Package 'fitmix'

July 22, 2025

Title Finite Mixture Model Fitting of Lifespan Datasets

Version 0.1.0
Description Fits the lifespan datasets of biological systems such as yeast, fruit flies, and other simi-
lar biological units with well-known finite mixture models intro-
duced by Farewell V. (1982) <doi:10.2307 2529885=""> and Al-</doi:10.2307>
Hussaini et al. (2000) <doi:10.1080 00949650008812033="">. Estimates parameter space fit-</doi:10.1080>
ting of a lifespan dataset with finite mixtures of parametric distributions. Computes the follow
ing tasks; 1) Estimates parameter space of the finite mixture model
by implementing the expectation maximization (EM) algorithm. 2) Finds a se-
quence of four goodness-of-fit measures consist of Akaike Information Crite-
rion (AIC), Bayesian Information Criterion (BIC), Kolmogorov-Smirnov (KS), and log-
likelihood (log-likelihood) statistics. 3)The initial values is determined by k-means clustering.

<pre>URL https://github.com/guven-code/fitmix/</pre>
License GPL-3
Encoding UTF-8
RoxygenNote 7.1.1.9001
Depends R (>= 3.1.0)
Imports stats
Suggests rmarkdown, knitr
NeedsCompilation no
Author Emine Guven [aut, cre] (ORCID: https://orcid.org/0000-0001-9324-0879), Hong Qin [aut]
Maintainer Emine Guven <emine.guven33@gmail.com></emine.guven33@gmail.com>
Repository CRAN
Date/Publication 2021-04-19 08:50:04 UTC

Contents

lmix	2
itmixEM	2
omix	4
miy	/

2 fitmixEM

Index 6

|--|

Description

Computing probability density function for the well-known mixture models.

Usage

```
dmix(lifespan, model, K, param)
```

Arguments

lifespan Vector of samples

model choice of one of the mixture models; gompertz, log-logistics, log-normal,

and weibull.

K number of components

param Vector of weight ω , shape α , and scale β parameters.

Value

A vector of the same length as lifespan data, given the pdf of the one of the mixture models computed at lifespan.

Examples

```
lifespan<-seq(0,30,0.2)
K<-2
weight<-c(0.6,0.4)
alpha<-c(0.5,1)
beta<-c(1,0.5)
param<-c(weight,alpha,beta)
dmix(lifespan, "log-logistic", K, param)</pre>
```

fitmixEM

Fits lifespan data of time units with gompertz, log-logistics, log-normal, and weibull mixture models choice of one.

Description

Fits lifespan data of time units with gompertz, log-logistics, log-normal, and weibull mixture models choice of one.

fitmixEM 3

Usage

fitmixEM(lifespan, model, K, initial = FALSE, starts)

Arguments

lifespan numeric vector of lifespan dataset

model model name of the one of the well-known model: gompertz,log-logistics,log-normal,

and weibull.

K number of well-known model components.

initial logical true or false

starts numeric if initial sets to true

Details

Estimates parameters of the given mixture model implementing the expectation maximization (EM) algorithm. General form for the cdf of a statistical mixture model is given by a distribution f is a mixture of K component distributions of $f = (f_1, f_2, ... f_K)$ if

$$f(x) = \sum_{k=1}^{K} \lambda_k f_k(x)$$

with $\lambda_k > 0$, $\sum_k \lambda_k = 1$. This equation is a stochastic model, thus it allows to generate new data points; first picks a distribution of choice, with probabilities by weight, then generates another observation according to the chosen distribution. In short represented by, $Z \sim \text{Mult}(\lambda_1, \lambda_2, ... \lambda_k)$ and $X|Z \sim f_Z$, where Z is a discrete random variable which component X is drawn from.

The families considered for the cdf of Gompertz, Log-normal, Log-logistic, and Weibull.

Value

- 1. The return has three values; the first value is estimate, measures, and cluster.
- 2. The second value includes four different measurements of goodness-of-fit tests involving: Akaike Information Criterion (AIC), Bayesian Information Criterion (BIC), Kolmogorov-Smirnov (KS), and log-likelihood (log.likelihood) statistics.
- 3. The last value is the output of clustering vector.

References

Farewell, V. (1982). The Use of Mixture Models for the Analysis of Survival Data with Long-Term Survivors. *Biometrics*, 38(4), 1041-1046. doi:10.2307/2529885 McLachlan, G. J. and Peel, D. (2000) *Finite Mixture Models*, John Wiley & Sons, Inc.

Essam K. Al-Hussaini, Gannat R. Al-Dayian & Samia A. Adham (2000) On finite mixture of two-component gompertz lifetime model, *Journal of Statistical Computation and Simulation*, 67:1, 20-67, DOI: 10.1080/00949650008812033

Examples

```
lifespan<-sample(1000)
fitmixEM(lifespan, "weibull", K = 2, initial = FALSE)
```

4 rmix

nm	1	Х

The mixture cumulative distribution

Description

Computing cumulative distribution function for the well-known mixture models.

Usage

```
pmix(lifespan, model, K, param)
```

Arguments

lifespan Vector of samples

model choice of one of the mixture models; gompertz, log-logistics, log-normal,

and weibull.

K number of components

Param Vector of weight ω , shape α , and scale β parameters.

Value

A vector of the same length as lifespan data, given the cdf of the one of the mixture models computed at lifespan.

Examples

```
lifespan<-seq(0,30,0.2)
K<-2
weight<-c(0.5,0.5)
alpha<-c(0.5,1)
beta<-c(1,0.5)
param<-c(weight,alpha,beta)
pmix(lifespan, "log-logistic", K, param)</pre>
```

rmix

The mixture random generation for the well-known models

Description

Random generation for the well-known mixture models with parameters weigth, shape and scale.

Usage

```
rmix(N, model, K, param)
```

rmix 5

Arguments

N Number of inputs for the mixture random generation

model Choice of one of the mixture models; gompertz, log-logistics, log-normal,

and weibull.

K Number of components

Param Vector of weight ω , shape α , and scale β parameters.

Value

Outputs of random generated vector lenght of N from the given mixture model.

Examples

```
N<-100
K<-2
weight<-c(0.5,0.5)
alpha<-c(0.5,1)
beta<-c(1,0.5)
param<-c(weight,alpha,beta)
rmix(N, "weibull", K, param)</pre>
```

Index

```
dmix, 2
fitmixEM, 2
pmix, 4
rmix, 4
```