
Package ‘fPASS’
July 22, 2025

Title Power and Sample Size for Projection Test under Repeated
Measures

Version 1.0.0

Description Computes the power and sample size (PASS) required to test for the
difference in the mean function between two groups under a repeatedly measured longitudinal
or sparse functional design. See the manuscript by Koner and Luo (2023) <https:
//salilkoner.github.io/assets/PASS_manuscript.pdf>
for details of the PASS formula and computational details. The details of the testing
procedure for univariate and multivariate response are presented in
Wang (2021) <doi:10.1214/21-EJS1802> and Koner and Luo (2023)
<doi:10.48550/arXiv.2302.05612> respectively.

License MIT + file LICENSE

Encoding UTF-8

RoxygenNote 7.2.3

Imports dplyr, purrr, face, magrittr, MASS, Matrix, nlme, testthat,
mgcv, lifecycle, expm, gamm4, gss, rlang, stringr, utils

Suggests knitr, rmarkdown, Hotelling, refund, foreach

VignetteBuilder knitr

URL https://github.com/SalilKoner/fPASS

BugReports https://github.com/SalilKoner/fPASS/issues

Config/testthat/edition 3

NeedsCompilation no

Author Salil Koner [aut, cre, cph] (ORCID:
<https://orcid.org/0000-0003-1952-4210>),

Sheng Luo [ctb, fnd]

Maintainer Salil Koner <salil.koner@duke.edu>

Repository CRAN

Date/Publication 2023-07-19 11:20:05 UTC

1

https://salilkoner.github.io/assets/PASS_manuscript.pdf
https://salilkoner.github.io/assets/PASS_manuscript.pdf
https://doi.org/10.1214/21-EJS1802
https://doi.org/10.48550/arXiv.2302.05612
https://github.com/SalilKoner/fPASS
https://github.com/SalilKoner/fPASS/issues
https://orcid.org/0000-0003-1952-4210

2 Extract_Eigencomp_fDA

Contents

Extract_Eigencomp_fDA . 2
PASS_Proj_Test_ufDA . 7
pHotellingT . 13
Power_Proj_Test_ufDA . 15
Sim_HotellingT_unequal_var . 17
Sum_of_Wishart_df . 20

Index 22

Extract_Eigencomp_fDA Extract/estimate eigenfunction from a sparse functional or longitudi-
nal design by simulating from a large number of subjects.

Description

[Stable]

The function Extract_Eigencomp_fDA() computes the eigenfunctions and the covariance of the
shrinkage scores required to conduct the projection-based test of mean function between two groups
of longitudinal data or sparsely observed functional data under a random irregular design, as devel-
oped by Wang (2021).

Usage

Extract_Eigencomp_fDA(
nobs_per_subj,
obs.design,
mean_diff_fnm,
cov.type = c("ST", "NS"),
cov.par,
sigma2.e,
missing_type = c("nomiss", "constant"),
missing_percent = 0,
eval_SS = 5000,
alloc.ratio = c(1, 1),
fpca_method = c("fpca.sc", "face"),
work.grid = NULL,
nWgrid = ifelse(is.null(work.grid), 101, length(work.grid)),
data.driven.scores = FALSE,
mean_diff_add_args = list(),
fpca_optns = list()

)

Extract_Eigencomp_fDA 3

Arguments

nobs_per_subj The number of observations per subject. Each element of it must be greater than
3. It could also be a vector to indicate that the number of observation for each is
randomly varying between the elements of the vector, or a scalar to ensure that
the number of observations are same for each subject. See examples.

obs.design The sampling design of the observations. Must be provided as a list with the
following elements. If the design is longitudinal (e.g. a clinical trial where there
is pre-specified schedule of visit for the participants) it must be a named list with
elements design, visit.schedule and visit.window, where obs.design$design
must be specified as 'longitudinal', visit.schedule specifying schedule
of visits (in months or days or any unit of time), other than the baseline visit
and visit.window denoting the maximum time window for every visit. For
functional design (where the observation points are either densely observed
within a compact interval or under a sparse random design), the argument must
be provided as a named list with elements design and fun.domain, where
obs.design$design must be specified as 'functional' and obs.design$fun.domain
must be specified as a two length vector indicating the domain of the function.
See Details on the specification of arguments section below more details.

mean_diff_fnm The name of the function that output of the difference of the mean between
the two groups at any given time. It must be supplied as character, so that
match.fun(mean_diff_fnm) returns a valid function, that takes a vector input,
and returns a vector of the same length of the input.

cov.type The type of the covariance structure of the data, must be either of ’ST’ (station-
ary) or ’NS’ (non-stationary). This argument along with the cov.par argument
must be specified compatibly to ensure that the function does not return an error.
See the details of cov.par argument.

cov.par The covariance structure of the latent response trajectory. If cov.type == 'ST'
then, cov.par must be specified a named list of two elements, var and cor,
where var is the common variance of the observations, which must be a positive
number; and cor specifies the correlation structure between the observations.
cov.par$cor must be specified in the form of the nlme::corClasses specified in
R package nlme. Check the package documentation for more details for each
of the correlation classes. The cov.par$cor must be a corStruct class so it
can be passed onto the nlme::corMatrix() to extract the subject-specific co-
variance matrix. If cov.type='NS' then, cov.par must be a named list of two
elements, cov.obj and eigen.comp, where only one of the cov.par$cov.obj
or cov.par$eigen.comp must be non-null. This is to specify that the covari-
ance structure of the latent trajectory can be either provided in the form of
covariance function or in the form of eigenfunction and eigenvalues (Spectral
decomposition). If the cov.par$cov.obj is specified, then it must be a bivari-
ate function, with two arguments. Alternatively, if the true eigenfunctions are
known, then the user can specify that by specifying cov.par$eigen.comp. In
this case, the cov.par$eigen.comp must be a named list with two elements,
eig.obj and eig.val, where cov.par$eigen.comp$eig.val must be posi-
tive vector and cov.par$eigen.comp$eig.obj must be a vectorized function
so that its evaluation at a vector of time points returns a matrix of dimension
r by length(cov.par$eigen.comp$eig.val), with r being the length of time

4 Extract_Eigencomp_fDA

points.

sigma2.e Measurement error variance, should be set as zero or a very small number if the
measurement error is not significant.

missing_type The type of missing in the number of observations of the subjects. Can be one
of 'nomiss' for no missing observations or 'constant' for constant missing
percentage at every time point. The current version of package only supports
missing_type = 'constant'.

missing_percent

The percentage of missing at each observation points for each subject. Must
be supplied as number between [0, 0.8], as missing percentage more than 80%
is not practical. If nobs_per_subj is supplied as vector, then missing_type is
forced to set as 'nomiss' and missing_percent = 0, because the missing_type
= 'constant' has no meaning if the number of observations are varying be-
tween the subject at the first, typically considered in the case of sparse random
functional design.

eval_SS The sample size based on which the eigencomponents will be estimated from
data. To compute the theoretical power of the test we must make sure that we
use a large enough sample size to generate the data such that the estimated eigen-
functions are very close to the true eigenfunctions and that the sampling design
will not have much effect on the loss of precision. Default value 5000.

alloc.ratio The allocation ratio of samples in the each group. Note that the eigenfunctions
will still be estimated based on the total sample_size, however, the variance of
the shrinkage scores (which is required to compute the power function) will be
estimated based on the allocation of the samples in each group. Must be given
as vector of length 2. Default value is set at c(1, 1), indicating equal sample
size.

fpca_method The method by which the FPCA is computed. Must be one of ’fpca.sc’ and
’face’. If fpca_method == 'fpca.sc' then the eigencomponents are estimated
using the function refund::fpca.sc(). However, since the refund::fpca.sc()
function fails to estimate the correct shrinkage scores, and throws NA values
when the measurement errors is estimated to be zero, we wrote out a similar
function where we corrected those error in current version of refund::fpca.sc().
Check out the fpca_sc() function for details. If fpca_method == 'face', then
the eigencomponents are estimated using face::face.sparse() function.

work.grid The working grid in the domain of the functions, where the eigenfunctions
and other covariance components will be estimated. Default is NULL, then,
a equidistant grid points of length nWgrid will be internally created to as the
default work.grid.

nWgrid The length of the work.grid in the domain of the function based on which
the eigenfunctions will be estimated. Default value is 101. If work.grid is
specified, then nWgrid must be null, and vice-versa.

data.driven.scores

Indicates whether the scores are estimated from the full data, WITHOUT as-
suming the mean function is unknown, rather the mean function is estimated
using mgcv::gam() function.

Extract_Eigencomp_fDA 5

mean_diff_add_args

Additional arguments to be passed to group difference function specified in the
argument mean_diff_fnm.

fpca_optns Additional options to be passed onto either of fpca_sc() or face::face.sparse()
function in order to estimate the eigencomponents. It must be a named list with
elements to be passed onto the respective function, depending on the fpca_method.
The names of the list must not match either of c('data', 'newdata', 'argvals.new')
for fpca_method == 'face' and must not match either of c('ydata', 'Y.pred')
for fpca_method == 'fpca.sc'.

Details

The function can handle data from wide variety of covariance structure, can be parametric, or non-
parametric. Additional with traditional stationary structures assumed for longitudinal data (see
nlme::corClasses), the user can specify any other non-stationary covariance function in the form of
either a covariance function or in terms of eigenfunctions and eigenvalues. The user have a lot of
flexibility into tweaking the arguments nobs_per_subject, obs.design, and cov.par to compute
the eigencomponents under different sampling design and covariance process of the response trajec-
tory, and for any arbitrary mean difference function. Internally, using the sampling design and the
covariance structure specified, we generate a large data with large number of subjects, and estimate
the eigenfunctions and the covariance of the estimated shrinkage scores by means of functional
principal component analysis (fPCA). We put the option of using two most commonly used soft-
wares for fPCA in the functional data literature, refund::fpca.sc() and face::face.sparse().
However, since the refund::fpca.sc() do not compute the shrinkage scores correctly, especially
when the measurement error variance is estimated to be zero, we made a duplicate version of that
function in our package, where we write out the scoring part on our own. The new function is
named as fpca_sc(), please check it out.

Value

A list with the elements listed below.

1. mean_diff_vec - The evaluation of the mean function at the working grid.

2. est_eigenfun - The evaluation of the estimated eigenfunctions at the working grid.

3. est_eigenval - Estimated eigen values.

4. working.grid - The grid points at which mean_diff_vec and est_eigenfun are evaluated.

5. fpcCall - The exact call of either of the fpca_sc() or face::face.sparse() used to com-
pute the eigencomponents.

6. scores_var1 - Estimated covariance of the shrinkage scores for the treatment group.

7. scores_var2 - Estimated covariance of the shrinkage scores for the placebo group.

8. pooled_var - Pooled covariance of the scores combining both the groups. This is required if
the user wants to compute the power of Hotelling T statistic under equal variance assumption.

If data.driven.scores == TRUE additional components are returned

1. scores_1 - Estimated shrinkage scores for all the subjects in treatment group.

2. scores_2 - Estimated shrinkage scores for all the subjects in placebo group.

6 Extract_Eigencomp_fDA

The output of this function is designed such a way the user can directly input the output obtained
from this function into the arguments of Power_Proj_Test_ufDA() function to obtain the power
and the sample size right away. The function PASS_Proj_Test_ufDA does the same, it is essentially
a wrapper ofExtract_Eigencomp_fDA() and Power_Proj_Test_ufDA() together.

Specification of key arguments

If obs.design$design == 'functional' then a dense grid of length, specified by ngrid (typi-
cally 101/201) is internally created, and the observation points will be randomly chosen from them.
The time points could also randomly chosen between any number between the interval, but then
for large number of subject, fpca_sc() function will take huge time to estimate the eigenfunc-
tion. For dense design, the user must set a large value of the argument nobs_per_subj and for
sparse (random) design, nobs_per_subj should be set small (and varying). On the other hand,
typical to longitudinal data, if the measurements are taken at fixed time points (from baseline)
for each subject, then the user must set obs.design$design == 'longitudinal' and the time
points must be accordingly specified in the argument obs.design$visit.schedule. The length of
obs.design$visit.schedule must match length(nobs_per_subj)-1. Internally, when obs.design$design
== 'longitudinal', the function scale the visit times so that it lies between [0, 1], so the user
should not specify any element named fun.domain in the list for obs.design$design == 'longitudinal'.
Make sure that the mean function and the covariance function specified in the cov.par and mean_diff_fnm
parameter also scaled to take argument between [0, 1]. Also, it is imperative to say that nobs_per_subj
must be of a scalar positive integer for design == 'longitudinal'.

Author(s)

Salil Koner
Maintainer: Salil Koner <salil.koner@duke.edu>

References

Wang, Qiyao (2021) Two-sample inference for sparse functional data, Electronic Journal of Statis-
tics, Vol. 15, 1395-1423
doi:10.1214/21EJS1802.

See Also

See Power_Proj_Test_ufDA(), refund::fpca.sc() and face::face.sparse().

Examples

Example 1: Extract eigencomponents from stationary covariance.

set.seed(12345)
mean.diff <- function(t) {t};
obs.design <- list("design" = "longitudinal",
"visit.schedule" = seq(0.1, 0.9, length.out=7),
"visit.window" = 0.05)
cor.str <- nlme::corExp(1, form = ~ time | Subject);
sigma2 <- 1; sigma2.e <- 0.25; nobs_per_subj <- 8;
missing_type <- "constant"; missing_percent <- 0.01;

https://doi.org/10.1214/21-EJS1802

PASS_Proj_Test_ufDA 7

eigencomp <- Extract_Eigencomp_fDA(obs.design = obs.design,
mean_diff_fnm = "mean.diff", cov.type = "ST",
cov.par = list("var" = sigma2, "cor" = cor.str),
sigma2.e = sigma2.e, nobs_per_subj = nobs_per_subj,
missing_type = missing_type,
missing_percent = missing_percent, eval_SS = 1000,
alloc.ratio = c(1,1), nWgrid = 201,
fpca_method = "fpca.sc", data.driven.scores = FALSE,
mean_diff_add_args = list(), fpca_optns = list(pve = 0.95))

Example 2: Extract eigencomponents from non-stationary covariance.

alloc.ratio <- c(1,1)
mean.diff <- function(t) {1 * (t^3)};
eig.fun <- function(t, k) { if (k==1) {
ef <- sqrt(2)*sin(2*pi*t)
} else if (k==2) {ef <- sqrt(2)*cos(2*pi*t)}
return(ef)}
eig.fun.vec <- function(t){cbind(eig.fun(t, 1),eig.fun(t, 2))}
eigen.comp <- list("eig.val" = c(1, 0.5), "eig.obj" = eig.fun.vec)
obs.design <- list(design = "functional", fun.domain = c(0,1))
cov.par <- list("cov.obj" = NULL, "eigen.comp" = eigen.comp)
sigma2.e <- 0.001; nobs_per_subj <- 4:7;
missing_type <- "nomiss"; missing_percent <- 0;
fpca_method <- "fpca.sc"
eigencomp <- Extract_Eigencomp_fDA(obs.design = obs.design,
mean_diff_fnm = "mean.diff",
cov.type = "NS", cov.par = cov.par,
sigma2.e = sigma2.e, nobs_per_subj = nobs_per_subj,
missing_type = missing_type,
missing_percent = missing_percent, eval_SS = 1000,
alloc.ratio = alloc.ratio, nWgrid = 201,
fpca_method = "fpca.sc", data.driven.scores = FALSE,
mean_diff_add_args = list(), fpca_optns = list(pve = 0.95))

PASS_Proj_Test_ufDA Power and Sample size (PASS) calculation of Two-Sample Projection-
based test for sparsely observed univariate functional data.

Description

[Stable]

The function PASS_Proj_Test_ufDA() computes the power and sample size (PASS) required to
conduct the projection-based test of mean function between two groups of longitudinal data or
sparsely observed functional data under a random irregular design, under common covariance struc-
ture between the groups. See Wang (2021) for more details of the testing procedure.

8 PASS_Proj_Test_ufDA

Usage

PASS_Proj_Test_ufDA(
sample_size,
target.power,
sig.level = 0.05,
nobs_per_subj,
obs.design,
mean_diff_fnm,
cov.type = c("ST", "NS"),
cov.par,
sigma2.e,
missing_type = c("nomiss", "constant"),
missing_percent = 0,
eval_SS = 5000,
alloc.ratio = c(1, 1),
fpca_method = c("fpca.sc", "face"),
mean_diff_add_args = list(),
fpca_optns = list(pve = 0.95),
nWgrid = 201,
npc_to_use = NULL,
return.eigencomp = FALSE,
nsim = 10000

)

Arguments

sample_size Total sample size combining both the groups, must be a positive integer.

target.power Target power to achieve, must be a number between 0 and 1. Only one of
sample_size and target.power should be non-null. The function will return
sample size if sample_size is NULL, and return power if target.power is
NULL.

sig.level Significance level of the test, default set at 0.05, must be less than 0.2.

nobs_per_subj The number of observations per subject. Each element of it must be greater than
3. It could also be a vector to indicate that the number of observation for each is
randomly varying between the elements of the vector, or a scalar to ensure that
the number of observations are same for each subject. See examples.

obs.design The sampling design of the observations. Must be provided as a list with the
following elements. If the design is longitudinal (e.g. a clinical trial where there
is pre-specified schedule of visit for the participants) it must be a named list with
elements design, visit.schedule and visit.window, where obs.design$design
must be specified as 'longitudinal', visit.schedule specifying schedule
of visits (in months or days or any unit of time), other than the baseline visit
and visit.window denoting the maximum time window for every visit. For
functional design (where the observation points are either densely observed
within a compact interval or under a sparse random design), the argument must
be provided as a named list with elements design and fun.domain, where
obs.design$design must be specified as 'functional' and obs.design$fun.domain

PASS_Proj_Test_ufDA 9

must be specified as a two length vector indicating the domain of the function.
See Details on the specification of arguments section below more details.

mean_diff_fnm The name of the function that output of the difference of the mean between
the two groups at any given time. It must be supplied as character, so that
match.fun(mean_diff_fnm) returns a valid function, that takes a vector input,
and returns a vector of the same length of the input.

cov.type The type of the covariance structure of the data, must be either of ’ST’ (station-
ary) or ’NS’ (non-stationary). This argument along with the cov.par argument
must be specified compatibly to ensure that the function does not return an error.
See the details of cov.par argument.

cov.par The covariance structure of the latent response trajectory. If cov.type == 'ST'
then, cov.par must be specified a named list of two elements, var and cor,
where var is the common variance of the observations, which must be a positive
number; and cor specifies the correlation structure between the observations.
cov.par$cor must be specified in the form of the nlme::corClasses specified in
R package nlme. Check the package documentation for more details for each
of the correlation classes. The cov.par$cor must be a corStruct class so it
can be passed onto the nlme::corMatrix() to extract the subject-specific co-
variance matrix. If cov.type='NS' then, cov.par must be a named list of two
elements, cov.obj and eigen.comp, where only one of the cov.par$cov.obj
or cov.par$eigen.comp must be non-null. This is to specify that the covari-
ance structure of the latent trajectory can be either provided in the form of
covariance function or in the form of eigenfunction and eigenvalues (Spectral
decomposition). If the cov.par$cov.obj is specified, then it must be a bivari-
ate function, with two arguments. Alternatively, if the true eigenfunctions are
known, then the user can specify that by specifying cov.par$eigen.comp. In
this case, the cov.par$eigen.comp must be a named list with two elements,
eig.obj and eig.val, where cov.par$eigen.comp$eig.val must be posi-
tive vector and cov.par$eigen.comp$eig.obj must be a vectorized function
so that its evaluation at a vector of time points returns a matrix of dimension
r by length(cov.par$eigen.comp$eig.val), with r being the length of time
points.

sigma2.e Measurement error variance, should be set as zero or a very small number if the
measurement error is not significant.

missing_type The type of missing in the number of observations of the subjects. Can be one
of 'nomiss' for no missing observations or 'constant' for constant missing
percentage at every time point. The current version of package only supports
missing_type = 'constant'.

missing_percent

The percentage of missing at each observation points for each subject. Must
be supplied as number between [0, 0.8], as missing percentage more than 80%
is not practical. If nobs_per_subj is supplied as vector, then missing_type is
forced to set as 'nomiss' and missing_percent = 0, because the missing_type
= 'constant' has no meaning if the number of observations are varying be-
tween the subject at the first, typically considered in the case of sparse random
functional design.

10 PASS_Proj_Test_ufDA

eval_SS The sample size based on which the eigencomponents will be estimated from
data. To compute the theoretical power of the test we must make sure that we
use a large enough sample size to generate the data such that the estimated eigen-
functions are very close to the true eigenfunctions and that the sampling design
will not have much effect on the loss of precision. Default value 5000.

alloc.ratio The allocation ratio of samples in the each group. Note that the eigenfunctions
will still be estimated based on the total sample_size, however, the variance of
the shrinkage scores (which is required to compute the power function) will be
estimated based on the allocation of the samples in each group. Must be given
as vector of length 2. Default value is set at c(1, 1), indicating equal sample
size.

fpca_method The method by which the FPCA is computed. Must be one of ’fpca.sc’ and
’face’. If fpca_method == 'fpca.sc' then the eigencomponents are estimated
using the function refund::fpca.sc(). However, since the refund::fpca.sc()
function fails to estimate the correct shrinkage scores, and throws NA values
when the measurement errors is estimated to be zero, we wrote out a similar
function where we corrected those error in current version of refund::fpca.sc().
Check out the fpca_sc() function for details. If fpca_method == 'face', then
the eigencomponents are estimated using face::face.sparse() function.

mean_diff_add_args

Additional arguments to be passed to group difference function specified in the
argument mean_diff_fnm.

fpca_optns Additional options to be passed onto either of fpca_sc() or face::face.sparse()
function in order to estimate the eigencomponents. It must be a named list with
elements to be passed onto the respective function, depending on the fpca_method.
The names of the list must not match either of c('data', 'newdata', 'argvals.new')
for fpca_method == 'face' and must not match either of c('ydata', 'Y.pred')
for fpca_method == 'fpca.sc'.

nWgrid The length of the working grid based in the domain of the function on which
the eigenfunctions will be estimated. The actual working grid will be calculated
using the gss::gauss.quad() function (so that it facilitates the numerical inte-
gration of the eigenfunction with the mean function using gaussian quadrature
rule)

npc_to_use Number of eigenfunctions to use to compute the power. Default is NULL, in
which case all the eigenfunctions estimated from the data will be used.

return.eigencomp

Indicates whether to return the eigencomponents obtained from the fPCA on the
large data with sample size equal to eval_SS. Default is FALSE.

nsim The number of samples to be generated from the alternate distribution of Hotelling
T statistic. Default value is 10000.

Details

The function is designed to perform the power and sample size analysis for functional under a
dense and sparse (random) design and longitudinal data. The function can handle data from wide
variety of covariance structure, can be parametric, or non-parametric. Additional with traditional
stationary structures assumed for longitudinal data (see nlme::corClasses), the user can specify any

PASS_Proj_Test_ufDA 11

other non-stationary covariance function in the form of either a covariance function or in terms of
eigenfunctions and eigenvalues. The user have a lot of flexibility into tweaking the arguments of
the function to assess the power function of the test under different sampling design and covariance
process of the response trajectory, and for any arbitrary mean difference function. Overall, the
functionality of the module is quite comprehensive and includes all the different cases considered
in the ’NCSS PASS (2023)’ software. We believe that this software can be an effective clinical trial
design tools when considering the projection-based test as the primary decision making method.

Value

A list with following elements, power_value if is.null(target.power) then returns the power of
the test when n equal to sample_size, otherwise required_SS, the sample size required to achieve
the power of the test at target.power. If return.eigencomp == TRUE then est_eigencomp is also
returned, containing the entire output obtained from internal call of Extract_Eigencomp_fDA().

Specification of key arguments

If obs.design$design == 'functional' then a dense grid of length, specified by ngrid (typi-
cally 101/201) is internally created, and the observation points will be randomly chosen from them.
The time points could also randomly chosen between any number between the interval, but then
for large number of subject, fpca_sc() function will take huge time to estimate the eigenfunc-
tion. For dense design, the user must set a large value of the argument nobs_per_subj and for
sparse (random) design, nobs_per_subj should be set small (and varying). On the other hand,
typical to longitudinal data, if the measurements are taken at fixed time points (from baseline)
for each subject, then the user must set obs.design$design == 'longitudinal' and the time
points must be accordingly specified in the argument obs.design$visit.schedule. The length of
obs.design$visit.schedule must match length(nobs_per_subj)-1. Internally, when obs.design$design
== 'longitudinal', the function scale the visit times so that it lies between [0, 1], so the user
should not specify any element named fun.domain in the list for obs.design$design == 'longitudinal'.
Make sure that the mean function and the covariance function specified in the cov.par and mean_diff_fnm
parameter also scaled to take argument between [0, 1]. Also, it is imperative to say that nobs_per_subj
must be of a scalar positive integer for design == 'longitudinal'.

Author(s)

Salil Koner
Maintainer: Salil Koner <salil.koner@duke.edu>

References

Wang, Qiyao (2021) Two-sample inference for sparse functional data, Electronic Journal of Statis-
tics, Vol. 15, 1395-1423 doi:10.1214/21EJS1802.

PASS 2023 Power Analysis and Sample Size Software (2023). NCSS, LLC. Kaysville, Utah, USA,
ncss.com/software/pass.

See Also

See Power_Proj_Test_ufDA() and Extract_Eigencomp_fDA().

https://doi.org/10.1214/21-EJS1802

12 PASS_Proj_Test_ufDA

Examples

Example 1: Power analysis for stationary exponential covariance.
Should return a power same as the size because
the true mean difference is zero.

set.seed(12345)
mean.diff <- function(t) {0*t};
obs.design = list("design" = "longitudinal",

"visit.schedule" = seq(0.1, 0.9, length.out=7),
"visit.window" = 0.05)

cor.str <- nlme::corExp(1, form = ~ time | Subject);
sigma2 <- 1; sigma2.e <- 0.25; nobs_per_subj <- 8;
missing_type <- "constant"; missing_percent <- 0.01;
Please increase `eval_SS` argument from 1000 to 5000 to get
accurate precision on the estimated eigenfunctions.
pow <- PASS_Proj_Test_ufDA(sample_size = 100, target.power = NULL, sig.level = 0.05,

obs.design = obs.design,
mean_diff_fnm = "mean.diff", cov.type = "ST",
cov.par = list("var" = sigma2, "cor" = cor.str),
sigma2.e = sigma2.e, nobs_per_subj = nobs_per_subj,
missing_type = missing_type,
missing_percent = missing_percent, eval_SS = 1000,
alloc.ratio = c(1,1), nWgrid = 201,
fpca_method = "fpca.sc",
mean_diff_add_args = list(), fpca_optns = list("pve" = 0.95),
nsim = 1e3)

print(pow$power_value)

Example 2: Sample size calculation for a non-stationary covariance:

alloc.ratio <- c(1,1)
mean.diff <- function(t) {3 * (t^3)};
eig.fun <- function(t, k) {

if (k==1) ef <- sqrt(2)*sin(2*pi*t)
else if (k==2) ef <- sqrt(2)*cos(2*pi*t)
return(ef)}

eig.fun.vec <- function(t){cbind(eig.fun(t, 1),eig.fun(t, 2))}
eigen.comp <- list("eig.val" = c(1, 0.5), "eig.obj" = eig.fun.vec)
obs.design <- list(design = "functional", fun.domain = c(0,1))
cov.par <- list("cov.obj" = NULL, "eigen.comp" = eigen.comp)
sigma2.e <- 0.001; nobs_per_subj <- 4:7;
missing_type <- "nomiss"; missing_percent <- 0;
fpca_method <- "fpca.sc"
Please increase `eval_SS` argument from 1000 to 5000 to get
accurate precision on the estimated eigenfunctions.
pow <- PASS_Proj_Test_ufDA(sample_size = NULL, target.power = 0.8,

sig.level = 0.05, obs.design = obs.design,
mean_diff_fnm = "mean.diff", cov.type = "NS",
cov.par = cov.par, sigma2.e = sigma2.e,
nobs_per_subj = nobs_per_subj, missing_type = missing_type,
missing_percent = missing_percent, eval_SS = 1000,

pHotellingT 13

alloc.ratio = alloc.ratio, fpca_method = "fpca.sc",
mean_diff_add_args = list(), fpca_optns = list(pve = 0.95),
nsim = 1e3, nWgrid = 201)

print(pow$required_SS)

pHotellingT CDF of Hotelling-Tˆ2 statistic.

Description

[Stable]
The function pHotellingT() computes the cumulative distribution function (CDF) of the two-
sample Hotelling-T 2 statistic (P (T > q)) in the multivariate response setting. This function is used
to compute the power function of Two-Sample (TS) Projection-based test (Wang 2021, EJS.) for
sparsely observed univariate functional data.

Usage

pHotellingT(
q,
total_sample_size,
mean_diff,
sig1,
sig2,
alloc.ratio = c(1, 1),
lower.tail = TRUE,
nsim = 10000

)

Arguments

q The point at which the CDF needs to be evaluated
total_sample_size

Target sample size, must be a positive integer.
mean_diff The difference in the mean vector between the two groups, must be a vector.
sig1 The true (or estimate) of covariance matrix for the first group. Must be symmet-

ric (is.symmetric(sig1) == TRUE) and positive definite (chol(sig1) without
an error!).

sig2 The true (or estimate) of covariance matrix for the second group. Must be
symmetric (is.symmetric(sig2) == TRUE) and positive definite (chol(sig2)
without an error!).

alloc.ratio Allocation of total sample size into the two groups. Must set as a vector of two
positive numbers. For equal allocation it should be put as c(1,1), for non-equal
allocation one can put c(2,1) or c(3,1) etc.

lower.tail if TRUE, the CDF is returned, otherwise right tail probability is returned.
nsim The number of samples to be generated from the alternate distribution.

14 pHotellingT

Details

Under the assumption of the equal variance, we know that the alternative distribution of the Hotelling-
T 2 statistic ((n−k−1)T/(n−2)∗K) has an F distribution with the non-centrality depending on the
difference between the true mean vectors and the (common) covariance of the response. However,
when the true covariance of the true groups of responses differ, the alternate distribution becomes
non-trivial. Koner and Luo (2023) proved that the alternate distribution of the test-statistic approx-
imately follows a ratio of the linear combination of the K (dimension of the response) non-central
chi-squared random variables (where the non-centrality parameter depends on the mean difference)
and a chi-squared distribution whose degrees of freedom depends on a complicated functions of
sample size in the two groups. This function initially calls the Sim_HotellingT_unequal_var func-
tion to obtain the samples from the non-null distribution and computes the CDF numerically with
high precision based on a large number of samples. See Koner and Luo (2023) for more details on
the formula of the non-null distribution.

Value

The CDF of the Hotelling T statistic, if lower.tail == TRUE, otherwise the right tail probability is
returned.

Author(s)

Salil Koner
Maintainer: Salil Koner <salil.koner@duke.edu>

See Also

Hotelling::hotelling.test(), Hotelling::hotelling.stat() to generate empirical samples
from the Hotelling T-statistic from empirical data.

Examples

B <- 10000
k <- 4
n2 <- 60
n1_by_n2 <- 2
n1 <- n1_by_n2 * n2
mu1 <- rep(0,k)
del <- 0.4
mu2 <- mu1 + rep(del, k) # rep(0.19,k) # 0.23 (0.9), 0.18 (0.7) 0.20 (0.8)
sig1 <- diag(k)
sig2 <- sig1
cutoff <- seq(0,30, length.out=20)
the_cdf <- round(pHotellingT(cutoff, n1+n2, mu1 - mu2,

sig1, sig2, alloc.ratio=c(2,1),
lower.tail=FALSE, nsim = 1e4),3)

Power_Proj_Test_ufDA 15

Power_Proj_Test_ufDA Power of the Two-sample Projection-based test for functional data
with known (or estimated) eigencomponents.

Description

[Stable]
The function Power_Proj_Test_ufDA() computes the power of of the two-sample projection-
based test for functional response data setting, when the group difference, the eigenfunctions of
the covariance of the data are specified at dense grid of time points, along with the (estimated)
covariance of the shrinkage scores.

Usage

Power_Proj_Test_ufDA(
total_sample_size,
argvals,
mean_vector,
eigen_matrix,
scores_var1,
scores_var2,
weights,
sig.level = 0.05,
alloc.ratio = c(1, 1),
npc_to_pick = ncol(eigen_matrix),
nsim = 10000

)

Arguments

total_sample_size

Total sample size combing the two groups, must be a positive integer.

argvals The working grid of timepoints to evaluate the eigenfunctions and the mean
functions. It is preferred to take the working grid as dense grid so that

∫
[µ1(t)−

µ2(t)]ϕk(t) dt can be calculated with a required precision.

mean_vector The difference in the mean function evaluated at argvals, must be a numeric
vector of length same as that that of argavls.

eigen_matrix The matrix of eigenfunctions evaluated at argvals, must be a length(argvals) by
K matrix, where K is the number of eigenfunctions.

scores_var1 The true (or estimate) of covariance matrix of the shrinkage scores for the first
group. Must be symmetric (is.symmetric(scores_var1) == TRUE) and posi-
tive definite (chol(scores_var1) without an error!).

scores_var2 The true (or estimate) of covariance matrix of the shrinkage scores for the sec-
ond group. Must be symmetric (is.symmetric(scores_var2) == TRUE) and
positive definite (chol(scores_var2) without an error!).

16 Power_Proj_Test_ufDA

weights The weights to put to compute the projection
∫
[µ1(t)−µ2(t)]ϕk(t) dt, for each

k = 1, . . . ,K. The integral is numerically approximated as sum(mean_diff(argvals)*eigen_matrix[,k]*weights).

sig.level Significance level of the test, default set at 0.05, must be less than 0.2.

alloc.ratio The allocation ratio of samples in the each group. Note that the eigenfunctions
will still be estimated based on the total sample_size, however, the variance of
the shrinkage scores (which is required to compute the power function) will be
estimated based on the allocation of the samples in each group. Must be given
as vector of length 2. Default value is set at c(1, 1), indicating equal sample
size.

npc_to_pick Number of eigenfunction to be used to compute the power. Typically this is
becomes handy when the user want to discard few of the last eigenfunctions,
typically with a very small eigenvalues.

nsim The number of samples to be generated from the alternate distribution of Hotelling
T statistic. Default value is 10000.

Details

The projection-based test first extracts K eigenfunctions from the data, and then project the mean
difference function onto each of the eigenfunctions to obtain a K-dimensional projection vector that
reflects the group difference. Wang (2021) pointed that under the null hypothesis the covariance
of K-dimensional functional principal component analysis (fPCA) scores are the same, and thus
a Hotelling T 2 test with assuming equal variance of the shrinkage scores is a valid test. However,
Koner and Luo (2023) pointed out that under the alternate hypothesis, when the difference is mean is
significant, the covariance of the shrinkage scores also differ between the groups. Therefore, while
computing the power of test, we must have to derive the distribution of the Hotelling T 2 statistic
under the assumption of unequal variance. The alogrithm for the power of multivariate Hotelling T 2

under unequal variance is coded in pHotellingT() function. This particular function is a wrapper
around that function, which inputs the mean difference as a function, and the eigenfunctions and
the scores, and subsequently call the pHotellingT() function to compute the power under unequal
variance. See Koner and Luo (2023) for more details on the formula of the non-null distribution.

Value

Power of the projection-based test for specified difference in the mean function and the eigencom-
ponents of the covariance of the functional data.

Author(s)

Salil Koner
Maintainer: Salil Koner <salil.koner@duke.edu>

References

Wang, Qiyao (2021) Two-sample inference for sparse functional data, Electronic Journal of Statis-
tics, Vol. 15, 1395-1423
doi:10.1214/21EJS1802.

https://doi.org/10.1214/21-EJS1802

Sim_HotellingT_unequal_var 17

See Also

See pHotellingT() and Sim_HotellingT_unequal_var() for samples from Hotelling T distribu-
tion.

Examples

ngrid <- 101
interval <- c(-1,1)
gauss.quad.pts <- gss::gauss.quad(ngrid,interval) # evaluation points
working.grid <- gauss.quad.pts$pt
mean_fn <- function(t) {0.4*sin(2*pi*t)}
mean_vector <- mean_fn(working.grid)
eigen_fn <- function(t, k){ sqrt(2)*{(k==2)*sin(2*pi*t) + (k==1)*cos(2*pi*t)} }
eigen_matrix <- cbind(eigen_fn(working.grid,1), eigen_fn(working.grid,2))
mean_proj <- sapply(1:2, function(r) integrate(function(x)
eigen_fn(x,r)*mean_fn(x), interval[1], interval[2])$value)
sig1 <- diag(2)
sig2 <- 2*diag(2)
alp <- 0.05
n <- 100
k <- ncol(eigen_matrix)
cutoff <- {(n - 2)*k/(n - k -1)}*qf(1-alp, k, n-k-1)
func_power <- Power_Proj_Test_ufDA(total_sample_size=n,
argvals=working.grid,
mean_vector = mean_vector, eigen_matrix = eigen_matrix,
scores_var1 = sig1, scores_var2= sig2, weights = gauss.quad.pts$wt,
sig.level=alp, alloc.ratio = c(1,1), npc_to_pick=ncol(eigen_matrix),
nsim = 5e3)

Sim_HotellingT_unequal_var

Samples from the non-null distribution of the Hotelling-Tˆ2 statistic
under unequal covariance.

Description

[Stable]
The function Sim_HotellingT_unequal_var() generates samples from the (non-null) distribution
of the two-sample Hotelling-T 2 statistic under the assuming of unequal covariance of the multi-
variate response between the two groups. This function is used to compute the power function of
Two-Sample (TS) Projection-based test (Wang 2021, EJS.) for sparsely observed univariate func-
tional data.

Usage

Sim_HotellingT_unequal_var(
total_sample_size,

18 Sim_HotellingT_unequal_var

mean_diff,
sig1,
sig2,
alloc.ratio = c(1, 1),
nsim = 10000

)

Arguments

total_sample_size

Target sample size, must be a positive integer.

mean_diff The difference in the mean vector between the two groups, must be a vector.

sig1 The true (or estimate) of covariance matrix for the first group. Must be symmet-
ric (is.symmetric(sig1) == TRUE) and positive definite (chol(sig1) without
an error!).

sig2 The true (or estimate) of covariance matrix for the second group. Must be
symmetric (is.symmetric(sig2) == TRUE) and positive definite (chol(sig2)
without an error!).

alloc.ratio Allocation of total sample size into the two groups. Must set as a vector of two
positive numbers. For equal allocation it should be put as c(1,1), for non-equal
allocation one can put c(2,1) or c(3,1) etc.

nsim The number of samples to be generated from the alternate distribution.

Details

Under the assumption of the equal variance, we know that the alternative distribution of the Hotelling-
T 2 statistic has an F distribution with the non-centrality depending on the difference between the
true mean vectors and the (common) covariance of the response. However, when the true covariance
of the true groups of responses differ, the alternate distribution becomes non-trivial. Koner and Luo
(2023) proved that the alternate distribution of the test-statistic approximately follows a ratio of the
linear combination of the K (dimension of the response) non-central chi-squared random variables
(where the non-centrality parameter depends on the mean difference) and a chi-squared distribution
whose degrees of freedom depends on a complicated functions of sample size in the two groups.
See Koner and Luo (2023) for more details on the formula of the non-null distribution.

Value

A named list with two elements.

1. samples - a vector of length nsim, containing The samples from the distribution of the
Hotelling T statistic under unequal variance.

2. denom.df - The denominator degrees of freedom of the chi-square statistic obtained by ap-
proximation of the sum of two Wishart distribution under unequal variance.

Author(s)

Salil Koner
Maintainer: Salil Koner <salil.koner@duke.edu>

Sim_HotellingT_unequal_var 19

References

Wang, Qiyao (2021) Two-sample inference for sparse functional data, Electronic Journal of Statis-
tics, Vol. 15, 1395-1423
doi:10.1214/21EJS1802.

See Also

Hotelling::hotelling.test(), Hotelling::hotelling.stat() to generate empirical samples
from the Hotelling T-statistic from empirical data.

Examples

Case 1: Null hypothesis is true. True mean difference is zero, and the true
covariance of the two groups are same.
k <- 5
mu1 <- rep(0,k); del <- 0; mu2 <- mu1 + rep(del, k);
sig1 <- diag(k); sig2 <- sig1 + del*toeplitz(c(1,rep(0.5, k-1))); n <- 200;
null.dist.samples <- Sim_HotellingT_unequal_var(total_sample_size=n, mean_diff=mu1-mu2,

sig1=sig1, sig2=sig2, alloc.ratio=c(1,1), nsim=1e3)
The following Kolmogorov Smirnov test confirms that under null hypothesis
and when the covariances are same, the distribution is exactly a
central F distribution with \eqn{k} and \eqn{n-k} degrees of freedom.
ks.test(null.dist.samples$samples, {{(n - 2) * k}/(n - k -1)} * {rf(n=1e3, k, n-k-1)})

Case 2: Alternate hypothesis is true. The mean difference is non-zero,
and the covariances of the two groups are same:
k <- 6
mu1 <- rep(0,k); del <- 0.15; mu2 <- mu1 + rep(del, k);
sig1 <- diag(k); sig2 <- sig1;
n1 <- 100; n2 <- 100;
alt.dist.samples <- Sim_HotellingT_unequal_var(total_sample_size=n1+n2, mean_diff=mu1-mu2,

sig1=sig1, sig2=sig2, alloc.ratio=c(1,1), nsim=1e3)
ks.test(alt.dist.samples$samples,

{(n1+n2 - 2) * k /(n1+n2 - k -1)}*rf(n=1e3, k, n1+n2-k-1,
ncp = {(n1*n2)/(n1+n2)}*as.vector(crossprod(mu1-mu2, solve(sig1, mu1-mu2)))))

Case 3: Alternate hypothesis is true. The mean difference is non-zero,
and the covariances of the two groups are different
k <- 5
mu1 <- rep(0,k); del <- 0.25; mu2 <- mu1 + rep(del, k);
sig1 <- diag(k); sig2 <- sig1 + del*toeplitz(c(1,rep(0.5, k-1)))
alt.dist.samples <- Sim_HotellingT_unequal_var(total_sample_size=200, mean_diff=mu1-mu2,
sig1=sig1, sig2=sig2, alloc.ratio=c(1,1), nsim=1e3)

Generate samples with unequal allocation ratio:
k <- 8
mu1 <- rep(0,k); del <- 0.4; mu2 <- mu1 + rep(del, k);
sig1 <- diag(k); sig2 <- sig1 + del*toeplitz(c(1,rep(0.5, k-1)))
alt.dist.samples <- Sim_HotellingT_unequal_var(total_sample_size=150, mean_diff=mu1-mu2,
sig1=sig1, sig2=sig2, alloc.ratio=c(2,1), nsim=1e3)

https://doi.org/10.1214/21-EJS1802

20 Sum_of_Wishart_df

Sum_of_Wishart_df The approximate degrees of freedom formula for sum of Wishart.

Description

[Stable]

The approximate degrees of freedom formula for sum of two independent Wishart random variable
with parameter sig1 and sig2, and degrees of freedom n1-1 and n2-1 where n1 + n2 is equal to the
total_sample_size.

See Koner and Luo (2023) for more details on the formula for degrees of freedom.

Usage

Sum_of_Wishart_df(total_sample_size, alloc.ratio, sig1, sig2)

Arguments

total_sample_size

Target sample size, must be a positive integer.

alloc.ratio Allocation of total sample size into the two groups. Must set as a vector of two
positive numbers. For equal allocation it should be put as c(1,1), for non-equal
allocation one can put c(2,1) or c(3,1) etc.

sig1 The true (or estimate) of covariance matrix for the first group. Must be symmet-
ric (is.symmetric(sig1) == TRUE) and positive definite (chol(sig1) without
an error!).

sig2 The true (or estimate) of covariance matrix for the second group. Must be
symmetric (is.symmetric(sig2) == TRUE) and positive definite (chol(sig2)
without an error!).

Value

The approximate degrees of freedom.

Author(s)

Salil Koner
Maintainer: Salil Koner <salil.koner@duke.edu>

See Also

Sim_HotellingT_unequal_var() and pHotellingT().

Sum_of_Wishart_df 21

Examples

k <- 8
mu1 <- rep(0,k); del <- 0.4; mu2 <- mu1 + rep(del, k);
sig1 <- diag(k); sig2 <- sig1 + del*toeplitz(c(1,rep(0.5, k-1)))
alt.dist.samples <- Sum_of_Wishart_df(total_sample_size=150,
sig1=sig1, sig2=sig2, alloc.ratio=c(2,1))

Index

Extract_Eigencomp_fDA, 2
Extract_Eigencomp_fDA(), 6, 11

face::face.sparse(), 4–6, 10
fpca_sc(), 4–6, 10, 11

gss::gauss.quad(), 10

Hotelling::hotelling.stat(), 14, 19
Hotelling::hotelling.test(), 14, 19

mgcv::gam(), 4

nlme::corClasses, 3, 5, 9, 10
nlme::corMatrix(), 3, 9

PASS_Proj_Test_ufDA, 6, 7
pHotellingT, 13
pHotellingT(), 16, 17, 20
Power_Proj_Test_ufDA, 15
Power_Proj_Test_ufDA(), 6, 11

refund::fpca.sc(), 4–6, 10

Sim_HotellingT_unequal_var, 14, 17
Sim_HotellingT_unequal_var(), 17, 20
Sum_of_Wishart_df, 20

22

	Extract_Eigencomp_fDA
	PASS_Proj_Test_ufDA
	pHotellingT
	Power_Proj_Test_ufDA
	Sim_HotellingT_unequal_var
	Sum_of_Wishart_df
	Index

