Package 'eiExpand'

July 22, 2025

Type Package

Version 1.0.5

Title Utilities for Expanding Functionality of 'eiCompare'

Description Augments the 'eiCompare' package's Racially Polarized Voting (RPV)
functionality to streamline analyses and visualizations used to support
voting rights and redistricting litigation. The package implements methods
described in Barreto, M., Collingwood, L., Garcia-Rios, S., & Oskooii, K. A. (2022).
``Estimating Candidate Support in Voting Rights Act Cases: Comparing Iterative
EI and EI-R×C Methods" <doi:10.1177 0049124119852394="">.</doi:10.1177>
License GPL-3
Depends R (>= 3.5.0)
Imports dplyr, tidyr, tidyselect (>= 1.2.0), stringr, ggplot2, ggmap, viridis, sf, magrittr, rlang
Suggests knitr, markdown, rmarkdown, roxygen2, testthat
RoxygenNote 7.2.1
Encoding UTF-8
Maintainer Rachel Carroll < rachelcarroll4@gmail.com>
LazyData true
LazyDataCompression xz
NeedsCompilation no
Author Rachel Carroll [aut, cre],
Loren Collingwood [aut] (ORCID:
<https: 0000-0002-4447-8204="" orcid.org="">)</https:>
Repository CRAN
Date/Publication 2023-03-14 18:50:08 UTC
Contents
example_performance_results
example_rpvDF

2 example_rpvDF

	mt_block_data	3
	percent_intersect	3
	performance	4
	performance_plot	5
	planShp	7
	rpv_coef_plot	8
	rpv_normalize	9
	rpv_plot	0
	rpv_toDF	3
	south_carolina	4
	split_precinct_analysis	5
	vtd	7
	washington	7
	wa_block_data	8
	wa_geocoded	8
Index	1	9

example_performance_results

Example performance analysis results

Description

Example performance analysis results

Usage

example_performance_results

Format

An object of class data. frame with 12 rows and 7 columns.

example_rpvDF

Example RPV analysis results in Washington State

Description

Example RPV analysis results in Washington State

Usage

example_rpvDF

Format

An object of class tbl_df (inherits from tbl, data.frame) with 72 rows and 13 columns.

mt_block_data 3

mt_block_data	Example block-level population data from Montana for split precinct analysis

Description

Example block-level population data from Montana for split precinct analysis

Usage

```
mt_block_data
```

Format

An object of class sf (inherits from data.frame) with 3880 rows and 2 columns.

percent_intersect	Calculate percent land area intersections
-------------------	---

Description

Calculates the percent area intersection between the geometries in a sf data.frame and a single boundary shape.

Usage

```
percent_intersect(sfdf, shp)
```

Arguments

sfdf sf dataframe with one or more geometries.
shp sf dataframe with a single shape boundary.

Value

sfdf dataframe with pct_intersect column

Author(s)

Rachel Carroll <rachelcarroll4@gmail.com>

4 performance

performance

Performance Analysis Calculation

Description

Performance Analysis calculates election outcomes of past contests given hypothetical voting district(s). This analysis has been used to determine if a Gingles III violation occurs due to how a district map is drawn. It can also be used to demonstrate that a more equitable alternative map exists. This function assumes RPV so it should only be used with contests where RPV has been established.

Usage

```
performance(
  data = NULL,
  cands = "",
  candidate = "",
  preferred_candidate = "",
  total = "",
  contest = "",
  year = "",
  election_type = "",
  map = "",
  jurisdiction = "",
  includeTotal = FALSE
)
```

Arguments

data

A data frame object containing precinct-level election results for contests of interest. It must include candidate vote counts and contest total votes fields and must be subsetted to the relevant precincts. This data frame will likely be the output of a "Split Precinct Analysis".

cands

A character vector of the candidate vote counts field names from data that are relevant to the given year and contest being analyzed.

candidate

A character vector of candidate names. The names must be listed in the same order cands. The values will appear in the output data.frame exactly as they are written in this argument.

preferred_candidate

A character vector of preferred racial groups associated with the candidates. The values must be listed in the correct order with respect to the cands/candidate arguments. The values will appear in the output data.frame exactly as they are written in this argument.

total

A character vector of the the contest total vote count field names from data.

contest

The name of the contest being analyzed

performance_plot 5

The year of the contest being analyzed
election_type
The election type the contest being analyzed (e.g "General" or "Primary")

String containing the name of the district map being analyzed (e.g "remedial" or "adopted"). This is an optional field that defaults to blank.

jurisdiction
String containing the name of the jurisdiction being analyzed (i.e a district number or "County"). Be sure that data is subsetted only to this jurisdiction.

includeTotal
Boolean indicating if a total number of votes row should be appended to the output data.frame

Value

data.frame of Performance Analysis results by candidate

Author(s)

Rachel Carroll <rachelcarroll4@gmail.com> Loren Collingwood <lcollingwood@unm.edu>

Examples

```
library(eiExpand)
data(south_carolina)
# Get sample election data
D5_election <- south_carolina %>%
   dplyr::filter(District == 5)
# Run performance Analysis on 2018 Governor contest
perf_results <- performance(</pre>
  data = D5_election,
  cands = c("R_mcmaster", "D_smith"),
  candidate = c("McMaster (R)", "Smith (D)"), # formatted candidate names
  preferred_candidate = c("White", "Black"), # race preference of candidates respectively
  total = "total_gov";
  contest = "Governor",
  year = 2018,
  election_type = "General",
  jurisdiction = "District 5"
)
```

performance_plot

Performance Analysis Plotting Function

Description

Uses output from performance() to create a ggplot performance analysis visualization.

6 performance_plot

Usage

```
performance_plot(
  perfDF,
  title = "Performance Analysis Results",
  subtitle = NULL,
  legend_name = "Preferred Candidate:",
  preferred_cand_races = NULL,
  colors = NULL,
  breaks = seq(0, 100, 20),
  lims = c(0, 100),
  bar_size = 5,
  label_size = 4,
  position_dodge_width = 0.8,
  cand_name_size = 6,
  cand_name_pad = -1,
  contest_name_size = 20,
  contest_name_pad = NULL,
  panel_spacing = 0.7,
  panelBy = "Jurisdiction",
  includeCandName = TRUE,
  includeMeanDiff = TRUE
)
```

Arguments

perfDF A data.frame object containing performance analysis results from performance()

title The plot title
subtitle The plot subtitle
legend_name The legend title
preferred_cand_races

A character vector of the unique races contained in the preferred_candidate column of perfDF. This argument is optional and is used with colors to indicate

the color of the plot associated with the race preferences.

colors Plot colors for the voter race groups. Colors must be listed in the desired order

with respect preferred_cand_races if arguments are used together.

breaks Numeric vector containing x axis breaks

lims Numeric vector containing x axis limits

bar_size The size of plot bars. Passed to geom_linerange().

label_size The size of vote share labels

position_dodge_width

The width value passed to position_dodge(). Affects spacing between the

plot bars.

cand_name_size Text size of candidate names if includeCandName = TRUE

cand_name_pad Padding between candidate name and y axis if includeCandName = TRUE.

planShp 7

contest_name_size

Text size of contest name

contest_name_pad

Padding between contest name and y axis

panel_spacing space between panels. This argument is relevant only if there are multiple juris-

dictions in perfDF.

panelBy Column name from perfDF passed to facet_grid() to create panels. Recom-

mended options are Jurisdiction and Map. Defaults to Jurisdiction.

includeCandName

Logical indicating if candidate names should appear on the left side of the plot.

includeMeanDiff

Logical indicating if the mean difference between preferred_candidate across all

elections should appear in the plot.

Value

ggplot visualization of performance analysis

Author(s)

Rachel Carroll <rachelcarroll4@gmail.com>

See Also

performance

Examples

```
library(eiExpand)
data(example_performance_results)
performance_plot(example_performance_results)
#ggplot2::ggsave("perf_plot.png", width = 12, height = 7)
```

planShp

Example district plan shape for split precinct analysis

Description

Example district plan shape for split precinct analysis

Usage

planShp

Format

An object of class sf (inherits from data.frame) with 1 rows and 18 columns.

8 rpv_coef_plot

rpv_coef_plot

Racially Polarized Voting Analysis (RPV) Coefficient Plot

Description

Creates a coefficient plot showing of RPV results estimate ranges of all contests by voter race

Usage

```
rpv_coef_plot(
  rpvDF = NULL,
  title = "Racially Polarized Voting Analysis Estimates",
  caption = "Data: eiCompare RPV estimates",
  ylab = NULL,
  colors = NULL,
  race_order = NULL
)
```

Arguments

rpvDF A data.frame containing RPV results

title The plot title caption The plot caption ylab Label along y axis

colors Character vector of colors, one for each racial group. The order of colors will

be respective to the order of racial groups.

race_order Character vector of racial groups from the voter_race column of rpvDF in the

order they should appear in the plot. If not specified, the race groups will appear

in alphabetical order.

Value

Coefficient plot of RPV analysis as a ggplot2 object

Author(s)

Rachel Carroll <rachelcarroll4@gmail.com>
Stephen El-Khatib <stevekhatib@gmail.com>
Loren Collingwood <lcollingwood@unm.edu>

```
library(eiExpand)
data(example_rpvDF)

dem_rpv_results <- example_rpvDF %>% dplyr::filter(Party == "Democratic")
rpv_coef_plot(dem_rpv_results)
```

rpv_normalize 9

normalize Normalize RPV results

Description

Create a dataframe of normalized RPV results when using the cvap, vap, or bisg denominator method, i.e., take RPV results only among people estimated to have voted.

Usage

```
rpv_normalize(ei_object, cand_cols, race_cols)
```

Arguments

ei_object	Output from ei_iter() or ei_rxc()
cand_cols	A character vector of the candidate column names to be normalized from ei_object. Only use candidate column name columns, not the No Vote column.
race_cols	A character vector of the racial group column names to be normalized from ei_object

Value

Normalized RPV results in a data.frame

Author(s)

Rachel Carroll <rachelcarroll4@gmail.com> Loren Collingwood <lcollingwood@unm.edu>

```
#library(eiExpand)
#data("south_carolina")
#prec_election_demog <- south_carolina[1:50,]

## run rpv using eiCompare (rxc method)
#rxcVote <- eiCompare::ei_rxc(
# data = prec_election_demog,
# cand_cols = c('pct_mcmaster', 'pct_smith', 'pct_other_gov', 'pct_NoVote_gov'),
# race_cols = c('pct_white', 'pct_black', 'pct_race_other'),
# totals_col = "total_vap")

## normalize results accounting for no vote using rpv_normalize()
## only include the candidate and race cols of interest for the rpv analysis
#rpv_results <- rpv_normalize(
# ei_object = rxcVote,
# cand_cols = c('pct_mcmaster', 'pct_smith', 'pct_other_gov'),
# race_cols = c('pct_white', 'pct_black')</pre>
```

10 rpv_plot

#)

rpv_plot

Racially Polarized Voting Analysis (RPV) Plot

Description

Creates a custom visualization of RPV results

Usage

```
rpv_plot(
  rpvDF = NULL,
  title = "Racially Polarized Voting Analysis Results",
  subtitle = "Estimated Vote for Candidates by Race",
  legend_name = "Voters' Race:",
  voter_races = NULL,
  colors = NULL,
  position_dodge_width = 0.8,
  bar_size = NULL,
  label_size = 4,
  contest_name_size = 20,
  cand_name_size = 6,
  contest_name_pad = NULL,
  cand_name_pad = -1.5,
  contest_sep = NULL,
  shade_col = "grey75",
  shade_alpha = 0.1,
  panel_spacing = NULL,
  breaks = seq(0, 100, 20),
  lims = c(0, 110),
  includeErrorBand = FALSE,
  includeCandName = TRUE,
 panelBy = NULL,
  txtInBar = NULL
)
```

Arguments

rpvDF A data.frame containing RPV results

title The plot title subtitle The plot subtitle legend_name The legend title

rpv_plot 11

voter_races A vector of the unique voter races contained in the Voter_Race column of

rpvDF. This argument will set the order in which voter races are displayed in the plot and legend. Can be used with colors, to indicate the which color of the

plot to associate with each voter race.

colors Defines the plot colors for the voter race groups. Colors must be listed in the

desired order with respect voter_races if arguments are used together.

position_dodge_width

The width value indicating spacing between the plot bars. Passed to position_dodge().

bar_size The size of plot bars. Passed to geom_linerange().

label_size The size of RPV estimate label

contest_name_size

Text size of contest name

cand_name_size Text size of candidate names if includeCandName = TRUE

contest_name_pad

Padding between contest name and y axis

cand_name_pad Padding between candidate name and y axis if includeCandName = TRUE.

contest_sep String indicating how to separate contest. Options "s", "shade", or "shading"

shade the background of every other contest. Options "I", "line", "lines" create

light grey double lines between contests.

shade_col color to shade contest separation bands when contest_sep = "s". Defaults to

light grey.

shade_alpha alpha parameter passed to geom_tile() to indicate transparency of contest sep-

aration bands when contest_sep = "s"

panel_spacing Space between facet grid panels

breaks Numeric vector containing x axis breaks
lims Numeric vector containing x axis limits

includeErrorBand

Logical indicating if the confidence interval band should appear on the plot. If TRUE, the RPV estimate labels will appear in the middle of each bar instead of

at the ends so they don't cover the error bands.

includeCandName

Logical indicating if candidate names should appear on the left side of the plot.

panelBy Column name from rpvDF passed to facet_grid() to create panels.

txtInBar Logical indicating location of the RPV estimate labels. If, TRUE, estimates will

be in the middle of the plot bars. If FALSE, they will be at the end of the bars.

Value

Bar plot visualization of RPV analysis as a ggplot2 object

Author(s)

Rachel Carroll <rachelcarroll4@gmail.com>

Loren Collingwood < lcollingwood@unm.edu>

Kassra Oskooii <kassrao@gmail.com>

12 rpv_plot

```
library(eiExpand)
data(example_rpvDF)
# Note that these plots are designed to be
# saved as a png using ggplot2::ggsave(). See first example for recommending
# sizing, noting that height and weight arguments may need adjusting
# depending on plot attributes such as number of contests and paneling
# plot county-level results with all defaults
rpvDF_county <- example_rpvDF %>% dplyr::filter(Jurisdiction == "County")
rpv_plot(rpvDF_county)
# save to png with recommended sizing
# ggplot2::ggsave("rpv_plot_default.png", height = 10, width = 15)
# include CI bands
rpv_plot(rpvDF_county, includeErrorBand = TRUE)
# include CI bands with estimate labels outside bar
rpv_plot(
 rpvDF_county,
 includeErrorBand = TRUE,
 txtInBar = FALSE
)
# panel by preferred candidate
rpvDF_county$Year <- paste(rpvDF_county$Year,</pre>
                           "\n") # so contest and year are on different lines
rpvDF_county$Preferred_Candidate <- paste(rpvDF_county$Preferred_Candidate,</pre>
                                           "\nPreferred Candidate")
rpv_plot(
 rpvDF_county,
 panel\_spacing = 6,
 panelBy = "Preferred_Candidate"
# plot all jurisdictions with panels
rpv_plot(example_rpvDF, panelBy = "Jurisdiction")
# add contest separation shading
rpv_plot(
 example_rpvDF,
 panelBy = "Jurisdiction",
 contest_sep = "s"
)
# plot panels by voter_race and remove legend
rpv_plot(rpvDF_county,
panel\_spacing = 6,
panelBy = "Voter_Race") +
 ggplot2::theme(legend.position="none")
```

rpv_toDF

rpv_toDF

Transform RPV results from eiCompare into a simple dataframe object

Description

Create a dataframe from RPV analysis output to facilitate RPV visualizations. The output dataframe of this function can be used directly in rpv_plot().

Usage

```
rpv_toDF(
   rpv_results = NULL,
   model = NULL,
   jurisdiction = "",
   preferred_candidate = "",
   party = "",
   election_type = "",
   year = "",
   contest = "",
   candidate = ""
)
```

Arguments

rpv_results RPV analysis results either from the output of ei_iter() or ei_rxc() from the

eiCompare package or from the internal function ci_cvap_full().

model A string indicating the model used to create rpv_results. Examples include

"ei", "rxc", "ei cvap", etc.

jurisdiction A string of the jurisdiction.

preferred_candidate

A character vector of races indicating racial preference of each candidate. The racial preferences must be listed in the correct order with respect to candidate.

party A character vector containing the political parties of the candidates. Must be

listed in the correct order with respect to candidate.

election_type A string on the election type (usually "General" or "Primary")

year The year of the contest

contest A string of contest name as it would appear in an rpv visualization (e.g. "Presi-

dent" or "Sec. of State")

candidate A character vector of candidate names written as they would appear on a visual-

ization. The candidate names must be listed in the same order as the candidate estimates appear in rpv_results, i.e the same order as the cands argument in

eiCompare::ei_iter() or eiCompare::ei_rxc().

south_carolina

Value

rpv results in a data.frame

Author(s)

Rachel Carroll <rachelcarroll4@gmail.com> Kassra Oskooii <kassrao@gmail.com>

Examples

```
#library(eiExpand)
#data("south_carolina")
#prec_election_demog <- south_carolina[1:50,]</pre>
## run rpv analysis
#eiVote <- eiCompare::ei_iter(</pre>
# data = prec_election_demog,
# cand_cols = c('pct_mcmaster', 'pct_smith'),
# race_cols = c('pct_white', 'pct_black'),
# totals_col = "total_vap"
#) %>%
# rpv_normalize(
 # cand_cols = c('pct_mcmaster', 'pct_smith'),
    race_cols = c('pct_white', 'pct_black')
# )
## use function to create dataframe from rpv results
#plotDF <- rpv_toDF(</pre>
   rpv_results = eiVote,
   model = "ei vap", #since we used ei_iter model normalized with vap denominator
   jurisdiction = "Statewide",
   candidate = c("McMaster", "Smith"), #must be in correct order relative to rpv_results
   preferred_candidate = c("White", "Black"), #must be in correct order rpv_results
   party = c("Republican", "Democratic"),
   election_type = "General",
   year = "2020",
   contest = "Governor"
#)
```

south_carolina

Example election and demographic data from South Carolina 2020 General Elections

Description

Example election and demographic data from South Carolina 2020 General Elections

split_precinct_analysis 15

Usage

```
south_carolina
```

Format

An object of class data. frame with 750 rows and 42 columns.

```
split_precinct_analysis

Split precinct analysis - VAP Adjusted Election Data
```

Description

Run Split Precinct Analysis using precinct-level geometries and election data, a district shape, and block-level vap data. This function calculates the percent vap of a precinct contained in the district boundary of interest. Then, if specified, multiplies election vote counts by percent vap.

Usage

```
split_precinct_analysis(
  vtd,
  planShp,
  block_pop_data,
  vote_col_names = NULL,
  lower_thresh = 0.02,
  upper_thresh = 0.98,
  keepOrigElection = TRUE,
  generatePlots = FALSE,
  ggmap_object = NULL,
  verbose = FALSE
)
```

Arguments

vtd	A sf dataframe with precinct-level geometries potentially in the district from planShp. For election adjustments, it should also contain election results in columns defined in vote_col_names.
planShp	A sf dataframe with one row containing district plan shape boundary (one district).
block_pop_data	A sf object of blocks covering the region, with vap column
vote_col_names	Character vector containing the name of the columns to be adjusted based on percent vap. This should include election results columns names in vtd.
lower_thresh	A decimal. If the percent area of a precinct inside the planShp is equal to or

below this threshold, the precinct will be removed. Defaults to .02.

upper_thresh A decimal. If the percent area of a precinct inside the planShp is equal to or

above this threshold, the precinct will be considered to be fully contained in the

district. Defaults to .98.

keepOrigElection

A boolean indicating if original election vote counts should be preserved in the

output dataset for comparison purposes.

generatePlots Boolean indicating if function should generate a list of map checking plots. If

TRUE, the function output will include a list of plots that show split precincts

and intersecting blocks within and outside of the district.

ggmap_object A ggmap object of the area on interest to be the background of plots if generatePlots

= TRUE. If this argument is not specified, plots will be generated without a map

background.

verbose A boolean indicating whether to print out status messages.

Value

If generatePlots = FALSE, returns a split precinct results data.frame with vap percentages and adjusted election data. If generatePlots = TRUE, returns a list with the result data.frame in the first element and the list of plots in the second.

Author(s)

Rachel Carroll <rachelcarroll4@gmail.com> Loren Collingwood <lcollingwood@unm.edu>

```
library(eiExpand)
library(sf)
# load data and shps
data(planShp); data(vtd); data(mt_block_data)
# filter to a few vtds for this example
vtd <- vtd %>%
  dplyr::filter(
    GEOID20 %in% c("30091000002", "30085000012", "30085000018", "30085000010")
# run split precinct analysis without plots
spa_results <- split_precinct_analysis(</pre>
  vtd = vtd,
  planShp = planShp,
  block_pop_data = mt_block_data,
  vote_col_names = c('G16HALRZIN', 'G16HALDJUN', 'G16HALLBRE',
                     'G16GOVRGIA', 'G16GOVDBUL', "G16GOVLDUN"),
  keepOrigElection = TRUE,
  generatePlots = FALSE)
# run with plots
```

vtd 17

vtd

Example vtd-level sf dataframe with election results for split precinct analysis

Description

Example vtd-level sf dataframe with election results for split precinct analysis

Usage

vtd

Format

An object of class sf (inherits from data. frame) with 19 rows and 12 columns.

washington

Example election data with BISG demographics from Washington 2020 General Presidential Election

Description

Example election data with BISG demographics from Washington 2020 General Presidential Election

Usage

washington

Format

An object of class data. frame with 637 rows and 27 columns.

18 wa_geocoded

wa_block_data

Example block-level population data from Washington for BISG

Description

Example block-level population data from Washington for BISG

Usage

wa_block_data

Format

An object of class sf (inherits from data. frame) with 821 rows and 8 columns.

wa_geocoded

Example geocoded voter file from Washington for BISG

Description

Example geocoded voter file from Washington for BISG

Usage

wa_geocoded

Format

An object of class data. frame with 1000 rows and 6 columns.

Index

```
* datasets
    example_performance_results, 2
    example_rpvDF, 2
    mt_block_data, 3
    planShp, 7
    south_carolina, 14
    vtd, 17
    wa\_block\_data,\, \textcolor{red}{18}
    wa_geocoded, 18
    washington, 17
example_performance_results, 2
example_rpvDF, 2
mt_block_data, 3
percent_intersect, 3
performance, 4, 7
performance_plot, 5
planShp, 7
rpv_coef_plot, 8
rpv_normalize, 9
rpv_plot, 10
rpv_toDF, 13
south_carolina, 14
split_precinct_analysis, 15
vtd, 17
wa_block_data, 18
wa_geocoded, 18
washington, 17
```