
Package ‘freegroup’
July 22, 2025

Type Package

Title The Free Group

Version 1.2-0

Maintainer Robin K. S. Hankin <hankin.robin@gmail.com>

Description The free group in R; juxtaposition is represented by a
plus. Includes inversion, multiplication by a scalar,
group-theoretic power operation, and Tietze forms. To cite the
package in publications please use Hankin (2022)
<doi:10.48550/ARXIV.2212.05883>.

Depends methods, plyr, R (>= 4.1.0)

Suggests knitr, rmarkdown, permutations, testthat, covr

LazyData yes

Imports freealg (>= 1.0-4), magic (>= 1.5-9), magrittr

VignetteBuilder knitr

License GPL-2

URL https://github.com/RobinHankin/freegroup,

https://robinhankin.github.io/freegroup/

BugReports https://github.com/RobinHankin/freegroup/issues

NeedsCompilation no

Author Robin K. S. Hankin [aut, cre] (ORCID:
<https://orcid.org/0000-0001-5982-0415>)

Repository CRAN

Date/Publication 2025-03-20 11:40:02 UTC

Contents
freegroup-package . 2
abelianize . 4
abs.free . 5

1

https://doi.org/10.48550/ARXIV.2212.05883
https://github.com/RobinHankin/freegroup
https://robinhankin.github.io/freegroup/
https://github.com/RobinHankin/freegroup/issues
https://orcid.org/0000-0001-5982-0415

2 freegroup-package

alpha . 6
backwards . 7
c . 8
char_to_free . 9
cumsum . 10
cycred . 11
donames . 12
dot-class . 13
Extract . 14
free . 15
getlet . 16
identity . 17
keep . 18
nielsen . 19
Ops.free . 20
primitive . 22
print . 23
reduce . 24
rfree . 26
shift . 27
size . 28
subs . 29
sum . 30
tietze . 31

Index 33

freegroup-package The Free Group

Description

The free group in R; juxtaposition is represented by a plus. Includes inversion, multiplication by
a scalar, group-theoretic power operation, and Tietze forms. To cite the package in publications
please use Hankin (2022) <doi:10.48550/ARXIV.2212.05883>.

Details

The DESCRIPTION file:

Package: freegroup
Type: Package
Title: The Free Group
Version: 1.2-0
Authors@R: c(person(c("Robin", "K. S. "), "Hankin", role=c("aut","cre"), email="hankin.robin@gmail.com", comment = c(ORCID = "0000-0001-5982-0415")))
Maintainer: Robin K. S. Hankin <hankin.robin@gmail.com>
Description: The free group in R; juxtaposition is represented by a plus. Includes inversion, multiplication by a scalar, group-theoretic power operation, and Tietze forms. To cite the package in publications please use Hankin (2022) <doi:10.48550/ARXIV.2212.05883>.
Depends: methods, plyr, R (>= 4.1.0)

freegroup-package 3

Suggests: knitr, rmarkdown, permutations, testthat, covr
LazyData: yes
Imports: freealg (>= 1.0-4), magic (>= 1.5-9), magrittr
VignetteBuilder: knitr
License: GPL-2
URL: https://github.com/RobinHankin/freegroup, https://robinhankin.github.io/freegroup/
BugReports: https://github.com/RobinHankin/freegroup/issues
Author: Robin K. S. Hankin [aut, cre] (<https://orcid.org/0000-0001-5982-0415>)

Index of help topics:

Extract.free Extract or replace parts of a free group object
Ops.free Arithmetic Ops methods for the free group
abelianize Abelianization of free group elements
abs.free Absolute value of a 'free' object
alpha Alphabetical free group elements
backwards Write free objects backwards
c Concatenation of free objects
char_to_free Convert character vectors to free objects
cumsum Cumulative sum
cycred Cyclic reductions of a word
donames Names attributes of free group elements
dot-class Class "dot"
free Objects of class 'free'
freegroup-package The Free Group
getlet Get letters of a freegroup object
identity The identity element
keep Keep or drop symbols
nielsen Outer automorphisms of the free group
primitive Primitive elements of the free algebra
print.free Print free objects
reduce Reduction of a word to reduced form
rfree Random free objects
shift Permute elements of a vector in a cycle
size Bignesses of a free object
subs Substitute and invert symbols
sum Repeated summation by concatenation
tietze Tietze form for free group objects

Author(s)

Robin K. S. Hankin [aut, cre] (<https://orcid.org/0000-0001-5982-0415>)

Maintainer: Robin K. S. Hankin <hankin.robin@gmail.com>

Examples

p <- rfree(10,6,3)

4 abelianize

x <- as.free('x')

p+x

p^x

sum(p)

abelianize(p)

subsu(p,"ab","z")
subs(p,a='z')

discard(p+x,'a')

abelianize Abelianization of free group elements

Description

Function abelianize() returns a word that is equivalent to its argument under assumption of
Abelianness. The symbols are placed in alphabetical order.

Usage

abelianize(x)
is.abelian(x)

Arguments

x An object of class free

Details

Abelianizing a free group element means that the symbols can commute past one another. Abelian-
ization is vectorized.

Function is.abelian() is trivial: it just checks to see whether argument x has its symbols in
alphabetical order. It might have been better to call this abelianized().

Package frab presents extensive R-centric functionality for dealing with the free Abelian group. It
is much more efficient than this package for Abelian operations, and contains bespoke methods for
working with a range of applications such as tables of counts.

Author(s)

Robin K. S. Hankin

https://CRAN.R-project.org/package=frab

abs.free 5

Examples

x <- as.free("aabAA")
x
abelianize(x)

x <- rfree(10,10,2)
x
abelianize(x)

abelianize(.[rfree(),rfree()])

p <- free(rbind(rep(1:5,4),rep(1:4,5)))
p
abelianize(p)

abs.free Absolute value of a free object

Description

Replaces every term’s power with its absolute value

Usage

S3 method for class 'free'
abs(x)

Arguments

x Object of class free

Details

Replaces every term’s power with its absolute value

Note

The function’s name is motivated by the inequality in the examples section.

Author(s)

Robin K. S. Hankin

See Also

subs

6 alpha

Examples

abs(abc(-5:5))

a <- rfree(10,4,7)
b <- rfree(10,4,7)

a
abs(a)

following should all be TRUE:
all(size(abs(a+b)) <= size(abs(a) + abs(b)))
all(total(abs(a+b)) <= total(abs(a) + abs(b)))
all(number(abs(a+b)) <= number(abs(a) + abs(b)))

all(size(a+b) <= size(abs(a) + abs(b)))
all(total(a+b) <= total(abs(a) + abs(b)))
all(number(a+b) <= number(abs(a) + abs(b)))

alpha Alphabetical free group elements

Description

Produces simple vectors of free group elements based on the alphabet

Usage

alpha(v)
abc(v)

Arguments

v Vector of integers

Details

Function alpha() takes an integer i and returns the letter i of the alphabet. Thus alpha(3) returns
c. The function is vectorised: alpha(1:3) returns a b c.

Function abc() takes an integer i and returns letters 1 to i of the alphabet. Thus abc(4) returns
a.b.c.d. The function is vectorised.

Remember that “letters of the alphabet” is just a phrase: above it refers to the default print method
which can be changed, see the examples.

Author(s)

Robin K. S. Hankin

backwards 7

Examples

alpha(5) # just the single letter 'e'
abc(5) # product of a,b,c,d,e

alpha(1:26) # the whole alphabet; c

all(alpha(1:26) == as.free(letters)) # should be TRUE

z <- alpha(26) # variable 'z' is symbol 26, aka 'z'.
abc(1:10) ^ z

abc(-5:5)
alpha(-5:5)
sum(abc(-5:5))

bear in mind that the symbols used are purely for the print method:
jj <- LETTERS[1:10]
options(freegroup_symbols = apply(expand.grid(jj,jj),1,paste,collapse=""))
alpha(c(66,67,68,69)) # sensible output
options(freegroup_symbols=NULL) # restore to symbols to default letters
alpha(c(66,67,68,69)) # print method not very helpful now

backwards Write free objects backwards

Description

Write free objects in reverse order

Usage

backwards(x)

Arguments

x Object of class free

Note

For each element of a free object, function backwards() writes the symbols in reverse order. It is
distinct from rev(), see examples.

Function backwards is an involution: it is its own inverse.

Author(s)

Robin K. S. Hankin

8 c

Examples

abc(1:5)
backwards(abc(1:5))
rev(abc(1:5))

x <- rfree(10,5)
backwards(backwards(x)) == x # involution
all(abelianize(x) == abelianize(backwards(x))) # should be TRUE

c Concatenation of free objects

Description

Concatenate free objects together

Usage

S3 method for class 'free'
c(...)
S3 method for class 'free'
rep(x, ...)

Arguments

... In the method for c(), objects to be concatenated. Should all be of the same
type

x In the method for rep(), a free object

Author(s)

Robin K. S. Hankin

Examples

(x <- abc(1:3))
(y <- alpha(22:25))

c(x,y,x,x)

NB: compare
rep(x,2)
x*2

char_to_free 9

char_to_free Convert character vectors to free objects

Description

Convert character vectors to free objects

Usage

char_to_matrix(x)

Arguments

x A character vector

Details

Function char_to_matrix() gives very basic conversion between character vectors and free ob-
jects. Current functionality is limited to strings like “aaabaacd”, which would give a3ba2cd. It
would be nice to take a string like “a^3b^(-3)” but this is not yet implemented.

Function char_to_free() is a vectorized version that coerces output to free.

Note

The function is not particularly robust; for example, passing anything other than letters a-z or A-Z
will give possibly undesirable behaviour.

Upper-case letters A-Z are interpreted by char_to_matrix() as the inverse of their corresponding
lower-case equivalents. This behaviour is inherited by char_to_free() and as.free(), so that
as.free("A") == inverse(as.free("a")).

Function char_to_free() is consistent with the default print options (which are that the symbols
are the lowercase letters a-z). If you change the symbols’ names, for example options(freegroup_symbols=sample(letters)),
then things can get confusing. The print method does not change the internal representation of a
free object, which is a list of integer matrices.

Author(s)

Robin K. S. Hankin

See Also

print.free

10 cumsum

Examples

char_to_matrix("aaabcABC")

rfree(10,3) + as.free('xxxxxxxxxxxx')

as.free(letters)*7

all(is.id(as.free(letters) + as.free(LETTERS)))

as.free('') # identity element

cumsum Cumulative sum

Description

Cumulative sum of free vectors

Usage

S3 method for class 'free'
cumsum(x)

Arguments

x Vector of class free

Author(s)

Robin K. S. Hankin

See Also

sum

Examples

abc(1:6)
cumsum(abc(1:6))

x <- rfree(10,2)
cumsum(c(x,-rev(x)))

cycred 11

cycred Cyclic reductions of a word

Description

Functionality to cyclically reduce words and detect conjugacy

Usage

is.cyclically_reduced(a)
as.cyclically_reduced(a)
cyclically_reduce(a)
cyclically_reduce_tietze(p)
is.conjugate_single(u,v)
x %~% y
S3 method for class 'free'
is.conjugate(x,y)
allconj(x)

Arguments

a, x, y An object of class free

p, u, v Integer vector corresponding to Tietze form of a word

Details

A free object is cyclically reduced iff every cyclic permutation of the word is reduced. A reduced
word is cyclically reduced iff the first letter is not the inverse of the last one. A reduced word is
cyclically reduced if the first and last symbol differ (irrespective of power) or, if identical, have
powers of opposite sign. For example, abac and abca are cyclically reduced but abca^{-1} is not.
Function is.cyclically_reduced() tests for this.

Function as.cyclically_reduced() takes a vector of free objects and returns the elementwise
cyclically reduced equivalents. Function cyclically_reduce() is a synonym with better (English)
grammar.

The identity is cyclically reduced: it cannot be shortened by a combination of cyclic permutation fol-
lowed by reduction. This ensures that is.cyclically_reduced(as.cyclically_reduced(x)) is
always TRUE. Also, it is clear that the identity should be conjugate to itself.

Two words a, b are conjugate if there exists a x such that ax = xb (or equivalently a = x−1bx). This
is detected by function is.conjugate(). Functions is_conjugate_single() and cyclically_reduce_tietze()
are lower-level helper functions.

Function allconj() returns all cyclically reduced words conjugate to its argument.

Author(s)

Robin K. S. Hankin

12 donames

See Also

reduce

Examples

(x <- abc(1:9) - abc(9:1))
as.cyclically_reduced(x)

a <- rfree(1000,3)
all(size(as.cyclically_reduced(a)) <= size(a))
all(total(as.cyclically_reduced(a)) <= total(a))
all(number(as.cyclically_reduced(a)) <= number(a))

x <- rfree(1000,2)
y <- as.free('ab')
table(conjugate = (x%~%y), equal = (x==y)) # note zero at top right

allconj(as.free('aaaaab'))
allconj(sum(abc(seq_len(3))))

x <- rfree(1,10,8,8)
all(is.id(allconj(x) + allconj(-x)[shift(rev(seq_len(total(x))))]))

donames Names attributes of free group elements

Description

Get and set names of free group elements and arithmetic operations

Usage

donames(f,e1,e2)

Arguments

f A vector, typically of class free

e1, e2 Objects of class free, possibly with names

dot-class 13

Details

Function donames() is a low-level helper function that ensures that the result of arithmetic oper-
ations such as + and ^ have the correct names attributes. The behaviour is inherited from that of
base::`+`.

Author(s)

Robin K. S. Hankin

See Also

Ops.free

Examples

x <- rfree(9,4)
x
names(x) <- letters[1:9]
x

z <- as.free('z')
x + x
x^z
z^x

n <- 1:9
names(n) <- LETTERS[1:9]

x*n
n*x # note different names

dot-class Class “dot”

Description

The dot object is defined in the freealg package, and imported here, so that idiom like .[x,y]
returns the commutator, that is, x^-1 y^-1 xy.

Arguments

x Object of any class

i, j elements to commute

... Further arguments to dot_error(), currently ignored

https://CRAN.R-project.org/package=freealg

14 Extract

Value

Always returns an object of the same class as xy.

Author(s)

Robin K. S. Hankin

Examples

.[as.free("x"), as.free("y")]

.[abc(1:6),"z"]

x <- rfree()
y <- rfree()
z <- rfree()

.[x,y] == -x-y+x+y # should be TRUE

abelianize(.[x,y])

Jacobi identity _not_ satisfied with this definition:
is.id(.[x,.[y,z]] + .[y,.[z,x]] + .[z,.[x,y]])

But the Hall-Witt identity is:
all(is.id(.[.[x,-y],z]^y + .[.[y,-z],x]^z + .[.[z,-x],y]^x))

Extract Extract or replace parts of a free group object

Description

Extract or replace subsets of free objects

Arguments

x Object of class free

index elements to extract or replace

value replacement value

Details

These methods (should) work as expected: an object of class free is a list but standard extraction
techniques should work.

free 15

Examples

(x <- rfree(20,8,8))

x[5:6]
x[1:2] <- -x[11:12]

x[1:5] <- keep(x[1:5],1:3)

free Objects of class free

Description

Generate, and test for, objects of class free

Usage

free(x)
as.free(x)
is.free(x)
list_to_free(x)

Arguments

x Function free() needs either a two-row matrix, or a list of two-row matrices;
function as.free() attempts to coerce different types of argument before pass-
ing to free() (possibly via list_to_free())

Details

The basic structure of an element of the free group is a two-row matrix. The top row is the symbols
(1=a, 2=b, 3=c, etc) and the bottom row is the corresponding power. Thus a2ba−1c9 would be

> rbind(c(1,2,1,3),c(2,1,-1,9))
[,1] [,2] [,3] [,4]

[1,] 1 2 1 3
[2,] 2 1 -1 9
>

Function free() needs either a two-row matrix or a list of two-row matrices. It is the only place in
the package that sets the class of an object to free. Function as.free() is a bit more user-friendly
and tries a bit harder to do the Right Thing.

The package uses setOldClass("free") for the dot methods.

Author(s)

Robin K. S. Hankin

16 getlet

See Also

char_to_free

Examples

free(rbind(1:5,5:1))

x <- rfree(10,3)
x
x+x
x-x
x[1:5]*(1:5)

as.free(c(4,3,2,2,2))
as.free("aaaabccccaaaaa")
as.free(c("a","A","abAAA"))

getlet Get letters of a freegroup object

Description

Get the symbols in a freegroup object

Usage

getlet(x)

Arguments

x Object of class free

Note

By default, return a list with elements corresponding to the elements of x. But, if object x is of
length 1, a vector is returned. The result is sorted for convenience.

Author(s)

Robin K. S. Hankin

identity 17

Examples

(x <- rfree(6,7,3))

getlet(x)

as.free(getlet(x))

identical(as.free(getlet(abc(1:26))), abc(1:26))

identity The identity element

Description

Create and test for the identity element

Usage

is.id(x)
id(n)
S3 method for class 'free'
is.id(x)

Arguments

x Object of class free
n Strictly positive integer

Details

Function id() returns a vector of n free objects, all of which are the identity element. Do not ask
what happens if n = 0.

Function is.id() returns a Boolean indicating whether an element is the identity or not. The
identity can also be generated using as.free(0).

Author(s)

Robin K. S. Hankin

Examples

id()
as.free(0) # convenient R idiom for creating the identity

x <- rfree(10,3)
stopifnot(all(x == x + as.free(0)))
stopifnot(all(is.id(x-x)))

18 keep

keep Keep or drop symbols

Description

Keep or drop symbols

Usage

keep(a, yes)
discard(a, no)

Arguments

a Object of class free

yes, no Specification of symbols to either keep (yes) or discard (no), coerced to a free
object

Note

Function keep() needs an explicit return() to prevent it from returning invisibly.

The functions are vectorised in the first argument but not the second.

The second argument—the symbols to keep or discard—is formally a vector of nonnegative inte-
gers, but the functions coerce it to a free object. The symbols kept or dropped are the union of the
symbols in the elements of the vector. Function discard() was formerly known as drop() but this
conflicted with base::drop().

These functions have nothing in common with APL’s take() and drop().

Author(s)

Robin K. S. Hankin

Examples

(x <- rfree(20,5,8))

keep(x,abc(4)) # keep only symbols a,b,c,d
discard(x,as.free('cde')) # drop symbols c,d,e

keep(x,alpha(3)) # keep only abc

nielsen 19

nielsen Outer automorphisms of the free group

Description

Vectorized functionality to implement outer automorphisms of the free group

Usage

permsymb_single_X(X,f)
permsymb_single_f(X,f)
permsymb_vec(X,f)
permsymb(X,f)
autosub_lowlevel(M,e,S)
autosub(X,e,S,automorphism_warning=TRUE)

Arguments

X, S Object of class free

f Permutation function

M Single free group element, in two-row matrix form

e Single element to substitute
automorphism_warning

Boolean, with default TRUE meaning to give a warning if the requested substitu-
tion is not an automorphism and FALSE meaning not to give the warning

Details

In 1924, Nielsen showed that the automorphism group of the free group with basis [x1, . . . , xn] is
generated by the following four elementary Nielsen transformations:

1. switch x1 and x2

2. Cyclically permute x1, x2, . . . , xn to x2, . . . , xn, x1

3. Replace x1 with x−1
1

4. Replace x1 with x1x2.

The functions documented here give vectorized methods to effect such outer automorphisms, using
the permutations package.

Operations 1 and 2 above generate the symmetric group Sn and such automorphisms are effected
by function permsymb(). Operation 3 is carried out by by flip() and operation 4 by subsymb().

Functions permsymb_single_X(), permsymb_single_f(), permsymb_vec() and subsymb_lowlevel()
are low-level helper functions that are not really suited for the end user; use permsymb(), (flip)
and subsymb() instead.

https://CRAN.R-project.org/package=permutations

20 Ops.free

Note

Function permsymb() is intended to work nicely with the permutations package; see inst/outer.Rmd
for some illustrations. The function is not perfect.

Author(s)

Robin K. S. Hankin

References

Wikipedia contributors. (2018, October 29). “Automorphism group of a free group”. In Wikipedia,
The Free Encyclopedia. Retrieved 19:58, January 10, 2019, from https://en.wikipedia.org/w/
index.php?title=Automorphism_group_of_a_free_group&oldid=866270661

See Also

flip

Examples

P <- as.free(c("abc","aba","cc","ca"))
autosub(P,"c",as.free("xyz"))

flip(P,"c")
flip(P,"ac")

Ops.free Arithmetic Ops methods for the free group

Description

Allows arithmetic operators to be used for manipulation of free group elements such as addition,
multiplication, powers, etc

Usage

S3 method for class 'free'
Ops(e1, e2)
free_equal(e1,e2)
free_power(e1,e2)
free_repeat(e1,n)
juxtapose(e1,e2)
S3 method for class 'free'
inverse(e1)
S3 method for class 'matrix'
inverse(e1)

https://CRAN.R-project.org/package=permutations
https://en.wikipedia.org/w/index.php?title=Automorphism_group_of_a_free_group&oldid=866270661
https://en.wikipedia.org/w/index.php?title=Automorphism_group_of_a_free_group&oldid=866270661

Ops.free 21

Arguments

e1, e2 Objects of class free

n An integer, possibly non-positive

Details

The function Ops.free() passes binary arithmetic operators (“+”, “-”, “*”, “^”, and “==”) to the
appropriate specialist function.

There are two non-trivial basic operations: juxtaposition, denoted “a+b”, and inversion, denoted
“-a”. Note that juxtaposition is noncommutative and a+b will not, in general, be equal to b+a.

All operations return a reduced word.

The caret, as in a^b, denotes group-theoretic exponentiation (-b+a+b); the notation is motivated by
the identities x^(yz) == (x^y)^z and (xy)^z == x^z * y^z, as in the permutations package.

As an experimental feature the package now accepts multiplicative notation, so these identities
manifest in package idiom as written. However, this renders distributivity incorrect so that x*(y +
z) and x*y + x*z are not equal, in general [distributivity manifests as x*c(y, z) == c(x*y, x*z)].

Multiplication between a free object a and an integer n (as in a*n or n*a) is defined as juxtaposing
n copies of a and reducing. Zero and negative values of n work as expected.

Comparing a free object with a numeric does not make sense and idiom such as rfree() > 4 will
return an error. Comparing a free object with another free object might be desirable [specifically,
lexicographic ordering], but is not currently implemented.

Note

The package uses additive notation but multiplicative notation might have been better.

Author(s)

Robin K. S. Hankin

Examples

x <- as.free(c("a","ab","aaab","abacc"))
y <- as.free(c("aa","BA","Bab","aaaaa"))
x
y

x + x
x + y
x + as.free("xyz")

x+y == y+x # not equal in general

x*5 == x+x+x+x+x # always true

x + alpha(26)

22 primitive

x^y

primitive Primitive elements of the free algebra

Description

A primitive word is one that is not of the form a^m for any m > 1. The concept is used in Lyndon
and Schutzenberger 1962.

Usage

is.primitive(x)
is.power(d,n)

Arguments

x Freegroup object, coerced to Tietze form

d Numeric vector

n Integer

Details

Function is.primitive() returns a boolean vector indicating whether the elements of its argument
are primitive.

Function is.power() is a lower-level helper function. is.power(d,n) determines whether d is an
n-th power (that is, d may be written as n copies of some numeric vector).

Thus is_power(c(4,5,7,4,5,7,4,5,7,4,5,7),4) returns TRUE because its primary argument is
indeed a fourth power (of c(4,5,7)).

Value

Returns a boolean.

Author(s)

Robin K. S. Hankin. The code for finding the factors of an integer was (somewhat more than)
inspired by the numbers package.

References

R. C. Lyndon and M. P. Schutzenberger 1962. “The equation aM = bNcP in a free group”. Michi-
gan Mathematical Journal, 9(4): 289–298.

https://CRAN.R-project.org/package=numbers

print 23

Examples

is.primitive(as.free(c("a","aaaa", "aaaab", "aabaab", "aabcaabcaabcaabc")))

is.power(c(7,8,4,7,8,4,7,8,4,7,8,4),4)

table(is.primitive(rfree(100)))

primitive with >1 symbols is rare:
x <- rfree(1000)
x[!is.primitive(x) & number(x)>1]
try x <- rfree(10000) [but this takes a long time]

print Print free objects

Description

Print methods for free objects

Usage

S3 method for class 'free'
print(x,...)
as.character_free(m,latex=getOption("latex"))

Arguments

x Object of class free in the print method

m A two-row matrix in function as.character_free()

latex Boolean, with TRUE meaning to print latex-friendly output including curly braces,
and default NULL option meaning to give a nicer-looking output that latex would
typeset incorrectly

... Further arguments, currently ignored

Note

The print method does not change the internal representation of a free object, which is a list of
integer matrices.

The default print method uses multiplicative notation (powers) which is inconsistent with the juxta-
position method “+”.

The print method has special dispensation for length-zero free objects but these are not handled
entirely consistently.

24 reduce

The default print method uses lowercase letters a-z, but it is possible to override this using options("freegroup_symbols"
= foo), where foo is a character vector. This is desirable if you have more than 26 symbols, because
unallocated symbols appear as NA.

The package will allow the user to set options("freegroup_symbols") to unhelpful things like
rep("a",20) without complaining (but don’t actually do it, you crazy fool).

Author(s)

Robin K. S. Hankin

See Also

char_to_free

Examples

default symbols:

abc(26)
rfree(1,10)

if we need more than 26:
options(freegroup_symbols=state.name)
rfree(10,4)

or even:
jj <- letters[1:10]
options(freegroup_symbols=apply(expand.grid(jj,jj),1,paste,collapse=""))
rfree(10,10,100,4)

options(freegroup_symbols=NULL) # NULL is interpreted as letters a-z
rfree(10,4) # back to normal

reduce Reduction of a word to reduced form

Description

Given a word, remove redundant zero-power terms, and consolidate adjacent like terms into a single
power

Usage

reduce(a)
is_reduced(a)
remove_zero_powers(a)
consolidate(a)
is_proper(a)

reduce 25

Arguments

a An object of class free

Details

A word is reduced if no symbol appears next to its own inverse and no symbol has zero power. The
essence of the package is to reduce a word into a reduced form. Thus a2b−1ba will transformed
into a3.

In the package, reduction happens automatically at creation, in function free().

Apart from is_proper(), the functions all take a free object, but the meat of the function operates
on a single two-row matrix.

Reduction is carried out by repeatedly consolidating adjacent terms of identical symbol (function
consolidate()), and removing zero power terms (function remove_zero_power()) until the word
is in reduced form (function is_reduced()).

Function is_proper() checks to see whether a matrix is suitably formed for passing to reduce().

A free object is cyclically reduced iff every cyclic permutation of the word is reduced. A reduced
word is cyclically reduced iff the first letter is not the inverse of the last one. A reduced word is
cyclically reduced if the first and last symbol differ (irrespective of power) or, if identical, have
powers of opposite sign. For example, abac and abca are cyclically reduced but abca^{-1} is not.
Function is.cyclically.reduced() tests for this, documented at cycred.Rd.

Author(s)

Robin K. S. Hankin

See Also

cycred

Examples

create a matrix:
(M <- rbind(c(1,2,3,3,2,3,2,1),c(1,2,3,-3,5,0,7,0)))

call the print method (note non-reduced form):
as.character_free(M)

show the effect of reduce():
as.character_free(reduce(M))

free() calls reduce() automatically:
free(M)

26 rfree

rfree Random free objects

Description

Creates a vector of random free objects. Intended as a quick “get you going” example of free group
objects

Usage

rfree(n = 7, size = 4, number = size, powers = seq(from = -size, to = size))
rfreee(n = 30, size = 8, number = size, powers = seq(from = -size, to = size))
rfreeee(n = 40, size = 25, number = size, powers = seq(from = -size, to = size))

Arguments

n Length of random vector to generate

size Maximum length of each element

number How many distinct letters to sample from

powers Powers in resulting polynomial. An integer n is interpreted (via sample()) as
seq_len(n)

Details

The auxiliary arguments specify the general complexity of the returned object with small meaning
simpler.

Functions rfreee() and rfreeee() give, by default, successively more complicated expressions.

Author(s)

Robin K. S. Hankin

See Also

size

Examples

rfree()

abelianize(rfree())

rfree(10,2)
rfree(10,30,26)

rfree(powers=5)
rfree(powers=5:6)

shift 27

rfree(20,2)^alpha(26)

shift Permute elements of a vector in a cycle

Description

Given a vector, permute the elements with a cyclic permutation

Usage

shift(x,i=1)

Arguments

x Vector

i Integer, number of places to permute. Negative values mean to count from the
end

Details

This function is that of the magic package, where it is motivated and discussed.

Value

Returns a vector

Author(s)

Robin K. S. Hankin

Examples

shift(1:9)
shift(1:9,-1)

shift(1:9,2)

https://CRAN.R-project.org/package=magic

28 size

size Bignesses of a free object

Description

Various metrics to describe how “big” a free object is

Usage

size(a)
total(a)
number(a)
bigness(a)

Arguments

a Vector of free group objects

Details

• The size of an object is the number of pure powers in it (this is the number of columns of the
matrix representation of the word)

• The total of an object is the sum of the absolute values of its powers

• The number of an object is the number of distinct symbols in it

Thus size(a^2ba)=3, total(a^2ba)=4, and number(a^2ba)=2.

Function bigness() is a convenience wrapper that returns all three bigness measures.

Value

These functions return an integer vector.

Note

I would like to thank Murray Jorgensen for his insightful comments which inspired this functional-
ity.

Author(s)

Robin K. S. Hankin

See Also

abs

subs 29

Examples

(a <- rfree(20,6,4))
size(a)
total(a)
number(a)

a <- rfree(20,6,4)
b <- rfree(20,6,4)

Following should all be TRUE
size(a+b) <= size(a) + size(b)
total(a+b) <= total(a) + total(b)
number(a+b) <= number(a)+ number(b)

bigness(rfree(10,3,3))
bigness(allconj(rfree(1,6,1)))

subs Substitute and invert symbols

Description

Substitute and invert specific symbols in a free object

Usage

subsu(X, from, to)
subs(X, ...)
flip(X, turn)

Arguments

X Object of class free
from, to, turn Objects coerced to class free specifying symbols to alter. These arguments are

coerced to symbols using getlet(as.free())

... Named arguments for substitution

Details

Function subsu(X,from,to) takes object X and transforms every symbol present in from into the
symbol specified in to.

Function flip(X,turn) takes object X and replaces every symbol present in turn with its inverse.

Function discard(), documented at keep.Rd, effectively substitutes a symbol with the identity
element (thereby discarding it).

Experimental function subs() is modelled on similar functionality in the freealg package and
makes idiom such as subs(X,a='z') work as expected (viz, taking each instance of symbol a
and replacing it with x).

https://CRAN.R-project.org/package=freealg

30 sum

Note

Functions subs() and subsu() substitute for particular symbols, not free group elements. In par-
ticular, be careful with uppercase (inverse) symbols; because the power is discarded, substituting
with x is the same as substituting for X. This behaviour might change in the future.

Author(s)

Robin K. S. Hankin

See Also

abs,discard

Examples

subsu(abc(1:10),abc(5),'z')
flip(abc(1:10),abc(5))

o <- rfree(30,5,10)

Following tests should all be TRUE:
size(flip(o,'a')) == size(o)
number(flip(o,'a')) == number(o)
total(flip(o,'a')) == total(o)

size(subsu(o,'a','b')) <= size(o)
number(subsu(o,'a','b')) <= number(o)
total(subsu(o,'a','b')) <= total(o)

frog <- rfree()
subs(frog,a='x')

sum Repeated summation by concatenation

Description

Concatenates its arguments to give a single free object

Usage

S3 method for class 'free'
sum(..., na.rm = FALSE)

tietze 31

Arguments

... Objects of class free, to be summed

na.rm Boolean, indicating whether to ignore NA entries (currently ignored)

Details

Concatenates its arguments and gives a single element of the free group. It works nicely with rev(),
see the examples.

Note

The package uses additive notation, but it is easy to forget this and wonder why idiom like prod(rfree())
does not work as desired. Of course, the package using additive notation means that one probably
wants sum(rfree()).

Author(s)

Robin K. S. Hankin

Examples

(x <- rfree(10,3))
sum(x)
abelianize(sum(x))

(y <- rfree(10,6))

sum(x,y)
sum(x,y) == sum(sum(x),sum(y))
x+y # not the same!

sum(x,-x)
sum(x,rev(-x))

z <- alpha(26)
stopifnot(sum(x^z) == sum(x)^z)

tietze Tietze form for free group objects

Description

Translate an object of class free to and from Tietze form

32 tietze

Usage

S3 method for class 'free'
tietze(x)
S3 method for class 'matrix'
tietze(x)
vec_to_matrix(x)

Arguments

x Object to be converted

Details

The Tietze form for a word is a list of integers corresponding to the symbols of the word; typically
a = 1, b = 2, c = 3, d = 4, etc. Negative integers represent the inverses of the symbols. Thus
c^4.d^-2.a.c becomes 3 3 3 3 -4 -4 1 3.

Function vec_to_matrix() is a low-level helper function that returns a two-row integer matrix. If
given 0 or NULL, it returns a two-row, zero-column matrix.

Author(s)

Robin K. S. Hankin

Examples

(x <- rfree(10,3))
tietze(x)

vec_to_matrix(c(1,3,-1,-1,-1,2))

as.free(list(c(1,1,8),c(2,-4,-4)))

all(as.free(tietze(abc(1:30))) == abc(1:30))

Index

∗ package
freegroup-package, 2

. (dot-class), 13
[,dot,ANY,ANY-method (dot-class), 13
[,dot,ANY,missing-method (dot-class), 13
[,dot,free,ANY,ANY-method (dot-class),

13
[,dot,free,ANY-method (dot-class), 13
[,dot,matrix,matrix-method (dot-class),

13
[,dot,missing,ANY-method (dot-class), 13
[,dot,missing,missing-method

(dot-class), 13
[,dot-method (dot-class), 13
[.dot (dot-class), 13
[.free (Extract), 14
[<-.free (Extract), 14
%~% (cycred), 11

abc (alpha), 6
abelianize, 4
abelianized (abelianize), 4
abs, 28, 30
abs (abs.free), 5
abs.free, 5
allconj (cycred), 11
alpha, 6
alphabet (alpha), 6
as.character_free (print), 23
as.cyclically_reduced (cycred), 11
as.free (free), 15
automorphism (nielsen), 19
automorphisms (nielsen), 19
autosub (nielsen), 19
autosub_lowlevel (nielsen), 19

backwards, 7
bigness (size), 28

c, 8

char_to_free, 9, 16, 24
char_to_matrix (char_to_free), 9
commutator (dot-class), 13
conjugate (cycred), 11
consolidate (reduce), 24
cumsum, 10
cyclic (cycred), 11
cyclic_reduction (cycred), 11
cyclically (cycred), 11
cyclically_reduce (cycred), 11
cyclically_reduce_tietze (cycred), 11
cyclically_reduced (cycred), 11
cycred, 11, 25

discard, 30
discard (keep), 18
donames, 12
dot (dot-class), 13
dot-class, 13
dot_error (dot-class), 13
drop (keep), 18

Extract, 14
extract (dot-class), 13

flip, 20
flip (subs), 29
free, 15
free-class (free), 15
free_equal (Ops.free), 20
free_power (Ops.free), 20
free_repeat (Ops.free), 20
freegroup (freegroup-package), 2
freegroup-package, 2
freeprod (sum), 30

getlet, 16

id (identity), 17
identity, 17
inverse (Ops.free), 20

33

34 INDEX

is.abelian (abelianize), 4
is.conjugate (cycred), 11
is.conjugate_single (cycred), 11
is.cyclically.reduced (cycred), 11
is.cyclically_reduced (cycred), 11
is.free (free), 15
is.id (identity), 17
is.identity (identity), 17
is.power (primitive), 22
is.primitive (primitive), 22
is_proper (reduce), 24
is_reduced (reduce), 24

jacobi (dot-class), 13
juxtapose (Ops.free), 20

keep, 18

list_to_free (free), 15

names (donames), 12
neutral (identity), 17
nielsen, 19
number (size), 28

ops (Ops.free), 20
Ops.free, 13, 20
outer (nielsen), 19

permsymb (nielsen), 19
permsymb_single_f (nielsen), 19
permsymb_single_X (nielsen), 19
permsymb_vec (nielsen), 19
primitive, 22
print, 23
print.free, 9
print.free (print), 23
print.freegroup (print), 23
prodfree (sum), 30

reduce, 12, 24
remove_zero_powers (reduce), 24
rep.free (c), 8
retain (keep), 18
rfree, 26
rfreee (rfree), 26
rfreeee (rfree), 26

shift, 27
size, 26, 28

subs, 5, 29
subsu (subs), 29
sum, 10, 30

Tietze (tietze), 31
tietze, 31
total (size), 28

vec_to_matrix (tietze), 31

	freegroup-package
	abelianize
	abs.free
	alpha
	backwards
	c
	char_to_free
	cumsum
	cycred
	donames
	dot-class
	Extract
	free
	getlet
	identity
	keep
	nielsen
	Ops.free
	primitive
	print
	reduce
	rfree
	shift
	size
	subs
	sum
	tietze
	Index

