
Package ‘evola’
July 22, 2025

Version 1.0.5

Date 2025-04-24

Title Evolutionary Algorithm

Maintainer Giovanny Covarrubias-Pazaran <cova_ruber@live.com.mx>

Description Runs an evolutionary algorithm using the 'AlphaSimR' machin-
ery <doi:10.1093/g3journal/jkaa017> .

Depends R(>= 3.5.0), AlphaSimR (>= 1.4.2), Matrix (>= 1.0), methods,
crayon

LazyLoad yes

LazyData yes

License GPL (>= 2)

NeedsCompilation yes

Author Giovanny Covarrubias-Pazaran [aut, cre] (ORCID:
<https://orcid.org/0000-0002-7194-3837>)

Repository CRAN

Suggests rmarkdown, knitr

VignetteBuilder knitr

Config/testthat/edition 3

Date/Publication 2025-04-26 03:10:03 UTC

Contents
evola-package . 2
A.mat . 3
addZeros . 4
bestSol . 5
DT_cpdata . 7
DT_technow . 8
DT_wheat . 10
evolafit . 12
evolaPop-class . 18

1

https://doi.org/10.1093/g3journal/jkaa017
https://orcid.org/0000-0002-7194-3837

2 evola-package

importHaploSparse . 19
inbFun . 21
Jc . 22
Jr . 23
logspace . 24
nQtl . 24
ocsFun . 26
overlay . 27
pareto . 28
pmonitor . 29
regFun . 30
stan . 31
update.evolaFitMod . 32
varQ . 33

Index 35

evola-package EVOLutionary Algorithm

Description

The evola package is nice wrapper of the AlphaSimR package that enables the use of the evolution-
ary algorithm to solve complex questions in a simple form.

The evolafit function is the core function of the package which allows the user to specify the
problem and constraints to find a close-to-optimal solution using the evolutionary forces.

Keeping evola updated

The evola package is updated on CRAN every 4-months due to CRAN policies but you can find the
latest source at https://github.com/covaruber/evola. This can be easily installed typing the following
in the R console:

library(devtools)

install_github("covaruber/evola")

This is recommended if you reported a bug, was fixed and was immediately pushed to GitHub but
not in CRAN until the next update.

Tutorials

For tutorials on how to perform different analysis with evola please look at the vignettes by typing
in the terminal:

vignette("evola.intro")

A.mat 3

Getting started

The package has been equiped with a couple of datasets to learn how to use the evola package:

* DT_technow dataset to perform optimal cross selection.

* DT_wheat dataset to perform optimal training population selection.

* DT_cpdata dataset to perform optimal individual.

Models Enabled

The machinery behind the scenes is AlphaSimR.

Bug report and contact

If you have any questions or suggestions please post it in https://stackoverflow.com or https://stats.stackexchange.com

I’ll be glad to help or answer any question. I have spent a valuable amount of time developing this
package. Please cite this package in your publication. Type ’citation("evola")’ to know how to cite
it.

Author(s)

Giovanny Covarrubias-Pazaran

References

Giovanny Covarrubias-Pazaran (2024). evola: a simple evolutionary algorithm for complex prob-
lems. To be submitted to Bioinformatics.

Gaynor, R. Chris, Gregor Gorjanc, and John M. Hickey. 2021. AlphaSimR: an R package for breed-
ing program simulations. G3 Gene|Genomes|Genetics 11(2):jkaa017. https://doi.org/10.1093/g3journal/jkaa017.

Chen GK, Marjoram P, Wall JD (2009). Fast and Flexible Simulation of DNA Sequence Data.
Genome Research, 19, 136-142. http://genome.cshlp.org/content/19/1/136.

A.mat Additive relationship matrix

Description

Calculates the realized additive relationship matrix.

Usage

A.mat(X,min.MAF=NULL)

Arguments

X Matrix (n×m) of unphased genotypes for n lines and m biallelic markers, coded
as {-1,0,1}. Fractional (imputed) and missing values (NA) are allowed.

min.MAF Minimum minor allele frequency. The A matrix is not sensitive to rare alleles,
so by default only monomorphic markers are removed.

4 addZeros

Details

For vanraden method: the marker matrix is centered by subtracting column means M = X −ms
where ms is the coumn means. Then A = MM ′/c, where c =

∑
k dk/k, the mean value of the

diagonal values of the MM ′ portion.

Value

If return.imputed = FALSE, the n× n additive relationship matrix is returned.

If return.imputed = TRUE, the function returns a list containing

$A the A matrix

References

Giovanny Covarrubias-Pazaran (2024). evola: a simple evolutionary algorithm for complex prob-
lems. To be submitted to Bioinformatics.

See Also

evolafit – the core function of the package

Examples

random population of 200 lines with 1000 markers
X <- matrix(rep(0,200*1000),200,1000)
for (i in 1:200) {

X[i,] <- ifelse(runif(1000)<0.5,-1,1)
}

A <- A.mat(X)

take a look at the Genomic relationship matrix
colfunc <- colorRampPalette(c("steelblue4","springgreen","yellow"))
hv <- heatmap(A[1:15,1:15], col = colfunc(100),Colv = "Rowv")
str(hv)

addZeros Function to add zeros before and after a numeric vector to have the
same number of characters.

Description

Function to add zeros before and after a numeric vector to have the same number of characters.

bestSol 5

Usage

addZeros(x, nr=2)

Arguments

x Numeric vector.

nr number of digits to keep to the right.

Details

A simple apply function to make a matrix of one row and nc columns.

Value

$res a matrix

References

Giovanny Covarrubias-Pazaran (2024). evola: a simple evolutionary algorithm for complex prob-
lems. To be submitted to Bioinformatics.

See Also

evolafit – the core function of the package

Examples

addZeros(5)

bestSol Extract the index of the best solution

Description

Extracts the index of the best solution for all traits under the constraints specified.

Usage

bestSol(object, selectTop=TRUE, n=1)

Arguments

object A resulting object from the function evolafit.

selectTop Selects highest values for the fitness value if TRUE. Selects lowest values if
FALSE.

n An integer indicating how many solutions should be returned.

6 bestSol

Details

A simple apply function looking at the fitness value of all the solution in the last generation to find
the maximum value.

Value

$res the vector of best solutions in M for each trait in the problem

References

Giovanny Covarrubias-Pazaran (2024). evola: a simple evolutionary algorithm for complex prob-
lems. To be submitted to Bioinformatics.

See Also

evolafit – the core function of the package

Examples

set.seed(1)
Data
Gems <- data.frame(

Color = c("Red", "Blue", "Purple", "Orange",
"Green", "Pink", "White", "Black",
"Yellow"),

Weight = round(runif(9,0.5,5),2),
Value = round(abs(rnorm(9,0,5))+0.5,2),
Times=c(rep(1,8),0)

)
head(Gems)

Task: Gem selection.
Aim: Get highest combined value.
Restriction: Max weight of the gem combined = 10.
res0<-evolafit(cbind(Weight,Value)~Color, dt= Gems,

constraints: if greater than this ignore
constraintsUB = c(10,Inf),
constraints: if smaller than this ignore
constraintsLB= c(-Inf,-Inf),
weight the traits for the selection
b = c(0,1),
population parameters
nCrosses = 100, nProgeny = 20, recombGens = 1,
coancestry parameters
D=NULL, lambda=c(0,0), nQTLperInd = 1,
selection parameters
propSelBetween = .9, propSelWithin =0.9,
nGenerations = 50

)

DT_cpdata 7

bestSol(res0$pop, n=2)

DT_cpdata Genotypic and Phenotypic data for a CP population

Description

A CP population or F1 cross is the designation for a cross between 2 highly heterozygote individu-
als; i.e. humans, fruit crops, bredding populations in recurrent selection.

This dataset contains phenotpic data for 363 siblings for an F1 cross. These are averages over 2
environments evaluated for 4 traits; color, yield, fruit average weight, and firmness. The columns
in the CPgeno file are the markers whereas the rows are the individuals. The CPpheno data frame
contains the measurements for the 363 siblings, and as mentioned before are averages over 2 envi-
ronments.

Usage

data("DT_cpdata")

Format

The format is: chr "DT_cpdata"

Source

This data was simulated for fruit breeding applications.

References

Giovanny Covarrubias-Pazaran (2024). evola: a simple evolutionary algorithm for complex prob-
lems. To be submitted to Bioinformatics.

Gaynor, R. Chris, Gregor Gorjanc, and John M. Hickey. 2021. AlphaSimR: an R package for breed-
ing program simulations. G3 Gene|Genomes|Genetics 11(2):jkaa017. https://doi.org/10.1093/g3journal/jkaa017.

Chen GK, Marjoram P, Wall JD (2009). Fast and Flexible Simulation of DNA Sequence Data.
Genome Research, 19, 136-142. http://genome.cshlp.org/content/19/1/136.

Examples

data(DT_cpdata)
DT <- DT_cpdata
A <- A[DTid,DTid]

get best 20 individuals weighting variance by ~0.5=(30*pi)/180
res<-evolafit(formula=cbind(Yield, occ)~id, dt= DT,

constraints: if sum is greater than this ignore

8 DT_technow

constraintsUB = c(Inf,20),
constraints: if sum is smaller than this ignore
constraintsLB= c(-Inf,-Inf),
weight the traits for the selection
b = c(1,0),
population parameters
nCrosses = 100, nProgeny = 10,
recombGens=1, nChr=1, mutRate=0,
coancestry parameters
D=A, lambda= (30*pi)/180 , nQTLperInd = 20,
selection parameters
propSelBetween = 0.5, propSelWithin =0.5,
nGenerations = 40)

Q <- pullQtlGeno(res$pop, simParam = res$simParam, trait=1); Q <- Q/2
best = bestSol(res$pop)[,"Yield"];best
qa = (Q %*% DT$Yield)[best,]; qa
qDq = Q[best,] %*% A %*% Q[best,]; qDq
sum(Q[best,]) # total # of inds selected

pmonitor(res)

plot(DT$Yield, col=as.factor(Q[best,]),
pch=(Q[best,]*19)+1)

pareto(res)

DT_technow Genotypic and Phenotypic data from single cross hybrids (Technow et
al.,2014)

Description

This dataset contains phenotpic data for 2 traits measured in 1254 single cross hybrids coming
from the cross of Flint x Dent heterotic groups. In addition contains the genotipic data (35,478
markers) for each of the 123 Dent lines and 86 Flint lines. The purpose of this data is to demosntrate
the prediction of unrealized crosses (9324 unrealized crosses, 1254 evaluated, total 10578 single
crosses). We have added the additive relationship matrix (A) but can be easily obtained using the
A.mat function on the marker data. Please if using this data for your own research cite Technow et
al. (2014) publication (see References).

Usage

data("DT_technow")

Format

The format is: chr "DT_technow"

DT_technow 9

Source

This data was extracted from Technow et al. (2014).

References

If using this data for your own research please cite:

Technow et al. 2014. Genome properties and prospects of genomic predictions of hybrid perfor-
mance in a Breeding program of maize. Genetics 197:1343-1355.

Giovanny Covarrubias-Pazaran (2024). evola: a simple evolutionary algorithm for complex prob-
lems. To be submitted to Bioinformatics.

Gaynor, R. Chris, Gregor Gorjanc, and John M. Hickey. 2021. AlphaSimR: an R package for breed-
ing program simulations. G3 Gene|Genomes|Genetics 11(2):jkaa017. https://doi.org/10.1093/g3journal/jkaa017.

Chen GK, Marjoram P, Wall JD (2009). Fast and Flexible Simulation of DNA Sequence Data.
Genome Research, 19, 136-142. http://genome.cshlp.org/content/19/1/136.

Examples

data(DT_technow)
DT <- DT_technow
DT$occ <- 1; DT$occ[1]=0
M <- M_technow

A <- A.mat(M)
A <- A[DThy,DThy]
run the genetic algorithm
we assig a weight to x'Dx of (20*pi)/180=0.34
res<-evolafit(formula = c(GY, occ)~hy,

dt= DT,
constraints: if sum is greater than this ignore
constraintsUB = c(Inf,100),
constraints: if sum is smaller than this ignore
constraintsLB= c(-Inf,-Inf),
weight the traits for the selection
b = c(1,0),
population parameters
nCrosses = 100, nProgeny = 10,
recombGens=1, nChr=1, mutRate=0,
coancestry parameters
D=A, lambda= (20*pi)/180 , nQTLperInd = 90,
selection parameters
propSelBetween = 0.5, propSelWithin =0.5,
nGenerations = 20)

Q <- pullQtlGeno(res$pop, simParam = res$simParam, trait=1); Q <- Q/2
best = bestSol(res$pop)[,"GY"]
qa = (Q %*% DT$GY)[best,]; qa
qAq = Q[best,] %*% A %*% Q[best,]; qAq
sum(Q[best,]) # total # of inds selected

10 DT_wheat

pmonitor(res)
plot(DT$GY, col=as.factor(Q[best,]),

pch=(Q[best,]*19)+1)

pareto(res)

DT_wheat wheat lines dataset

Description

Information from a collection of 599 historical CIMMYT wheat lines. The wheat data set is from
CIMMYT’s Global Wheat Program. Historically, this program has conducted numerous interna-
tional trials across a wide variety of wheat-producing environments. The environments represented
in these trials were grouped into four basic target sets of environments comprising four main agro-
climatic regions previously defined and widely used by CIMMYT’s Global Wheat Breeding Pro-
gram. The phenotypic trait considered here was the average grain yield (GY) of the 599 wheat lines
evaluated in each of these four mega-environments.

A pedigree tracing back many generations was available, and the Browse application of the Interna-
tional Crop Information System (ICIS), as described in (McLaren et al. 2000, 2005) was used for
deriving the relationship matrix A among the 599 lines; it accounts for selection and inbreeding.

Wheat lines were recently genotyped using 1447 Diversity Array Technology (DArT) generated
by Triticarte Pty. Ltd. (Canberra, Australia; http://www.triticarte.com.au). The DArT markers
may take on two values, denoted by their presence or absence. Markers with a minor allele fre-
quency lower than 0.05 were removed, and missing genotypes were imputed with samples from
the marginal distribution of marker genotypes, that is, xij = Bernoulli(p̂j), where p̂j is the es-
timated allele frequency computed from the non-missing genotypes. The number of DArT MMs
after edition was 1279.

Usage

data(DT_wheat)

Format

Matrix Y contains the average grain yield, column 1: Grain yield for environment 1 and so on.

Source

International Maize and Wheat Improvement Center (CIMMYT), Mexico.

DT_wheat 11

References

Giovanny Covarrubias-Pazaran (2024). evola: a simple evolutionary algorithm for complex prob-
lems. To be submitted to Bioinformatics.

Gaynor, R. Chris, Gregor Gorjanc, and John M. Hickey. 2021. AlphaSimR: an R package for breed-
ing program simulations. G3 Gene|Genomes|Genetics 11(2):jkaa017. https://doi.org/10.1093/g3journal/jkaa017.

Chen GK, Marjoram P, Wall JD (2009). Fast and Flexible Simulation of DNA Sequence Data.
Genome Research, 19, 136-142. http://genome.cshlp.org/content/19/1/136.

McLaren, C. G., L. Ramos, C. Lopez, and W. Eusebio. 2000. “Applications of the geneaology
manegment system.” In International Crop Information System. Technical Development Manual,
version VI, edited by McLaren, C. G., J.W. White and P.N. Fox. pp. 5.8-5.13. CIMMyT, Mexico:
CIMMyT and IRRI.

McLaren, C. G., R. Bruskiewich, A.M. Portugal, and A.B. Cosico. 2005. The International Rice
Information System. A platform for meta-analysis of rice crop data. Plant Physiology 139: 637-
642.

Examples

example to optimize a training pop for a validation pop
data(DT_wheat)
DT <- as.data.frame(DT_wheat)
DT$id <- rownames(DT) # IDs
DT$occ <- 1; DT$occ[1]=0 # to track occurrences
DT$dummy <- 1; DT$dummy[1]=0 # dummy trait

if genomic
GT <- GT_wheat + 1; rownames(GT) <- rownames(DT)
G <- GT%*%t(GT)
G <- G/mean(diag(G))
if pedigree
A <- A_wheat
A[1:4,1:4]
##Perform eigenvalue decomposition for clustering
##And select cluster 5 as target set to predict
pcNum=25
svdWheat <- svd(A, nu = pcNum, nv = pcNum)
PCWheat <- A %*% svdWheat$v
rownames(PCWheat) <- rownames(A)
DistWheat <- dist(PCWheat)
TreeWheat <- cutree(hclust(DistWheat), k = 5)
plot(PCWheat[,1], PCWheat[,2], col = TreeWheat,

pch = as.character(TreeWheat), xlab = "pc1", ylab = "pc2")
vp <- rownames(PCWheat)[TreeWheat == 3]; length(vp)
tp <- setdiff(rownames(PCWheat),vp)

As <- A[tp,tp]
DT2 <- DT[rownames(As),]
DT2$cov <- apply(A[tp,vp],1,mean)

head(DT2)

12 evolafit

we assign a weight to x'Dx of (60*pi)/180=1
res<-evolafit(formula=cbind(cov, occ)~id, dt= DT2,

constraints: if sum is greater than this ignore
constraintsUB = c(Inf, 100),
constraints: if sum is smaller than this ignore
constraintsLB= c(-Inf, -Inf),
weight the traits for the selection
b = c(1,0),
population parameters
nCrosses = 100, nProgeny = 10,
recombGens=1, nChr=1, mutRate=0,
coancestry parameters
D=As, lambda= (60*pi)/180 , nQTLperInd = 90,
selection parameters
propSelBetween = 0.5, propSelWithin =0.5,
nGenerations = 30, verbose = TRUE)

Q <- pullQtlGeno(res$pop, simParam = res$simParam, trait=1); Q <- Q/2
best <- bestSol(res$pop)[,"cov"]
sum(Q[best,]) # total # of inds selected
pareto(res)

evolafit Fits a genetic algorithm for a set of traits and constraints.

Description

Using the AlphaSimR machinery it recreates the evolutionary forces applied to a problem where
possible solutions replace individuals and combinations of variables to optimize in the problem
replace the genes or QTLs. Then evolutionary forces (mutation, selection and drift) are applied to
find a close-to-optimal solution. Although multiple traits are enabled it is assumed that same QTLs
are behind all the traits, differing only in their average allelic effects.

Usage

evolafit(formula, dt,
constraintsUB, constraintsLB, b,
nCrosses=50, nProgeny=20,nGenerations=20,
recombGens=1, nChr=1, mutRate=0,
nQTLperInd=NULL, D=NULL, lambda=0,
propSelBetween=NULL,propSelWithin=NULL,
fitnessf=NULL, verbose=TRUE, dateWarning=TRUE,
selectTop=TRUE, tolVarG=1e-6,
Ne=50, initPop=NULL, simParam=NULL,
fixQTLperInd=FALSE, traceDelta=TRUE, topN=10,

evolafit 13

...)

Arguments

formula Formula of the form y~x where y refers to the average allelic substitution effects
of the QTLs (alpha) for each trait, and x refers to the variable defining the genes
or QTLs to be combined in the possible solutions.

dt A dataset containing the average allelic effects (a) and classifiers/genes/QTLs.

constraintsUB A numeric vector specifying the upper bound constraints for the breeding val-
ues applied at each trait. The length is equal to the number of traits/features
in the formula. If missing is assume an infinite value for all traits. Solutions
(individuals in the population) with higher value than the upper bound are as-
signed a -infinite value if the argument selectTop=TRUE and to +infinite when
selectTop=FALSE, which is equivalent to reject/discard a solution based on the
fitness function.

constraintsLB A numeric vector specifying the lower bound constraints for the breeding values
applied at each trait. The length is equal to the number of traits/features in the
formula. If missing is assume a -infinite value for all traits. Solutions with
lower value than the lower bound are assigned a +infinite value if the argument
selectTop=TRUE and to -infinite when selectTop=FALSE, which is equivalent
to reject/discard a solution based on the fitness function.

b A numeric vector specifying the weights that each trait has in the fitness func-
tion (i.e., a selection index). The length should be equal to the number of
traits/features. If missing is assumed equal weight (1) for all traits.

nCrosses A numeric value indicating how many crosses should occur in the population of
solutions at every generation.

nProgeny A numeric value indicating how many progeny (solutions) each cross should
generate in the population of solutions at every generation.

nGenerations The number of generations that the evolutionary process should run for.

recombGens The number of recombination generations that should occur before selection is
applied. This is in case the user wants to allow for more recombination before
selection operates. The default is 1.

nChr The number of chromosomes where features/genes should be allocated to. The
default value is 1 but this number can be increased to mimic more recombination
events at every generation and avoid linkage disequilibrium.

mutRate A value between 0 and 1 to indicate the proportion of random QTLs that should
mutate in each individual. For example, a value of 0.1 means that a random 10%
of the QTLs will mutate in each individual randomly taking values of 0 or 1. Is
important to notice that this implies that the stopping criteria based in variance
will never be reached because we keep introducing variance through random
mutation.

nQTLperInd The number of QTLs/genes (classifier x in the formula) that should be fixed for
the positive allele at the begginning of the simulation. If not specified it will
be equal to the 20% of the QTLs (calculated as the number of rows in the dt

14 evolafit

argument over 5). This is just an initial value and will change as the population
evolve under the constraints specified by the user. See details section.

D A relationship matrix between the QTLs (a kind of linkage disequilibrium) spec-
ified in the right side of the formula (levels of the x variable). This matrix can
be used or ignored in the fitness function. By default the weight to the q’Dq
component is 0 though the lambda argument, where x is an individual in the
population of a solution.

lambda A numeric value indicating the weight assigned to the relationship between
QTLs in the fitness function. If not specified is assumed to be 0. This can
be used or ignored in your customized fitness function.

propSelBetween A numeric value between 0 and 1 indicating the proportion of families/crosses
of solutions/individuals that should be selected. The default is 1, meaning all
crosses are selected or passed to the next generation.

propSelWithin A numeric value between 0 and 1 indicating the proportion of individuals/solutions
within families/crosses that should be selected. The default value is 0.5, mean-
ing that 50% of the top individuals are selected.

fitnessf An alternative fitness function to be applied at the level of individuals or solu-
tions. It could be a linear combination of the trait breeding values. The available
variables internally are:
Y: matrix of trait breeding values for the individuals/solutions. Of dimensions s
x t, s soultions and t traits.
b: vector of trait weights, specified in the ’b’ argument. Of dimensions t x 1, t
traits by 1
Q: matrix with QTLs for the individuals/solutions. Of dimensions s x p, s so-
lutions and p QTL columns. Although multiple traits are enabled it is assumed
that same QTLs are behind all the traits, differing only in their average allelic
effects.
D: matrix of relationship between the QTLs, specified in the ’D’ argument. Of
dimensions p x p, for p QTL columns
lambda: a numeric value indicating the weight assigned to the relationship be-
tween QTLs in the fitness function. If not specified is assumed to be 0. This can
be used or ignored in your customized fitness function.
a: list of vectors with average allelic effects for a given trait. Of dimensions s x
1, s solutions by 1 column
If fitnessf=NULL, the default function will be the ocsFun function:
function(Y,b,d,Q,D,a,lambda){(Y%*%b) - d}

where (Y%*%b) is equivalent to [(Q’a)b] in genetic contribution theory, and d is
equal to the diagonal values from Q’DQ from contribution theory,
If you provide your own fitness function please keep in mind that the variables
Y, b, Q, D, a, and lambda are already reserved and these variables should
always be added to your function (even if you do not use them) in addition to
your new variables so the machinery runs.
An additional fitness function for accounting only for the group relationship is
inbFun when the user wants to find solutions that maximize the representative-
ness of a sample and the D argument is not NULL. You will need to select the

evolafit 15

solutions with lower values (selectTop=TRUE) which indicate solutions with
more representativeness and you may need to indicate lower bound constraints
(constraintsLB).
An additional fitness function available for regression problems is regFun but
is not the default since it would require additional arguments not available in a
regular genetic algorithm problem (e.g., y and X to compute y-Xb).

verbose A logical value indicating if we should print logs.

dateWarning A logical value indicating if you should be warned when there is a new version
on CRAN.

selectTop Selects highest values for the fitness value if TRUE. Selects lowest values if
FALSE.

tolVarG A stopping criteria (tolerance for genetic variance) when the variance across
traits is smaller than this value, which is equivalent to assume that all solutions
having the same QTL profile (depleted variance). The default value is 1e-6 and
is computed as the sum of the diagonal values of the genetic variance covariance
matrix between traits.

Ne initial number of founders in the population (will be important for long term
sustainability of genetic variance).

initPop an object of Pop-class.

simParam an object of SimParam.

fixQTLperInd A TRUE/FALSE value to indicate if we should fix the argument nQTLperInd
across all generations. This should be used with care since this is not how usu-
ally genetic algorithms work and in my experience only using GA for regression
problems is a special case where this argument should be set to TRUE. The be-
havior assumes that if set to TRUE and a particular solution has more QTLs
active than nQTLperInd some QTLs will be set to 0 and if a solution has less
QTLs active than nQTLperInd some QTLs will be activated. All activations or
deactivations are done at random. This only takes place after generation 1.

traceDelta a logical value indicating if we should compute the rate of coancestry Q’DQ at
each iteration. This metric is used by the pareto plot but is not needed for the
evolutionary process and it can take a considerable amount of time when the
number of QTLs is big.

topN an integer value indicating the maximum number of solutions to keep in each
generation.

... Further arguments to be passed to the fitness function if required.

Details

Using the AlphaSimR machinery (runMacs) it recreates the evolutionary forces applied to a problem
where possible solutions replace individuals and combinations of variables in the problem replace
the genes. Then evolutionary forces are applied to find a close-to-optimal solution. The number of
solutions are controlled with the nCrosses and nProgeny parameters, whereas the number of initial
QTLs activated in a solution is controlled by the nQTLperInd parameter. The number of activated
QTLs of course will increase if has a positive effect in the fitness of the solutions. The drift force can
be controlled by the recombGens parameter. The mutation rate can be controlled with the mutRate
parameter. The recombination rate can be controlled with the nChr argument.

16 evolafit

The indivPerformance output slot contains the columns id, fitness, generation, nQTLs, and deltaC.
These mean the following:

In fitness : represents the fitness function value of a solution.

In deltaC : it represents the change in coancestry (e.g., inbreeding), it can be thought as the rate of
coancestry. It is calculated as q’Dq where ’q’ represents the contribution vector, ’D’ is the linkage
disequilibrium matrix between QTNs (whatever the QTNs represent for your specific problem). In
practice we do QAQ’ and extract the diagonal values.

In generation : it represents the generation at which this solution appeared.

In nQTNs : it represent the final number of QTNs that are activated in homozygote state for the
positive effect.

During the run the columns printed in the console mean the following:

generation: generation of reproduction

constrainedUB: number of solutions constrained by the upper bound specified

constrainedLB: number of solutions constrained by the lower bound specified

varG: genetic variance present in the population due to the QTNs

propB: proportion of families selected during that iteration

propW: proportion of individuals within a family selected in that iteration

time: the time when the iteration has finished.

Value

indivPerformance the matrix of fitness, deltaC, generation, nQTNs per solution per generation.
See details section above.

pedBest contains the pedigree of the selected solutions across iterations.

$score a matrix with scores for different metrics across n generations of evolution.

$pheno the matrix of phenotypes of individuals/solutions present in the last generation.

pop AlphaSimR object used for the evolutionary algorithm at the last iteration.

constCheckUB A matrix with as many rows as solutions and columns as traits to be constrained.
0s indicate that such trait went beyond the bound in that particular solution.

constCheckLB A matrix with as many rows as solutions and columns as traits to be constrained.
0s indicate that such trait went beyond the bound in that particular solution.

traits a character vector corresponding to the name of the variables used in the fitness function.

References

Giovanny Covarrubias-Pazaran (2024). evola: a simple evolutionary algorithm for complex prob-
lems. To be submitted to Bioinformatics.

Gaynor, R. Chris, Gregor Gorjanc, and John M. Hickey. 2021. AlphaSimR: an R package for breed-
ing program simulations. G3 Gene|Genomes|Genetics 11(2):jkaa017. https://doi.org/10.1093/g3journal/jkaa017.

Chen GK, Marjoram P, Wall JD (2009). Fast and Flexible Simulation of DNA Sequence Data.
Genome Research, 19, 136-142. http://genome.cshlp.org/content/19/1/136.

evolafit 17

See Also

evolafit – the information of the package

Examples

set.seed(1)

Data
Gems <- data.frame(

Color = c("Red", "Blue", "Purple", "Orange",
"Green", "Pink", "White", "Black",
"Yellow"),

Weight = round(runif(9,0.5,5),2),
Value = round(abs(rnorm(9,0,5))+0.5,2),
Times=c(rep(1,8),0)

)
head(Gems)
Color Weight Value
1 Red 4.88 9.95
2 Blue 1.43 2.73
3 Purple 1.52 2.60
4 Orange 3.11 0.61
5 Green 2.49 0.77
6 Pink 3.53 1.99
7 White 0.62 9.64
8 Black 2.59 1.14
9 Yellow 1.77 10.21

Task: Gem selection.
Aim: Get highest combined value.
Restriction: Max weight of the gem combined = 10.

simple specification
res00<-evolafit(formula=cbind(Weight,Value)~Color, dt= Gems,

constraints on traits: if greater than this ignore
constraintsUB = c(10,Inf), nGenerations = 10

)
best = bestSol(res00$pop)[,"Value"]
Q <- pullQtlGeno(res00$pop, simParam = res00$simParam, trait=1); Q <- Q/2
qa = Q[best,] %*% as.matrix(Gems[,c("Weight","Value")]); qa

more complete specification
res0<-evolafit(formula=cbind(Weight,Value)~Color, dt= Gems,

constraints on traits: if greater than this ignore
constraintsUB = c(10,Inf),
constraints on traits: if smaller than this ignore
constraintsLB= c(-Inf,-Inf),
weight the traits for the selection (fitness function)
b = c(0,1),

18 evolaPop-class

population parameters
nCrosses = 100, nProgeny = 20,
genome parameters
recombGens = 1, nChr=1, mutRate=0, nQTLperInd = 2,
coancestry parameters
D=NULL, lambda=0,
selection parameters
propSelBetween = .9, propSelWithin =0.9,
nGenerations = 50

)

Q <- pullQtlGeno(res0$pop, simParam = res0$simParam, trait=2); Q <- Q/2
best = bestSol(res0$pop)[,"Value"]
qa = Q[best,] %*% as.matrix(Gems[,c("Weight","Value")]); qa
Q[best,]

$`Genes`
Red Blue Purple Orange Green Pink White Black Yellow
1 1 0 0 1 0 0 1 0
#
$Result
Weight Value
8.74 32.10
pmonitor(res0)
pareto(res0)

evolaPop-class Genetic algorithm pop

Description

A genetic algorithm pop fit by evolafit. This class extends class "Pop" class and includes some
additional slots.

Objects from the Class

Objects are created by calls to the evolafit function.

Slots

indivPerformance the matrix of q’a (score), deltaC, q’Dq, generation, nQTNs per solution per
generation. See details section above. All other slots are inherited from class "Pop".

pedBest if the argument keepBest=TRUE this contains the pedigree of the selected solutions across
iterations. All other slots are inherited from class "Pop".

$score a matrix with scores for different metrics across n generations of evolution. All other slots
are inherited from class "Pop".

importHaploSparse 19

$pheno the matrix of phenotypes of individuals/solutions present in the last generation. All other
slots are inherited from class "Pop".

$phenoBest the matrix of phenotypes of top (parents) individuals/solutions present in the last gen-
eration. All other slots are inherited from class "Pop".

constCheckUB A matrix with as many rows as solutions and columns as traits to be constrained.
0s indicate that such trait went beyond the bound in that particular solution. All other slots are
inherited from class "Pop".

constCheckLB A matrix with as many rows as solutions and columns as traits to be constrained.
0s indicate that such trait went beyond the bound in that particular solution. All other slots are
inherited from class "Pop".

traits a character vector corresponding to the name of the variables used in the fitness function. All
other slots are inherited from class "Pop".

Extends

Class "Pop", directly.

Methods

update signature(object = "evolaPop"): also a non-method for the same reason as update

See Also

evolafit

Examples

showClass("evolaPop")

importHaploSparse Import haplotypes

Description

Formats haplotype in a matrix format to an AlphaSimR population that can be used to initialize a
simulation. This function serves as wrapper for newMapPop that utilizes a more user friendly input
format.

Usage

importHaploSparse(haplo, genMap, ploidy = 2L, ped = NULL)

20 importHaploSparse

Arguments

haplo a sparse matrix of haplotypes
genMap genetic map as a data.frame. The first three columns must be: marker name,

chromosome, and map position (Morgans). Marker name and chromosome are
coerced using as.character. See importGenMap.

ploidy ploidy level of the organism.
ped an optional pedigree for the supplied genotypes. See details.

Details

The optional pedigree can be a data.frame, matrix or a vector. If the object is a data.frame or matrix,
the first three columns must include information in the following order: id, mother, and father. All
values are coerced using as.character. If the object is a vector, it is assumed to only include the id.
In this case, the mother and father will be set to "0" for all individuals.

Value

$res a MapPop-class if ped is NULL, otherwise a NamedMapPop-class

References

Giovanny Covarrubias-Pazaran (2024). evola: a simple evolutionary algorithm for complex prob-
lems. To be submitted to Bioinformatics.

See Also

evolafit – the core function of the package

Examples

haplo <- Matrix::Matrix(0, nrow=4, ncol=5)
for (i in 1:4) {

haplo[i,] <- ifelse(runif(5)<0.2,0,1)
}
colnames(haplo) = letters[1:5]

genMap = data.frame(markerName=letters[1:5],
chromosome=c(1,1,1,2,2),
position=c(0,0.5,1,0.15,0.4))

ped = data.frame(id=c("a","b"),
mother=c(0,0),
father=c(0,0))

founderPop = importHaploSparse(haplo=haplo,
genMap=genMap,
ploidy=2L,
ped=ped)

inbFun 21

inbFun Fitness function from contribution theory using only the group rela-
tionship

Description

Simple function for fitness where we only use the group relationship.

Usage

inbFun(Y,b,Q,D,a, lambda)

Arguments

Y A matrix of trait values. See details.

b A vector of trait weights. See details.

Q A QTL matrix. See details.

D An LD matrix. See details.

a A named list with vectors of average allelic effects per trait. See details.

lambda A numeric value to weight the Q’DQ portion of the objective function (to be
provided by the user with the lambda argument). See details.

Details

A simple apply function of a regular index weighted by a vector of relationships.

Matrix::diag(Q%*%Matrix::tcrossprod(D,Q)) of dimensions n x n

Notice that Q represents the marker of QTLs (columns) for all solutions (rows) and D the LD
between QTLs. The user can modify this function as needed and provide it to the evolafit function
along with other arguments.

Value

$res a vector of values

References

Giovanny Covarrubias-Pazaran (2024). evola: a simple evolutionary algorithm for complex prob-
lems. To be submitted to Bioinformatics.

See Also

evolafit – the core function of the package

22 Jc

Examples

Q <- matrix(1,3,3) # QTL matrix available internally
D <- diag(3) # LD matrix
inbFun(Q=Q, D=D) # group relationship

Jc Matrix of ones

Description

Makes a matrix of ones with a single row and nc columns.

Usage

Jc(nc)

Arguments

nc Number of columns to create.

Details

A simple apply function to make a matrix of one row and nc columns.

Value

$res a matrix

References

Giovanny Covarrubias-Pazaran (2024). evola: a simple evolutionary algorithm for complex prob-
lems. To be submitted to Bioinformatics.

See Also

evolafit – the core function of the package

Examples

Jc(5)

Jr 23

Jr Matrix of ones

Description

Makes a matrix of ones with a single column and nr rows.

Usage

Jr(nr)

Arguments

nr Number of rows to create.

Details

A simple apply function to make a matrix of one column and nr rows.

Value

$res a matrix

References

Giovanny Covarrubias-Pazaran (2024). evola: a simple evolutionary algorithm for complex prob-
lems. To be submitted to Bioinformatics.

See Also

evolafit – the core function of the package

Examples

Jr(5)

24 nQtl

logspace Decreasing exponential trend

Description

logspace creates a vector with decreasing logaritmic trend.

Usage

logspace(x, p=2)

Arguments

x sequence of values to pass through the function.

p power to be applied to the values.

Value

$res a vector of length n with exponential decrease trend.

Author(s)

Giovanny Covarrubias-Pazaran

References

Covarrubias-Pazaran G (2016) Genome assisted prediction of quantitative traits using the R package
sommer. PLoS ONE 11(6): doi:10.1371/journal.pone.0156744

Examples

plot(logspace(1:100,p=1))
plot(logspace(1:100,p=2))
plot(logspace(1:100,p=3))

nQtl Matrix of number of activated QTLs

Description

Makes a matrix indicating how many QTLs were activated for each solution.

Usage

nQtl(object)

nQtl 25

Arguments

object Object returned by the evolafit function.

Details

A simple apply function to count the number of active QTLs per solution (row) per trait (columns).

Value

$res a matrix

References

Giovanny Covarrubias-Pazaran (2024). evola: a simple evolutionary algorithm for complex prob-
lems. To be submitted to Bioinformatics.

See Also

evolafit – the core function of the package

Examples

set.seed(1)

Data
Gems <- data.frame(

Color = c("Red", "Blue", "Purple", "Orange",
"Green", "Pink", "White", "Black",
"Yellow"),

Weight = round(runif(9,0.5,5),2),
Value = round(abs(rnorm(9,0,5))+0.5,2),
Times=c(rep(1,8),0)

)
head(Gems)

Task: Gem selection.
Aim: Get highest combined value.
Restriction: Max weight of the gem combined = 10.

simple specification
res00<-evolafit(formula=cbind(Weight,Value)~Color, dt= Gems,

constraints on traits: if greater than this ignore
constraintsUB = c(10,Inf), nGenerations = 10

)
nQtl(res00)

26 ocsFun

ocsFun Fitness function from contribution theory

Description

Simple function for fitness where an index of traits is weighted by the group relationship.

Usage

ocsFun(Y,b,Q,D,a,lambda,scaled=TRUE)

Arguments

Y A matrix of trait values. See details.

b A vector of trait weights. See details.

Q A QTL matrix. See details.

D An LD matrix. See details.

a A named list with vectors of average allelic effects per trait. See details.

lambda A numeric value to weight the Q’DQ portion of the objective function (to be
provided by the user with the lambda argument). See details.

scaled A logical value to indicate if traits should be scaled prior to multiply by the
weights.

Details

A simple apply function of a regular index weighted by a vector of relationships.

Y%*%b - d

Internally, we use this function in the following way:

The Y matrix is the matrix of trait-GEBVs and b is the user-specified trait weights.

d = qtDq * lambda; where qtDq is equal to Matrix::diag(Q%*%Matrix::tcrossprod(D,Q)) of dimen-
sions n x n

Notice that Q represents the marker of QTLs (columns) for all solutions (rows) and D the LD
between QTLs. The user can modify this function as needed and provide it to the evolafit function
along with other arguments.

Notice that a is a list with elements named as the traits specified in your formula.

Value

$res a vector of values

References

Giovanny Covarrubias-Pazaran (2024). evola: a simple evolutionary algorithm for complex prob-
lems. To be submitted to Bioinformatics.

overlay 27

See Also

evolafit – the core function of the package

Examples

Y=matrix(1:12,4,3) # 4 solutions with 3 traits

Q=matrix(sample(0:1,32,replace = TRUE),nrow=4,ncol=8) # coancestry for each solution

D=diag(8)

b=rep(1,3)

lambda=0.5

ocsFun(Y=Y,Q=Q,D=D,b=b, lambda=lambda) # Yb - d where d is QAQ' and A is the LD between QTNs

overlay Overlay Matrix

Description

‘overlay‘ adds r times the design matrix for model term t to the existing design matrix. Specifically,
if the model up to this point has p effects and t has a effects, the a columns of the design matrix
for t are multiplied by the scalar r (default value 1.0). This can be used to force a correlation of 1
between two terms as in a diallel analysis.

Usage

overlay(..., rlist=NULL, prefix=NULL, sparse=FALSE)

Arguments

... as many vectors as desired to overlay.

rlist a list of scalar values indicating the times that each incidence matrix overlayed
should be multiplied by. By default r=1.

prefix a character name to be added before the column names of the final overlay ma-
trix. This may be useful if you have entries with names starting with numbers
which programs such as asreml doesn’t like, or for posterior extraction of pa-
rameters, that way ’grep’ing is easier.

sparse a TRUE/FALSE statement specifying if the matrices should be built as sparse or
regular matrices.

28 pareto

Value

$S3 an incidence matrix with as many columns levels in the vectors provided to build the incidence
matrix.

Author(s)

Giovanny Covarrubias-Pazaran

References

Fikret Isik. 2009. Analysis of Diallel Mating Designs. North Carolina State University, Raleigh,
USA.

Covarrubias-Pazaran G (2016) Genome assisted prediction of quantitative traits using the R package
soevolafit. PLoS ONE 11(6): doi:10.1371/journal.pone.0156744

See Also

The core functions of the package evolafit.

Examples

####===####
For CRAN time limitations most lines in the
examples are silenced with one '#' mark,
remove them and run the examples
####===####
data("DT_technow")
DT <- DT_technow
head(DT)
DT$dentf <- as.factor(DT$dent)
DT$flintf <- as.factor(DT$flint)

with(DT, overlay(dentf,flintf, sparse = TRUE))
with(DT, overlay(dentf,flintf, sparse = FALSE))

pareto plot the change of values across iterations

Description

plot for monitoring.

Usage

pareto(object, scaled=TRUE,pch=20, xlim, ...)

pmonitor 29

Arguments

object model object returned by "evolafit"

scaled a logical value to specify the scale of the y-axis (gain in merit).

pch symbol for plotting points as desribed in par

xlim upper and lower bound in the x-axis

... Further arguments to be passed to the plot function.

Value

vector of plot

Author(s)

Giovanny Covarrubias

See Also

plot, evolafit

pmonitor plot the change of values across iterations

Description

plot for monitoring.

Usage

pmonitor(object, kind, ...)

Arguments

object model object of class "evolafit"

kind a numeric value indicating what to plot according to the following values:
1: Average and best q’a (contribution)
2. Average q’Dq and deltaC
3. Number of QTLs activated

... Further arguments to be passed to the plot function.

Value

trace plot

Author(s)

Giovanny Covarrubias

30 regFun

See Also

plot, evolafit

regFun Fitness function from linear regressions based on mean squared error.

Description

Simple function for fitness where the mean squared error is computed when the user provides y and
X and b are the average allelic effects of the population in the genetic algorithm.

Usage

regFun(Y,b,Q,D,a,lambda,X,y)

Arguments

Y A matrix of trait values (internal matrix). See details.

b A vector of trait weights (provided by users). See details.

Q A QTL matrix (internal matrix). See details.

D An LD matrix. See details.

a A named list with vectors of average allelic effects per trait (internal matrix).
See details.

lambda A numeric value to weight the Q’DQ portion of the objective function (to be
provided by the user with the lambda argument). See details.

X A matrix of covariates or explanatory variables (to be provided by the user in
the ... arguments). See details.

y A vector of the response variable (to be provided by the user in the ... argu-
ments). See details.

Details

A simple apply function of a regular mean squared error.

(y - X%*%b) ^ 2

Internally, we use this function in the following way:

The y vector and X matrix are provided by the user and are fixed values that do not change across
iterations. The evolutionary algorithm optimizes the b values which are the QTLs and associated
average allelic effects that are evolving. The ’b’ coefficients in the formula come from the GA and
are computed as:

b[j] = a[[1]][p[[j]]]

where a[[1]] is the list of QTL average allelic effects per trait provided in the original dataset,
whereas p is a list (with length equal to the number of solutions) that indicates which QTLs are
activated in each solution and the j variable is just a counter so each solution is tested.

stan 31

Value

$res a vector of values

References

Giovanny Covarrubias-Pazaran (2024). evola: a simple evolutionary algorithm for complex prob-
lems. To be submitted to Bioinformatics.

See Also

evolafit – the core function of the package

Examples

y <- rnorm(40) # 4 responses
X=matrix(rnorm(120),40,3) # covariates
Q=matrix(0,40,30) # QTL matrix with 30 QTLs
for(i in 1:nrow(Q)){Q[i,sample(1:ncol(Q),3)]=1}
a <- matrix(rnorm(30),ncol=1) # 30 average allelic effects in trait 1

mse = regFun(y=y, X=X, Q=Q, a=a, # used
ignored, Y is normally available in the evolafit routine
Y=X)

stan Standardize a vector of values in range 0 to 1

Description

Simple function to map a vector of values to the range of 0 and 1 values to have a better behavior
of the algorithm.

Usage

stan(x, lb=0, ub=1)

Arguments

x A vector of numeric values.

lb Lower bound value to map the x values.

ub Upper bound value to map the x values.

Details

Simple function to map a vector of values to the range of 0 and 1 values to have a better behavior
of the algorithm.

32 update.evolaFitMod

Value

$res new values in range 0 to 1

References

Giovanny Covarrubias-Pazaran (2024). evola: a simple evolutionary algorithm for complex prob-
lems. To be submitted to Bioinformatics.

See Also

evolafit – the core function of the package

Examples

x <- rnorm(20, 10, 3);x
stan(x)

update.evolaFitMod update form an evolafit model

Description

update method for class "evolaFitMod".

Usage

S3 method for class 'evolaFitMod'
update(object, formula., evaluate = TRUE, ...)

Arguments

object an object of class "evolaFitMod"

formula. an optional formula

evaluate a logical value to indicate if an evaluation of the call should be done or not

... Further arguments to be passed

Value

an updated model

Author(s)

Giovanny Covarrubias

varQ 33

Examples

set.seed(1)

Data
Gems <- data.frame(

Color = c("Red", "Blue", "Purple", "Orange",
"Green", "Pink", "White", "Black",
"Yellow"),

Weight = round(runif(9,0.5,5),2),
Value = round(abs(rnorm(9,0,5))+0.5,2),
Times=c(rep(1,8),0)

)
Task: Gem selection.
Aim: Get highest combined value.
Restriction: Max weight of the gem combined = 10.

simple specification
res<-evolafit(formula=cbind(Weight,Value)~Color, dt= Gems,

constraints on traits: if greater than this ignore
constraintsUB = c(10,Inf), nGenerations = 2

)
resUp=update(res)

varQ Extract the variance existing in the genome solutions

Description

Extracts the variance found across the M element of the resulting object of the evolafit() function
which contains the different solution and somehow represents the genome of the population.

Usage

varQ(object)

Arguments

object A resulting object from the function evolafit.

Details

A simple apply function looking at the variance in each column of the M element of the resulting
object of the evolafit function.

Value

$res a value of variance

34 varQ

References

Giovanny Covarrubias-Pazaran (2024). evola: a simple evolutionary algorithm for complex prob-
lems. To be submitted to Bioinformatics.

See Also

evolafit – the core function of the package

Examples

set.seed(1)
Data
Gems <- data.frame(

Color = c("Red", "Blue", "Purple", "Orange",
"Green", "Pink", "White", "Black",
"Yellow"),

Weight = round(runif(9,0.5,5),2),
Value = round(abs(rnorm(9,0,5))+0.5,2),
Times=c(rep(1,8),0)

)
head(Gems)

Task: Gem selection.
Aim: Get highest combined value.
Restriction: Max weight of the gem combined = 10.
res0<-evolafit(cbind(Weight,Value)~Color, dt= Gems,

constraints: if greater than this ignore
constraintsUB = c(10,Inf),
constraints: if smaller than this ignore
constraintsLB= c(-Inf,-Inf),
weight the traits for the selection
b = c(0,1),
population parameters
nCrosses = 100, nProgeny = 20, recombGens = 1,
coancestry parameters
D=NULL, lambda=c(0,0), nQTLperInd = 1,
selection parameters
propSelBetween = .9, propSelWithin =0.9,
nGenerations = 5

)

varQ(res0)

Index

∗ R package
evola-package, 2

∗ classes
evolaPop-class, 18

∗ datasets
DT_cpdata, 7
DT_technow, 8
DT_wheat, 10

∗ models
pareto, 28
pmonitor, 29
update.evolaFitMod, 32

A (DT_cpdata), 7
A.mat, 3
A_wheat (DT_wheat), 10
addZeros, 4

bestSol, 5

DT_cpdata, 3, 7
DT_technow, 3, 8
DT_wheat, 3, 10

evola (evola-package), 2
evola-package, 2
evolafit, 2, 4–6, 12, 17, 18, 20–23, 25,

27–32, 34
evolaPop (evolaPop-class), 18
evolaPop-class, 18

GT_wheat (DT_wheat), 10

importHaploSparse, 19
inbFun, 14, 21

Jc, 22
Jr, 23

logspace, 24

M_technow (DT_technow), 8

nQtl, 24

ocsFun, 14, 26
overlay, 27

pareto, 28
plot, 29, 30
pmonitor, 29
Pop, 18, 19

regFun, 15, 30

stan, 31

update.evolaFitMod, 32

varQ, 33

35

	evola-package
	A.mat
	addZeros
	bestSol
	DT_cpdata
	DT_technow
	DT_wheat
	evolafit
	evolaPop-class
	importHaploSparse
	inbFun
	Jc
	Jr
	logspace
	nQtl
	ocsFun
	overlay
	pareto
	pmonitor
	regFun
	stan
	update.evolaFitMod
	varQ
	Index

