).

total_timeout overall timeout limit for all the requests in seconds.

Value

the path of the downloaded (requested file) or the an R6 object with download/transfer information

Author(s)

Koen Hufkens

See Also

wf_set_key wf_transfer

Examples

Not run:
set key
wf_set_key(key = "123")

request <- list(
dataset_short_name = "reanalysis-era5-pressure-levels",
product_type = "reanalysis",
variable = "geopotential",
year = "2024",
month = "03",
day = "01",
time = "13:00",
pressure_level = "1000",
data_format = "grib",
target = "download.grib"

)

demo query
wf_request(request = request)

Run as an RStudio Job. When finished, will create a
variable named "test" in your environment with the path to
the downloaded file.
wf_request(request = request, job_name = "test")

End(Not run)

10 wf_set_key

wf_set_key Set secret ECMWF token

Description

Saves the token to your local keychain under a service called "ecmwfr".

Usage

wf_set_key(key, user = "ecmwfr")

Arguments

key token provided by ECMWF
user user (email address) used to sign up for the ECMWF data service, if only a

single user is needed it defaults to ("ecmwfr").

Details

In systems without keychain management set the option keyring_backend to ‘file‘ (i.e. options(keyring_backend
= "file")) in order to write the keychain entry to an encrypted file. This mostly pertains to headless
Linux systems. The keychain files can be found in ~/.config/r-keyring.

Value

It invisibly returns the user.

Author(s)

Koen Hufkens

See Also

wf_get_key

Examples

Not run:
set key
wf_set_key(key = "123")

get key
wf_get_key()

leave user and key empty to open a browser window to the service's website
and type the key interactively
wf_set_key()

End(Not run)

wf_transfer 11

wf_transfer ECMWF data transfer function

Description

Returns the contents of the requested url as a (NetCDF) file downloaded to disk or the current status
of the requested transfer.

Usage

wf_transfer(
url,
user = "ecmwfr",
path = tempdir(),
filename = tempfile("ecmwfr_", tmpdir = ""),
verbose = TRUE

)

Arguments

url R6 wf_request) query output or API endpoint

user user (email address) used to sign up for the ECMWF data service, used to re-
trieve the token set by wf_set_key.

path path were to store the downloaded data

filename filename to use for the downloaded data

verbose show feedback on data transfers

Details

Normal workflows would use the methods included in returned objects. This is for legacy support
and custom scripting only.

Value

a (netCDF) file of data on disk as specified by a wf_request

Author(s)

Koen Hufkens

See Also

wf_set_key wf_request

12 wf_transfer

Examples

Not run:
request data and grab url and try a transfer
(request not provided)
r <- wf_request(request, transfer = FALSE)

check transfer, will download if available
wf_transfer(r$get_url())

End(Not run)

Index

print.ecmwfr_archetype, 2

wf_archetype, 2
wf_check_request, 3
wf_dataset_info, 5
wf_datasets, 3, 4, 5
wf_delete, 6
wf_get_key, 7, 10
wf_request, 4–6, 8, 11
wf_request_batch (wf_request), 8
wf_set_key, 4, 6–9, 10, 11
wf_transfer, 4–6, 8, 9, 11

13

	print.ecmwfr_archetype
	wf_archetype
	wf_check_request
	wf_datasets
	wf_dataset_info
	wf_delete
	wf_get_key
	wf_request
	wf_set_key
	wf_transfer
	Index

