
Package ‘egcm’
July 22, 2025

Type Package

Title Engle-Granger Cointegration Models

Version 1.0.13

Date 2023-02-26

Description An easy-to-use implementation of the Engle-Granger
two-step procedure for identifying pairs of cointegrated series. It is
geared towards the analysis of pairs of securities. Summary and plot
functions are provided, and the package is able to fetch closing prices of
securities from Yahoo. A variety of unit root tests are supported, and
an improved unit root test is included.

Depends zoo, xts

Imports grid, ggplot2, tseries, MASS, urca, parallel, pracma, stats,
quantmod, methods

License GPL-2 | GPL-3

RoxygenNote 6.0.1

NeedsCompilation no

Author Matthew Clegg [aut, cre, cph]

Maintainer Matthew Clegg <matthewcleggphd@gmail.com>

Repository CRAN

Date/Publication 2023-02-27 09:42:33 UTC

Contents
egcm-package . 2
acor . 4
allpairs.egcm . 5
bvr.test . 7
detrend . 8
egcm . 9
egcm.defaults . 15
pgff.test . 17

1

2 egcm-package

rar1 . 19
rcoint . 20
sim.egcm . 21
ur_power . 22
yegcm . 25

Index 27

egcm-package Simplified Engle-Granger Cointegration Models

Description

This package provides a simplified implementation of the Engle-Granger cointegration model that
is geared towards the analysis of securities prices. Summary and plot functions are provided, and a
convenient interface to quantmod is given. A variety of standard unit root tests are supported, and
an improved unit root test is included.

Details

This package implements a test for a simplified form of cointegration. Namely, it checks whether or
not a linear combination of two time series follows an autoregressive model of order one. In other
words, given two series X and Y , it searches for parameters α, β and ρ such that:

Y [i] = α+ β ∗X[i] +R[i]

R[i] = ρ ∗R[i− 1] + ϵ

If |ρ| < 1, then X and Y are cointegrated.

Cointegration is a useful tool in many areas of economics, but this implementation is especially
geared towards the analysis of securities prices. Testing for cointegration has been proposed as
means for assessing whether or not two securities are suitable candidates for pairs trading.

In addition, this package implements two previously unavailable unit root tests. A test based upon
the weighted symmetric estimator ρws of Pantula, Gonzales-Farias and Fuller is implemented as
pgff.test. This test seems to provide superior performance to the standard Dickey-Fuller test
adf.test and also improves upon the performance of a number of other tests previously available
in R.

The variance ratio test proposed by J. Breitung is implemented as bvr.test. It has the advantage
that it is a non-parametric test, and it seems to provide superior performance to other variance ratio
tests available in R, although it does not perform as well as pgff.test.

Users who wish to explore more general models for cointegration are referred to the urca package
of Bernard Pfaff.

Disclaimer

DISCLAIMER: The software in this package is for general information purposes only. It is hoped
that it will be useful, but it is provided WITHOUT ANY WARRANTY; without even the implied
warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. It is not in-
tended to form the basis of any investment decision. USE AT YOUR OWN RISK!

egcm-package 3

Author(s)

Matthew Clegg <matthewcleggphd@gmail.com>

References

Breitung, J. (2002). Nonparametric tests for unit roots and cointegration. Journal of econometrics,
108(2), 343-363.

Chan, E. (2013). Algorithmic trading: winning strategies and their rationale. (Vol. 625). John
Wiley & Sons.

Clegg, M. (2014). On the Persistence of Cointegration in Pairs Trading (January 28, 2014). Avail-
able at SSRN: http://ssrn.com/abstract=2491201

Ehrman, D.S. (2006). The handbook of pairs trading: strategies using equities, options, and futures.
(Vol. 240). John Wiley & Sons.

Engle, R. F. and C. W. Granger. (1987) Co-integration and error correction: representation, estima-
tion, and testing. Econometrica, 251-276.

Pantula, S. G., Gonzalez-Farias, G., and Fuller, W. A. (1994). A comparison of unit-root test criteria.
Journal of Business & Economic Statistics, 12(4), 449-459.

Pfaff, B. (2008) Analysis of Integrated and Cointegrated Time Series with R. Second Edition.
Springer, New York. ISBN 0-387-27960-1

Vidyamurthy, G. (2004). Pairs trading: quantitative methods and analysis. (Vol 217). Wiley.com.

See Also

egcm Further documentation of the Engle-Granger cointegration model

pgff.test Unit root test based on the weighted symmetric estimator of Pantula, Gonzales-Farias
and Fuller

bvr.test Unit root test based on Breitung’s variance ratio

adf.test, pp.test Unit root tests included in the base R distribution

urca An extensive collection of unit root tests and cointegration tests implemented by Bernard Pfaff

hurstexp Unit root tests based on variance ratios

Examples

Not run:
library(quantmod)
prices.spy <- getSymbols("SPY", from="2013-01-01", to="2014-01-01",

auto.assign = FALSE)$SPY.Adjusted
prices.voo <- getSymbols("VOO", from="2013-01-01", to="2014-01-01",

auto.assign = FALSE)$VOO.Adjusted
egcm(prices.spy, prices.voo)
plot(egcm(prices.spy, prices.voo))
summary(egcm(prices.spy, prices.voo))

The yegcm method provides a convenient interface to the TTR
package, which can fetch closing prices from Yahoo. Thus,
the above can be simplified as follows:

4 acor

e <- yegcm("SPY", "VOO", start="2013-01-01", end="2014-01-01")
print(e)
plot(e)
summary(e)

End(Not run)

acor autocorrelation

Description

autocorrelation of a sequence

Usage

acor(X, k = 1, na.rm = FALSE)

Arguments

X a numeric vector or zoo vector

k the number of lags for which to compute the autocorrelation. Default: 1

na.rm a boolean, which if TRUE, indicates that NA values should be removed from the
series prior to computing the autocorrelation. Default: FALSE

Value

Returns the lag k autocorrelation of X, e.g., the correlation of X[i] with X[i-k].

Note

It’s a bit surprising that this is not a part of the core R distribution, but I can’t find it. Perhaps it was
thought to be too trivial to include.

Author(s)

Matthew Clegg <matthewcleggphd@gmail.com>

See Also

acf

allpairs.egcm 5

Examples

acor(1:10) # a perfect correlation
acor(rnorm(100)) # should be close to zero
acor(cumsum(rnorm(100))) # slightly less than one
acor(rar1(1000, a1=0.8)) # slightly less than 0.8
acor(rar1(1000, a1=0.8), k=2) # about 0.64
acor(rar1(1000, a1=0.8), k=3) # about 0.51

allpairs.egcm Perform cointegration tests for all pairs of securities in a list

Description

Given a list of ticker symbols, downloads the adjusted daily closing prices of each of the symbols
from Yahoo, and performs a cointegration test for each pair of symbols. Returns a data.frame
containing the results of the tests.

Usage

allpairs.egcm(tickers,
startdate = format(Sys.Date() - 365, "%Y-%m-%d"),
enddate = format(Sys.Date(), "%Y-%m-%d"), clear.na.inf=TRUE, ...)

Arguments

tickers A list of ticker symbols whose data is to be downloaded from Yahoo!. Alterna-
tively, this may be a data.frame containing the price series to be checked, one
series per column.

startdate The starting date for which to download the data. Given in the form "YYYY-MM-DD".
Defaults to one year ago.

enddate The ending date for which to download the data. Given in the form "YYYY-MM-DD".
Defaults to today.

clear.na.inf if TRUE, NA and Inf price values are replaced by the last available price. De-
fault:TRUE.

... Other parameters to be passed to egcm

Value

A data.frame containing the following columns:

• series1: Name of the first ticker in this cointegration test

• series2: Name of the second ticker in this cointegration test

• log: Boolean which if TRUE indicates that the cointegration test is performed on the logs of
the series

• i1test: Name of the test used for checking that the series are integrated.

6 allpairs.egcm

• urtest: Name of the test used for checking for a unit root in the residual series

• alpha: Constant term of the linear relation between the series

• alpha.se: Standard error of alpha

• beta: Linear term of the linear relation between the series

• beta.se: Standard error of beta

• rho: Coefficient of mean reversion

• rho.se: Standard error of rho

• s1.i1.stat: Statistic computed for integration test of first series

• s1.i1.p: p-value for integration test of first series

• s2.i1.stat: Statistic computed for integration test of second series

• s2.i1.p: p-value for integration test of second series

• r.stat: Statistic computed for cointegration test (e.g. whether the residual series contains a unit
root)

• r.p: p-value associated with r.stat

• eps.ljungbox.stat: Ljung-Box statistic computed on the innovations of the series

• eps.ljungbox.p: p-value associated with the Ljung-Box statistic

• s1.dsd: Standard deviation of the first differences of the first series

• s2.dsd: Standard deviation of the first differences of the second series

• residuals.sd: Standard deviation of the residual series

• eps.sd: Standard deviation of the innovations

• is.cointegrated: TRUE if the pair is cointegrated at the 5% confidence level

Author(s)

Matthew Clegg <matthewcleggphd@gmail.com>

See Also

egcm

Examples

Not run:
Check if any of the oil majors are cointegrated:
allpairs.egcm(c("BP","CVX","RDS.A","TOT","XOM"))

End(Not run)

bvr.test 7

bvr.test Unit root test based upon Breitung’s variance ratio

Description

Unit root test based upon Breitung’s variance ratio

Usage

bvr.test(Y, detrend = FALSE)
bvr_rho(Y, detrend = FALSE)

Arguments

Y A vector or zoo-vector

detrend A boolean, which if TRUE, indicates that the test should be performed after
removing a linear trend from Y

Details

Breitung’s variance ratio is given by the formula:

ρT =
T−2

∑T
t=1 Y

2
t

T−1
∑T

t=1 y
2
t

where T is the length of the vector Y . (See equation (5) of his paper.)

The advantage of Breitung’s variance ratio is that, in contrast to the Dickey-Fuller test and other
related tests, it is a nonparametric statistic. In simulations, it seems to perform favorably with
respect to the Hurst exponent.

Simulation has been used to determine the distribution of the statistic, and table lookup is used to
determine p-values.

If detrend=TRUE, then a linear trend is removed from the data prior to computing the estimator ρT .
A separate table has been computed of the distribution of values of ρT after detrending.

Value

bvr_rho returns the value ρT of Breitung’s variance ratio.

bvr.test returns a list with class "htest" containing the following components:

statistic the value of the test statistic.

parameter the truncation lag parameter.

p.value the p-value of the test.

method a character string indicating what type of test was performed.

data.name a character string giving the name of the data.

8 detrend

Author(s)

Matthew Clegg <matthewcleggphd@gmail.com>

References

Breitung, J. (2002). Nonparametric tests for unit roots and cointegration. Journal of econometrics,
108(2), 343-363.

Breitung, J. and Taylor, A.M.R. (2003) Corrigendum to "Nonparametric tests for unit roots and
cointegration" [J. Econom. 108 (2002) 343-363] Journal of econometrics, 117(2), 401-404.

See Also

hurstexp egcm

Examples

The following should produce a low p-value
bvr_rho(rnorm(100))
bvr.test(rnorm(100))

The following should produce a high p-value
bvr_rho(cumsum(rnorm(100)))
bvr.test(cumsum(rnorm(100)))

Test with an autoregressive sequence where rho = 0.8
bvr.test(rar1(100, a1=0.8))

If there is a linear trend, bvr.test with detrend=FALSE
is likely to find a unit root when there is none:
bvr.test(1:100 + rnorm(100))
bvr.test(1:100 + rnorm(100), detrend=TRUE)

Display the power of the test for various values of rho and n:
bvr_power(a1=0.8, n=100, nrep=100)
bvr_power(a1=0.9, n=250, nrep=100)
bvr_power(a1=0.95, n=250, nrep=100)

This is to be compared to the power of the adf.test at this level:
adf_power(a1=0.8, n=100, nrep=100)
adf_power(a1=0.9, n=250, nrep=100)
adf_power(a1=0.95, n=250, nrep=100)

detrend Remove a linear trend from a vector

Description

Given a numeric vector Y, removes a linear trend from it.

egcm 9

Usage

detrend(Y)

Arguments

Y numeric vector to be de-trended

Value

Returns a vector X where X[i] = Y[i] - a - b * i, where a and b describe the linear trend in Y.

Author(s)

Matthew Clegg <matthewcleggphd@gmail.com>

Examples

detrend(rep(1,10)) # == 0 0 0 0 0 0 0 0 0 0
detrend(1:10) # == 0 0 0 0 0 0 0 0 0 0
detrend((1:10)^2) # == 12 4 -2 -6 -8 -8 -6 -2 4 12

mean(detrend(rnorm(1:100) + 1:100)) # should be very close to 0
sd(rnorm(1:100) + 1:100) # approximately 29
sd(detrend(rnorm(1:100) + 1:100)) # approximately 1

egcm Simplified Engle-Granger Cointegration Model

Description

Performs the two-step Engle Granger cointegration procedure on a pair of time series, and creates
an object representing the results of the analysis.

Usage

egcm(X, Y, na.action, log = FALSE, normalize = FALSE,
debias = TRUE, robust=FALSE, include.const=TRUE,
i1test = egcm.default.i1test(),
urtest = egcm.default.urtest(),
p.value = egcm.default.pvalue())

is.cointegrated(E)
is.ar1(E)

10 egcm

Arguments

X the first time series to be considered in the cointegration test. A plain or zoo
vector. Alternatively, a two-column matrix or data.frame, in which case Y should
be omitted.

Y the second time series to be considered in the cointegration test. A plain or zoo
vector.

E an object of class "egcm" returned from a previous call to egcm

na.action a function that indicates what should happen when the data contain NAs. See
lm.

log a boolean value which if TRUE, indicates that the model should be fit to the logs
of the input vectors X and Y. Default: FALSE.

normalize a boolean value which if TRUE, indicates that each series should be normalized to
start at 1. This is performed by dividing the series by its first element. Default:
FALSE.

debias a boolean value which if TRUE, indicates that the value of rho that is reported
should be debiased. Default: TRUE.

robust a boolean value which if TRUE, indicates that the two-step Engle-Granger pro-
cedure should be performed using a robust linear model rather than a standard
linear model. See rlm. Default: FALSE.

include.const a boolean which if TRUE, indicates that the constant term alpha should be in-
cluded in the model. Otherwise, sets alpha = 0. Default: TRUE.

i1test a mnemonic indicating the name of the test that should be used for checking if
the input series X and Y are integrated. If none is specified, then defaults to the
value reported by egcm.default.i1test(). The installation default is "pp".
The following tests are supported:

• "adf" Augmented Dickey-Fuller test (see adf.test)
• "pp" Phillips-Perron test (see pp.test)
• "pgff" Pantula, Gonzales-Farias and Fuller weighted symmetric estimate

(see pgff.test)
• "bvr" Breitung’s variance ratio (see bvr.test)

urtest a mnemonic indicating the name of the test that should be used for checking if
the residual series contains a unit root. If none is specified, then defaults to the
value reported by egcm.default.urtest(). The installation default is "pp".
The following tests are supported:

• "adf" Augmented Dickey-Fuller test (see adf.test)
• "pp" Phillips-Perron test (see pp.test)
• "pgff" Pantula, Gonzales-Farias and Fuller weighted symmetric estimate

(see pgff.test)
• "bvr" Breitung’s variance ratio (see bvr.test)
• "jo-e" Johansen’s eigenvalue test (see ca.jo)
• "jo-t" Johansen’s trace test (see ca.jo)
• "ers-p" Elliott, Rothenberg and Stock point optimal test (see ur.ers)
• "ers-d" Elliott, Rothenberg and Stock DF-GLS test (see ur.ers)

egcm 11

• "sp-r" Schmidt and Phillips rho statistic (see ur.sp)
• "hurst" Hurst exponent calculated using the corrected empirical method

(see hurstexp)

p.value the p-value to be used in the above tests. If none is specified, then defaults to the
value reported by egcm.default.pvalue(). The installation default is 0.05.

Details

The two-step Engle Granger procedure searches for parameters α, β, and ρ that yield the best fit to
the following model:

Y [i] = α+ β ∗X[i] +R[i]

R[i] = ρ ∗R[i− 1] + ϵ[i]

ϵ[i] ∼ N(0, σ2)

In the first step, alpha and beta are found using a linear fit of X[i] with respect to Y[i]. The
residual sequence R[i] is then determined. Then, in the second step, ρ is determined, again using a
linear fit.

Engle and Granger showed that if X and Y are cointegrated, then this procedure will yield consistent
estimates of the parameters. However, there are several ways in which this estimation procedure
can fail:

• Either X or Y (or both) may already be mean-reverting. In this case, there is no point in forming
the difference Y −βX . If one series is mean-reverting and the other is not, then any non-trivial
linear combination will not be mean-reverting.

• The residual series R[i] may not be mean-reverting. In the language of cointegration theory,
it is then said to contain a unit root. In this case, there is no benefit to forming the linear
combination Y − βX .

• The residual series R[i] may be mean-reverting, but the relation R[i] = ρR[i− 1] + ϵ[i] may
not be the right model. In other words, the residual series may not be adequately described
by an auto-regressive series of order one. In this case, the parameters α and β will be correct,
however the specification for the residuals R[i] will not be. The user may wish to try fitting
the residuals using another function, such as arima.

The egcm function checks for each of the above contingencies, using an appropriate statistical test.
If one of the above conditions is found, then a warning message is displayed when the model is
printed.

The p-value used in the above tests is given by the parameter p.value. This can be changed by set-
ting the value of the parameter, or by changing the default value with egcm.set.default.pvalue.
For all of the unit root tests, the p-values of the corresponding test statistics have been recomputed
through simulation and a table lookup is used. The Ljung-Box test (see Box.test) is used to assess
whether or not the residual series can be adequately fit with an autoregressive series of order one.

The estimates of α and β are not only consistent but also unbiased. Unfortunately, the estimate
obtained for ρ may be biased. Therefore, a bias correction has been implemented for ρ. A pre-
computed table of biases has been determined through simulation, and a table lookup is performed
to determine the appropriate bias correction. To turn off this feature, set debias = FALSE.

12 egcm

The helper function is.cointegrated() takes as input an "egcm" object E. It returns TRUE if E
appears to represent a valid pair of cointegrated series. In other words, it checks that both X and Y
are integrated and that the residual series R is free of unit roots. The helper function is.ar1() also
takes as input an "egcm" object E. It returns TRUE if the residual series R can be adequately fit by
an autoregressive model of order one.

From the standpoint of securities trading, cointegration is thought to provide a useful model for
pairs trading. If the price series of two securities are cointegrated, then the corresponding residual
series R[i] will be mean-reverting. When the magnitude of the residual R[N] is large, a trader
might establish a long position in the undervalued security and a short position in the overvalued
security. With high probability, the positions will converge in value, and a profit can be collected.
Numerous scholarly articles and several books have been written on pairs trading.

Data mining for cointegrated pairs is not recommended, though. As with any statistical test, the
cointegration test will generate false positives. Experience shows that at least in the case of the
components of the S&P 500, the number of false positives overwhelms the number of truly cointe-
grated series.

Value

Returns an S3 object of class "egcm". This can then be printed or plotted. There is also a summary
method.

The following is a copy of the printed output that was obtained from running the first example
below:

VOO[i] = 0.9201 SPY[i] - 0.6845 + R[i],
(0.0005) (0.0845)

R[i] = -0.0004 R[i-1] + eps[i], eps ~ N(0, 0.0779^2)
(0.0633)

R[2013-12-31] = -0.0987 (t = -1.265)

The first line of the output shows the fit that was found. The parameters were determined to be
β = 0.9201, α = −0.6845 and ρ = −0.0004. The standard deviation of the sequence ϵ of
innovations was found to be 0.0779. The standard errors of α, β and ρ were found to be 0.0845,
0.0005 and 0.0633 respectively.

The third line of output shows the value of the residual as of the last observation in the series. The
sign of the value −0.0987 indicates that VOO was relatively undervalued on this date and that the
difference between the two series was −1.265 standard deviations from their historical mean.

The fields of the "egcm" object are as follows:

S1 the first data series (X[i])

S2 the second data series (Y[i])

residuals the residual series (R[i])

innovations the sequence of innovations (ϵ[i])

index the index vector for the series

i1test the name of the test used for verifying that X and Y are integrated

egcm 13

urtest the name of the test used for verifying that the residual series does not contain a
unit root

pvalue the p-value that is used for the various tests used by this model

log Boolean, which if true indicates that S1 and S2 are logged

alpha the computed value of α

alpha.se standard error of the estimate of α

beta the computed value of β

beta.se standard error of the estimate of β

rho the computed and debiased value of ρ

rho.raw the value of ρ determined prior to debiasing

rho.se standard error of the estimate of ρ

s1.i1.stat test statistic found when checking that S1 is integrated

s1.i1.p p-value associated to s1.i1.stat

s2.i1.stat test statistic found when checking that S2 is integrated

s2.i1.p p-value associated to s2.i1.stat

r.stat test statistic found when checking whether the residual series contains a unit
root

r.p p-value associated to r.stat

eps.ljungbox.stat

test statistic found when checking whether an AR(1) model adequately fits the
residual series

eps.ljungbox.p p-value associated to eps.ljungbox.stat

s1.dsd standard deviation of diff(S1)

s2.dsd standard deviation of diff(S2)

r.sd standard deviation of residuals

eps.sd standard deviation of the innovations ϵ[i]

Disclaimer

The software in this package is for general information purposes only. It is hoped that it will be
useful, but it is provided WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. It is not intended to form
the basis of any investment decision. USE AT YOUR OWN RISK!

Note

Cointegration is a more general concept than has been presented here. Users who wish to explore
more general models for cointegration are referred to the urca package of Bernard Pfaff.

Author(s)

Matthew Clegg <matthewcleggphd@gmail.com>

14 egcm

References

Chan, E. (2013). Algorithmic trading: winning strategies and their rationale. (Vol. 625). John
Wiley & Sons.

Clegg, M. (2014). On the Persistence of Cointegration in Pairs Trading (January 28, 2014). Avail-
able at SSRN: http://ssrn.com/abstract=2491201

Ehrman, D.S. (2006). The handbook of pairs trading: strategies using equities, options, and futures.
(Vol. 240). John Wiley & Sons.

Engle, R. F. and C. W. Granger. (1987) Co-integration and error correction: representation, estima-
tion, and testing. Econometrica, 251-276.

Pfaff, B. (2008) Analysis of Integrated and Cointegrated Time Series with R. Second Edition.
Springer, New York. ISBN 0-387-27960-1

Vidyamurthy, G. (2004). Pairs trading: quantitative methods and analysis. (Vol 217). Wiley.com.

See Also

yegcm egcm.default.i1test egcm.default.urtest egcm.default.pvalue sim.egcm pgff.test bvr.test ca.jo

Examples

Not run:
library(quantmod)

SPY and IVV are both ETF's that track the S&P 500.
One would expect them to be cointegrated, and in 2013 they were.
spy2013 <- getSymbols("SPY", from = "2013-01-01",

to = "2013-12-31",auto.assign = FALSE)$SPY.Adjusted
ivv2013 <- getSymbols("IVV", from = "2013-01-01",

to = "2013-12-31",auto.assign = FALSE)$IVV.Adjusted
egcm(spy2013, ivv2013)

egcm has a plot method, which can be useful
In this plot, it appears that there is only one price series,
but that is because the two price series are so close to each
other that they are indistinguishable.
plot(egcm(spy2013, ivv2013))

The yegcm method provides a convenient interface to the quantmod
package, which can fetch closing prices from Yahoo. Thus,
the above can be simplified as follows:

e <- yegcm("SPY", "VOO", start="2013-01-01", end="2014-01-01")
print(e)
plot(e)
summary(e)

GLD and IAU both track the price of gold.
They too tend to be very tightly cointegrated.
gld.iau.2013 <- yegcm("GLD", "IAU", start="2013-01-01", end="2013-12-31")
gld.iau.2013

egcm.defaults 15

plot(gld.iau.2013)

Coca-cola and Pepsi are often mentioned as an
example of a pair of securities for which pairs trading
may be fruitful. However, at least in 2013, they were not
cointegrated.
ko.pep.2013 <- yegcm("KO", "PEP", start="2013-01-01", end="2013-12-31")
ko.pep.2013
plot(ko.pep.2013)

Ford and GM seemed to be even more tightly linked.
Yet, the degree of linkage was not high enough to pass the
cointegration test.
f.gm.2013 <- yegcm("F","GM", start="2013-01-01", end="2013-12-31")
f.gm.2013
plot(f.gm.2013)

End(Not run)

egcm.defaults Set and get defaults for Engle-Granger cointegration models

Description

Set and get defaults for Engle-Granger cointegration models

Usage

egcm.set.default.i1test(i1test)
egcm.default.i1test()
egcm.i1tests()

egcm.set.default.urtest(urtest)
egcm.default.urtest()
egcm.urtests()

egcm.set.default.pvalue(p)
egcm.default.pvalue()

Arguments

i1test a mnemonic indicating the name of the test that should be used for checking if
the input series are integrated. The following tests are supported:

• "adf" Augmented Dickey-Fuller test (see adf.test)
• "pp" Phillips-Perron test (see pp.test)
• "pgff" Pantula, Gonzales-Farias and Fuller weighted symmetric estimate

(see pgff.test)
• "bvr" Breitung’s variance ratio (see bvr.test)

16 egcm.defaults

urtest a mnemonic indicating the name of the test that should be used for checking if
the residual series contains a unit root. The following tests are supported:

• "adf" Augmented Dickey-Fuller test (see adf.test)
• "pp" Phillips-Perron test (see pp.test)
• "pgff" Pantula, Gonzales-Farias and Fuller weighted symmetric estimate

(see pgff.test)
• "bvr" Breitung’s variance ratio (see bvr.test)
• "jo-e" Johansen’s eigenvalue test (see ca.jo)
• "jo-t" Johansen’s trace test (see ca.jo)
• "ers-p" Elliott, Rothenberg and Stock point optimal test (see ur.ers)
• "ers-d" Elliott, Rothenberg and Stock DF-GLS test (see ur.ers)
• "sp-r" Schmidt and Phillips rho statistic (see ur.sp)
• "hurst" Hurst exponent calculated using the corrected empirical method

(see hurstexp)

p the p-value should be used for rejecting the null hypothesis in the various statis-
tical tests conducted by egcm.

Value

For egcm.default.i1test, returns the string representing the currently selected default I(1) test.
For egcm.i1tests, returns a list of all available I(1) tests.

For egcm.default.urtest, returns the string represeting the currently selected unit root test. For
egcm.urtests, returns a list of all available unit root tests.

For egcm.default.pvalue, returns the default p-value that will be used for rejecting the null hy-
pothesis in the various statistical tests conducted by egcm.

The setter functions do not return a value.

Note

Changing the default value only affects egcm objects created after the change is made.

Author(s)

Matthew Clegg <matthewcleggphd@gmail.com>

See Also

egcm

Examples

Get and set the current default I(1) test
egcm.default.i1test()
egcm.set.default.i1test("adf")

Get and set the current default unit root test
egcm.default.urtest()

pgff.test 17

egcm.set.default.urtest("pp")

Get and set the current default p-value
egcm.default.pvalue()
egcm.set.default.pvalue(0.01)

pgff.test Unit root test of Pantula, Gonzales-Farias and Fuller

Description

Unit root test based upon the weighted symmetric estimator of Pantula, Gonzales-Farias and Fuller

Usage

pgff.test(Y, detrend = FALSE)
pgff_rho_ws(Y, detrend = FALSE)

Arguments

Y A vector or zoo-vector

detrend A boolean, which if TRUE, indicates that the test should be performed after
removing a linear trend from Y

Details

The weighted symmetric estimator ρWS of Pantula, Gonzales-Farias and Fuller is given as follows:

ρ̂WS =

∑n
t=2 Yt−1Yt∑n−1

t=2 Y 2
t + n−1

∑n
t=1 Y

2
t

where n is the length of the sequence Y.

The authors give an associated pivotal statistic and derive the limiting distribution for it, however
the approach taken in this implementation was simply to determine the distribution of ρWS through
simulation. Table lookup is used to determine the p-value associated with a given value of the
statistic.

If detrend=TRUE, then a linear trend is removed from the data prior to computing the estimator
ρWS . A separate table has been computed of the distribution of values of ρWS after detrending.

This unit root test is intended to identify autoregressive sequences of order one. However, the
authors state that, "A Monte Carlo study indicates that the weighted symmetric estimator performs
well in second order processes."

18 pgff.test

Value

pgff_rho_ws returns the value ρWS of the weighted symmetric estimator.

pgff.test returns a list with class "htest" containing the following components:

statistic the value of the test statistic.
parameter the truncation lag parameter.
p.value the p-value of the test.
method a character string indicating what type of test was performed.
data.name a character string giving the name of the data.

Author(s)

Matthew Clegg <matthewcleggphd@gmail.com>

References

Pantula, S. G., Gonzalez-Farias, G., and Fuller, W. A. (1994). A comparison of unit-root test criteria.
Journal of Business & Economic Statistics, 12(4), 449-459.

See Also

adf.test egcm

Examples

The following should produce a low p-value
pgff_rho_ws(rnorm(100))
pgff.test(rnorm(100))

The following should produce a high p-value
pgff_rho_ws(cumsum(rnorm(100)))
pgff.test(cumsum(rnorm(100)))

Test with an autoregressive sequence where rho = 0.8
pgff.test(rar1(100, a1=0.8))

If there is a linear trend, pgff.test with detrend=FALSE
is likely to find a unit root when there is none:
pgff.test(1:100 + rnorm(100))
pgff.test(1:100 + rnorm(100), detrend=TRUE)

Display the power of the test for various values of rho and n:
pgff_power(a1=0.8, n=100, nrep=100)
pgff_power(a1=0.9, n=250, nrep=100)
pgff_power(a1=0.95, n=250, nrep=100)

This is to be compared to the power of the adf.test at this level:
adf_power(a1=0.8, n=100, nrep=100)
adf_power(a1=0.9, n=250, nrep=100)
adf_power(a1=0.95, n=250, nrep=100)

rar1 19

rar1 Random AR(1) vector

Description

Generates a random realization of an AR(1) sequence

Usage

rar1(n, a0 = 0, a1 = 1, trend = 0, sd = 1, x0 = 0)

Arguments

n Length of vector to produce
a0 Constant term in AR(1) sequence
a1 Coefficient of mean-reversion
trend Linear trend
sd Standard deviation of sequence of innovations
x0 Starting value of sequence

Value

If trend=0, returns a vector of length n representing a simulation of an AR(1) process

X[k] = a0 + a1 ∗X[k − 1] + ϵ[t]

where ϵ[t] is a sequence of independent and identically distributed samples from a normal distribu-
tion with mean zero and standard deviation sd.

If trend != 0, returns a vector of length n representing a simulation of a trend-stationary AR(1)
process

R[k] = a0 + a1 ∗R[k − 1] + ϵ[t]

X[k] = k ∗ trend+R[k]

Author(s)

Matthew Clegg <matthewcleggphd@gmail.com>

See Also

rcoint

Examples

rar1(100, 0, 0) # Equivalent to rnorm(100)
rar1(100, 0, 1) # Equivalent to cumsum(rnorm(100))
acor(rar1(100, 1, .5)) # Should be about 0.5
tseries::adf.test(rar1(100, 0, .5)) # Should have a low p-value

20 rcoint

rcoint Random generation of cointegrated sequences

Description

Generates a random pair of cointegrated sequences

Usage

rcoint(n,
alpha = runif(1, -10, 10),
beta = runif(1, -10, 10),
rho = runif(1, 0, 1),
sd_eps = 1,
sd_delta = 1,
X0=0,
Y0=0)

Arguments

n number of observations in each sequence

alpha constant term of linear relation

beta slope term of linear relation

rho coefficient of mean reversion

sd_eps standard deviation of innovations in first sequence

sd_delta standard deviation of innovations in residual sequence

X0 initial value of first sequence

Y0 initial value of second sequence

Details

Generates a random pair of cointegrated sequences. The sequences are constructed by first gener-
ating two random sequences that are independent and normally distributed. The elements of the
first sequence, ϵ[i], have standard deviation sd_eps, while those of the second sequence, δ[i], have
standard deviation sd_delta. Having generated these two sequences, the cointegrated sequences
X[i] and Y[i] are generated according to the following relations:

X[i] = X[i− 1] + ϵ[i]

R[i] = ρR[i− 1] + δ[i]

Y [i] = α+ βX[i] +R[i]

Value

Returns a two-column data.frame containing the randomly generated cointegrated sequences.

sim.egcm 21

Author(s)

Matthew Clegg <matthewcleggphd@gmail.com>

See Also

rar1 sim.egcm egcm

Examples

xy <- rcoint(1000, alpha = 1, beta = 2, rho = 0.8)
egcm(xy)

sim.egcm Generate simulated data from an Engle-Granger cointegration model

Description

Given an Engle-Granger cointegration model and the number of steps to simulate, generates a sim-
ulated realization of that model for the specified number of steps.

Usage

sim.egcm(E, nsteps, X0, Y0)

Arguments

E the Engle-Granger model to be simulated. See egcm

nsteps the number of steps to simulate

X0 the starting value of X to be used in the simulation. If not specified, uses the last
value of X in E.

Y0 the starting value of Y to be used in the simulation. If not specified, uses the last
value of Y in E.

Value

Returns a two-column data.frame, where the first column contains the simulated values of X, and
the second column contains the simulated values of Y.

Author(s)

Matthew Clegg <matthewcleggphd@gmail.com>

See Also

egcm rcoint

22 ur_power

Examples

Generate a random pair of cointegrated vectors
cv1 <- rcoint(1000)
Construct a cointegration model from them
e1 <- egcm(cv1)
Simulate the model for an additional 1000 steps
cv2 <- sim.egcm(e1, 1000)
Construct a cointegration model from the simulated data
e2 <- egcm(cv2)
Compare the original model to the model obtained from simulation
e1
e2

ur_power Power assessment for unit root tests

Description

A collection of functions designed to assist in determining the power of various unit root tests

Usage

ur_power (ur_test, a0 = 0, a1 = 0.95, trend=0, n = 250,
nrep = 10000, p.value = 0.05, ...)

adf_power (a0=0, a1=0.95, trend=0, n=250,
nrep=10000, p.value=0.05, k=1)

bvr_power (a0=0, a1=0.95, trend=0, n=250,
nrep=10000, p.value=0.05, detrend=FALSE)

pgff_power (a0=0, a1=0.95, trend=0, n=250,
nrep=10000, p.value=0.05, detrend=FALSE)

ur_power_table (ur_test, nrep=1000, p.value=0.05,
a1=c(0.995, 0.99, 0.98, 0.97, 0.96, 0.95),
trend=0,
n=c(100, 250, 500, 750, 1000, 1250),
...)

adf_power_table (nrep=1000, p.value=0.05,
a1=c(0.995, 0.99, 0.98, 0.97, 0.96, 0.95),
trend=0,
n=c(250, 500, 750, 1000, 1250),
k=1)

bvr_power_table (nrep=1000, p.value=0.05,
a1=c(0.995, 0.99, 0.98, 0.97, 0.96, 0.95),
trend=0,
n=c(100, 250, 500, 750, 1000, 1250),
detrend=FALSE)

pgff_power_table (nrep=1000, p.value=0.05,

ur_power 23

a1=c(0.995, 0.99, 0.98, 0.97, 0.96, 0.95),
trend=0,
n=c(100, 250, 500, 750, 1000, 1250),
detrend=FALSE)

Arguments

ur_test A function that performs a unit root test. It should accept an argument consisting
of a vector of real numbers, and it should return an object with the p-value
stored in the field p.value. Example functions that satisfy this criterion include
adf.test, pp.test, pgff.test and bvr.test

a0 Constant term of AR(1) series
a1 Linear term of AR(1) series (e.g. coefficient of mean reversion). For the *_power_table

variants, this may be a vector of numbers, representing different values of the
linear term that should be tried.

trend Trend parameter. This may either be a scalar or it may be a vector of length
nrep. In the latter case, each replication of the test is performed with a different
value from trend.

n Length of AR(1) series. For the *_power_table variants, this may be a vector
of numbers, representing different sequence lengths that should be tried.

nrep Number of repetitions to perform
p.value p-value used as cutoff point for rejecting the null hypothesis
detrend A boolean which, if TRUE, indicates that linear trends should be removed from

the AR(1) series prior to performing the unit root test.
k Number of lags to consider in Dickey-Fuller test
... Additional arguments to be passed to the unit root test ur_test.

Details

The purpose of this family of functions is to provide a means for investigating the power of various
unit root tests. The power of a statistical test is the probability that it will reject the null hypothesis
when the null hypothesis is false.

For unit root tests, a common practice for assessing power is to randomly generate AR(1) sequences
of a fixed length and with a fixed coefficient of mean reversion, and to quantify the power in terms
of these two parameters. That is the approach taken here.

The *_power functions generate nrep random AR(1) sequences of length n having the parameters
a0 and a1. For each such sequence, the unit root test is performed and a check is made to see if
the null hypothesis is rejected at the level given by p.value. The frequency of rejections is then
reported.

The *_power_table functions generate a table of powers for various choices of n and a1. These
functions can take quite a while to run.

adf_power and adf_power_table report the power of the augmented Dickey-Fuller test as im-
plemented in adf.test. bvr_power and bvr_power_table report the power of Breitung’s vari-
ance ratio as implemented in bvr.test. pgff_power and pgff_power_table report the power
of the weighted symmetric estimator of Pantula, Gonzalez-Farias and Fuller as implemented in
pgff.test.

24 ur_power

Value

For the *_power functions, returns the frequency of rejections of the null hypothesis.

For the *_power_table functions, returns a data.frame. Each column corresponds to a value of
the mean reversion coefficient given in the vector a1, and each row corresponds to a sample length
given in the vector n. An entry in the table records the frequency of rejections of the null hypothesis
for the given sample length and coefficient of mean reversion.

Author(s)

Matthew Clegg <matthewcleggphd@gmail.com>

References

Breitung, J. (2002). Nonparametric tests for unit roots and cointegration. Journal of econometrics,
108(2), 343-363.

Dickey, D. A., & Fuller, W. A. (1979). Distribution of the estimators for autoregressive time series
with a unit root. Journal of the American statistical association, 74(366a), 427-431.

Pantula, S. G., Gonzalez-Farias, G., and Fuller, W. A. (1994). A comparison of unit-root test criteria.
Journal of Business & Economic Statistics, 12(4), 449-459.

See Also

adf.test pp.test bvr.test pgff.test

Examples

The following examples may take a long time to run

Compare the power of various unit root tests for specific
parameter values:
adf_power(a1=0.9, n=125, p.value=0.1)
bvr_power(a1=0.9, n=125, p.value=0.1)
pgff_power(a1=0.9, n=125, p.value=0.1)

library(tseries)
ur_power(pp.test, a1=0.9, n=125, p.value=0.1)

The following illustrates the importance of de-trending
pgff_power(a1=0.9, n=125, p.value=0.1, trend=10)
pgff_power(a1=0.9, n=125, p.value=0.1, trend=10, detrend=TRUE)

Generate tables comparing the powers of various unit root tests:
adf_power_table()
bvr_power_table()
pgff_power_table()
ur_power_table(pp.test)

yegcm 25

yegcm Engle-Granger cointegration model from Yahoo! price series

Description

Fetches the Yahoo! price series for two securities and constructs an Engle-Granger cointegration
model from them

Usage

yegcm(ticker1,
ticker2,
start = format(Sys.Date() - 365, "%Y-%m-%d"),
end = format(Sys.Date(), "%Y-%m-%d"),
clear.na.inf=TRUE,
...)

Arguments

ticker1 the ticker symbol of the first security

ticker2 the ticker symbol of the second security

start starting date, given in the format "YYYY-MM-DD". Default: One year ago.

end ending date, given in the format "YYYY-MM-DD". Default: Today.

clear.na.inf if TRUE, NA and Inf price values are replaced by the last available price. De-
fault:TRUE.

... additional parameters passed to egcm

Details

Uses the getSymbols function of the quantmod package to retrieve the adjusted closing prices of
the two securities over the specified date range. Then, constructs an Engle-Granger cointegration
model from this data, and returns it.

Value

An Engle-Granger cointegration model

Author(s)

Matthew Clegg <matthewcleggphd@gmail.com>

References

Engle, R. F. and C. W. Granger. (1987) Co-integration and error correction: representation, estima-
tion, and testing. Econometrica, 251-276.

26 yegcm

See Also

egcm getSymbols

Examples

e <- yegcm("SPY", "VOO", start="2013-01-01", end="2014-01-01")
print(e)
plot(e)
summary(e)

Index

∗ models
allpairs.egcm, 5
egcm, 9
egcm-package, 2
yegcm, 25

∗ package
egcm-package, 2

∗ ts
acor, 4
allpairs.egcm, 5
bvr.test, 7
egcm, 9
egcm-package, 2
pgff.test, 17
rar1, 19
rcoint, 20
ur_power, 22
yegcm, 25

acf, 4
acor, 4
adf.test, 3, 10, 15, 16, 18, 23, 24
adf_power (ur_power), 22
adf_power_table (ur_power), 22
allpairs.egcm, 5
arima, 11

Box.test, 11
bvr.test, 3, 7, 10, 14–16, 23, 24
bvr_power (ur_power), 22
bvr_power_table (ur_power), 22
bvr_rho (bvr.test), 7

ca.jo, 10, 14, 16

detrend, 8

egcm, 3, 5, 6, 8, 9, 16, 18, 21, 25, 26
egcm-package, 2
egcm.default.i1test, 14
egcm.default.i1test (egcm.defaults), 15

egcm.default.pvalue, 14
egcm.default.pvalue (egcm.defaults), 15
egcm.default.urtest, 14
egcm.default.urtest (egcm.defaults), 15
egcm.defaults, 15
egcm.i1tests (egcm.defaults), 15
egcm.set.default.i1test

(egcm.defaults), 15
egcm.set.default.pvalue, 11
egcm.set.default.pvalue

(egcm.defaults), 15
egcm.set.default.urtest

(egcm.defaults), 15
egcm.urtests (egcm.defaults), 15

getSymbols, 25, 26

hurstexp, 3, 8, 11, 16

is.ar1 (egcm), 9
is.cointegrated (egcm), 9

lm, 10

pgff.test, 3, 10, 14–16, 17, 23, 24
pgff_power (ur_power), 22
pgff_power_table (ur_power), 22
pgff_rho_ws (pgff.test), 17
plot.egcm (egcm), 9
pp.test, 3, 10, 15, 16, 23, 24

rar1, 19, 21
rcoint, 19, 20, 21
rlm, 10

sim.egcm, 14, 21, 21
summary.egcm (egcm), 9

ur.ers, 10, 16
ur.sp, 11, 16
ur_power, 22

27

28 INDEX

ur_power_table (ur_power), 22
urca, 2, 3, 13

yegcm, 14, 25

zoo, 4, 10

	egcm-package
	acor
	allpairs.egcm
	bvr.test
	detrend
	egcm
	egcm.defaults
	pgff.test
	rar1
	rcoint
	sim.egcm
	ur_power
	yegcm
	Index

