
Package ‘ftrCOOL’
July 22, 2025

Type Package

Title Feature Extraction from Biological Sequences

Version 2.0.0

Author Sare Amerifar

Maintainer Sare Amerifar <sare.ameri.01@gmail.com>

Description Extracts features from biological sequences. It contains most features which are pre-
sented in related work and also includes features which have never been introduced before. It ex-
tracts numerous features from nucleotide and peptide sequences. Each feature converts the in-
put sequences to discrete numbers in order to use them as predictors in machine learning mod-
els. There are many features and information which are hidden inside a sequence. Utiliz-
ing the package, users can convert biological sequences to discrete models based on chosen prop-
erties. References: 'iLearn' 'Z. Chen et al.' (2019) <DOI:10.1093/bib/bbz041>. 'iFea-
ture' 'Z. Chen et al.' (2018) <DOI:10.1093/bioinformatics/bty140>. <https:
//CRAN.R-project.org/package=rDNAse>. 'PseKRAAC' 'Y. Zuo et al.' 'PseKRAAC: a flexi-
ble web server for generating pseudo K-tuple reduced amino acids composi-
tion' (2017) <DOI:10.1093/bioinformatics/btw564>. 'iDNA6mA-
PseKNC' 'P. Feng et al.' 'iDNA6mA-PseKNC: Identifying DNA N6-methyladenosine sites by in-
corporating nucleotide physicochemical proper-
ties into PseKNC' (2019) <DOI:10.1016/j.ygeno.2018.01.005>. 'I. Dubchak et al.' 'Predic-
tion of protein folding class using global description of amino acid se-
quence' (1995) <DOI:10.1073/pnas.92.19.8700>. 'W. Chen et al.' 'Identification and analy-
sis of the N6-methyladenosine in the Saccharomyces cerevisiae transcrip-
tome' (2015) <DOI:10.1038/srep13859>.

License GPL-3

Encoding UTF-8

RoxygenNote 7.1.1

Imports stats, utils

Suggests testthat

NeedsCompilation no

Repository CRAN

Date/Publication 2021-11-29 23:10:02 UTC

1

https://doi.org/10.1093/bib/bbz041
https://doi.org/10.1093/bioinformatics/bty140
https://CRAN.R-project.org/package=rDNAse
https://CRAN.R-project.org/package=rDNAse
https://doi.org/10.1093/bioinformatics/btw564
https://doi.org/10.1016/j.ygeno.2018.01.005
https://doi.org/10.1073/pnas.92.19.8700
https://doi.org/10.1038/srep13859

2 Contents

Contents
AA2Binary . 5
AAindex . 7
AAKpartComposition . 8
AAutoCor . 9
AESNN3 . 11
alphabetCheck . 12
ANF_DNA . 13
ANF_RNA . 14
APAAC . 15
APkNUCdi_DNA . 16
APkNUCdi_RNA . 17
APkNUCTri_DNA . 19
ASA . 20
ASDC . 21
ASDC_DNA . 22
ASDC_RNA . 23
AutoCorDiNUC_DNA . 24
AutoCorDiNUC_RNA . 25
AutoCorTriNUC_DNA . 27
binary_3bit_T1 . 28
binary_3bit_T2 . 29
binary_3bit_T3 . 31
binary_3bit_T4 . 32
binary_3bit_T5 . 33
binary_3bit_T6 . 35
binary_3bit_T7 . 36
binary_5bit_T1 . 37
binary_5bit_T2 . 39
binary_6bit . 40
BLOSUM62 . 41
CkSAApair . 42
CkSGAApair . 43
CkSNUCpair_DNA . 45
CkSNUCpair_RNA . 46
codonAdaptionIndex . 47
CodonFraction . 48
CodonUsage_DNA . 49
CodonUsage_RNA . 50
conjointTriad . 51
conjointTriadKS . 51
CTD . 52
CTDC . 53
CTDD . 54
CTDT . 55
DDE . 56
DiNUC2Binary_DNA . 57

Contents 3

DiNUC2Binary_RNA . 58
DiNUCindex_DNA . 59
DiNUCindex_RNA . 61
DisorderB . 62
DisorderC . 63
DisorderS . 64
DistancePair . 65
DPCP_DNA . 66
DPCP_RNA . 67
EAAComposition . 68
EffectiveNumberCodon . 70
EGAAComposition . 71
EIIP . 72
ENUComposition_DNA . 74
ENUComposition_RNA . 75
ExpectedValKmerNUC_DNA . 76
ExpectedValKmerNUC_RNA . 77
ExpectedValueAA . 78
ExpectedValueGAA . 79
ExpectedValueGKmerAA . 80
ExpectedValueKmerAA . 81
fa.read . 82
fickettScore . 83
GAAKpartComposition . 84
GrpDDE . 85
G_Ccontent_DNA . 86
G_Ccontent_RNA . 87
kAAComposition . 88
kGAAComposition . 89
KNNPeptide . 90
KNNProtein . 91
KNN_DNA . 93
KNN_RNA . 94
kNUComposition_DNA . 95
kNUComposition_RNA . 96
LocalPoSpKAAF . 97
LocalPoSpKNUCF_DNA . 98
LocalPoSpKNUCF_RNA . 100
maxORF . 101
maxORFlength_DNA . 102
maxORFlength_RNA . 103
maxORF_RNA . 103
Mismatch_DNA . 104
Mismatch_RNA . 105
MMI_DNA . 106
MMI_RNA . 107
nameKmer . 108
NCP_DNA . 108

4 Contents

NCP_RNA . 110
needleman . 111
nonStandardSeq . 112
NUC2Binary_DNA . 113
NUC2Binary_RNA . 114
NUCKpartComposition_DNA . 116
NUCKpartComposition_RNA . 117
OPF_10bit . 118
OPF_7bit_T1 . 119
OPF_7bit_T2 . 120
OPF_7bit_T3 . 121
PCPseDNC . 123
PS2_DNA . 124
PS2_RNA . 126
PS3_DNA . 127
PS3_RNA . 129
PS4_DNA . 130
PS4_RNA . 132
PSEAAC . 133
PseEIIP . 135
PSEkNUCdi_DNA . 136
PSEkNUCdi_RNA . 137
PSEkNUCTri_DNA . 138
PseKRAAC_T1 . 140
PseKRAAC_T10 . 141
PseKRAAC_T11 . 143
PseKRAAC_T12 . 144
PseKRAAC_T13 . 146
PseKRAAC_T14 . 147
PseKRAAC_T15 . 149
PseKRAAC_T16 . 150
PseKRAAC_T2 . 152
PseKRAAC_T3A . 153
PseKRAAC_T3B . 155
PseKRAAC_T4 . 157
PseKRAAC_T5 . 158
PseKRAAC_T6A . 159
PseKRAAC_T6B . 161
PseKRAAC_T7 . 162
PseKRAAC_T8 . 164
PseKRAAC_T9 . 165
PSSM . 167
PSTNPds . 168
PSTNPss_DNA . 169
PSTNPss_RNA . 170
QSOrder . 171
readASAdir . 172
readDisDir . 173

AA2Binary 5

readPSSMdir . 174
readss2Dir . 174
readTorsionDir . 175
revComp . 176
SAAC . 176
SGAAC . 177
SOCNumber . 178
SSEB . 179
SSEC . 181
SSES . 181
TorsionAngle . 182
TPCP_DNA . 183
TriNUCindex_DNA . 185
Zcurve12bit_DNA . 186
Zcurve12bit_RNA . 187
Zcurve144bit_DNA . 188
Zcurve144bit_RNA . 189
Zcurve36bit_DNA . 190
Zcurve36bit_RNA . 191
Zcurve48bit_DNA . 192
Zcurve48bit_RNA . 193
Zcurve9bit_DNA . 194
Zcurve9bit_RNA . 195
zSCALE . 196

Index 197

AA2Binary Amino Acid To Binary (AA2Binary)

Description

This function transforms an amino acid to a binary format. The type of the binary format is deter-
mined by the binaryType parameter. For details about each format, please refer to the description
of the binaryType parameter.

Usage

AA2Binary(
seqs,
binaryType = "numBin",
label = c(),
outFormat = "mat",
outputFileDist = ""

)

6 AA2Binary

Arguments

seqs is a FASTA file with amino acid sequences. Each sequence starts with a ’>’
character. Also, seqs could be a string vector. Each element of the vector is a
peptide/protein sequence.

binaryType It can take any of the following values: (’strBin’,’logicBin’,’numBin’). ’strBin’(String
binary): each amino acid is represented by a string containing 20 characters(0-
1). For example, A = ALANIN = "1000000...0" ’logicBin’(logical value): Each
amino acid is represented by a vector containing 20 logical entries. For example,
A = ALANIN = c(T,F,F,F,F,F,F,...F) ’numBin’ (numeric bin): Each amino acid
is represented by a numeric (i.e., integer) vector containing 20 numerals. For
example, A = ALANIN = c(1,0,0,0,0,0,0,...,0)

label is an optional parameter. It is a vector whose length is equivalent to the number
of sequences. It shows the class of each entry (i.e., sequence).

outFormat (output format) can take two values: ’mat’(matrix) and ’txt’. The default value
is ’mat’.

outputFileDist shows the path and name of the ’txt’ output file.

Value

The output is different depending on the outFormat parameter (’mat’ or ’txt’). If outFormat is set to
’mat’, it returns a feature matrix for sequences with the same lengths. The number of rows is equal
to the number of sequences and if binaryType is ’strBin’, the number of columns is the length of the
sequences. Otherwise, it is equal to (length of the sequences)*20. If outFormat is ’txt’, all binary
values will be written to a the output is written to a tab-delimited file. Each line in the file shows
the binary format of a sequence.

Note

This function is provided for sequences with the same lengths. Users can use ’txt’ option in out-
Format for sequences with different lengths. Warning: If outFormat is set to ’mat’ for sequences
with different lengths, it returns an error. Also, when output format is ’txt’, label information is not
shown in the text file. It is noteworthy that ’txt’ format is not usable for machine learning purposes if
sequences have different sizes. Otherwise ’txt’ format is also usable for machine learning purposes.

Examples

ptmSeqsADR<-system.file("extdata/",package="ftrCOOL")
ptmSeqsVect<-as.vector(read.csv(paste0(ptmSeqsADR,"/ptmVect101AA.csv"))[,2])
mat<-AA2Binary(seqs = ptmSeqsVect, binaryType="numBin",outFormat="mat")

AAindex 7

AAindex Amino Acid Index (AAindex)

Description

This function converts the amino acids of a sequence to a list of physicochemical properties in the
aaIndex file. For each amino acid, the function uses a numeric vector which shows the aaIndex of
the amino acid.

Usage

AAindex(
seqs,
selectedAAidx = 1:554,
standardized = TRUE,
threshold = 1,
label = c(),
outFormat = "mat",
outputFileDist = ""

)

Arguments

seqs is a FASTA file with amino acid sequences. Each sequence starts with a ’>’
character. Also, seqs could be a string vector. Each element of the vector is a
peptide/protein sequence.

selectedAAidx AAindex function works based on physicochemical properties. Users select the
properties by their ids or indexes in aaIndex2 file.

standardized is a logical parameter. If it is set to TRUE, amino acid indices will be in the
standard format. The default value is TRUE.

threshold is a number between (0 , 1]. In selectedAAidx, indices with a correlation higher
than the threshold will be deleted. The default value is 1.

label is an optional parameter. It is a vector whose length is equivalent to the number
of sequences. It shows the class of each entry (i.e., sequence).

outFormat (output format) can take two values: ’mat’(matrix) and ’txt’. The default value
is ’mat’.

outputFileDist shows the path and name of the ’txt’ output file.

Details

In this function each amino acid is converted to a numeric vector. Elements of the vector represent
a physicochemical property for the amino acid. In the aaIndex database, there are 554 amino acid
indices. Users can choose the desired aaindex by specifying aaindexes through their ids or indexes
in the aaIndex file, via selectedAAidx parameter.

8 AAKpartComposition

Value

The output depends on the outFormat parameter which can be either ’mat’ or ’txt’. If outFormat is
’mat’, the function returns a feature matrix for sequences with the same length such that the number
of columns is (sequence length)*(number of selected amino acid indexes) and the number of rows
is equal to the number of sequences. If the outFormat is ’txt’, the output is written to a tab-delimited
file.

Note

This function is provided for sequences with the same lengths. Users can use ’txt’ option in out-
Format for sequences with different lengths. Warning: If outFormat is set to ’mat’ for sequences
with different lengths, it returns an error. Also, when output format is ’txt’, label information is not
shown in the text file. It is noteworthy that ’txt’ format is not usable for machine learning purposes if
sequences have different sizes. Otherwise ’txt’ format is also usable for machine learning purposes.

Examples

dir = tempdir()
ptmSeqsADR<-system.file("extdata/",package="ftrCOOL")
ptmSeqsVect<-as.vector(read.csv(paste0(ptmSeqsADR,"/ptmVect101AA.csv"))[,2])
mat<-AAindex(seqs = ptmSeqsVect, selectedAAidx=1:5,outFormat="mat")

ad<-paste0(dir,"/aaidx.txt")
filePrs<-system.file("extdata/proteins.fasta",package="ftrCOOL")
AAindex(seqs = filePrs, selectedAAidx=1:5,standardized=TRUE,threshold=1,outFormat="txt"
,outputFileDist=ad)

unlink("dir", recursive = TRUE)

AAKpartComposition Amino Acid to K Part Composition (AAKpartComposition)

Description

In this function, each sequence is divided into k equal partitions. The length of each part is equal to
ceiling(l(lenght of the sequence)/k). The last part can have a different length containing the residual
amino acids. The amino acid composition is calculated for each part.

Usage

AAKpartComposition(seqs, k = 3, normalized = TRUE, label = c())

Arguments

seqs is a FASTA file with amino acid sequences. Each sequence starts with a ’>’
character. Also, seqs could be a string vector. Each element of the vector is a
peptide/protein sequence.

AAutoCor 9

k is an integer value. Each sequence should be divided to k partition(s).

normalized is a logical parameter. When it is FALSE, the return value of the function does
not change. Otherwise, the return value is normalized using the length of the
sequence.

label is an optional parameter. It is a vector whose length is equivalent to the number
of sequences. It shows the class of each entry (i.e., sequence).

Value

a feature matrix with k*20 number of columns. The number of rows is equal to the number of
sequences.

Note

Warning: The length of all sequences should be greater than k.

Examples

filePrs<-system.file("extdata/proteins.fasta",package="ftrCOOL")
mat<-AAKpartComposition(seqs=filePrs,k=5,normalized=FALSE)

AAutoCor Amino Acid Autocorrelation-Autocovariance (AAutoCor)

Description

It creates the feature matrix for each function in autocorelation (i.e., Moran, Greay, NormalizeM-
Borto) or autocovariance (i.e., AC, CC,ACC). The user can select any combination of the functions
too. In this case, the final matrix will contain features of each selected function.

Usage

AAutoCor(
seqs,
selectedAAidx = list(c("CIDH920105", "BHAR880101", "CHAM820101", "CHAM820102",

"CHOC760101", "BIGC670101", "CHAM810101", "DAYM780201")),
maxlag = 3,
threshold = 1,
type = c("Moran", "Geary", "NormalizeMBorto", "AC", "CC", "ACC"),
label = c()

)

10 AAutoCor

Arguments

seqs is a FASTA file with amino acid sequences. Each sequence starts with a ’>’
character. Also, seqs could be a string vector. Each element of the vector is a
peptide/protein sequence.

selectedAAidx Function takes as input the physicochemical properties. Users select the prop-
erties by their ids or indices in the aaIndex2 file. This parameter could be a
vector or a list of amino acid indices. The default values of the vector are the
’CIDH920105’,’BHAR880101’,’CHAM820101’,’CHAM820102’,’CHOC760101’,’BIGC670101’,’CHAM810101’,’DAYM780201’
ids in the aaIndex2 file.

maxlag This parameter shows the maximum gap between two amino acids. The gaps
change from 1 to maxlag (the maximum lag).

threshold is a number between (0 , 1]. In selectedAAidx, indices with a correlation higher
than the threshold will be deleted. The default value is 1.

type could be ’Moran’, ’Greay’, ’NormalizeMBorto’, ’AC’, ’CC’, or ’ACC’. Also, it
could be any combination of them.

label is an optional parameter. It is a vector whose length is equivalent to the number
of sequences. It shows the class of each entry (i.e., sequence).

Details

For CC and AAC autocovriance functions, which consider the covariance of the two physicochem-
ical properties, we have provided users with the ability to categorize their selected properties in a
list. The binary combination of each group will be taken into account. Note: If all the features are
in a group or selectedAAidx parameter is a vector, the binary combination will be calculated for all
the physicochemical properties.

Value

This function returns a feature matrix. The number of columns in the matrix changes depending on
the chosen autocorrelation or autocovariance types and nlag parameter. The output is a matrix. The
number of rows shows the number of sequences.

Examples

filePrs<-system.file("extdata/proteins.fasta",package="ftrCOOL")
mat1<-AAutoCor(seqs=filePrs,maxlag=20,threshold=0.9,
type=c("Moran","Geary","NormalizeMBorto","AC"))

mat2<-AAutoCor(seqs=filePrs,maxlag=20,threshold=0.9,selectedAAidx=
list(c('CIDH920105','BHAR880101','CHAM820101','CHAM820102'),c('CHOC760101','BIGC670101')
,c('CHAM810101','DAYM780201')),type=c("AC","CC","ACC"))

AESNN3 11

AESNN3 Learn from alignments (AESNN3)

Description

This function replace each amino acid of the sequence with a three-dimensional vector. Values
are taken from the three hidden units of the neural network trained on structure alignments. The
AESNN3 function can be applied to encode peptides of equal length.

Usage

AESNN3(seqs, label = c(), outFormat = "mat", outputFileDist = "")

Arguments

seqs is a FASTA file with amino acid sequences. Each sequence starts with a ’>’
character. Also, seqs could be a string vector. Each element of the vector is a
peptide/protein sequence.

label is an optional parameter. It is a vector whose length is equivalent to the number
of sequences. It shows the class of each entry (i.e., sequence).

outFormat (output format) can take two values: ’mat’(matrix) and ’txt’. The default value
is ’mat’.

outputFileDist shows the path and name of the ’txt’ output file.

Value

The output depends on the outFormat parameter which can be either ’mat’ or ’txt’. If outFormat is
’mat’, the function returns a feature matrix for sequences with the same length such that the number
of columns is (sequence length)*(5) and the number of rows is equal to the number of sequences.
If the outFormat is ’txt’, the output is written to a tab-delimited file.

Note

This function is provided for sequences with the same lengths. Users can use ’txt’ option in out-
Format parameter for sequences with different lengths. Warning: If outFormat is set to ’mat’ for
sequences with different lengths, it returns an error. Also, when output format is ’txt’, label infor-
mation is not shown in the text file. It is noteworthy that ’txt’ format is not usable for machine
learning purposes.

References

Lin K, May AC, Taylor WR. Amino acid encoding schemes from protein structure alignments:
multi-dimensional vectors to describe residue types. J Theor Biol (2002).

12 alphabetCheck

Examples

ptmSeqsADR<-system.file("extdata/",package="ftrCOOL")
ptmSeqsVect<-as.vector(read.csv(paste0(ptmSeqsADR,"/ptmVect101AA.csv"))[,2])
mat<-AESNN3(seqs = ptmSeqsVect,outFormat="mat")

alphabetCheck AlphabetCheck

Description

This function checks the alphabets in a sequence. If one of the following conditions hold, the
sequence will be deleted: 1. A peptide sequence containing non-standard amino acids, 2. A DNA
sequence with an alphabet other than A, C, G, or T, 3. An RNA sequence having an alphabet other
than A, C, G, or U.

Usage

alphabetCheck(sequences, alphabet = "aa", label = c())

Arguments

sequences is a string vector. Each element is a peptide, protein, DNA, or RNA sequences.

alphabet This parameter shows the alphabet of sequences. If it is set to ’aa’, it indicates
the alphabet of amino acids. When it is ’dna’, it shows the nucleotide alphabet
and in case it equals ’rna’, it represents ribonucleotide alphabet.

label is an optional parameter. It is a vector whose length is equivalent to the number
of sequences. It shows the class of each entry (i.e., sequence).

Value

’alphabetCheck’ returns a list with two elements. The first element is a vector which contains valid
sequences. The second element is a vector which contains the labels of the sequences (if any exists).

Note

This function receives a sequence vector and the label of sequences (if any). It deletes sequences
(and their labels) containing non-standard alphabets.

Examples

seq<-alphabetCheck(sequences=c("AGDFLIAACNMLKIVYT","ADXVGAJK"),alphabet="aa")

ANF_DNA 13

ANF_DNA Accumulated Nucleotide Frequency (ANF_DNA)

Description

This function replaces nucleotides with a four-length vector. The first three elements represent the
nucleotides and the forth holds the frequency of the nucleotide from the beginning of the sequence
until the position of the nucleotide in the sequence. ’A’ will be replaced with c(1, 1, 1, freq), ’C’
with c(0, 1, 0, freq),’G’ with c(1, 0, 0, freq), and ’T’ with c(0, 0, 1, freq).

Usage

ANF_DNA(seqs, outFormat = "mat", outputFileDist = "", label = c())

Arguments

seqs is a FASTA file containing nucleotide sequences. The sequences start with ’>’.
Also, seqs could be a string vector. Each element of the vector is a nucleotide
sequence.

outFormat (output format) can take two values: ’mat’(matrix) and ’txt’. The default value
is ’mat’.

outputFileDist shows the path and name of the ’txt’ output file.

label is an optional parameter. It is a vector whose length is equivalent to the number
of sequences. It shows the class of each entry (i.e., sequence).

Value

The output depends on the outFormat parameter which can be either ’mat’ or ’txt’. If outFormat is
’mat’, the function returns a feature matrix for sequences with the same length such that the number
of columns is (sequence length)*(4) and the number of rows is equal to the number of sequences.
If the outFormat is ’txt’, the output is written to a tab-delimited file.

Note

This function is provided for sequences with the same lengths. Users can use ’txt’ option in out-
Format for sequences with different lengths. Warning: If outFormat is set to ’mat’ for sequences
with different lengths, it returns an error. Also, when output format is ’txt’, label information is not
shown in the text file. It is noteworthy that ’txt’ format is not usable for machine learning purposes if
sequences have different sizes. Otherwise ’txt’ format is also usable for machine learning purposes.

References

Chen, W., Tran, H., Liang, Z. et al. Identification and analysis of the N6-methyladenosine in the
Saccharomyces cerevisiae transcriptome. Sci Rep 5, 13859 (2015).

14 ANF_RNA

Examples

LNCSeqsADR<-system.file("extdata/",package="ftrCOOL")
LNC50Nuc<-as.vector(read.csv(paste0(LNCSeqsADR,"/LNC50Nuc.csv"))[,2])
mat<-ANF_DNA(seqs = LNC50Nuc,outFormat="mat")

ANF_RNA Accumulated riboNucleotide Frequency (ANF_RNA)

Description

This function replaces ribonucleotides with a four-length vector. The first three elements represent
the ribonucleotides and the forth holds the frequency of the ribonucleotide from the beginning of
the sequence until the position of the ribonucleotide in the sequence. ’A’ will be replaced with c(1,
1, 1, freq), ’C’ with c(0, 1, 0, freq),’G’ with c(1, 0, 0, freq), and ’U’ with c(0, 0, 1, freq).

Usage

ANF_RNA(seqs, outFormat = "mat", outputFileDist = "", label = c())

Arguments

seqs is a FASTA file containing ribonucleotide sequences. The sequences start with
’>’. Also, seqs could be a string vector. Each element of the vector is a ribonu-
cleotide sequence.

outFormat (output format) can take two values: ’mat’(matrix) and ’txt’. The default value
is ’mat’.

outputFileDist shows the path and name of the ’txt’ output file.

label is an optional parameter. It is a vector whose length is equivalent to the number
of sequences. It shows the class of each entry (i.e., sequence).

Value

The output depends on the outFormat parameter which can be either ’mat’ or ’txt’. If outFormat is
’mat’, the function returns a feature matrix for sequences with the same length such that the number
of columns is (sequence length)*(4) and the number of rows is equal to the number of sequences.
If the outFormat is ’txt’, the output is written to a tab-delimited file.

Note

This function is provided for sequences with the same lengths. Users can use ’txt’ option in out-
Format for sequences with different lengths. Warning: If outFormat is set to ’mat’ for sequences
with different lengths, it returns an error. Also, when output format is ’txt’, label information is not
shown in the text file. It is noteworthy that ’txt’ format is not usable for machine learning purposes if
sequences have different sizes. Otherwise ’txt’ format is also usable for machine learning purposes.

APAAC 15

References

Chen, W., Tran, H., Liang, Z. et al. Identification and analysis of the N6-methyladenosine in the
Saccharomyces cerevisiae transcriptome. Sci Rep 5, 13859 (2015).

Examples

fileLNC<-system.file("extdata/Carica_papaya101RNA.txt",package="ftrCOOL")
mat<-ANF_RNA(seqs = fileLNC,outFormat="mat")

APAAC Amphiphilic Pseudo-Amino Acid Composition(series) (APAAC)

Description

This function calculates the amphiphilic pseudo amino acid composition (Series) for each sequence.

Usage

APAAC(
seqs,
aaIDX = c("ARGP820101", "HOPT810101"),
lambda = 30,
w = 0.05,
l = 1,
threshold = 1,
label = c()

)

Arguments

seqs is a FASTA file with amino acid sequences. Each sequence starts with a ’>’
character. Also, seqs could be a string vector. Each element of the vector is a
peptide/protein sequence.

aaIDX is a vector of Ids or indexes of the user-selected physicochemical properties in
the aaIndex2 database. The default values of the vector are the hydrophobicity
ids and hydrophilicity ids in the amino acid index file.

lambda is a tuning parameter. Its value indicates the maximum number of spaces be-
tween amino acid pairs. The number changes from 1 to lambda.

w (weight) is a tuning parameter. It changes in from 0 to 1. The default value is
0.05.

l This parameter keeps the value of l in lmer composition. The lmers form the
first 20^l elements of the APAAC descriptor.

threshold is a number between (0 , 1]. In aaIDX, indices with a correlation higher than the
threshold will be deleted. The default value is 1.

label is an optional parameter. It is a vector whose length is equivalent to the number
of sequences. It shows the class of each entry (i.e., sequence).

16 APkNUCdi_DNA

Details

This function computes the pseudo amino acid composition for each physicochemical property.
We have provided users with the ability to choose among different properties (i.e., not confined to
hydrophobicity or hydrophilicity).

Value

A feature matrix such that the number of columns is 20^l+(number of chosen aaIndex*lambda) and
the number of rows equals the number of sequences.

Examples

filePrs<-system.file("extdata/proteins.fasta",package="ftrCOOL")
mat<-APAAC(seqs=filePrs,l=2,lambda=3,threshold=1)

APkNUCdi_DNA Amphiphilic Pseudo-k Nucleotide Composition-di(series) (AP-
kNUCdi_DNA)

Description

This function calculates the amphiphilic pseudo k nucleotide composition(Di) (Series) for each
sequence.

Usage

APkNUCdi_DNA(
seqs,
selectedIdx = c("Rise", "Roll", "Shift", "Slide", "Tilt", "Twist"),
lambda = 3,
w = 0.05,
l = 2,
ORF = FALSE,
reverseORF = TRUE,
threshold = 1,
label = c()

)

Arguments

seqs is a FASTA file containing nucleotide sequences. The sequences start with ’>’.
Also, seqs could be a string vector. Each element of the vector is a nucleotide
sequence.

selectedIdx is a vector of Ids or indices of the desired physicochemical properties of dinu-
cleotides. Users can choose the desired indices by their ids or their names in the
DI_DNA index file. The default value of this parameter is a vector with ("Rise",
"Roll", "Shift", "Slide", "Tilt", "Twist") ids.

APkNUCdi_RNA 17

lambda is a tuning parameter. This integer value shows the maximum limit of spaces
between dinucleotide pairs. The Number of spaces changes from 1 to lambda.

w (weight) is a tuning parameter. It changes in the range of 0 to 1. The default
value is 0.05.

l This parameter keeps the value of l in lmer composition. The lmers form the
first 4^l elements of the APkNCdi descriptor.

ORF (Open Reading Frame) is a logical parameter. If it is set to true, ORF region of
each sequence is considered instead of the original sequence (i.e., 3-frame).

reverseORF is a logical parameter. It is enabled only if ORF is true. If reverseORF is true,
ORF region will be searched in the sequence and also in the reverse complement
of the sequence (i.e., 6-frame).

threshold is a number between (0 to 1]. In selectedIdx, indices with a correlation higher
than the threshold will be deleted. The default value is 1.

label is an optional parameter. It is a vector whose length is equivalent to the number
of sequences. It shows the class of each entry (i.e., sequence).

Details

This function computes the pseudo nucleotide composition for each physicochemical property of
dinucleotides. We have provided users with the ability to choose among the 148 properties in the
di-nucleotide index database.

Value

It is a feature matrix. The number of columns is 4^l+(number of the chosen indices*lambda) and
the number of rows is equal to the number of sequences.

Examples

fileLNC<-system.file("extdata/Athaliana_LNCRNA.fa",package="ftrCOOL")
mat<-APkNUCdi_DNA(seqs=fileLNC,ORF=TRUE,threshold=1)

APkNUCdi_RNA Amphiphilic Pseudo-k riboNucleotide Composition-di(series) (AP-
kNUCdi_RNA)

Description

This function calculates the amphiphilic pseudo k ribonucleotide composition(Di) (Series) for each
sequence.

18 APkNUCdi_RNA

Usage

APkNUCdi_RNA(
seqs,
selectedIdx = c("Rise (RNA)", "Roll (RNA)", "Shift (RNA)", "Slide (RNA)",
"Tilt (RNA)", "Twist (RNA)"),

lambda = 3,
w = 0.05,
l = 2,
ORF = FALSE,
reverseORF = TRUE,
threshold = 1,
label = c()

)

Arguments

seqs is a FASTA file containing ribonucleotide sequences. The sequences start with
’>’. Also, seqs could be a string vector. Each element of the vector is a ribonu-
cleotide sequence.

selectedIdx is a vector of Ids or indices of the desired physicochemical properties of di-
ribonucleotides. Users can choose the desired indices by their ids or their names
in the DI_RNA index file. The default value of this parameter is a vector with
("Rise (RNA)", "Roll (RNA)", "Shift (RNA)", "Slide (RNA)", "Tilt (RNA)","Twist
(RNA)") ids.

lambda is a tuning parameter. This integer value shows the maximum limit of spaces be-
tween di-ribonucleotide pairs. The Number of spaces changes from 1 to lambda.

w (weight) is a tuning parameter. It changes in the range of 0 to 1. The default
value is 0.05.

l This parameter keeps the value of l in lmer composition. The lmers form the
first 4^l elements of the APkNCdi descriptor.

ORF (Open Reading Frame) is a logical parameter. If it is set to true, ORF region of
each sequence is considered instead of the original sequence (i.e., 3-frame).

reverseORF is a logical parameter. It is enabled only if ORF is true. If reverseORF is true,
ORF region will be searched in the sequence and also in the reverse complement
of the sequence (i.e., 6-frame).

threshold is a number between (0 to 1]. In selectedIdx, indices with a correlation higher
than the threshold will be deleted. The default value is 1.

label is an optional parameter. It is a vector whose length is equivalent to the number
of sequences. It shows the class of each entry (i.e., sequence).

Details

This function computes the pseudo ribonucleotide composition for each physicochemical property
of di-ribonucleotides. We have provided users with the ability to choose among the 22 properties in
the di-ribonucleotide index database.

APkNUCTri_DNA 19

Value

It is a feature matrix. The number of columns is 4^l+(number of the chosen indices*lambda) and
the number of rows is equal to the number of sequences.

Examples

fileLNC<-system.file("extdata/Carica_papaya101RNA.txt",package="ftrCOOL")
mat<-APkNUCdi_RNA(seqs=fileLNC,ORF=TRUE,threshold=0.8)

APkNUCTri_DNA Amphiphilic Pseudo-k Nucleotide Composition-Tri(series) (APkNUC-
Tri_DNA)

Description

This function calculates the amphiphilic pseudo k nucleotide composition(Tri) (Series) for each
sequence.

Usage

APkNUCTri_DNA(
seqs,
selectedIdx = c("Dnase I", "Bendability (DNAse)"),
lambda = 3,
w = 0.05,
l = 3,
ORF = FALSE,
reverseORF = TRUE,
threshold = 1,
label = c()

)

Arguments

seqs is a FASTA file containing nucleotide sequences. The sequences start with ’>’.
Also, seqs could be a string vector. Each element of the vector is a nucleotide
sequence.

selectedIdx is a vector of Ids or indices of the desired physicochemical properties of trin-
ucleotides. Users can choose the desired indices by their ids or their names in
the TRI_DNA index file. The default value of the parameter is a vector with
("Dnase I", "Bendability (DNAse)") ids.

lambda is a tuning parameter. This integer value shows the maximum limit of spaces
between trinucleotide pairs. The Number of spaces changes from 1 to lambda.

w (weight) is a tuning parameter. It changes in the range of 0 to 1. The default
value is 0.05.

20 ASA

l This parameter keeps the value of l in lmer composition. The lmers form the
first 4^l of the APkNCTri descriptor.

ORF (Open Reading Frame) is a logical parameter. If it is set to true, ORF region of
each sequence is considered instead of the original sequence (i.e., 3-frame).

reverseORF is a logical parameter. It is enabled only if ORF is true. If reverseORF is true,
ORF region will be searched in the sequence and also in the reverse complement
of the sequence (i.e., 6-frame).

threshold is a number between (0 , 1]. In selectedIdx, indices with a correlation higher
than the threshold will be deleted. The default value is 1.

label is an optional parameter. It is a vector whose length is equivalent to the number
of sequences. It shows the class of each entry (i.e., sequence).

Details

This function computes the pseudo nucleotide composition for each physicochemical property of
trinucleotides. We have provided users with the ability to choose among the 12 properties in the
tri-nucleotide index database.

Value

It is a feature matrix. The number of columns is 4^l+(number of the chosen indices*lambda) and
the number of rows is equal to the number of sequences.

Examples

fileLNC<-system.file("extdata/Athaliana_LNCRNA.fa",package="ftrCOOL")
mat<-APkNUCTri_DNA(seqs=fileLNC,l=3,threshold=1)

ASA Accessible Solvent Accessibility (ASA)

Description

ASA represents an amino acid by a numeric value. This function extracts the ASA from the output
of SPINE-X software which predicts ASA for each amino acid in a peptide or protein sequence.
The output of SPINE-X is a tab-delimited file. ASAs are in the 11th column of the file.

Usage

ASA(dirPath, outFormat = "mat", outputFileDist = "")

Arguments

dirPath Path of the directory which contains all output files of SPINE-X. Each file be-
longs to a sequence.

outFormat It can take two values: ’mat’ (which stands for matrix) and ’txt’. The default
value is ’mat’.

outputFileDist It shows the path and name of the ’txt’ output file.

ASDC 21

Value

The output depends on the outFormat which can be either ’mat’ or ’txt’. If outFormat is ’mat’,
the function returns a feature matrix for sequences with the same lengths such that the number of
columns is equal to the length of the sequences and the number of rows is equal to the number of
sequences. If the outFormat is ’txt’, the output is written to a tab-delimited file.

Note

This function is provided for sequences with the same lengths. Users can use ’txt’ option in out-
Format for sequences with different lengths. Warning: If outFormat is set to ’mat’ for sequences
with different lengths, it returns an error. Also, when output format is ’txt’, label information is not
shown in the text file. It is noteworthy that ’txt’ format is not usable for machine learning purposes if
sequences have different sizes. Otherwise ’txt’ format is also usable for machine learning purposes.

Examples

dir = tempdir()
ad<-paste0(dir,"/asa.txt")

PredASAdir<-system.file("testForder",package="ftrCOOL")
PredASAdir<-paste0(PredASAdir,"/ASAdir/")
ASA(PredASAdir,outFormat="txt",outputFileDist=ad)

unlink("dir", recursive = TRUE)

ASDC Adaptive skip dipeptide composition (ASDC)

Description

This descriptor sufficiently considers the correlation information present not only between adjacent
residues but also between intervening residues. This function calculates frequency of pair amino
acids omitting gaps between them. Then this function normalizes each value through dividing each
frequency by summition(frequencies).

Usage

ASDC(seqs, label = c())

Arguments

seqs is a FASTA file with amino acid sequences. Each sequence starts with a ’>’
character. Also, seqs could be a string vector. Each element of the vector is a
peptide/protein sequence.

label is an optional parameter. It is a vector whose length is equivalent to the number
of sequences. It shows the class of each entry (i.e., sequence).

22 ASDC_DNA

Value

The function returns a feature matrix. The number of rows is equal to the number of sequences and
the number of columns is 400 (all posible amino acid pairs).

References

Wei L, Zhou C, Chen H, Song J, Su R. ACPred-FL: a sequence-based predictor using effective
feature representation to improve the prediction of anti-cancer peptides. Bioinformatics (2018).

Examples

filePrs<-system.file("extdata/proteins.fasta",package="ftrCOOL")
mat<-ASDC(seqs=filePrs)

ASDC_DNA Adaptive skip dinucleotide composition_DNA) (ASDC_DNA)

Description

This descriptor sufficiently considers the correlation information present not only between adjacent
nucleotides but also between intervening nucleotides This function calculates frequency of pair
nucleotides omitting gaps between them. Then this function normalizes each value through dividing
each frequency by summition(frequencies).

Usage

ASDC_DNA(seqs, ORF = FALSE, reverseORF = TRUE, label = c())

Arguments

seqs is a FASTA file containing nucleotide sequences. The sequences start with ’>’.
Also, seqs could be a string vector. Each element of the vector is a nucleotide
sequence.

ORF (Open Reading Frame) is a logical parameter. If it is set to true, ORF region of
each sequence is considered instead of the original sequence (i.e., 3-frame).

reverseORF is a logical parameter. It is enabled only if ORF is true. If reverseORF is true,
ORF region will be searched in the sequence and also in the reverse complement
of the sequence (i.e., 6-frame).

label is an optional parameter. It is a vector whose length is equivalent to the number
of sequences. It shows the class of each entry (i.e., sequence).

Value

The function returns a feature matrix. The number of rows is equal to the number of sequences and
the number of columns is 16 (All posible nucleotide pairs).

ASDC_RNA 23

References

Wei L, Zhou C, Chen H, Song J, Su R. ACPred-FL: a sequence-based predictor using effective
feature representation to improve the prediction of anti-cancer peptides. Bioinformatics (2018).

Examples

fileLNC<-system.file("extdata/Athaliana_LNCRNA.fa",package="ftrCOOL")
fileLNC<-fa.read(file=fileLNC,alphabet="dna")[1:5]
mat1<-ASDC_DNA(seqs=fileLNC,ORF=TRUE,reverseORF=FALSE)

ASDC_RNA Adaptive skip di-ribonucleotide composition) (ASDC_RNA)

Description

This descriptor sufficiently considers the correlation information present not only between adjacent
ribo ribonucleotides but also between intervening nucleotides This function calculates frequency of
pair ribonucleotides omitting gaps between them. Then this function normalizes each value through
dividing each frequency by summition(frequencies).

Usage

ASDC_RNA(seqs, ORF = FALSE, reverseORF = TRUE, label = c())

Arguments

seqs is a FASTA file containing ribonucleotide sequences. The sequences start with
’>’. Also, seqs could be a string vector. Each element of the vector is a ribonu-
cleotide sequence.

ORF (Open Reading Frame) is a logical parameter. If it is set to true, ORF region of
each sequence is considered instead of the original sequence (i.e., 3-frame).

reverseORF is a logical parameter. It is enabled only if ORF is true. If reverseORF is true,
ORF region will be searched in the sequence and also in the reverse complement
of the sequence (i.e., 6-frame).

label is an optional parameter. It is a vector whose length is equivalent to the number
of sequences. It shows the class of each entry (i.e., sequence).

Value

The function returns a feature matrix. The number of rows is equal to the number of sequences and
the number of columns is 16 (All posible ribonucleotide pairs).

References

Wei L, Zhou C, Chen H, Song J, Su R. ACPred-FL: a sequence-based predictor using effective
feature representation to improve the prediction of anti-cancer peptides. Bioinformatics (2018).

24 AutoCorDiNUC_DNA

Examples

ptmSeqsADR<-system.file("extdata/",package="ftrCOOL")
fileLNC<-fa.read(file=paste0(ptmSeqsADR,"/testSeq2RNA51.txt"),alphabet="rna")
mat1<-ASDC_RNA(seqs=fileLNC)

AutoCorDiNUC_DNA Di Nucleotide Autocorrelation-Autocovariance (Auto-
CorDiNUC_DNA)

Description

It creates the feature matrix for each function in autocorelation (i.e., Moran, Greay, NormalizeM-
Borto) or autocovariance (i.e., AC, CC,ACC). The user can select any combination of the functions
too. In this case, the final matrix will contain features of each selected function.

Usage

AutoCorDiNUC_DNA(
seqs,
selectedIdx = c("Rise", "Roll", "Shift", "Slide", "Tilt", "Twist"),
maxlag = 3,
threshold = 1,
type = c("Moran", "Geary", "NormalizeMBorto", "AC", "CC", "ACC"),
label = c()

)

Arguments

seqs is a FASTA file containing nucleotide sequences. The sequences start with ’>’.
Also, seqs could be a string vector. Each element of the vector is a nucleotide
sequence.

selectedIdx function takes as input the physicochemical properties. Users select the proper-
ties by their ids or indices in the DI_DNA file. This parameter could be a vector
or a list of dinucleotide indices. The default value of this parameter is a vector
with ("Rise", "Roll", "Shift", "Slide", "Tilt", "Twist") ids.

maxlag This parameter shows the maximum gap between two dinucleotide pairs. The
gaps change from 1 to maxlag (the maximum lag).

threshold is a number between (0 to 1]. In selectedIdx, indices with a correlation higher
than the threshold will be deleted.The default value is 1.

type could be ’Moran’, ’Greay’, ’NormalizeMBorto’, ’AC’, ’CC’, or ’ACC’. Also, it
could be any combination of them.

label is an optional parameter. It is a vector whose length is equivalent to the number
of sequences. It shows the class of each entry (i.e., sequence).

AutoCorDiNUC_RNA 25

Details

For CC and AAC autocovriance functions, which consider the covariance of the two physicochem-
ical properties, we have provided users with the ability to categorize their selected properties in a
list. The binary combination of each group will be taken into account. Note: If all the features are
in a group or selectedAAidx parameter is a vector, the binary combination will be calculated for all
the physicochemical properties.

Value

This function returns a feature matrix. The number of columns in the matrix changes depending on
the chosen autocorrelation or autocovariance types and nlag parameter. The output is a matrix. The
number of rows shows the number of sequences.

Examples

fileLNC<-system.file("extdata/Athaliana_LNCRNA.fa",package="ftrCOOL")

mat2<-AutoCorDiNUC_DNA(seqs=fileLNC,selectedIdx=list(10,c(1,3),6:13,c(2:7))
,maxlag=15,type="CC")

AutoCorDiNUC_RNA Di riboNucleotide Autocorrelation-Autocovariance (Auto-
CorDiNUC_RNA)

Description

It creates the feature matrix for each function in autocorelation (i.e., Moran, Greay, NormalizeM-
Borto) or autocovariance (i.e., AC, CC,ACC). The user can select any combination of the functions
too. In this case, the final matrix will contain features of each selected function.

Usage

AutoCorDiNUC_RNA(
seqs,
selectedIdx = c("Rise (RNA)", "Roll (RNA)", "Shift (RNA)", "Slide (RNA)",
"Tilt (RNA)", "Twist (RNA)"),

maxlag = 3,
threshold = 1,
type = c("Moran", "Geary", "NormalizeMBorto", "AC", "CC", "ACC"),
label = c()

)

26 AutoCorDiNUC_RNA

Arguments

seqs is a FASTA file containing ribonucleic acid(RNA) sequences. The sequences
start with ’>’. Also, seqs could be a string vector. Each element of the vector is
a RNA sequence.

selectedIdx function takes as input the physicochemical properties. Users select the proper-
ties by their ids or indices in the DI_RNA file. This parameter could be a vector
or a list of di-ribonucleic acid indices. The default value of this parameter is a
vector with ("Rise (RNA)", "Roll (RNA)", "Shift (RNA)", "Slide (RNA)", "Tilt
(RNA)","Twist (RNA)") ids.

maxlag This parameter shows the maximum gap between two di-ribonucleotide pairs.
The gaps change from 1 to maxlag (the maximum lag).

threshold is a number between (0 to 1]. In selectedIdx, indices with a correlation higher
than the threshold will be deleted.The default value is 1.

type could be ’Moran’, ’Greay’, ’NormalizeMBorto’, ’AC’, ’CC’, or ’ACC’. Also, it
could be any combination of them.

label is an optional parameter. It is a vector whose length is equivalent to the number
of sequences. It shows the class of each entry (i.e., sequence).

Details

For CC and AAC autocovriance functions, which consider the covariance of the two physicochem-
ical properties, we have provided users with the ability to categorize their selected properties in a
list. The binary combination of each group will be taken into account. Note: If all the features are
in a group or selectedAAidx parameter is a vector, the binary combination will be calculated for all
the physicochemical properties.

Value

This function returns a feature matrix. The number of columns in the matrix changes depending on
the chosen autocorrelation or autocovariance types and nlag parameter. The output is a matrix. The
number of rows shows the number of sequences.

Examples

fileLNC<-system.file("extdata/Carica_papaya101RNA.txt",package="ftrCOOL")
fileLNC<-fa.read(fileLNC,alphabet="rna")
fileLNC<-fileLNC[1:20]
mat1<-AutoCorDiNUC_RNA(seqs=fileLNC,maxlag=20,type=c("Moran"))

AutoCorTriNUC_DNA 27

AutoCorTriNUC_DNA Tri Nucleotide Autocorrelation-Autocovariance (AutoCor-
TriNUC_DNA)

Description

It creates the feature matrix for each function in autocorelation (i.e., Moran, Greay, NormalizeM-
Borto) or autocovariance (i.e., AC, CC,ACC). The user can select any combination of the functions
too. In this case, the final matrix will contain features of each selected function.

Usage

AutoCorTriNUC_DNA(
seqs,
selectedNucIdx = c("Dnase I", "Bendability (DNAse)"),
maxlag = 3,
threshold = 1,
type = c("Moran", "Geary", "NormalizeMBorto", "AC", "CC", "ACC"),
label = c()

)

Arguments

seqs is a FASTA file containing nucleotide sequences. The sequences start with ’>’.
Also, seqs could be a string vector. Each element of the vector is a nucleotide
sequence.

selectedNucIdx function takes as input the physicochemical properties. Users select the prop-
erties by their ids or indices in the TRI_DNA file. This parameter could be a
vector or a list of trinucleotide indices. The default value of this parameter is a
vector with ("Dnase I", "Bendability (DNAse)") ids.

maxlag This parameter shows the maximum gap between two tri-nucleotide pairs. The
gaps change from 1 to maxlag (the maximum lag).

threshold is a number between (0 to 1]. In selectedNucIdx, indices with a correlation
higher than the threshold will be deleted.The default value is 1.

type could be ’Moran’, ’Greay’, ’NormalizeMBorto’, ’AC’, ’CC’, or ’ACC’. Also, it
could be any combination of them.

label is an optional parameter. It is a vector whose length is equivalent to the number
of sequences. It shows the class of each entry (i.e., sequence).

Details

For CC and AAC autocovriance functions, which consider the covariance of the two physicochem-
ical properties, we have provided users with the ability to categorize their selected properties in a
list. The binary combination of each group will be taken into account. Note: If all the features are
in a group or selectedAAidx parameter is a vector, the binary combination will be calculated for all
the physicochemical properties.

28 binary_3bit_T1

Value

This function returns a feature matrix. The number of columns in the matrix changes depending on
the chosen autocorrelation or autocovariance types and nlag parameter. The output is a matrix. The
number of rows shows the number of sequences.

Examples

fileLNC<-system.file("extdata/Athaliana_LNCRNA.fa",package="ftrCOOL")
mat1<-AutoCorTriNUC_DNA(seqs=fileLNC,selectedNucIdx=c(1:7),maxlag=20,type=c("Moran","Geary"))

mat2<-AutoCorTriNUC_DNA(seqs=fileLNC,selectedNucIdx=list(c(1,3),6:10,c(2:7)),
maxlag=15,type=c("AC","CC"))

binary_3bit_T1 Binary - 3bit - Type1 (binary_3bit_T1)

Description

This group of functions(binary_3bit_T1-T7) categorizes amino acids in 3 groups based on the type.
Then represent group of amino acids by a three dimentional vector. The type of the binary for-
mat is determined by the binaryType parameter. For details about each format, please refer to the
description of the binaryType parameter.

Usage

binary_3bit_T1(
seqs,
binaryType = "numBin",
label = c(),
outFormat = "mat",
outputFileDist = ""

)

Arguments

seqs is a FASTA file with amino acid sequences. Each sequence starts with a ’>’
character. Also, seqs could be a string vector. Each element of the vector is a
peptide/protein sequence.

binaryType It can take any of the following values: (’strBin’,’logicBin’,’numBin’). ’strBin’(String
binary): each amino acid is represented by a string containing 20 characters(0-
1). For example, A = ALANIN = "1000000...0" ’logicBin’(logical value): Each
amino acid is represented by a vector containing 20 logical entries. For example,
A = ALANIN = c(T,F,F,F,F,F,F,...F) ’numBin’ (numeric bin): Each amino acid
is represented by a numeric (i.e., integer) vector containing 20 numerals. For
example, A = ALANIN = c(1,0,0,0,0,0,0,...,0)

binary_3bit_T2 29

label is an optional parameter. It is a vector whose length is equivalent to the number
of sequences. It shows the class of each entry (i.e., sequence).

outFormat (output format) can take two values: ’mat’(matrix) and ’txt’. The default value
is ’mat’.

outputFileDist shows the path and name of the ’txt’ output file.

Value

The output is different depending on the outFormat parameter (’mat’ or ’txt’). If outFormat is set to
’mat’, it returns a feature matrix for sequences with the same lengths. The number of rows is equal
to the number of sequences and if binaryType is ’strBin’, the number of columns is the length of
the sequences. Otherwise, it is equal to (length of the sequences)*3. If outFormat is ’txt’, all binary
values will be written to a the output is written to a tab-delimited file. Each line in the file shows
the binary format of a sequence.

Note

This function is provided for sequences with the same lengths. Users can use ’txt’ option in out-
Format for sequences with different lengths. Warning: If outFormat is set to ’mat’ for sequences
with different lengths, it returns an error. Also, when output format is ’txt’, label information is not
shown in the text file. It is noteworthy that ’txt’ format is not usable for machine learning purposes if
sequences have different sizes. Otherwise ’txt’ format is also usable for machine learning purposes.

Examples

ptmSeqsADR<-system.file("extdata/",package="ftrCOOL")
ptmSeqsVect<-as.vector(read.csv(paste0(ptmSeqsADR,"/ptmVect101AA.csv"))[,2])
mat<-binary_3bit_T1(seqs = ptmSeqsVect, binaryType="numBin",outFormat="mat")

binary_3bit_T2 Binary - 3bit - Type2 (binary_3bit_T2)

Description

This group of functions(binary_3bit_T1-T7) categorizes amino acids in 3 groups based on the type.
Then represent group of amino acids by a three dimentional vector. The type of the binary for-
mat is determined by the binaryType parameter. For details about each format, please refer to the
description of the binaryType parameter.

Usage

binary_3bit_T2(
seqs,
binaryType = "numBin",
label = c(),
outFormat = "mat",
outputFileDist = ""

)

30 binary_3bit_T2

Arguments

seqs is a FASTA file with amino acid sequences. Each sequence starts with a ’>’
character. Also, seqs could be a string vector. Each element of the vector is a
peptide/protein sequence.

binaryType It can take any of the following values: (’strBin’,’logicBin’,’numBin’). ’strBin’(String
binary): each amino acid is represented by a string containing 20 characters(0-
1). For example, A = ALANIN = "1000000...0" ’logicBin’(logical value): Each
amino acid is represented by a vector containing 20 logical entries. For example,
A = ALANIN = c(T,F,F,F,F,F,F,...F) ’numBin’ (numeric bin): Each amino acid
is represented by a numeric (i.e., integer) vector containing 20 numerals. For
example, A = ALANIN = c(1,0,0,0,0,0,0,...,0)

label is an optional parameter. It is a vector whose length is equivalent to the number
of sequences. It shows the class of each entry (i.e., sequence).

outFormat (output format) can take two values: ’mat’(matrix) and ’txt’. The default value
is ’mat’.

outputFileDist shows the path and name of the ’txt’ output file.

Value

The output is different depending on the outFormat parameter (’mat’ or ’txt’). If outFormat is set to
’mat’, it returns a feature matrix for sequences with the same lengths. The number of rows is equal
to the number of sequences and if binaryType is ’strBin’, the number of columns is the length of
the sequences. Otherwise, it is equal to (length of the sequences)*3. If outFormat is ’txt’, all binary
values will be written to a the output is written to a tab-delimited file. Each line in the file shows
the binary format of a sequence.

Note

This function is provided for sequences with the same lengths. Users can use ’txt’ option in out-
Format for sequences with different lengths. Warning: If outFormat is set to ’mat’ for sequences
with different lengths, it returns an error. Also, when output format is ’txt’, label information is not
shown in the text file. It is noteworthy that ’txt’ format is not usable for machine learning purposes if
sequences have different sizes. Otherwise ’txt’ format is also usable for machine learning purposes.

Examples

ptmSeqsADR<-system.file("extdata/",package="ftrCOOL")
ptmSeqsVect<-as.vector(read.csv(paste0(ptmSeqsADR,"/ptmVect101AA.csv"))[,2])
mat<-binary_3bit_T2(seqs = ptmSeqsVect, binaryType="numBin",outFormat="mat")

binary_3bit_T3 31

binary_3bit_T3 Binary - 3bit - Type3 (binary_3bit_T3)

Description

This group of functions(binary_3bit_T1-T7) categorizes amino acids in 3 groups based on the type.
Then represent group of amino acids by a three dimentional vector. The type of the binary for-
mat is determined by the binaryType parameter. For details about each format, please refer to the
description of the binaryType parameter.

Usage

binary_3bit_T3(
seqs,
binaryType = "numBin",
label = c(),
outFormat = "mat",
outputFileDist = ""

)

Arguments

seqs is a FASTA file with amino acid sequences. Each sequence starts with a ’>’
character. Also, seqs could be a string vector. Each element of the vector is a
peptide/protein sequence.

binaryType It can take any of the following values: (’strBin’,’logicBin’,’numBin’). ’strBin’(String
binary): each amino acid is represented by a string containing 20 characters(0-
1). For example, A = ALANIN = "1000000...0" ’logicBin’(logical value): Each
amino acid is represented by a vector containing 20 logical entries. For example,
A = ALANIN = c(T,F,F,F,F,F,F,...F) ’numBin’ (numeric bin): Each amino acid
is represented by a numeric (i.e., integer) vector containing 20 numerals. For
example, A = ALANIN = c(1,0,0,0,0,0,0,...,0)

label is an optional parameter. It is a vector whose length is equivalent to the number
of sequences. It shows the class of each entry (i.e., sequence).

outFormat (output format) can take two values: ’mat’(matrix) and ’txt’. The default value
is ’mat’.

outputFileDist shows the path and name of the ’txt’ output file.

Value

The output is different depending on the outFormat parameter (’mat’ or ’txt’). If outFormat is set to
’mat’, it returns a feature matrix for sequences with the same lengths. The number of rows is equal
to the number of sequences and if binaryType is ’strBin’, the number of columns is the length of
the sequences. Otherwise, it is equal to (length of the sequences)*3. If outFormat is ’txt’, all binary
values will be written to a the output is written to a tab-delimited file. Each line in the file shows
the binary format of a sequence.

32 binary_3bit_T4

Note

This function is provided for sequences with the same lengths. Users can use ’txt’ option in out-
Format for sequences with different lengths. Warning: If outFormat is set to ’mat’ for sequences
with different lengths, it returns an error. Also, when output format is ’txt’, label information is not
shown in the text file. It is noteworthy that ’txt’ format is not usable for machine learning purposes if
sequences have different sizes. Otherwise ’txt’ format is also usable for machine learning purposes.

Examples

ptmSeqsADR<-system.file("extdata/",package="ftrCOOL")
ptmSeqsVect<-as.vector(read.csv(paste0(ptmSeqsADR,"/ptmVect101AA.csv"))[,2])
mat<-binary_3bit_T3(seqs = ptmSeqsVect, binaryType="numBin",outFormat="mat")

binary_3bit_T4 Binary - 3bit - Type4 (binary_3bit_T4)

Description

This group of functions(binary_3bit_T1-T7) categorizes amino acids in 3 groups based on the type.
Then represent group of amino acids by a three dimentional vector. The type of the binary for-
mat is determined by the binaryType parameter. For details about each format, please refer to the
description of the binaryType parameter.

Usage

binary_3bit_T4(
seqs,
binaryType = "numBin",
label = c(),
outFormat = "mat",
outputFileDist = ""

)

Arguments

seqs is a FASTA file with amino acid sequences. Each sequence starts with a ’>’
character. Also, seqs could be a string vector. Each element of the vector is a
peptide/protein sequence.

binaryType It can take any of the following values: (’strBin’,’logicBin’,’numBin’). ’strBin’(String
binary): each amino acid is represented by a string containing 20 characters(0-
1). For example, A = ALANIN = "1000000...0" ’logicBin’(logical value): Each
amino acid is represented by a vector containing 20 logical entries. For example,
A = ALANIN = c(T,F,F,F,F,F,F,...F) ’numBin’ (numeric bin): Each amino acid
is represented by a numeric (i.e., integer) vector containing 20 numerals. For
example, A = ALANIN = c(1,0,0,0,0,0,0,...,0)

binary_3bit_T5 33

label is an optional parameter. It is a vector whose length is equivalent to the number
of sequences. It shows the class of each entry (i.e., sequence).

outFormat (output format) can take two values: ’mat’(matrix) and ’txt’. The default value
is ’mat’.

outputFileDist shows the path and name of the ’txt’ output file.

Value

The output is different depending on the outFormat parameter (’mat’ or ’txt’). If outFormat is set to
’mat’, it returns a feature matrix for sequences with the same lengths. The number of rows is equal
to the number of sequences and if binaryType is ’strBin’, the number of columns is the length of
the sequences. Otherwise, it is equal to (length of the sequences)*3. If outFormat is ’txt’, all binary
values will be written to a the output is written to a tab-delimited file. Each line in the file shows
the binary format of a sequence.

Note

This function is provided for sequences with the same lengths. Users can use ’txt’ option in out-
Format for sequences with different lengths. Warning: If outFormat is set to ’mat’ for sequences
with different lengths, it returns an error. Also, when output format is ’txt’, label information is not
shown in the text file. It is noteworthy that ’txt’ format is not usable for machine learning purposes if
sequences have different sizes. Otherwise ’txt’ format is also usable for machine learning purposes.

Examples

ptmSeqsADR<-system.file("extdata/",package="ftrCOOL")
ptmSeqsVect<-as.vector(read.csv(paste0(ptmSeqsADR,"/ptmVect101AA.csv"))[,2])
mat<-binary_3bit_T4(seqs = ptmSeqsVect, binaryType="numBin",outFormat="mat")

binary_3bit_T5 Binary - 3bit - Type5 (binary_3bit_T5)

Description

This group of functions(binary_3bit_T1-T7) categorizes amino acids in 3 groups based on the type.
Then represent group of amino acids by a three dimentional vector. The type of the binary for-
mat is determined by the binaryType parameter. For details about each format, please refer to the
description of the binaryType parameter.

Usage

binary_3bit_T5(
seqs,
binaryType = "numBin",
label = c(),
outFormat = "mat",
outputFileDist = ""

)

34 binary_3bit_T5

Arguments

seqs is a FASTA file with amino acid sequences. Each sequence starts with a ’>’
character. Also, seqs could be a string vector. Each element of the vector is a
peptide/protein sequence.

binaryType It can take any of the following values: (’strBin’,’logicBin’,’numBin’). ’strBin’(String
binary): each amino acid is represented by a string containing 20 characters(0-
1). For example, A = ALANIN = "1000000...0" ’logicBin’(logical value): Each
amino acid is represented by a vector containing 20 logical entries. For example,
A = ALANIN = c(T,F,F,F,F,F,F,...F) ’numBin’ (numeric bin): Each amino acid
is represented by a numeric (i.e., integer) vector containing 20 numerals. For
example, A = ALANIN = c(1,0,0,0,0,0,0,...,0)

label is an optional parameter. It is a vector whose length is equivalent to the number
of sequences. It shows the class of each entry (i.e., sequence).

outFormat (output format) can take two values: ’mat’(matrix) and ’txt’. The default value
is ’mat’.

outputFileDist shows the path and name of the ’txt’ output file.

Value

The output is different depending on the outFormat parameter (’mat’ or ’txt’). If outFormat is set to
’mat’, it returns a feature matrix for sequences with the same lengths. The number of rows is equal
to the number of sequences and if binaryType is ’strBin’, the number of columns is the length of
the sequences. Otherwise, it is equal to (length of the sequences)*3. If outFormat is ’txt’, all binary
values will be written to a the output is written to a tab-delimited file. Each line in the file shows
the binary format of a sequence.

Note

This function is provided for sequences with the same lengths. Users can use ’txt’ option in out-
Format for sequences with different lengths. Warning: If outFormat is set to ’mat’ for sequences
with different lengths, it returns an error. Also, when output format is ’txt’, label information is not
shown in the text file. It is noteworthy that ’txt’ format is not usable for machine learning purposes if
sequences have different sizes. Otherwise ’txt’ format is also usable for machine learning purposes.

Examples

ptmSeqsADR<-system.file("extdata/",package="ftrCOOL")
ptmSeqsVect<-as.vector(read.csv(paste0(ptmSeqsADR,"/ptmVect101AA.csv"))[,2])
mat<-binary_3bit_T5(seqs = ptmSeqsVect, binaryType="numBin",outFormat="mat")

binary_3bit_T6 35

binary_3bit_T6 Binary - 3bit - Type6 (binary_3bit_T6)

Description

This group of functions(binary_3bit_T1-T7) categorizes amino acids in 3 groups based on the type.
Then represent group of amino acids by a three dimentional vector. The type of the binary for-
mat is determined by the binaryType parameter. For details about each format, please refer to the
description of the binaryType parameter.

Usage

binary_3bit_T6(
seqs,
binaryType = "numBin",
label = c(),
outFormat = "mat",
outputFileDist = ""

)

Arguments

seqs is a FASTA file with amino acid sequences. Each sequence starts with a ’>’
character. Also, seqs could be a string vector. Each element of the vector is a
peptide/protein sequence.

binaryType It can take any of the following values: (’strBin’,’logicBin’,’numBin’). ’strBin’(String
binary): each amino acid is represented by a string containing 20 characters(0-
1). For example, A = ALANIN = "1000000...0" ’logicBin’(logical value): Each
amino acid is represented by a vector containing 20 logical entries. For example,
A = ALANIN = c(T,F,F,F,F,F,F,...F) ’numBin’ (numeric bin): Each amino acid
is represented by a numeric (i.e., integer) vector containing 20 numerals. For
example, A = ALANIN = c(1,0,0,0,0,0,0,...,0)

label is an optional parameter. It is a vector whose length is equivalent to the number
of sequences. It shows the class of each entry (i.e., sequence).

outFormat (output format) can take two values: ’mat’(matrix) and ’txt’. The default value
is ’mat’.

outputFileDist shows the path and name of the ’txt’ output file.

Value

The output is different depending on the outFormat parameter (’mat’ or ’txt’). If outFormat is set to
’mat’, it returns a feature matrix for sequences with the same lengths. The number of rows is equal
to the number of sequences and if binaryType is ’strBin’, the number of columns is the length of
the sequences. Otherwise, it is equal to (length of the sequences)*3. If outFormat is ’txt’, all binary
values will be written to a the output is written to a tab-delimited file. Each line in the file shows
the binary format of a sequence.

36 binary_3bit_T7

Note

This function is provided for sequences with the same lengths. Users can use ’txt’ option in out-
Format for sequences with different lengths. Warning: If outFormat is set to ’mat’ for sequences
with different lengths, it returns an error. Also, when output format is ’txt’, label information is not
shown in the text file. It is noteworthy that ’txt’ format is not usable for machine learning purposes if
sequences have different sizes. Otherwise ’txt’ format is also usable for machine learning purposes.

Examples

ptmSeqsADR<-system.file("extdata/",package="ftrCOOL")
ptmSeqsVect<-as.vector(read.csv(paste0(ptmSeqsADR,"/ptmVect101AA.csv"))[,2])
mat<-binary_3bit_T6(seqs = ptmSeqsVect, binaryType="numBin",outFormat="mat")

binary_3bit_T7 Binary - 3bit - Type7 (binary_3bit_T7)

Description

This group of functions(binary_3bit_T1-T7) categorizes amino acids in 3 groups based on the type.
Then represent group of amino acids by a three dimentional vector. The type of the binary for-
mat is determined by the binaryType parameter. For details about each format, please refer to the
description of the binaryType parameter.

Usage

binary_3bit_T7(
seqs,
binaryType = "numBin",
label = c(),
outFormat = "mat",
outputFileDist = ""

)

Arguments

seqs is a FASTA file with amino acid sequences. Each sequence starts with a ’>’
character. Also, seqs could be a string vector. Each element of the vector is a
peptide/protein sequence.

binaryType It can take any of the following values: (’strBin’,’logicBin’,’numBin’). ’strBin’(String
binary): each amino acid is represented by a string containing 20 characters(0-
1). For example, A = ALANIN = "1000000...0" ’logicBin’(logical value): Each
amino acid is represented by a vector containing 20 logical entries. For example,
A = ALANIN = c(T,F,F,F,F,F,F,...F) ’numBin’ (numeric bin): Each amino acid
is represented by a numeric (i.e., integer) vector containing 20 numerals. For
example, A = ALANIN = c(1,0,0,0,0,0,0,...,0)

binary_5bit_T1 37

label is an optional parameter. It is a vector whose length is equivalent to the number
of sequences. It shows the class of each entry (i.e., sequence).

outFormat (output format) can take two values: ’mat’(matrix) and ’txt’. The default value
is ’mat’.

outputFileDist shows the path and name of the ’txt’ output file.

Value

The output is different depending on the outFormat parameter (’mat’ or ’txt’). If outFormat is set to
’mat’, it returns a feature matrix for sequences with the same lengths. The number of rows is equal
to the number of sequences and if binaryType is ’strBin’, the number of columns is the length of
the sequences. Otherwise, it is equal to (length of the sequences)*3. If outFormat is ’txt’, all binary
values will be written to a the output is written to a tab-delimited file. Each line in the file shows
the binary format of a sequence.

Note

This function is provided for sequences with the same lengths. Users can use ’txt’ option in out-
Format for sequences with different lengths. Warning: If outFormat is set to ’mat’ for sequences
with different lengths, it returns an error. Also, when output format is ’txt’, label information is not
shown in the text file. It is noteworthy that ’txt’ format is not usable for machine learning purposes if
sequences have different sizes. Otherwise ’txt’ format is also usable for machine learning purposes.

Examples

ptmSeqsADR<-system.file("extdata/",package="ftrCOOL")
ptmSeqsVect<-as.vector(read.csv(paste0(ptmSeqsADR,"/ptmVect101AA.csv"))[,2])
mat<-binary_3bit_T7(seqs = ptmSeqsVect, binaryType="numBin",outFormat="mat")

binary_5bit_T1 Binary - 5bit - Type1 (binary_5bit_T1)

Description

This function categorizes amino acids in 5 groups. Then represent group of amino acids by a 5
dimentional vector i.e.e1, e2, e3, e4, e5. e1=G, A, V, L, M, I, e2=F, Y, W, e3=K, R, H, e4=D, E,
e5=S, T, C, P, N, Q. e1 is ecoded by 10000 e2 is encoded by 01000 and ... and e5 is encoded by
00001.

Usage

binary_5bit_T1(
seqs,
binaryType = "numBin",
label = c(),
outFormat = "mat",
outputFileDist = ""

)

38 binary_5bit_T1

Arguments

seqs is a FASTA file with amino acid sequences. Each sequence starts with a ’>’
character. Also, seqs could be a string vector. Each element of the vector is a
peptide/protein sequence.

binaryType It can take any of the following values: (’strBin’,’logicBin’,’numBin’). ’strBin’(String
binary): each amino acid is represented by a string containing 20 characters(0-
1). For example, A = ALANIN = "1000000...0" ’logicBin’(logical value): Each
amino acid is represented by a vector containing 20 logical entries. For example,
A = ALANIN = c(T,F,F,F,F,F,F,...F) ’numBin’ (numeric bin): Each amino acid
is represented by a numeric (i.e., integer) vector containing 20 numerals. For
example, A = ALANIN = c(1,0,0,0,0,0,0,...,0)

label is an optional parameter. It is a vector whose length is equivalent to the number
of sequences. It shows the class of each entry (i.e., sequence).

outFormat (output format) can take two values: ’mat’(matrix) and ’txt’. The default value
is ’mat’.

outputFileDist shows the path and name of the ’txt’ output file.

Details

The type of the binary format is determined by the binaryType parameter. For details about each
format, please refer to the description of the binaryType parameter.

Value

The output is different depending on the outFormat parameter (’mat’ or ’txt’). If outFormat is set to
’mat’, it returns a feature matrix for sequences with the same lengths. The number of rows is equal
to the number of sequences and if binaryType is ’strBin’, the number of columns is the length of
the sequences. Otherwise, it is equal to (length of the sequences)*5. If outFormat is ’txt’, all binary
values will be written to a the output is written to a tab-delimited file. Each line in the file shows
the binary format of a sequence.

Note

This function is provided for sequences with the same lengths. Users can use ’txt’ option in out-
Format for sequences with different lengths. Warning: If outFormat is set to ’mat’ for sequences
with different lengths, it returns an error. Also, when output format is ’txt’, label information is not
shown in the text file. It is noteworthy that ’txt’ format is not usable for machine learning purposes if
sequences have different sizes. Otherwise ’txt’ format is also usable for machine learning purposes.

Examples

ptmSeqsADR<-system.file("extdata/",package="ftrCOOL")
ptmSeqsVect<-as.vector(read.csv(paste0(ptmSeqsADR,"/ptmVect101AA.csv"))[,2])
mat<-binary_5bit_T1(seqs = ptmSeqsVect, binaryType="numBin",outFormat="mat")

binary_5bit_T2 39

binary_5bit_T2 Binary - 5bit - Type2 (binary_5bit_T2)

Description

The idea behind this function is: We have 20 amino acids and we can show them with at least 5
bits. A is encoded by (00011), C (00101), D (00110), E (00111), F(01001), G (01010), H (01011), I
(01100), K (01101), L (01110), M (10001), N (10010), P (10011), Q (10100), R (10101), S (10110),
T (11000), V (11001), W (11010), Y (11100). This function transforms an amino acid to a binary
format. The type of the binary format is determined by the binaryType parameter. For details about
each format, please refer to the description of the binaryType parameter.

Usage

binary_5bit_T2(
seqs,
binaryType = "numBin",
label = c(),
outFormat = "mat",
outputFileDist = ""

)

Arguments

seqs is a FASTA file with amino acid sequences. Each sequence starts with a ’>’
character. Also, seqs could be a string vector. Each element of the vector is a
peptide/protein sequence.

binaryType It can take any of the following values: (’strBin’,’logicBin’,’numBin’). ’strBin’(String
binary): each amino acid is represented by a string containing 20 characters(0-
1). For example, A = ALANIN = "1000000...0" ’logicBin’(logical value): Each
amino acid is represented by a vector containing 20 logical entries. For example,
A = ALANIN = c(T,F,F,F,F,F,F,...F) ’numBin’ (numeric bin): Each amino acid
is represented by a numeric (i.e., integer) vector containing 20 numerals. For
example, A = ALANIN = c(1,0,0,0,0,0,0,...,0)

label is an optional parameter. It is a vector whose length is equivalent to the number
of sequences. It shows the class of each entry (i.e., sequence).

outFormat (output format) can take two values: ’mat’(matrix) and ’txt’. The default value
is ’mat’.

outputFileDist shows the path and name of the ’txt’ output file.

Value

The output is different depending on the outFormat parameter (’mat’ or ’txt’). If outFormat is set to
’mat’, it returns a feature matrix for sequences with the same lengths. The number of rows is equal
to the number of sequences and if binaryType is ’strBin’, the number of columns is the length of
the sequences. Otherwise, it is equal to (length of the sequences)*5. If outFormat is ’txt’, all binary

40 binary_6bit

values will be written to a the output is written to a tab-delimited file. Each line in the file shows
the binary format of a sequence.

Note

This function is provided for sequences with the same lengths. Users can use ’txt’ option in out-
Format for sequences with different lengths. Warning: If outFormat is set to ’mat’ for sequences
with different lengths, it returns an error. Also, when output format is ’txt’, label information is not
shown in the text file. It is noteworthy that ’txt’ format is not usable for machine learning purposes if
sequences have different sizes. Otherwise ’txt’ format is also usable for machine learning purposes.

Examples

ptmSeqsADR<-system.file("extdata/",package="ftrCOOL")
ptmSeqsVect<-as.vector(read.csv(paste0(ptmSeqsADR,"/ptmVect101AA.csv"))[,2])
mat<-binary_5bit_T2(seqs = ptmSeqsVect, binaryType="numBin",outFormat="mat")

binary_6bit Binary - 6bit (binary_6bit)

Description

This function categorizes amino acids in 6 groups. Then represent group of amino acids by a 6
dimentional vector i.e.e1, e2, e3, e4, e5, e6. e1=H, R, K, e2=D, E, N, D, e3=C, e4=S, T, P, A,
G, e5=M, I, L, V, e6=F, Y, W. e1 is ecoded by 100000 e2 is encoded by 010000 and ... and e6 is
encoded by 000001.

Usage

binary_6bit(
seqs,
binaryType = "numBin",
label = c(),
outFormat = "mat",
outputFileDist = ""

)

Arguments

seqs is a FASTA file with amino acid sequences. Each sequence starts with a ’>’
character. Also, seqs could be a string vector. Each element of the vector is a
peptide/protein sequence.

binaryType It can take any of the following values: (’strBin’,’logicBin’,’numBin’). ’strBin’(String
binary): each amino acid is represented by a string containing 20 characters(0-
1). For example, A = ALANIN = "1000000...0" ’logicBin’(logical value): Each
amino acid is represented by a vector containing 20 logical entries. For example,
A = ALANIN = c(T,F,F,F,F,F,F,...F) ’numBin’ (numeric bin): Each amino acid

BLOSUM62 41

is represented by a numeric (i.e., integer) vector containing 20 numerals. For
example, A = ALANIN = c(1,0,0,0,0,0,0,...,0)

label is an optional parameter. It is a vector whose length is equivalent to the number
of sequences. It shows the class of each entry (i.e., sequence).

outFormat (output format) can take two values: ’mat’(matrix) and ’txt’. The default value
is ’mat’.

outputFileDist shows the path and name of the ’txt’ output file.

Value

The output is different depending on the outFormat parameter (’mat’ or ’txt’). If outFormat is set to
’mat’, it returns a feature matrix for sequences with the same lengths. The number of rows is equal
to the number of sequences and if binaryType is ’strBin’, the number of columns is the length of
the sequences. Otherwise, it is equal to (length of the sequences)*6. If outFormat is ’txt’, all binary
values will be written to a the output is written to a tab-delimited file. Each line in the file shows
the binary format of a sequence.

Note

This function is provided for sequences with the same lengths. Users can use ’txt’ option in out-
Format for sequences with different lengths. Warning: If outFormat is set to ’mat’ for sequences
with different lengths, it returns an error. Also, when output format is ’txt’, label information is not
shown in the text file. It is noteworthy that ’txt’ format is not usable for machine learning purposes if
sequences have different sizes. Otherwise ’txt’ format is also usable for machine learning purposes.

Examples

ptmSeqsADR<-system.file("extdata/",package="ftrCOOL")
ptmSeqsVect<-as.vector(read.csv(paste0(ptmSeqsADR,"/ptmVect101AA.csv"))[,2])
mat<-binary_6bit(seqs = ptmSeqsVect, binaryType="numBin",outFormat="mat")

BLOSUM62 Blosum62 (BLOSUM62)

Description

This function creates a 20-dimentional numeric vector for each amino acid of a sequence. Each
entry of the vector contains the similarity score of the amino acid with other amino acids including
itself. The score is extracted from the Blosum62 matrix.

Usage

BLOSUM62(seqs, label = c(), outFormat = "mat", outputFileDist = "")

42 CkSAApair

Arguments

seqs is a FASTA file with amino acid sequences. Each sequence starts with a ’>’
character. Also, seqs could be a string vector. Each element of the vector is a
peptide/protein sequence.

label is an optional parameter. It is a vector whose length is equivalent to the number
of sequences. It shows the class of each entry (i.e., sequence).

outFormat (output format) can take two values: ’mat’(matrix) and ’txt’. The default value
is ’mat’.

outputFileDist shows the path and name of the ’txt’ output file.

Value

The output depends on the outFormat parameter which can be either ’mat’ or ’txt’. If outFormat is
’mat’, the function returns a feature matrix for sequences with the same length such that the number
of columns is (sequence length)*20 and the number of rows is equal to the number of sequences. If
the outFormat is ’txt’, the output is written to a tab-delimited file.

Note

This function is provided for sequences with the same lengths. Users can use ’txt’ option in out-
Format for sequences with different lengths. Warning: If outFormat is set to ’mat’ for sequences
with different lengths, it returns an error. Also, when output format is ’txt’, label information is not
shown in the text file. It is noteworthy that ’txt’ format is not usable for machine learning purposes if
sequences have different sizes. Otherwise ’txt’ format is also usable for machine learning purposes.

Examples

dir = tempdir()
ptmSeqsADR<-system.file("extdata/",package="ftrCOOL")
filePr<-system.file("extdata/protein.fasta",package="ftrCOOL")
filePrs<-system.file("extdata/proteins.fasta",package="ftrCOOL")

ad<-paste0(dir,"/blosum62.txt")
vect<-BLOSUM62(seqs = filePr,outFormat="mat")
BLOSUM62(seqs = filePrs,outFormat="txt",outputFileDist=ad)

unlink("dir", recursive = TRUE)

CkSAApair Composition of k-Spaced Amino Acids pairs (CkSAApair)

Description

This function calculates the composition of k-spaced amino acid pairs. In other words, it computes
the frequency of all amino acid pairs with k spaces.

CkSGAApair 43

Usage

CkSAApair(seqs, rng = 3, upto = FALSE, normalized = TRUE, label = c())

Arguments

seqs is a FASTA file with amino acid sequences. Each sequence starts with a ’>’
character. Also, seqs could be a string vector. Each element of the vector is a
peptide/protein sequence.

rng This parameter can be a number or a vector. Each element of the vector shows
the number of spaces between amino acid pairs. For each k in the rng vector, a
new vector (whose size is 400) is created which contains the frequency of pairs
with k gaps.

upto It is a logical parameter. The default value is FALSE. If rng is a number and
upto is set to TRUE, rng is converted to a vector with values from [0 to rng].

normalized is a logical parameter. When it is FALSE, the return value of the function does
not change. Otherwise, the return value is normalized using the length of the
sequence.

label is an optional parameter. It is a vector whose length is equivalent to the number
of sequences. It shows the class of each entry (i.e., sequence).

Value

The function returns a feature matrix. The number of rows is equal to the number of sequences and
the number of columns is 400*(length of rng vector).

Note

’upto’ is enabled only when rng is a number and not a vector.

Examples

filePrs<-system.file("extdata/proteins.fasta",package="ftrCOOL")
mat1<-CkSAApair(seqs=filePrs,rng=2,upto=TRUE,normalized=TRUE)

mat2<-CkSAApair(seqs=filePrs,rng=c(1,3,5))

CkSGAApair Composition of k-Spaced Grouped Amino Acids pairs (CkSGAApair)

Description

In this function, amino acids are first grouped into a category which is defined by the user. Later,
the composition of the k-spaced grouped amino acids is computed. Please note that this function
differs from CkSAApair which works on individual amino acids.

44 CkSGAApair

Usage

CkSGAApair(
seqs,
rng = 3,
upto = FALSE,
normalized = TRUE,
Grp = "locFus",
label = c()

)

Arguments

seqs is a FASTA file with amino acid sequences. Each sequence starts with a ’>’
character. Also, seqs could be a string vector. Each element of the vector is a
peptide/protein sequence.

rng This parameter can be a number or a vector. Each element of the vector shows
the number of spaces between amino acid pairs. For each k in the rng vector, a
new vector (whose size is (number of categorizes)^2) is created which contains
the frequency of pairs with k gaps.

upto It is a logical parameter. The default value is FALSE. If rng is a number and
upto is set to TRUE, rng is converted to a vector with values from [1 to rng].

normalized is a logical parameter. When it is FALSE, the return value of the function does
not change. Otherwise, the return value is normalized using the length of the
sequence.

Grp is a list of vectors containig amino acids. Each vector represents a category.
Users can define a customized amino acid grouping, provided that the sum of
all amino acids is 20 and there is no repeated amino acid in the groups. Also,
users can choose ’cTriad’(conjointTriad), ’locFus’, or ’aromatic’. Each option
provides specific information about the type of an amino acid grouping.

label is an optional parameter. It is a vector whose length is equivalent to the number
of sequences. It shows the class of each entry (i.e., sequence).

Details

Column names in the feature matrix follow G(?ss?). For example, G(1ss2) means Group1**Group2,
where ’*’ is a wild character.

Value

This function returns a feature matrix. Row length is equal to the number of sequences and the
number of columns is ((number of categorizes)^2)*(length of rng vector).

Note

’upto’ is enabled only when rng is a number and not a vector.

CkSNUCpair_DNA 45

Examples

filePrs<-system.file("extdata/proteins.fasta",package="ftrCOOL")
mat1<-CkSGAApair(seqs=filePrs,rng=2,upto=TRUE,Grp="aromatic")

mat2<-CkSGAApair(seqs=filePrs,rng=c(1,3,5),upto=FALSE,Grp=
list(Grp1=c("G","A","V","L","M","I","F","Y","W"),Grp2=c("K","R","H","D","E")
,Grp3=c("S","T","C","P","N","Q")))

CkSNUCpair_DNA Composition of k-Spaced Nucleotides Pairs (CkSNUCpair_DNA)

Description

This function calculates the composition of k-spaced nucleotide pairs. In other words, it computes
the frequency of all nucleotide pairs with k spaces.

Usage

CkSNUCpair_DNA(
seqs,
rng = 3,
upto = FALSE,
ORF = FALSE,
reverseORF = TRUE,
normalized = TRUE,
label = c()

)

Arguments

seqs is a FASTA file containing nucleotide sequences. The sequences start with ’>’.
Also, seqs could be a string vector. Each element of the vector is a nucleotide
sequence.

rng This parameter can be a number or a vector. Each element of the vector shows
the number of spaces between nucleotide pairs. For each k in the rng vector, a
new vector (whose size is 16) is created which contains the frequency of pairs
with k gaps.

upto It is a logical parameter. The default value is FALSE. If rng is a number and
upto is set to TRUE, rng is converted to a vector with values from [0 to rng].

ORF (Open Reading Frame) is a logical parameter. If it is set to true, ORF region of
each sequence is considered instead of the original sequence (i.e., 3-frame).

reverseORF is a logical parameter. It is enabled only if ORF is true. If reverseORF is true,
ORF region will be searched in the sequence and also in the reverse complement
of the sequence (i.e., 6-frame).

46 CkSNUCpair_RNA

normalized is a logical parameter. When it is FALSE, the return value of the function does
not change. Otherwise, the return value is normalized using the length of the
sequence.

label is an optional parameter. It is a vector whose length is equivalent to the number
of sequences. It shows the class of each entry (i.e., sequence).

Value

The function returns a feature matrix. The number of rows is equal to the number of sequences and
the number of columns is 16*(length of rng vector).

Note

’upto’ is enabled only when rng is a number and not a vector.

Examples

fileLNC<-system.file("extdata/Athaliana_LNCRNA.fa",package="ftrCOOL")
mat1<-CkSNUCpair_DNA(seqs=fileLNC,rng=2,upto=TRUE,ORF=TRUE,reverseORF=FALSE)
mat2<-CkSNUCpair_DNA(seqs=fileLNC,rng=c(1,3,5))

CkSNUCpair_RNA Composition of k-Spaced riboNucleotides Pairs (CkSNUCpair_RNA)

Description

This function calculates the composition of k-spaced ribonucleotide pairs. In other words, it com-
putes the frequency of all ribonucleotide pairs with k spaces.

Usage

CkSNUCpair_RNA(
seqs,
rng = 3,
upto = FALSE,
ORF = FALSE,
reverseORF = TRUE,
normalized = TRUE,
label = c()

)

codonAdaptionIndex 47

Arguments

seqs is a FASTA file containing ribonucleotide sequences. The sequences start with
’>’. Also, seqs could be a string vector. Each element of the vector is a ribonu-
cleotide sequence.

rng This parameter can be a number or a vector. Each element of the vector shows
the number of spaces between ribonucleotide pairs. For each k in the rng vector,
a new vector (whose size is 16) is created which contains the frequency of pairs
with k gaps.

upto It is a logical parameter. The default value is FALSE. If rng is a number and
upto is set to TRUE, rng is converted to a vector with values from [0 to rng].

ORF (Open Reading Frame) is a logical parameter. If it is set to true, ORF region of
each sequence is considered instead of the original sequence (i.e., 3-frame).

reverseORF is a logical parameter. It is enabled only if ORF is true. If reverseORF is true,
ORF region will be searched in the sequence and also in the reverse complement
of the sequence (i.e., 6-frame).

normalized is a logical parameter. When it is FALSE, the return value of the function does
not change. Otherwise, the return value is normalized using the length of the
sequence.

label is an optional parameter. It is a vector whose length is equivalent to the number
of sequences. It shows the class of each entry (i.e., sequence).

Value

The function returns a feature matrix. The number of rows is equal to the number of sequences and
the number of columns is 16*(length of rng vector).

Note

’upto’ is enabled only when rng is a number and not a vector.

Examples

fileLNC<-system.file("extdata/Carica_papaya101RNA.txt",package="ftrCOOL")
mat1<-CkSNUCpair_RNA(seqs=fileLNC,rng=2,upto=TRUE,ORF=TRUE,reverseORF=FALSE)
mat2<-CkSNUCpair_RNA(seqs=fileLNC,rng=c(1,3,5))

codonAdaptionIndex Codon Adaption Index (codonAdaptionIndex)

Description

This function calculates the codon adaption index for each sequence.

48 CodonFraction

Usage

codonAdaptionIndex(seqs, ORF = FALSE, reverseORF = TRUE, label = c())

Arguments

seqs is a FASTA file containing nucleotide sequences. The sequences start with ’>’.
Also, seqs could be a string vector. Each element of the vector is a nucleotide
sequence.

ORF (Open Reading Frame) is a logical parameter. If it is set to true, ORF region of
each sequence is considered instead of the original sequence (i.e., 3-frame).

reverseORF is a logical parameter. It is enabled only if ORF is true. If reverseORF is true,
ORF region will be searched in the sequence and also in the reverse complement
of the sequence (i.e., 6-frame).

label is an optional parameter. It is a vector whose length is equivalent to the number
of sequences. It shows the class of each entry (i.e., sequence).

Value

The function returns a feature vector. The length of the vector is equal to the number of sequences.
Each entry in the vector contains the value of the codon adaption index.

Examples

fileLNC<-system.file("extdata/Athaliana_LNCRNA.fa",package="ftrCOOL")
mat<-codonAdaptionIndex(seqs=fileLNC,ORF=TRUE,reverseORF=FALSE)

CodonFraction Codon Fraction (CodonFraction)

Description

This function calculates the codon fraction for each sequence.

Usage

CodonFraction(seqs, ORF = FALSE, reverseORF = TRUE, label = c())

Arguments

seqs is a FASTA file containing nucleotide sequences. The sequences start with ’>’.
Also, seqs could be a string vector. Each element of the vector is a nucleotide
sequence.

ORF (Open Reading Frame) is a logical parameter. If it is set to true, ORF region of
each sequence is considered instead of the original sequence (i.e., 3-frame).

CodonUsage_DNA 49

reverseORF is a logical parameter. It is enabled only if ORF is true. If reverseORF is true,
ORF region will be searched in the sequence and also in the reverse complement
of the sequence (i.e., 6-frame).

label is an optional parameter. It is a vector whose length is equivalent to the number
of sequences. It shows the class of each entry (i.e., sequence).

Value

A feature matrix such that the number of columns is 4^3 and the number of rows is equal to the
number of sequences.

Examples

fileLNC<-system.file("extdata/Athaliana_LNCRNA.fa",package="ftrCOOL")
mat<-CodonFraction(seqs=fileLNC,ORF=TRUE,reverseORF=FALSE)

CodonUsage_DNA Codon Usage in DNA (CodonUsage_DNA)

Description

This function calculates the codon usage for each sequence.

Usage

CodonUsage_DNA(seqs, ORF = FALSE, reverseORF = TRUE, label = c())

Arguments

seqs is a FASTA file containing nucleotide sequences. The sequences start with ’>’.
Also, seqs could be a string vector. Each element of the vector is a nucleotide
sequence.

ORF (Open Reading Frame) is a logical parameter. If it is set to true, ORF region of
each sequence is considered instead of the original sequence (i.e., 3-frame).

reverseORF is a logical parameter. It is enabled only if ORF is true. If reverseORF is true,
ORF region will be searched in the sequence and also in the reverse complement
of the sequence (i.e., 6-frame).

label is an optional parameter. It is a vector whose length is equivalent to the number
of sequences. It shows the class of each entry (i.e., sequence).

Value

A feature matrix such that the number of columns is 4^3 and the number of rows is equal to the
number of sequences.

50 CodonUsage_RNA

Examples

fileLNC<-system.file("extdata/Athaliana_LNCRNA.fa",package="ftrCOOL")
mat<-CodonUsage_DNA(fileLNC,ORF=TRUE,reverseORF=FALSE)

CodonUsage_RNA Codon Usage in RNA (CodonUsage_RNA)

Description

This function calculates the codon usage for each sequence.

Usage

CodonUsage_RNA(seqs, ORF = FALSE, reverseORF = TRUE, label = c())

Arguments

seqs is a FASTA file containing ribonucleotide sequences. The sequences start with
’>’. Also, seqs could be a string vector. Each element of the vector is a ribonu-
cleotide sequence.

ORF (Open Reading Frame) is a logical parameter. If it is set to true, ORF region of
each sequence is considered instead of the original sequence (i.e., 3-frame).

reverseORF is a logical parameter. It is enabled only if ORF is true. If reverseORF is true,
ORF region will be searched in the sequence and also in the reverse complement
of the sequence (i.e., 6-frame).

label is an optional parameter. It is a vector whose length is equivalent to the number
of sequences. It shows the class of each entry (i.e., sequence).

Value

A feature matrix such that the number of columns is 4^3 and the number of rows is equal to the
number of sequences.

Examples

fileLNC<-system.file("extdata/Carica_papaya101RNA.txt",package="ftrCOOL")
mat<-CodonUsage_RNA(seqs=fileLNC,ORF=TRUE,reverseORF=FALSE)

conjointTriad 51

conjointTriad Conjoint Triad (conjointTriad)

Description

This function calculates the grouped tripeptide composition with the conjoint triad grouping type.

Usage

conjointTriad(seqs, normalized = TRUE, label = c())

Arguments

seqs is a FASTA file with amino acid sequences. Each sequence starts with a ’>’
character. Also, seqs could be a string vector. Each element of the vector is a
peptide/protein sequence.

normalized is a logical parameter. When it is FALSE, the return value of the function does
not change. Otherwise, the return value is normalized using the length of the
sequence.

label is an optional parameter. It is a vector whose length is equivalent to the number
of sequences. It shows the class of each entry (i.e., sequence).

Value

This function returns a feature matrix. The number of rows equals to the number of sequences and
the number of columns is 7^3.

Examples

filePrs<-system.file("extdata/proteins.fasta",package="ftrCOOL")
mat1<-conjointTriad(seqs=filePrs)

conjointTriadKS k-Spaced Conjoint Triad (conjointTriadKS)

Description

This function calculates the grouped tripeptide composition with conjoint triad grouping type. For
each k, it creates a 7^3 feature vector. K is the space between the first and the second amino acids
and the second and the third amino acids of the tripeptide.

Usage

conjointTriadKS(seqs, rng = 3, upto = FALSE, normalized = FALSE, label = c())

52 CTD

Arguments

seqs is a FASTA file with amino acid sequences. Each sequence starts with a ’>’
character. Also, seqs could be a string vector. Each element of the vector is a
peptide/protein sequence.

rng This parameter can be a number or a vector. Each element of the vector shows
the number of spaces between the first and the second amino acids and the sec-
ond and the third amino acids of the tripeptide. For each k in the rng vector,
a new vector (whose size is 7^3) is created which contains the frequency of
tri-amino acid with k gaps.

upto It is a logical parameter. The default value is FALSE. If rng is a number and
upto is set to TRUE, rng is converted to a vector with values from 0 to rng.

normalized is a logical parameter. When it is FALSE, the return value of the function does
not change. Otherwise, the return value is normalized using the length of the
sequence.

label is an optional parameter. It is a vector whose length is equivalent to the number
of sequences. It shows the class of each entry (i.e., sequence).

Details

A tripeptide with k spaces looks like AA1(ss..s)AA2(ss..s)AA3. AA stands for amino acids and s
means space.

Value

This function returns a feature matrix. The number of rows is equal to the number of sequences and
the number of columns is (7^3)*(length rng vector).

Note

’upto’ is enabled only when rng is a number and not a vector.

Examples

filePrs<-system.file("extdata/proteins.fasta",package="ftrCOOL")
mat1<-conjointTriadKS(filePrs,rng=2,upto=TRUE,normalized=TRUE)

mat2<-conjointTriadKS(filePrs,rng=c(1,3,5))

CTD Composition_Transition_Distribution (CTD)

Description

This function calculates the composition, transition, and distribution for each sequence.

CTDC 53

Usage

CTD(seqs, normalized = FALSE, label = c())

Arguments

seqs is a FASTA file with amino acid sequences. Each sequence starts with a ’>’
character. Also, seqs could be a string vector. Each element of the vector is a
peptide/protein sequence.

normalized is a logical parameter. When it is FALSE, the return value of the function does
not change. Otherwise, the return value is normalized using the length of the
sequence.

label is an optional parameter. It is a vector whose length is equivalent to the number
of sequences. It shows the class of each entry (i.e., sequence).

Value

Output is a combination of three different matrices: Composition, Transition, and Distribution. You
can obtain any of the three matrices by executing the corresponding function, i.e., CTDC, CTDT,
and CTDD.

References

Dubchak, Inna, et al. "Prediction of protein folding class using global description of amino acid
sequence." Proceedings of the National Academy of Sciences 92.19 (1995): 8700-8704.

Examples

filePrs<-system.file("extdata/proteins.fasta",package="ftrCOOL")
CTDtotal<-CTD(seqs=filePrs,normalized=FALSE)

CTDC CTD Composition (CTDC)

Description

This function computes the composition part of CTD. Thirteen properties are defined in this func-
tion. Each property categorizes the amino acids of the sequences into three groups. The grouped
amino acid composition is calculated for each property. For more information, please check the
references.

Usage

CTDC(seqs, normalized = FALSE, label = c())

54 CTDD

Arguments

seqs is a FASTA file with amino acid sequences. Each sequence starts with a ’>’
character. Also, seqs could be a string vector. Each element of the vector is a
peptide/protein sequence.

normalized is a logical parameter. When it is FALSE, the return value of the function does
not change. Otherwise, the return value is normalized using the length of the
sequence.

label is an optional parameter. It is a vector whose length is equivalent to the number
of sequences. It shows the class of each entry (i.e., sequence).

Value

This function returns a feature matrix. The number of rows is equal to the number of sequences and
the number of columns is 3*7, where three is the number of groups and thirteen is the number of
properties.

References

Dubchak, Inna, et al. "Prediction of protein folding class using global description of amino acid
sequence." Proceedings of the National Academy of Sciences 92.19 (1995): 8700-8704.

Examples

filePrs<-system.file("extdata/proteins.fasta",package="ftrCOOL")
CTD_C<-CTDC(seqs=filePrs,normalized=FALSE,label=c())

CTDD CTD Distribution (CTDD)

Description

This function computes the distribution part of CTD. It calculates fifteen values for each property.
For more information, please check the references.

Usage

CTDD(seqs, label = c())

Arguments

seqs is a FASTA file with amino acid sequences. Each sequence starts with a ’>’
character. Also, seqs could be a string vector. Each element of the vector is a
peptide/protein sequence.

label is an optional parameter. It is a vector whose length is equivalent to the number
of sequences. It shows the class of each entry (i.e., sequence).

CTDT 55

Value

This function returns a feature matrix. The number of rows is equal to the number of sequences and
the number of columns is 15*7.

References

Dubchak, Inna, et al. "Prediction of protein folding class using global description of amino acid
sequence." Proceedings of the National Academy of Sciences 92.19 (1995): 8700-8704.

Examples

filePrs<-system.file("extdata/proteins.fasta",package="ftrCOOL")
CTD_D<-CTDD(seqs=filePrs)

CTDT CTD Transition (CTDT)

Description

This function computes the transition part of CTD. Thirteen properties are defined in this function.
Each property categorizes the amino acids of a sequence into three groups. For each property, the
grouped amino acid transition (i.e., transitions 1-2, 1-3, and 2-3) is calculated. For more informa-
tion, please check the references.

Usage

CTDT(seqs, normalized = FALSE, label = c())

Arguments

seqs is a FASTA file with amino acid sequences. Each sequence starts with a ’>’
character. Also, seqs could be a string vector. Each element of the vector is a
peptide/protein sequence.

normalized is a logical parameter. When it is FALSE, the return value of the function does
not change. Otherwise, the return value is normalized using the length of the
sequence.

label is an optional parameter. It is a vector whose length is equivalent to the number
of sequences. It shows the class of each entry (i.e., sequence).

Value

This function returns a feature matrix. The number of rows is equal to the number of sequences and
the number of columns is 3*7, where three is the number of transition types (i.e., 1-2, 1-3, and 2-3)
and thirteen is the number of properties.

56 DDE

References

Dubchak, Inna, et al. "Prediction of protein folding class using global description of amino acid
sequence." Proceedings of the National Academy of Sciences 92.19 (1995): 8700-8704.

Examples

filePrs<-system.file("extdata/proteins.fasta",package="ftrCOOL")
CTD_T<-CTDT(seqs=filePrs,normalized=FALSE)

DDE Dipeptide Deviation from Expected Mean value (DDE)

Description

This function computes the dipeptide deviation from the expected mean value.

Usage

DDE(seqs, label = c())

Arguments

seqs is a FASTA file with amino acid sequences. Each sequence starts with a ’>’
character. Also, seqs could be a string vector. Each element of the vector is a
peptide/protein sequence.

label is an optional parameter. It is a vector whose length is equivalent to the number
of sequences. It shows the class of each entry (i.e., sequence).

Value

A feature matrix with 20^2=400 number of columns. The number of rows is equal to the number
of sequences.

Examples

filePrs<-system.file("extdata/proteins.fasta",package="ftrCOOL")
mat<-DDE(seqs=filePrs)

DiNUC2Binary_DNA 57

DiNUC2Binary_DNA Dinucleotide To Binary DNA (DiNUC2Binary_DNA)

Description

This function transforms a dinucleotide to a binary number with four bits which is enough to rep-
resent all the possible types of dinucleotides. The type of the binary format is determined by the
binaryType parameter. For details about each format, please refer to the description of the binary-
Type parameter.

Usage

DiNUC2Binary_DNA(
seqs,
binaryType = "numBin",
outFormat = "mat",
outputFileDist = "",
label = c()

)

Arguments

seqs is a FASTA file containing nucleotide sequences. The sequences start with ’>’.
Also, seqs could be a string vector. Each element of the vector is a nucleotide
sequence.

binaryType It can take any of the following values: (’strBin’,’logicBin’,’numBin’). ’strBin’
(String binary): each dinucleotide is represented by a string containing 4 characters(0-
1). For example, AA = "0000" AC="0001" ... TT="1111" ’logicBin’ (logical
value): Each dinucleotide is represented by a vector containing 4 logical entries.
For example, AA = c(F,F,F,F) AC=c(F,F,F,T) ... TT=c(T,T,T,T) ’numBin’ (nu-
meric bin): Each dinucleotide is represented by a numeric (i.e., integer) vector
containing 4 numeric entries. For example, AA = c(0,0,0,0) AC = c(0,0,0,1) ...
TT = c(1,1,1,1)

outFormat (output format) can take two values: ’mat’(matrix) and ’txt’. The default value
is ’mat’.

outputFileDist shows the path and name of the ’txt’ output file.
label is an optional parameter. It is a vector whose length is equivalent to the number

of sequences. It shows the class of each entry (i.e., sequence).

Value

The output is different depending on the outFormat parameter (’mat’ or ’txt’). If outFormat is set to
’mat’, it returns a feature matrix for sequences with the same lengths. The number of rows is equal
to the number of sequences and if binaryType is ’strBin’, the number of columns is the (length of
the sequences-1). Otherwise, it is equal to (length of the sequences-1)*4. If outFormat is ’txt’, all
binary values will be written to a tab-delimited file. Each line in the file shows the binary format of
a sequence.

58 DiNUC2Binary_RNA

Note

This function is provided for sequences with the same lengths. Users can use ’txt’ option in out-
Format for sequences with different lengths. Warning: If outFormat is set to ’mat’ for sequences
with different lengths, it returns an error. Also, when output format is ’txt’, label information is not
shown in the text file. It is noteworthy that ’txt’ format is not usable for machine learning purposes if
sequences have different sizes. Otherwise ’txt’ format is also usable for machine learning purposes.

Examples

LNCSeqsADR<-system.file("extdata/",package="ftrCOOL")
LNC50Nuc<-as.vector(read.csv(paste0(LNCSeqsADR,"/LNC50Nuc.csv"))[,2])
mat<-DiNUC2Binary_DNA(seqs = LNC50Nuc, binaryType="numBin",outFormat="mat")

DiNUC2Binary_RNA Di riboNucleotide To Binary RNA (DiNUC2Binary_RNA)

Description

This function transforms a di-ribonucleotide to a binary number with four bits which is enough to
represent all the possible types of di-ribonucleotides. The type of the binary format is determined
by the binaryType parameter. For details about each format, please refer to the description of the
binaryType parameter.

Usage

DiNUC2Binary_RNA(
seqs,
binaryType = "numBin",
outFormat = "mat",
outputFileDist = "",
label = c()

)

Arguments

seqs is a FASTA file containing ribonucleotide sequences. The sequences start with
’>’. Also, seqs could be a string vector. Each element of the vector is a ribonu-
cleotide sequence.

binaryType It can take any of the following values: (’strBin’,’logicBin’,’numBin’). ’strBin’
(String binary): each di-ribonucleotide is represented by a string containing 4
characters(0-1). For example, AA = "0000" AC="0001" ... TT="1111" ’log-
icBin’ (logical value): Each di-ribonucleotide is represented by a vector contain-
ing 4 logical entries. For example, AA = c(F,F,F,F) AC=c(F,F,F,T) ... TT=c(T,T,T,T)
’numBin’ (numeric bin): Each di-ribonucleotide is represented by a numeric
(i.e., integer) vector containing 4 numeric entries. For example, AA = c(0,0,0,0)
AC = c(0,0,0,1) ... TT = c(1,1,1,1)

DiNUCindex_DNA 59

outFormat (output format) can take two values: ’mat’(matrix) and ’txt’. The default value
is ’mat’.

outputFileDist shows the path and name of the ’txt’ output file.

label is an optional parameter. It is a vector whose length is equivalent to the number
of sequences. It shows the class of each entry (i.e., sequence).

Value

The output is different depending on the outFormat parameter (’mat’ or ’txt’). If outFormat is set
to ’mat’, it returns a feature matrix for sequences with the same lengths. The number of rows is
equal to the number of sequences and if binaryType is ’strBin’, the number of columns is (length
of the sequences-1). Otherwise, it is equal to (length of the sequences-1)*4. If outFormat is ’txt’,
all binary values will be written to a ’txt’ file. Each line in the file shows the binary format of a
sequence.

Note

This function is provided for sequences with the same lengths. Users can use ’txt’ option in out-
Format for sequences with different lengths. Warning: If outFormat is set to ’mat’ for sequences
with different lengths, it returns an error. Also, when output format is ’txt’, label information is not
shown in the text file. It is noteworthy that ’txt’ format is not usable for machine learning purposes if
sequences have different sizes. Otherwise ’txt’ format is also usable for machine learning purposes.

Examples

fileLNC<-system.file("extdata/Carica_papaya101RNA.txt",package="ftrCOOL")
mat<-DiNUC2Binary_RNA(seqs = fileLNC, binaryType="numBin",outFormat="mat")

DiNUCindex_DNA Di Nucleotide Index (DiNUCindex_DNA)

Description

This function replaces dinucleotides in a sequence with their physicochemical properties in the
dinucleotide index file.

Usage

DiNUCindex_DNA(
seqs,
selectedIdx = c("Rise", "Roll", "Shift", "Slide", "Tilt", "Twist"),
threshold = 1,
label = c(),
outFormat = "mat",
outputFileDist = ""

)

60 DiNUCindex_DNA

Arguments

seqs is a FASTA file containing nucleotide sequences. The sequences start with ’>’.
Also, seqs could be a string vector. Each element of the vector is a nucleotide
sequence.

selectedIdx DiNUCindex_DNA function works based on physicochemical properties. Users,
select the properties by their ids or indexes in DI_DNA index file. The default
value of this parameter is a vector with ("Rise", "Roll", "Shift", "Slide", "Tilt",
"Twist") entries.

threshold is a number between (0 , 1]. In selectedIdx, indices with a correlation higher
than the threshold will be deleted. The default value is 1.

label is an optional parameter. It is a vector whose length is equivalent to the number
of sequences. It shows the class of each entry (i.e., sequence).

outFormat (output format) can take two values: ’mat’(matrix) and ’txt’. The default value
is ’mat’.

outputFileDist shows the path and name of the ’txt’ output file.

Details

There are 148 physicochemical indexes in the dinucleotide database.

Value

The output depends on the outFormat parameter which can be either ’mat’ or ’txt’. If outFormat is
’mat’, the function returns a feature matrix for sequences with the same length such that the number
of columns is (sequence length-1)*(number of selected di-nucleotide indexes) and the number of
rows is equal to the number of sequences. If the outFormat is ’txt’, the output is written to a tab-
delimited file.

Note

This function is provided for sequences with the same lengths. Users can use ’txt’ option in out-
Format for sequences with different lengths. Warning: If outFormat is set to ’mat’ for sequences
with different lengths, it returns an error. Also, when output format is ’txt’, label information is not
shown in the text file. It is noteworthy that ’txt’ format is not usable for machine learning purposes if
sequences have different sizes. Otherwise ’txt’ format is also usable for machine learning purposes.

Examples

fileLNC<-system.file("extdata/Athaliana1.fa",package="ftrCOOL")
vect<-DiNUCindex_DNA(seqs = fileLNC,outFormat="mat")

DiNUCindex_RNA 61

DiNUCindex_RNA Di riboNucleotide Index (DiNUCindex_RNA)

Description

This function replaces di-ribonucleotides in a sequence with their physicochemical properties in the
di-ribonucleotide index file.

Usage

DiNUCindex_RNA(
seqs,
selectedIdx = c("Rise (RNA)", "Roll (RNA)", "Shift (RNA)", "Slide (RNA)",
"Tilt (RNA)", "Twist (RNA)"),

threshold = 1,
label = c(),
outFormat = "mat",
outputFileDist = ""

)

Arguments

seqs is a FASTA file containing ribonucleotide sequences. The sequences start with
’>’. Also, seqs could be a string vector. Each element of the vector is a ribonu-
cleotide sequence.

selectedIdx DiNucIndex function works based on physicochemical properties. Users, select
the properties by their ids or indexes in DI_RNA file. The default value of this
parameter is a vector with ("Rise (RNA)", "Roll (RNA)", "Shift (RNA)", "Slide
(RNA)", "Tilt (RNA)","Twist (RNA)") entries.

threshold is a number between (0 , 1]. In selectedIdx, indices with a correlation higher
than the threshold will be deleted. The default value is 1.

label is an optional parameter. It is a vector whose length is equivalent to the number
of sequences. It shows the class of each entry (i.e., sequence).

outFormat (output format) can take two values: ’mat’(matrix) and ’txt’. The default value
is ’mat’.

outputFileDist shows the path and name of the ’txt’ output file.

Details

There are 22 physicochemical indexes in the di-ribonucleotide database.

Value

The output depends on the outFormat parameter which can be either ’mat’ or ’txt’. If outFormat is
’mat’, the function returns a feature matrix for sequences with the same length such that the number
of columns is (sequence length-1)*(number of selected di-ribonucleotide indexes) and the number

62 DisorderB

of rows is equal to the number of sequences. If the outFormat is ’txt’, the output is written to a
tab-delimited file.

Note

This function is provided for sequences with the same lengths. Users can use ’txt’ option in out-
Format for sequences with different lengths. Warning: If outFormat is set to ’mat’ for sequences
with different lengths, it returns an error. Also, when output format is ’txt’, label information is not
shown in the text file. It is noteworthy that ’txt’ format is not usable for machine learning purposes if
sequences have different sizes. Otherwise ’txt’ format is also usable for machine learning purposes.

Examples

fileLNC<-system.file("extdata/Carica_papaya101RNA.txt",package="ftrCOOL")
vect<-DiNUCindex_RNA(seqs = fileLNC,outFormat="mat")

DisorderB disorder Binary (DisorderB)

Description

This function extracts the ordered and disordered amino acids in protein or peptide sequences. The
input to the function is provided by VSL2 software. Also, the function converts order amino acids
to ’10’ and disorder amino acids to ’01’.

Usage

DisorderB(
dirPath,
binaryType = "numBin",
outFormat = "mat",
outputFileDist = ""

)

Arguments

dirPath Path of the directory which contains all output files of VSL2. Each file belongs
to a sequence.

binaryType It can take any of the following values: (’strBin’,’logicBin’,’numBin’). ’strBin’
(String binary): each amino acid is represented by a string containing 2 characters(0-
1). order = "10" disorder="01". ’logicBin’ (logical value): Each amino acid is
represented by a vector containing 2 logical entries. order = c(TRUE,FALSE)
disorder=c(FALSE,TRUE). ’numBin’ (numeric bin): Each amino acid is repre-
sented by a numeric (i.e., integer) vector containing 2 numeric entries. order =
c(1,0) disorder=c(0,1).

outFormat It can take two values: ’mat’ (which stands for matrix) and ’txt’. The default
value is ’mat’.

outputFileDist It shows the path and name of the ’txt’ output file.

DisorderC 63

Value

The output is different depending on the outFormat parameter (’mat’ or ’txt’). If outFormat is set
to ’mat’, it returns a feature matrix for sequences with the same lengths. The number of rows is
equal to the number of sequences and if binaryType is ’strBin’, the number of columns is the length
of the sequences. Otherwise, it is equal to (length of the sequences)*2. If outFormat is ’txt’, all
binary values will be written to a tab-delimited file. Each line in the file shows the binary format of
a sequence.

Note

This function is provided for sequences with the same lengths. Users can use ’txt’ option in out-
Format for sequences with different lengths. Warning: If outFormat is set to ’mat’ for sequences
with different lengths, it returns an error. Also, when output format is ’txt’, label information is not
shown in the text file. It is noteworthy that ’txt’ format is not usable for machine learning purposes if
sequences have different sizes. Otherwise ’txt’ format is also usable for machine learning purposes.

Examples

dir = tempdir()

PredDisdir<-system.file("testForder",package="ftrCOOL")
PredDisdir<-paste0(PredDisdir,"/Disdir/")
ad1<-paste0(dir,"/disorderB.txt")

DisorderB(PredDisdir,binaryType="numBin",outFormat="txt",outputFileDist=ad1)

unlink("dir", recursive = TRUE)

DisorderC disorder Content (DisorderC)

Description

This function extracts ordered and disordered amino acids in protein or peptide sequences. The
input to the function is provided by VSL2 software. Also, the function returns number of order and
disorder amino acids in the sequence.

Usage

DisorderC(dirPath)

Arguments

dirPath Path of the directory which contains all output files of VSL2. Each file belongs
to a sequence.

64 DisorderS

Value

The output is a feature matrix with 2 columns. The number of rows is equal to the number of
sequences.

Examples

dir = tempdir()
PredDisdir<-system.file("testForder",package="ftrCOOL")
PredDisdir<-paste0(PredDisdir,"/Disdir/")

mat<-DisorderC(PredDisdir)

DisorderS disorder Simple (DisorderS)

Description

This function extracts ordered and disordered amino acids in protein or peptide sequences. The
input to the function is provided by VSL2 software. The function represent order amino acids by
’O’ and disorder amino acids by ’D’.

Usage

DisorderS(dirPath, outFormat = "mat", outputFileDist = "")

Arguments

dirPath Path of the directory which contains all output files of VSL2. Each file belongs
to a sequence.

outFormat It can take two values: ’mat’ (which stands for matrix) and ’txt’. The default
value is ’mat’.

outputFileDist It shows the path and name of the ’txt’ output file.

Value

The output depends on the outFormat which can be either ’mat’ or ’txt’. If outFormat is ’mat’,
the function returns a feature matrix for sequences with the same lengths such that the number of
columns is equal to the length of the sequences and the number of rows is equal to the number of
sequences. If the outFormat is ’txt’, the output is written to a tab-delimited file.

Note

This function is provided for sequences with the same lengths. Users can use ’txt’ option in out-
Format for sequences with different lengths. Warning: If outFormat is set to ’mat’ for sequences
with different lengths, it returns an error. Also, when output format is ’txt’, label information is not
shown in the text file. It is noteworthy that ’txt’ format is not usable for machine learning purposes if
sequences have different sizes. Otherwise ’txt’ format is also usable for machine learning purposes.

DistancePair 65

Examples

dir = tempdir()

PredDisdir<-system.file("testForder",package="ftrCOOL")
PredDisdir<-paste0(PredDisdir,"/Disdir/")
ad1<-paste0(dir,"/disorderS.txt")

DisorderS(PredDisdir, outFormat="txt",outputFileDist=ad1)

unlink("dir", recursive = TRUE)

DistancePair PseAAC of distance-pairs and reduced alphabet (DistancePair)

Description

In this function, first amino acids are grouped into a category which is one of ’cp13’, ’cp14’, ’cp19’,
’cp20’. Users choose one of these terms to categorize amino acids. Then DistancePair function
computes frequencies of all grouped residues and also all grouped-paired residues with [0,rng]
distance. ’rng’ is a parameter which already was set by the user.

Usage

DistancePair(seqs, rng = 3, normalized = TRUE, Grp = "cp14", label = c())

Arguments

seqs is a FASTA file with amino acid sequences. Each sequence starts with a ’>’
character. Also, seqs could be a string vector. Each element of the vector is a
peptide/protein sequence.

rng This parameter is a number. It shows maximum number of spaces between
amino acid pairs. For each k in the rng vector, a new vector (whose size is
(number of categorizes)^2) is created which contains the frequency of pairs with
k gaps.

normalized is a logical parameter. When it is FALSE, the return value of the function does
not change. Otherwise, the return value is normalized using the length of the
sequence.

Grp for this parameter users can choose between these items: ’cp13’, ’cp14’, ’cp19’,
or ’cp20’.

label is an optional parameter. It is a vector whose length is equivalent to the number
of sequences. It shows the class of each entry (i.e., sequence).

Value

This function returns a feature matrix. Row length is equal to the number of sequences and the
number of columns is (number of categorizes)+((number of categorizes)^2)*(rng+1).

66 DPCP_DNA

Examples

filePrs<-system.file("extdata/proteins.fasta",package="ftrCOOL")
mat1<-DistancePair(seqs=filePrs,rng=2,Grp="cp14")

DPCP_DNA Dinucleotide physicochemical properties (DPCP_DNA)

Description

This function replaces dinucleotides in a sequence with their physicochemical properties which is
multiplied by normalized frequency of that di-nucleotide.

Usage

DPCP_DNA(
seqs,
selectedIdx = c("Rise", "Roll", "Shift", "Slide", "Tilt", "Twist"),
threshold = 1,
label = c(),
outFormat = "mat",
outputFileDist = ""

)

Arguments

seqs is a FASTA file containing nucleotide sequences. The sequences start with ’>’.
Also, seqs could be a string vector. Each element of the vector is a nucleotide
sequence.

selectedIdx DPCP_DNA function works based on physicochemical properties. Users, select
the properties by their ids or indexes in DI_DNA index file. The default value of
this parameter is a vector with ("Rise", "Roll", "Shift", "Slide", "Tilt", "Twist")
entries.

threshold is a number between (0 , 1]. In selectedIdx, indices with a correlation higher
than the threshold will be deleted. The default value is 1.

label is an optional parameter. It is a vector whose length is equivalent to the number
of sequences. It shows the class of each entry (i.e., sequence).

outFormat (output format) can take two values: ’mat’(matrix) and ’txt’. The default value
is ’mat’.

outputFileDist shows the path and name of the ’txt’ output file.

Details

There are 148 physicochemical indexes in the dinucleotide database.

DPCP_RNA 67

Value

The output depends on the outFormat parameter which can be either ’mat’ or ’txt’. If outFormat is
’mat’, the function returns a feature matrix for sequences with the same length such that the number
of columns is (sequence length-1)*(number of selected di-nucleotide indexes) and the number of
rows is equal to the number of sequences. If the outFormat is ’txt’, the output is written to a tab-
delimited file.

Note

This function is provided for sequences with the same lengths. Users can use ’txt’ option in out-
Format for sequences with different lengths. Warning: If outFormat is set to ’mat’ for sequences
with different lengths, it returns an error. Also, when output format is ’txt’, label information is not
shown in the text file. It is noteworthy that ’txt’ format is not usable for machine learning purposes if
sequences have different sizes. Otherwise ’txt’ format is also usable for machine learning purposes.

Examples

fileLNC<-system.file("extdata/Athaliana1.fa",package="ftrCOOL")
vect<-DPCP_DNA(seqs = fileLNC,outFormat="mat")

DPCP_RNA Di-ribonucleotide physicochemical properties (DPCP_RNA)

Description

This function replaces di-ribonucleotides in a sequence with their physicochemical properties which
is multiplied by normalized frequency of that di-ribonucleotide.

Usage

DPCP_RNA(
seqs,
selectedIdx = c("Rise (RNA)", "Roll (RNA)", "Shift (RNA)", "Slide (RNA)",
"Tilt (RNA)", "Twist (RNA)"),

threshold = 1,
label = c(),
outFormat = "mat",
outputFileDist = ""

)

Arguments

seqs is a FASTA file containing ribonucleotide sequences. The sequences start with
’>’. Also, seqs could be a string vector. Each element of the vector is a ribonu-
cleotide sequence.

68 EAAComposition

selectedIdx DiNucIndex function works based on physicochemical properties. Users, select
the properties by their ids or indexes in DI_RNA file. The default value of this
parameter is a vector with ("Rise (RNA)", "Roll (RNA)", "Shift (RNA)", "Slide
(RNA)", "Tilt (RNA)","Twist (RNA)") entries.

threshold is a number between (0 , 1]. In selectedAAidx, indices with a correlation higher
than the threshold will be deleted. The default value is 1.

label is an optional parameter. It is a vector whose length is equivalent to the number
of sequences. It shows the class of each entry (i.e., sequence).

outFormat (output format) can take two values: ’mat’(matrix) and ’txt’. The default value
is ’mat’.

outputFileDist shows the path and name of the ’txt’ output file.

Details

There are 22 physicochemical indexes in the di-ribonucleotide database.

Value

The output depends on the outFormat parameter which can be either ’mat’ or ’txt’. If outFormat is
’mat’, the function returns a feature matrix for sequences with the same length such that the number
of columns is (sequence length-1)*(number of selected di-ribonucleotide indexes) and the number
of rows is equal to the number of sequences. If the outFormat is ’txt’, the output is written to a
tab-delimited file.

Note

This function is provided for sequences with the same lengths. Users can use ’txt’ option in out-
Format for sequences with different lengths. Warning: If outFormat is set to ’mat’ for sequences
with different lengths, it returns an error. Also, when output format is ’txt’, label information is not
shown in the text file. It is noteworthy that ’txt’ format is not usable for machine learning purposes if
sequences have different sizes. Otherwise ’txt’ format is also usable for machine learning purposes.

Examples

fileLNC<-system.file("extdata/Carica_papaya101RNA.txt",package="ftrCOOL")
vect<-DPCP_RNA(seqs = fileLNC,outFormat="mat")

EAAComposition Enhanced Amino Acid Composition (EAAComposition)

Description

This function slides a window over the input sequence(s). Also, it computes the composition of
amino acids that appears within the limits of the window.

EAAComposition 69

Usage

EAAComposition(
seqs,
winSize = 50,
overLap = TRUE,
label = c(),
outFormat = "mat",
outputFileDist = ""

)

Arguments

seqs is a FASTA file with amino acid sequences. Each sequence starts with a ’>’
character. Also, seqs could be a string vector. Each element of the vector is a
peptide/protein sequence.

winSize is a number which shows the size of the window.
overLap This parameter shows how the window moves over the sequence. If overlap is

set to FALSE, the window slides over the sequence in such a way that every
time the window moves, it covers a unique portion of the sequence. Otherwise,
portions of the sequence which appear within the window limits have "winSize-
1" amino acids in common.

label is an optional parameter. It is a vector whose length is equivalent to the number
of sequences. It shows the class of each entry (i.e., sequence).

outFormat (output format) can take two values: ’mat’(matrix) and ’txt’. The default value
is ’mat’.

outputFileDist shows the path and name of the ’txt’ output file.

Details

Column names in the output matrix are Wi(aa), where aa shows an amino acid type ("A", "C",
"D",..., "Y") and i indicates the number of times that the window has moved over the sequence(s).

Value

The output depends on the outFormat parameter which can be either ’mat’ or ’txt’. If outFormat is
’mat’, the function returns a feature matrix for sequences with the same length such that the number
of columns is (20 * number of partitions displayed by the window) and the number of rows is equal
to the number of sequences. If the outFormat is ’txt’, the output is written to a tab-delimited file.

Note

This function is provided for sequences with the same lengths. Users can use ’txt’ option in out-
Format for sequences with different lengths. Warning: If outFormat is set to ’mat’ for sequences
with different lengths, it returns an error. Also, when output format is ’txt’, label information is not
shown in the text file. It is noteworthy that ’txt’ format is not usable for machine learning purposes if
sequences have different sizes. Otherwise ’txt’ format is also usable for machine learning purposes.

When overlap is FALSE, the last partition represented by the window may have a different length
with other parts.

70 EffectiveNumberCodon

References

Chen, Zhen, et al. "iFeature: a python package and web server for features extraction and selection
from protein and peptide sequences." Bioinformatics 34.14 (2018): 2499-2502.

Examples

dir = tempdir()
ptmSeqsADR<-system.file("extdata/",package="ftrCOOL")
ptmSeqsVect<-as.vector(read.csv(paste0(ptmSeqsADR,"/ptmVect101AA.csv"))[,2])
mat<-EAAComposition(seqs = ptmSeqsVect,winSize=50, overLap=FALSE,outFormat='mat')

ad<-paste0(dir,"/EaaCompos.txt")
filePrs<-system.file("extdata/proteins.fasta",package="ftrCOOL")
EAAComposition(seqs = filePrs,winSize=50, overLap=FALSE,outFormat="txt"
,outputFileDist=ad)

unlink("dir", recursive = TRUE)

EffectiveNumberCodon Effective Number of Codon (EffectiveNumberCodon)

Description

This function calculates the effective number of codon for each sequence.

Usage

EffectiveNumberCodon(seqs, ORF = FALSE, reverseORF = TRUE, label = c())

Arguments

seqs is a FASTA file containing nucleotide sequences. The sequences start with ’>’.
Also, seqs could be a string vector. Each element of the vector is a nucleotide
sequence.

ORF (Open Reading Frame) is a logical parameter. If it is set to true, ORF region of
each sequence is considered instead of the original sequence (i.e., 3-frame).

reverseORF is a logical parameter. It is enabled only if ORF is true. If reverseORF is true,
ORF region will be searched in the sequence and also in the reverse complement
of the sequence (i.e., 6-frame).

label is an optional parameter. It is a vector whose length is equivalent to the number
of sequences. It shows the class of each entry (i.e., sequence).

Value

The function returns a feature vector. The length of the vector is equal to the number of sequences.
Each entry in the vector contains the effective number of codon.

EGAAComposition 71

Examples

fileLNC<-system.file("extdata/Athaliana_LNCRNA.fa",package="ftrCOOL")
vect<-EffectiveNumberCodon(seqs=fileLNC,ORF=TRUE,reverseORF=FALSE)

EGAAComposition Enhanced Grouped Amino Acid Composition (EGAAComposition)

Description

In this function, amino acids are first grouped into user-defined categories. Then, enhanced grouped
amino acid composition is computed. For details about the enhanced feature, please refer to function
EAAComposition. Please note that this function differs from function EAAComposition which
works on individual amino acids.

Usage

EGAAComposition(
seqs,
winSize = 50,
overLap = TRUE,
Grp = "locFus",
label = c(),
outFormat = "mat",
outputFileDist = ""

)

Arguments

seqs is a FASTA file with amino acid sequences. Each sequence starts with a ’>’
character. Also, seqs could be a string vector. Each element of the vector is a
peptide/protein sequence.

winSize shows the size of sliding window. It is a numeric value.

overLap This parameter shows how the window moves on the sequence. If the overlap is
set to TRUE, the next window would have distance 1 with the previous window.
Otherwise, the next window will start from the next amino acid after the previous
window. There is no overlap between the next and previous windows.

Grp is a list of vectors containig amino acids. Each vector represents a category.
Users can define a customized amino acid grouping, provided that the sum of
all amino acids is 20 and there is no repeated amino acid in the groups. Also,
users can choose ’cTriad’(conjointTriad), ’locFus’, or ’aromatic’. Each option
provides specific information about the type of an amino acid grouping.

label is an optional parameter. It is a vector whose length is equivalent to the number
of sequences. It shows the class of each entry (i.e., sequence).

72 EIIP

outFormat (output format) can take two values: ’mat’(matrix) and ’txt’. The default value
is ’mat’.

outputFileDist shows the path and name of the ’txt’ output file.

Value

The output depends on the outFormat parameter which can be either ’mat’ or ’txt’. If outFormat is
’mat’, the function returns a feature matrix for sequences with the same length such that the number
of columns is ((number of categorizes) * (number of windows)) and the number of rows is equal to
the number of sequences. If the outFormat is ’txt’, the output is written to a tab-delimited file.

Note

This function is provided for sequences with the same lengths. Users can use ’txt’ option in out-
Format for sequences with different lengths. Warning: If outFormat is set to ’mat’ for sequences
with different lengths, it returns an error. Also, when output format is ’txt’, label information is not
shown in the text file. It is noteworthy that ’txt’ format is not usable for machine learning purposes if
sequences have different sizes. Otherwise ’txt’ format is also usable for machine learning purposes.

Examples

dir = tempdir()
ptmSeqsADR<-system.file("extdata/",package="ftrCOOL")
ptmSeqsVect<-as.vector(read.csv(paste0(ptmSeqsADR,"/ptmVect101AA.csv"))[,2])
mat1<-EGAAComposition(seqs = ptmSeqsVect,winSize=20,overLap=FALSE,Grp="locFus")

mat2<-EGAAComposition(seqs = ptmSeqsVect,winSize=30,overLap=FALSE,Grp=
list(Grp1=c("G","A","V","L","M","I","F","Y","W"),Grp2=c("K","R","H","D","E")
,Grp3=c("S","T","C","P","N","Q")),outFormat="mat")

ad<-paste0(dir,"/EGrpaaCompos.txt")
filePrs<-system.file("extdata/proteins.fasta",package="ftrCOOL")
EGAAComposition(seqs = filePrs,winSize=20,Grp="cTriad",outFormat="txt"
,outputFileDist=ad)

unlink("dir", recursive = TRUE)

EIIP Electron-Ion Interaction Pseudopotentials (EIIP)

Description

This function replaces each nucleotide in the input sequence with its electron-ion interaction value.
The resulting sequence is represented by a feature vector whose length is equal to the length of the
sequence. Please check the references for more information.

EIIP 73

Usage

EIIP(seqs, outFormat = "mat", outputFileDist = "", label = c())

Arguments

seqs is a FASTA file containing nucleotide sequences. The sequences start with ’>’.
Also, seqs could be a string vector. Each element of the vector is a nucleotide
sequence.

outFormat (output format) can take two values: ’mat’(matrix) and ’txt’. The default value
is ’mat’.

outputFileDist shows the path and name of the ’txt’ output file.

label is an optional parameter. It is a vector whose length is equivalent to the number
of sequences. It shows the class of each entry (i.e., sequence).

Value

The output depends on the outFormat parameter which can be either ’mat’ or ’txt’. If outFormat is
’mat’, the function returns a feature matrix for sequences with the same length such that the number
of columns is equal to the length of the sequences and the number of rows is equal to the number of
sequences. If the outFormat is ’txt’, the output is written to a tab-delimited file.

Note

This function is provided for sequences with the same lengths. Users can use ’txt’ option in out-
Format parameter for sequences with different lengths. Warning: If outFormat is set to ’mat’ for
sequences with different lengths, it returns an error. Also, when output format is ’txt’, label infor-
mation is not shown in the text file. It is noteworthy that ’txt’ format is not usable for machine
learning purposes if sequences have different sizes. Otherwise ’txt’ format is also usable for ma-
chine learning purposes.

References

Chen, Zhen, et al. "iLearn: an integrated platform and meta-learner for feature engineering, machine-
learning analysis and modeling of DNA, RNA and protein sequence data." Briefings in bioinformat-
ics 21.3 (2020): 1047-1057.

Examples

LNCSeqsADR<-system.file("extdata/",package="ftrCOOL")
LNC50Nuc<-as.vector(read.csv(paste0(LNCSeqsADR,"/LNC50Nuc.csv"))[,2])
mat<-EIIP(seqs = LNC50Nuc,outFormat="mat")

74 ENUComposition_DNA

ENUComposition_DNA Enhanced Nucleotide Composition (ENUComposition_DNA)

Description

This function slides a window over the input sequence(s). Also, it computes the composition of
nucleotides that appears within the limits of the window.

Usage

ENUComposition_DNA(
seqs,
winSize = 50,
overLap = TRUE,
label = c(),
outFormat = "mat",
outputFileDist = ""

)

Arguments

seqs is a FASTA file containing nucleotide sequences. The sequences start with ’>’.
Also, seqs could be a string vector. Each element of the vector is a nucleotide
sequence.

winSize is a number which shows the size of the window.

overLap This parameter shows how the window moves on the sequence. If the overlap is
set to TRUE, the next window would have distance 1 with the previous window.
Otherwise, the next window will start from the next nucleotide after the previous
window. There is no overlap between the next and previous windows.

label is an optional parameter. It is a vector whose length is equivalent to the number
of sequences. It shows the class of each entry (i.e., sequence).

outFormat (output format) can take two values: ’mat’(matrix) and ’txt’. The default value
is ’mat’.

outputFileDist shows the path and name of the ’txt’ output file.

Value

The output depends on the outFormat parameter which can be either ’mat’ or ’txt’. If outFormat is
’mat’, the function returns a feature matrix for sequences with the same length such that the number
of columns is (4 * number of partitions displayed by the window) and the number of rows is equal
to the number of sequences. If the outFormat is ’txt’, the output is written to a tab-delimited file.

ENUComposition_RNA 75

Note

This function is provided for sequences with the same lengths. Users can use ’txt’ option in out-
Format for sequences with different lengths. Warning: If outFormat is set to ’mat’ for sequences
with different lengths, it returns an error. Also, when output format is ’txt’, label information is not
shown in the text file. It is noteworthy that ’txt’ format is not usable for machine learning purposes if
sequences have different sizes. Otherwise ’txt’ format is also usable for machine learning purposes.

Examples

dir = tempdir()
LNCSeqsADR<-system.file("extdata/",package="ftrCOOL")
LNC50Nuc<-as.vector(read.csv(paste0(LNCSeqsADR,"/LNC50Nuc.csv"))[,2])
mat<-ENUComposition_DNA(seqs = LNC50Nuc, winSize=20,outFormat="mat")

ad<-paste0(dir,"/ENUCcompos.txt")
fileLNC<-system.file("extdata/Athaliana_LNCRNA.fa",package="ftrCOOL")
ENUComposition_DNA(seqs = fileLNC,outFormat="txt",winSize=20
,outputFileDist=ad,overLap=FALSE)

unlink("dir", recursive = TRUE)

ENUComposition_RNA Enhanced riboNucleotide Composition (ENUComposition_RNA)

Description

This function slides a window over the input sequence(s). Also, it computes the composition of
ribonucleotides that appears within the limits of the window.

Usage

ENUComposition_RNA(
seqs,
winSize = 50,
overLap = TRUE,
label = c(),
outFormat = "mat",
outputFileDist = ""

)

Arguments

seqs is a FASTA file containing ribonucleotide sequences. The sequences start with
’>’. Also, seqs could be a string vector. Each element of the vector is a ribonu-
cleotide sequence.

winSize is a number which shows the size of the window.

76 ExpectedValKmerNUC_DNA

overLap This parameter shows how the window moves on the sequence. If the overlap is
set to TRUE, the next window would have distance 1 with the previous window.
Otherwise, the next window will start from the next ribonucleotide after the
previous window. There is no overlap between the next and previous windows.

label is an optional parameter. It is a vector whose length is equivalent to the number
of sequences. It shows the class of each entry (i.e., sequence).

outFormat (output format) can take two values: ’mat’(matrix) and ’txt’. The default value
is ’mat’.

outputFileDist shows the path and name of the ’txt’ output file.

Value

The output depends on the outFormat parameter which can be either ’mat’ or ’txt’. If outFormat is
’mat’, the function returns a feature matrix for sequences with the same length such that the number
of columns is (4 * number of partitions displayed by the window) and the number of rows is equal
to the number of sequences. If the outFormat is ’txt’, the output is written to a tab-delimited file.

Note

This function is provided for sequences with the same lengths. Users can use ’txt’ option in out-
Format for sequences with different lengths. Warning: If outFormat is set to ’mat’ for sequences
with different lengths, it returns an error. Also, when output format is ’txt’, label information is not
shown in the text file. It is noteworthy that ’txt’ format is not usable for machine learning purposes if
sequences have different sizes. Otherwise ’txt’ format is also usable for machine learning purposes.

Examples

dir = tempdir()
LNCSeqsADR<-system.file("extdata/",package="ftrCOOL")
fileLNC<-system.file("extdata/Carica_papaya101RNA.txt",package="ftrCOOL")
mat<-ENUComposition_RNA(seqs = fileLNC, winSize=20,outFormat="mat")

ad<-paste0(dir,"/ENUCcompos.txt")
ENUComposition_RNA(seqs = fileLNC,outFormat="txt",winSize=20
,outputFileDist=ad,overLap=FALSE)

unlink("dir", recursive = TRUE)

ExpectedValKmerNUC_DNA

Expected Value for K-mer Nucleotide (ExpectedValKmerNUC_DNA)

Description

This function is introduced by this package for the first time. It computes the expected value for each
k-mer in a sequence. ExpectedValue(k-mer) = freq(k-mer) / (freq(nucleotide1) * freq(nucleotide2)
* ... * freq(nucleotidek))

ExpectedValKmerNUC_RNA 77

Usage

ExpectedValKmerNUC_DNA(
seqs,
k = 4,
ORF = FALSE,
reverseORF = TRUE,
normalized = TRUE,
label = c()

)

Arguments

seqs is a FASTA file containing nucleotide sequences. The sequences start with ’>’.
Also, seqs could be a string vector. Each element of the vector is a nucleotide
sequence.

k is an integer value. The default is four.
ORF (Open Reading Frame) is a logical parameter. If it is set to true, ORF region of

each sequence is considered instead of the original sequence (i.e., 3-frame).
reverseORF is a logical parameter. It is enabled only if ORF is true. If reverseORF is true,

ORF region will be searched in the sequence and also in the reverse complement
of the sequence (i.e., 6-frame).

normalized is a logical parameter. When it is FALSE, the return value of the function does
not change. Otherwise, the return value is normalized using the length of the
sequence.

label is an optional parameter. It is a vector whose length is equivalent to the number
of sequences. It shows the class of each entry (i.e., sequence).

Value

The function returns a feature matrix. The number of rows is equal to the number of sequences and
the number of columns is (4^k).

Examples

fileLNC<-system.file("extdata/Athaliana_LNCRNA.fa",package="ftrCOOL")
mat<-ExpectedValKmerNUC_DNA(seqs=fileLNC,k=4,ORF=TRUE,reverseORF=FALSE)

ExpectedValKmerNUC_RNA

Expected Value for K-mer riboNucleotide (ExpectedValKmer-
NUC_RNA)

Description

This function is introduced by this package for the first time. It computes the expected value
for each k-mer in a sequence. ExpectedValue(k-mer) = freq(k-mer) / (freq(ribonucleotide1) *
freq(ribonucleotide2) * ... * freq(ribonucleotidek))

78 ExpectedValueAA

Usage

ExpectedValKmerNUC_RNA(
seqs,
k = 4,
ORF = FALSE,
reverseORF = TRUE,
normalized = TRUE,
label = c()

)

Arguments

seqs is a FASTA file containing ribonucleotide sequences. The sequences start with
’>’. Also, seqs could be a string vector. Each element of the vector is a ribonu-
cleotide sequence.

k is an integer value. The default is four.

ORF (Open Reading Frame) is a logical parameter. If it is set to true, ORF region of
each sequence is considered instead of the original sequence (i.e., 3-frame).

reverseORF is a logical parameter. It is enabled only if ORF is true. If reverseORF is true,
ORF region will be searched in the sequence and also in the reverse complement
of the sequence (i.e., 6-frame).

normalized is a logical parameter. When it is FALSE, the return value of the function does
not change. Otherwise, the return value is normalized using the length of the
sequence.

label is an optional parameter. It is a vector whose length is equivalent to the number
of sequences. It shows the class of each entry (i.e., sequence).

Value

The function returns a feature matrix. The number of rows is equal to the number of sequences and
the number of columns is (4^k).

Examples

fileLNC<-system.file("extdata/Carica_papaya101RNA.txt",package="ftrCOOL")
mat<-ExpectedValKmerNUC_RNA(seqs=fileLNC,k=4,ORF=TRUE,reverseORF=FALSE)

ExpectedValueAA Expected Value for each Amino Acid (ExpectedValueAA)

Description

This function is introduced by this package for the first time. It computes the expected value for
each k-mer in a sequence. ExpectedValue(k-mer) = freq(k-mer) / (c_1 * c_2 * ... * c_k), where c_i
is the number of codons that encrypt the i’th amino acid in the k-mer.

ExpectedValueGAA 79

Usage

ExpectedValueAA(seqs, k = 2, normalized = TRUE, label = c())

Arguments

seqs is a FASTA file with amino acid sequences. Each sequence starts with a ’>’
character. Also, seqs could be a string vector. Each element of the vector is a
peptide/protein sequence.

k is an integer value. The default is two.

normalized is a logical parameter. When it is FALSE, the return value of the function does
not change. Otherwise, the return value is normalized using the length of the
sequence.

label is an optional parameter. It is a vector whose length is equivalent to the number
of sequences. It shows the class of each entry (i.e., sequence).

Value

This function returns a feature matrix. The number of rows is equal to the number of sequences and
the number of columns is 20^k.

Examples

filePrs<-system.file("extdata/proteins.fasta",package="ftrCOOL")
mat<-ExpectedValueAA(seqs=filePrs,k=2,normalized=FALSE)

ExpectedValueGAA Expected Value for Grouped Amino Acid (ExpectedValueGAA)

Description

This function is introduced by this package for the first time. In this function, amino acids are first
grouped into user-defined categories. Later, the expected value of grouped amino acids is computed.
Please note that this function differs from Function ExpectedValueAA which works on individual
amino acids.

Usage

ExpectedValueGAA(seqs, k = 3, Grp = "locFus", normalized = TRUE, label = c())

Arguments

seqs is a FASTA file with amino acid sequences. Each sequence starts with a ’>’
character. Also, seqs could be a string vector. Each element of the vector is a
peptide/protein sequence.

k is an integer value. The default is three.

80 ExpectedValueGKmerAA

Grp is a list of vectors containig amino acids. Each vector represents a category.
Users can define a customized amino acid grouping, provided that the sum of
all amino acids is 20 and there is no repeated amino acid in the groups. Also,
users can choose ’cTriad’(conjointTriad), ’locFus’, or ’aromatic’. Each option
provides specific information about the type of an amino acid grouping.

normalized is a logical parameter. When it is FALSE, the return value of the function does
not change. Otherwise, the return value is normalized using the length of the
sequence.

label is an optional parameter. It is a vector whose length is equivalent to the number
of sequences. It shows the class of each entry (i.e., sequence).

Details

for more information about ExpectedValueGAA, please refer to function ExpectedValueKmer.

Value

This function returns a feature matrix. The number of rows is equal to the number of sequences and
the number of columns is (number of categories)^k.

Examples

filePrs<-system.file("extdata/proteins.fasta",package="ftrCOOL")
mat1<-ExpectedValueGAA(seqs=filePrs,k=2,Grp="locFus")

mat2<-ExpectedValueGAA(seqs=filePrs,k=1,Grp=
list(Grp1=c("G","A","V","L","M","I","F","Y","W"),Grp2=c("K","R","H","D","E")
,Grp3=c("S","T","C","P","N","Q")))

ExpectedValueGKmerAA Expected Value for Grouped K-mer Amino
Acid(ExpectedValueGKmerAA)

Description

This function is introduced by this package for the first time. In this function, amino acids are
first grouped into user-defined categories. Later, the expected value of grouped k-mer is computed.
Please note that this function differs from Function ExpectedValueKmerAA which works on indi-
vidual amino acids.

Usage

ExpectedValueGKmerAA(
seqs,
k = 2,
Grp = "locFus",
normalized = TRUE,
label = c()

)

ExpectedValueKmerAA 81

Arguments

seqs is a FASTA file with amino acid sequences. Each sequence starts with a ’>’
character. Also, seqs could be a string vector. Each element of the vector is a
peptide/protein sequence.

k is an integer. The default value is two.

Grp is a list of vectors containig amino acids. Each vector represents a category.
Users can define a customized amino acid grouping, provided that the sum of
all amino acids is 20 and there is no repeated amino acid in the groups. Also,
users can choose ’cTriad’(conjointTriad), ’locFus’, or ’aromatic’. Each option
provides specific information about the type of an amino acid grouping.

normalized is a logical parameter. When it is FALSE, the return value of the function does
not change. Otherwise, the return value is normalized using the length of the
sequence.

label is an optional parameter. It is a vector whose length is equivalent to the number
of sequences. It shows the class of each entry (i.e., sequence).

Value

This function returns a feature matrix. The number of rows is equal to the number of sequences and
the number of columns is (number of categorizes)^k.

Examples

filePrs<-system.file("extdata/proteins.fasta",package="ftrCOOL")
mat1<-ExpectedValueGKmerAA(seqs=filePrs,k=2,Grp="locFus")

mat2<-ExpectedValueGKmerAA(seqs=filePrs,k=1,Grp=
list(Grp1=c("G","A","V","L","M","I","F","Y","W"),Grp2=c("K","R","H","D","E")
,Grp3=c("S","T","C","P","N","Q")))

ExpectedValueKmerAA Expected Value for K-mer Amino Acid (ExpectedValueKmerAA)

Description

This function computes the expected value of each k-mer by dividing the frequency of the kmer to
multiplying frequency of each amino acid of the k-mer in the sequence.

Usage

ExpectedValueKmerAA(seqs, k = 2, normalized = TRUE, label = c())

82 fa.read

Arguments

seqs is a FASTA file with amino acid sequences. Each sequence starts with a ’>’
character. Also, seqs could be a string vector. Each element of the vector is a
peptide/protein sequence.

k is an integer value and it shows the size of kmer in the kmer composition. The
default value is 2.

normalized is a logical parameter. When it is FALSE, the return value of the function does
not change. Otherwise, the return value is normalized using the length of the
sequence.

label is an optional parameter. It is a vector whose length is equivalent to the number
of sequences. It shows the class of each entry (i.e., sequence).

Details

ExpectedValue(k-mer) = freq(k-mer) / (freq(aminoacid1) * freq(aminoacid2) * ... * freq(aminoacidk)
)

Value

This function returns a feature matrix. The number of rows equals the number of sequences and the
number of columns if upto set false, is 20^k.

Examples

filePrs<-system.file("extdata/proteins.fasta",package="ftrCOOL")
mat<-ExpectedValueKmerAA(filePrs,k=2,normalized=FALSE)

fa.read Fasta File Reader (fa.read)

Description

This function reads a FASTA file. Each sequence starts with ’>’ in the file. This is a general function
which can be applied to all types of sequences (i.e., protein/peptide, dna, and rna).

Usage

fa.read(file, legacy.mode = TRUE, seqonly = FALSE, alphabet = "aa")

Arguments

file The address of the FASTA file.

legacy.mode comments all lines which start with ";".

seqonly if it is set to true, the function will return sequences with no description.

alphabet is a vector which contains amino acid, RNA, or DNA alphabets.

fickettScore 83

Value

a string vector such that each element is a sequence.

References

https://cran.r-project.org/web/packages/rDNAse/index.html

Examples

fileLNC<-system.file("extdata/Athaliana_LNCRNA.fa",package="ftrCOOL")
sequenceVectLNC<-fa.read(file=fileLNC,alphabet="dna")

filePrs<-system.file("extdata/proteins.fasta",package="ftrCOOL")
sequenceVectPRO<-fa.read(file=filePrs,alphabet="aa")

fickettScore Fickett Score (fickettScore)

Description

This function calculates the ficket score of each sequence.

Usage

fickettScore(seqs, ORF = FALSE, reverseORF = TRUE, label = c())

Arguments

seqs is a FASTA file containing nucleotide sequences. The sequences start with ’>’.
Also, seqs could be a string vector. Each element of the vector is a nucleotide
sequence.

ORF (Open Reading Frame) is a logical parameter. If it is set to true, ORF region of
each sequence is considered instead of the original sequence (i.e., 3-frame).

reverseORF is a logical parameter. It is enabled only if ORF is true. If reverseORF is true,
ORF region will be searched in the sequence and also in the reverse complement
of the sequence (i.e., 6-frame).

label is an optional parameter. It is a vector whose length is equivalent to the number
of sequences. It shows the class of each entry (i.e., sequence).

Value

The function returns a feature vector. The length of the vector is equal to the number of sequences.
Each entry in the vector contains the value of the fickett score.

Examples

fileLNC<-system.file("extdata/Athaliana_LNCRNA.fa",package="ftrCOOL")
vect<-fickettScore(seqs=fileLNC,ORF=TRUE,reverseORF=FALSE)

84 GAAKpartComposition

GAAKpartComposition Grouped Amino Acid K Part Composition (GAAKpartComposition)

Description

In this function, amino acids are first grouped into user-defined categories. Later, the composition
of the grouped amino acid k part is computed. Please note that this function differs from AAKpart-
Composition which works on individual amino acids.

Usage

GAAKpartComposition(
seqs,
k = 5,
normalized = TRUE,
Grp = "locFus",
label = c()

)

Arguments

seqs is a FASTA file with amino acid sequences. Each sequence starts with a ’>’
character. Also, seqs could be a string vector. Each element of the vector is a
peptide/protein sequence.

k is an integer. Each sequence should be divided to k partition(s).

normalized is a logical parameter. When it is FALSE, the return value of the function does
not change. Otherwise, the return value is normalized using the length of the
sequence.

Grp is a list of vectors containig amino acids. Each vector represents a category.
Users can define a customized amino acid grouping, provided that the sum of
all amino acids is 20 and there is no repeated amino acid in the groups. Also,
users can choose ’cTriad’(conjointTriad), ’locFus’, or ’aromatic’. Each option
provides specific information about the type of an amino acid grouping.

label is an optional parameter. It is a vector whose length is equivalent to the number
of sequences. It shows the class of each entry (i.e., sequence).

Value

a feature matrix with k*(number of categorizes) number of columns. The number of rows is equal
to the number of sequences.

Note

Warning: The length of all sequences should be greater than k.

GrpDDE 85

Examples

filePrs<-system.file("extdata/proteins.fasta",package="ftrCOOL")
mat1<-GAAKpartComposition(seqs=filePrs,k=5,Grp="aromatic")

mat2<-GAAKpartComposition(seqs=filePrs,k=3,normalized=FALSE,Grp=
list(Grp1=c("G","A","V","L","M","I","F","Y","W"),Grp2=c("K","R","H","D","E")
,Grp3=c("S","T","C","P","N","Q")))

GrpDDE Group Dipeptide Deviation from Expected Mean (GrpDDE)

Description

This function is introduced by this package for the first time. In this function, amino acids are first
grouped into user-defined categories. Later, DDE is applied to grouped amino acids. Please note
that this function differs from DDE which works on individual amino acids.

Usage

GrpDDE(seqs, Grp = "locFus", label = c())

Arguments

seqs is a FASTA file with amino acid sequences. Each sequence starts with a ’>’
character. Also, seqs could be a string vector. Each element of the vector is a
peptide/protein sequence.

Grp is a list of vectors containig amino acids. Each vector represents a category.
Users can define a customized amino acid grouping, provided that the sum of
all amino acids is 20 and there is no repeated amino acid in the groups. Also,
users can choose ’cTriad’(conjointTriad), ’locFus’, or ’aromatic’. Each option
provides specific information about the type of an amino acid grouping.

label is an optional parameter. It is a vector whose length is equivalent to the number
of sequences. It shows the class of each entry (i.e., sequence).

Value

A feature matrix with (number of categorizes)^2 number of columns. The number of rows is equal
to the number of sequences.

Examples

filePrs<-system.file("extdata/proteins.fasta",package="ftrCOOL")
mat1<-GrpDDE(seqs=filePrs,Grp="aromatic")

mat2<-GrpDDE(seqs=filePrs,Grp=
list(Grp1=c("G","A","V","L","M","I","F","Y","W"),Grp2=c("K","R","H","D","E")
,Grp3=c("S","T","C","P","N","Q")))

86 G_Ccontent_DNA

G_Ccontent_DNA G_C content in DNA (G_Ccontent_DNA)

Description

This function calculates G-C content of each sequence.

Usage

G_Ccontent_DNA(
seqs,
ORF = FALSE,
reverseORF = TRUE,
normalized = TRUE,
label = c()

)

Arguments

seqs is a FASTA file containing nucleotide sequences. The sequences start with ’>’.
Also, seqs could be a string vector. Each element of the vector is a nucleotide
sequence.

ORF (Open Reading Frame) is a logical parameter. If it is set to true, ORF region of
each sequence is considered instead of the original sequence (i.e., 3-frame).

reverseORF is a logical parameter. It is enabled only if ORF is true. If reverseORF is true,
ORF region will be searched in the sequence and also in the reverse complement
of the sequence (i.e., 6-frame).

normalized is a logical parameter. When it is FALSE, the return value of the function does
not change. Otherwise, the return value is normalized using the length of the
sequence.

label is an optional parameter. It is a vector whose length is equivalent to the number
of sequences. It shows the class of each entry (i.e., sequence).

Value

The function returns a feature vector. The length of the vector is equal to the number of sequences.
Each entry in the vector contains G-C content of a sequence.

Examples

fileLNC<-system.file("extdata/Athaliana_LNCRNA.fa",package="ftrCOOL")
vect<-G_Ccontent_DNA(seqs=fileLNC,ORF=TRUE,reverseORF=FALSE)

G_Ccontent_RNA 87

G_Ccontent_RNA G_C content in RNA (G_Ccontent_RNA)

Description

This function calculates G-C content of each sequence.

Usage

G_Ccontent_RNA(
seqs,
ORF = FALSE,
reverseORF = TRUE,
normalized = TRUE,
label = c()

)

Arguments

seqs is a FASTA file containing ribonucleotide sequences. The sequences start with
’>’. Also, seqs could be a string vector. Each element of the vector is a ribonu-
cleotide sequence.

ORF (Open Reading Frame) is a logical parameter. If it is set to true, ORF region of
each sequence is considered instead of the original sequence (i.e., 3-frame).

reverseORF is a logical parameter. It is enabled only if ORF is true. If reverseORF is true,
ORF region will be searched in the sequence and also in the reverse complement
of the sequence (i.e., 6-frame).

normalized is a logical parameter. When it is FALSE, the return value of the function does
not change. Otherwise, the return value is normalized using the length of the
sequence.

label is an optional parameter. It is a vector whose length is equivalent to the number
of sequences. It shows the class of each entry (i.e., sequence).

Value

The function returns a feature vector. The length of the vector is equal to the number of sequences.
Each entry in the vector contains G-C content of a sequence.

Examples

fileLNC<-system.file("extdata/Carica_papaya101RNA.txt",package="ftrCOOL")
vect<-G_Ccontent_RNA(seqs=fileLNC,ORF=TRUE,reverseORF=FALSE)

88 kAAComposition

kAAComposition k Amino Acid Composition (kAAComposition)

Description

This function calculates the frequency of all k-mers in the sequence(s).

Usage

kAAComposition(seqs, rng = 3, upto = FALSE, normalized = TRUE, label = c())

Arguments

seqs is a FASTA file with amino acid sequences. Each sequence starts with a ’>’
character. Also, seqs could be a string vector. Each element of the vector is a
peptide/protein sequence.

rng This parameter can be a number or a vector. Each entry of the vector holds the
value of k in the k-mer composition.

upto It is a logical parameter. The default value is FALSE. If rng is a number and
upto is set to TRUE, rng is converted to a vector with values from 1 to rng.

normalized is a logical parameter. When it is FALSE, the return value of the function does
not change. Otherwise, the return value is normalized using the length of the
sequence.

label is an optional parameter. It is a vector whose length is equivalent to the number
of sequences. It shows the class of each entry (i.e., sequence).

Value

This function returns a feature matrix. The number of rows is equal to the number of sequences and
the number of columns depends on rng vector. For each value k in the vector, (20)^k columns are
created in the matrix.

Examples

filePrs<-system.file("extdata/proteins.fasta",package="ftrCOOL")

mat1<-kAAComposition(seqs=filePrs,rng=3,upto=TRUE)
mat2<-kAAComposition(seqs=filePrs,rng=c(1,3),upto=TRUE)

kGAAComposition 89

kGAAComposition k Grouped Amino Acid Composition (kGAAComposition)

Description

In this function, amino acids are first grouped into user-defined categories. Later, the composition of
the k grouped amino acids is computed. Please note that this function differs from kAAComposition
which works on individual amino acids.

Usage

kGAAComposition(
seqs,
rng = 3,
upto = FALSE,
normalized = TRUE,
Grp = "locFus",
label = c()

)

Arguments

seqs is a FASTA file with amino acid sequences. Each sequence starts with a ’>’
character. Also, seqs could be a string vector. Each element of the vector is a
peptide/protein sequence.

rng This parameter can be a number or a vector. Each entry of the vector holds the
value of k in the k-mer composition. For each k in the rng vector, a new vector
(whose size is 20^k) is created which contains the frequency of k-mers.

upto It is a logical parameter. The default value is FALSE. If rng is a number and
upto is set to TRUE, rng is converted to a vector with values from 1 to rng.

normalized is a logical parameter. When it is FALSE, the return value of the function does
not change. Otherwise, the return value is normalized using the length of the
sequence.

Grp is a list of vectors containig amino acids. Each vector represents a category.
Users can define a customized amino acid grouping, provided that the sum of
all amino acids is 20 and there is no repeated amino acid in the groups. Also,
users can choose ’cTriad’(conjointTriad), ’locFus’, or ’aromatic’. Each option
provides specific information about the type of an amino acid grouping.

label is an optional parameter. It is a vector whose length is equivalent to the number
of sequences. It shows the class of each entry (i.e., sequence).

Details

for more details, please refer to kAAComposition

90 KNNPeptide

Value

This function returns a feature matrix. The number of rows is equal to the number of sequences and
the number of columns is ((number of categorizes)^k)*(length of rng vector).

Examples

filePrs<-system.file("extdata/proteins.fasta",package="ftrCOOL")
mat1<-CkSGAApair(seqs=filePrs,rng=2,upto=TRUE,Grp="aromatic")

mat2<-CkSGAApair(seqs=filePrs,rng=c(1,3,5),Grp=
list(Grp1=c("G","A","V","L","M","I","F","Y","W"),Grp2=c("K","R","H","D","E")
,Grp3=c("S","T","C","P","N","Q")))

KNNPeptide K-Nearest Neighbor for Peptides (KNNPeptide)

Description

This function needs an extra training data set and a label. We compute the similarity score of
each input sequence with all sequences in the training data set. We use the BLOSUM62 matrix to
compute the similarity score. The label shows the class of each sequence in the training data set.
KNNPeptide finds the label of 1 It reports the frequency of each class for each k

Usage

KNNPeptide(seqs, trainSeq, percent = 30, label = c(), labeltr = c())

Arguments

seqs is a fasta file with amino acids sequences. Each sequence starts with a ’>’ char-
acter or it is a string vector such that each element is a peptide or protein se-
quence.

trainSeq is a fasta file with amino acids sequences. Each sequence starts with a ’>’ char-
acter. Also it could be a string vector such that each element is a peptide se-
quence. Eaxh sequence in the training set is associated with a label. The label is
found in the parameret labeltr.

percent determines the threshold which is used to identify sequences (in the training set)
which are similar to the input sequence.

label is an optional parameter. It is a vector whose length is equivalent to the number
of sequences. It shows the class of each entry (i.e., sequence).

labeltr This parameter is a vector whose length is equivalent to the number of sequences
in the training set. It shows class of each sequence in the trainig set.

Value

This function returns a feature matrix such that number of columns is number of classes multiplied
by percent and number of rows is equal to the number of the sequences.

KNNProtein 91

Note

This function is usable for amino acid sequences with the same length in both training data set and
the set of sequences.

References

Chen, Zhen, et al. "iFeature: a python package and web server for features extraction and selection
from protein and peptide sequences." Bioinformatics 34.14 (2018): 2499-2502.

Examples

ptmSeqsADR<-system.file("extdata/",package="ftrCOOL")
ptmSeqsVect<-as.vector(read.csv(paste0(ptmSeqsADR,"/ptmVect101AA.csv"))[,2])

posSeqs<-as.vector(read.csv(paste0(ptmSeqsADR,"/poSeqPTM101.csv"))[,2])
negSeqs<-as.vector(read.csv(paste0(ptmSeqsADR,"/negSeqPTM101.csv"))[,2])

posSeqs<-posSeqs[1:10]
negSeqs<-negSeqs[1:10]

trainSeq<-c(posSeqs,negSeqs)

labelPos<-rep(1,length(posSeqs))
labelNeg<-rep(0,length(negSeqs))

labeltr<-c(labelPos,labelNeg)

KNNPeptide(seqs=ptmSeqsVect,trainSeq=trainSeq,percent=10,labeltr=labeltr)

KNNProtein K-Nearest Neighbor for Protein (KNNProtein)

Description

This function is like KNNPeptide with the difference that similarity score is computed by Needleman-
Wunsch algorithm.

Usage

KNNProtein(seqs, trainSeq, percent = 30, labeltr = c(), label = c())

Arguments

seqs is a fasta file with amino acids sequences. Each sequence starts with a ’>’ char-
acter. Also it could be a string vector such that each element is a protein se-
quence.

92 KNNProtein

trainSeq is a fasta file with amino acids sequences. Each sequence starts with a ’>’ char-
acter. Also it could be a string vector such that each element is a protein se-
quence. Eaxh sequence in the training set is associated with a label. The label is
found in the parameret labeltr.

percent determines the threshold which is used to identify sequences (in the training set)
which are similar to the input sequence.

labeltr This parameter is a vector whose length is equivalent to the number of sequences
in the training set. It shows class of each sequence in the trainig set.

label is an optional parameter. It is a vector whose length is equivalent to the number
of sequences. It shows the class of each entry (i.e., sequence).

Value

This function returns a feature matrix such that number of columns is number of classes multiplied
by percent and number of rows is equal to the number of the sequences.

References

Chen, Zhen, et al. "iFeature: a python package and web server for features extraction and selection
from protein and peptide sequences." Bioinformatics 34.14 (2018): 2499-2502.

Examples

ptmSeqsADR<-system.file("extdata/",package="ftrCOOL")
ptmSeqsVect<-as.vector(read.csv(paste0(ptmSeqsADR,"/ptmVect101AA.csv"))[,2])
ptmSeqsVect<-ptmSeqsVect[1:2]
ptmSeqsVect<-sapply(ptmSeqsVect,function(seq){substr(seq,1,31)})

posSeqs<-as.vector(read.csv(paste0(ptmSeqsADR,"/poSeqPTM101.csv"))[,2])
negSeqs<-as.vector(read.csv(paste0(ptmSeqsADR,"/negSeqPTM101.csv"))[,2])

posSeqs<-posSeqs[1:3]
negSeqs<-negSeqs[1:3]

posSeqs<-sapply(posSeqs,function(seq){substr(seq,1,31)})
negSeqs<-sapply(negSeqs,function(seq){substr(seq,1,31)})

trainSeq<-c(posSeqs,negSeqs)

labelPos<-rep(1,length(posSeqs))
labelNeg<-rep(0,length(negSeqs))

labeltr<-c(labelPos,labelNeg)

mat<-KNNProtein(seqs=ptmSeqsVect,trainSeq=trainSeq,percent=5,labeltr=labeltr)

KNN_DNA 93

KNN_DNA K-Nearest Neighbor_DNA (KNN_DNA)

Description

This function is like KNNPeptide with the difference that similarity score is computed by Needleman-
Wunsch algorithm.

Usage

KNN_DNA(seqs, trainSeq, percent = 30, labeltr = c(), label = c())

Arguments

seqs is a FASTA file containing nucleotide sequences. The sequences start with ’>’.
Also, seqs could be a string vector. Each element of the vector is a nucleotide
sequence.

trainSeq is a fasta file with nucleotide sequences. Each sequence starts with a ’>’ char-
acter. Also it could be a string vector such that each element is a nucleotide
sequence. Eaxh sequence in the training set is associated with a label. The label
is found in the parameret labeltr.

percent determines the threshold which is used to identify sequences (in the training set)
which are similar to the input sequence.

labeltr This parameter is a vector whose length is equivalent to the number of sequences
in the training set. It shows class of each sequence in the trainig set.

label is an optional parameter. It is a vector whose length is equivalent to the number
of sequences. It shows the class of each entry (i.e., sequence).

Value

This function returns a feature matrix such that number of columns is number of classes multiplied
by percent and number of rows is equal to the number of the sequences.

References

Chen, Zhen, et al. "iFeature: a python package and web server for features extraction and selection
from protein and peptide sequences." Bioinformatics 34.14 (2018): 2499-2502.

Examples

ptmSeqsADR<-system.file("extdata/",package="ftrCOOL")
seqs<-fa.read(file=paste0(ptmSeqsADR,"/testData51.txt"),alphabet="dna")

posSeqs<-fa.read(file=paste0(ptmSeqsADR,"/posData51.txt"),alphabet="dna")
negSeqs<-fa.read(file=paste0(ptmSeqsADR,"/negData51.txt"),alphabet="dna")

94 KNN_RNA

trainSeq<-c(posSeqs,negSeqs)

labelPos<-rep(1,length(posSeqs))
labelNeg<-rep(0,length(negSeqs))

labeltr<-c(labelPos,labelNeg)

KNN_DNA(seqs=seqs,trainSeq=trainSeq,percent=5,labeltr=labeltr)

KNN_RNA K-Nearest Neighbor_RNA (KNN_RNA)

Description

This function is like KNNPeptide with the difference that similarity score is computed by Needleman-
Wunsch algorithm.

Usage

KNN_RNA(seqs, trainSeq, percent = 30, labeltr = c(), label = c())

Arguments

seqs is a FASTA file containing ribonucleotide sequences. The sequences start with
’>’. Also, seqs could be a string vector. Each element of the vector is a ribonu-
cleotide sequence.

trainSeq is a fasta file with ribonucleotide sequences. Each sequence starts with a ’>’
character. Also it could be a string vector such that each element is a ribonu-
cleotide sequence. Eaxh sequence in the training set is associated with a label.
The label is found in the parameret labeltr.

percent determines the threshold which is used to identify sequences (in the training set)
which are similar to the input sequence.

labeltr This parameter is a vector whose length is equivalent to the number of sequences
in the training set. It shows class of each sequence in the trainig set.

label is an optional parameter. It is a vector whose length is equivalent to the number
of sequences. It shows the class of each entry (i.e., sequence).

Value

This function returns a feature matrix such that number of columns is number of classes multiplied
by percent and number of rows is equal to the number of the sequences.

References

Wei,L., Su,R., Luan,S., Liao,Z., Manavalan,B., Zou,Q. and Shi,X. Iterative feature representations
improve N4-methylcytosine site prediction. Bioinformatics, (2019).

kNUComposition_DNA 95

Examples

ptmSeqsADR<-system.file("extdata/",package="ftrCOOL")
posSeqs<-fa.read(file=paste0(ptmSeqsADR,"/pos2RNA51.txt"),alphabet="rna")
negSeqs<-fa.read(file=paste0(ptmSeqsADR,"/neg2RNA51.txt"),alphabet="rna")
seqs<-fa.read(file=paste0(ptmSeqsADR,"/testSeq2RNA51.txt"),alphabet="rna")

trainSeq<-c(posSeqs,negSeqs)

labelPos<-rep(1,length(posSeqs))
labelNeg<-rep(0,length(negSeqs))

labeltr<-c(labelPos,labelNeg)

KNN_RNA(seqs=seqs,trainSeq=trainSeq,percent=10,labeltr=labeltr)

kNUComposition_DNA k Nucleotide Composition (kNUComposition_DNA)

Description

This function calculates the frequency of all k-mers in the sequence.

Usage

kNUComposition_DNA(
seqs,
rng = 3,
reverse = FALSE,
upto = FALSE,
normalized = TRUE,
ORF = FALSE,
reverseORF = TRUE,
label = c()

)

Arguments

seqs is a FASTA file containing nucleotide sequences. The sequences start with ’>’.
Also, seqs could be a string vector. Each element of the vector is a nucleotide
sequence.

rng This parameter can be a number or a vector. Each entry of the vector holds the
value of k in the k-mer composition. For each k in the rng vector, a new vector
(whose size is 4^k) is created which contains the frequency of kmers.

reverse It is a logical parameter which assumes the reverse complement of the sequence.

96 kNUComposition_RNA

upto It is a logical parameter. The default value is FALSE. If rng is a number and
upto is set to TRUE, rng is converted to a vector with values from 1 to rng.

normalized is a logical parameter. When it is FALSE, the return value of the function does
not change. Otherwise, the return value is normalized using the length of the
sequence.

ORF (Open Reading Frame) is a logical parameter. If it is set to true, ORF region of
each sequence is considered instead of the original sequence (i.e., 3-frame).

reverseORF is a logical parameter. It is enabled only if ORF is true. If reverseORF is true,
ORF region will be searched in the sequence and also in the reverse complement
of the sequence (i.e., 6-frame).

label is an optional parameter. It is a vector whose length is equivalent to the number
of sequences. It shows the class of each entry (i.e., sequence).

Value

This function returns a feature matrix. The number of rows is equal to the number of sequences and
the number of columns depends on the rng vector. For each value k in the vector, (4)^k columns are
created in the matrix.

Examples

fileLNC<-system.file("extdata/Athaliana_LNCRNA.fa",package="ftrCOOL")
mat<-kNUComposition_DNA(seqs=fileLNC,rng=c(1,3))

kNUComposition_RNA k riboNucleotide Composition (kNUComposition_RNA)

Description

This function calculates the frequency of all k-mers in the sequence.

Usage

kNUComposition_RNA(
seqs,
rng = 3,
reverse = FALSE,
upto = FALSE,
normalized = TRUE,
ORF = FALSE,
reverseORF = TRUE,
label = c()

)

LocalPoSpKAAF 97

Arguments

seqs is a FASTA file containing ribonucleotide sequences. The sequences start with
’>’. Also, seqs could be a string vector. Each element of the vector is a ribonu-
cleotide sequence.

rng This parameter can be a number or a vector. Each entry of the vector holds the
value of k in the k-mer composition. For each k in the rng vector, a new vector
(whose size is 4^k) is created which contains the frequency of kmers.

reverse It is a logical parameter which assumes the reverse complement of the sequence.

upto It is a logical parameter. The default value is FALSE. If rng is a number and
upto is set to TRUE, rng is converted to a vector with values from 1 to rng.

normalized is a logical parameter. When it is FALSE, the return value of the function does
not change. Otherwise, the return value is normalized using the length of the
sequence.

ORF (Open Reading Frame) is a logical parameter. If it is set to true, ORF region of
each sequence is considered instead of the original sequence (i.e., 3-frame).

reverseORF is a logical parameter. It is enabled only if ORF is true. If reverseORF is true,
ORF region will be searched in the sequence and also in the reverse complement
of the sequence (i.e., 6-frame).

label is an optional parameter. It is a vector whose length is equivalent to the number
of sequences. It shows the class of each entry (i.e., sequence).

Value

This function returns a feature matrix. The number of rows is equal to the number of sequences and
the number of columns depends on the rng vector. For each value k in the vector, (4)^k columns are
created in the matrix.

Examples

fileLNC<-system.file("extdata/Carica_papaya101RNA.txt",package="ftrCOOL")
mat<-kNUComposition_RNA(seqs=fileLNC,rng=c(1,3))

LocalPoSpKAAF Local Position Specific k Amino Acids Frequency (LocalPoSpKAAF)

Description

For each sequence, this function creates a feature vector denoted as (f1,f2, f3, . . . , fN), where fi =
freq(i’th k-mer of the sequence) / i. It should be applied to sequences with the same length.

Usage

LocalPoSpKAAF(seqs, k = 2, label = c(), outFormat = "mat", outputFileDist = "")

98 LocalPoSpKNUCF_DNA

Arguments

seqs is a FASTA file with amino acid sequences. Each sequence starts with a ’>’
character. Also, seqs could be a string vector. Each element of the vector is a
peptide/protein sequence.

k is a numeric value which holds the value of k in the k-mers.

label is an optional parameter. It is a vector whose length is equivalent to the number
of sequences. It shows the class of each entry (i.e., sequence).

outFormat (output format) can take two values: ’mat’(matrix) and ’txt’. The default value
is ’mat’.

outputFileDist shows the path and name of the ’txt’ output file.

Value

The output depends on the outFormat parameter which can be either ’mat’ or ’txt’. If outFormat is
’mat’, the function returns a feature matrix for sequences with the same length such that the number
of columns is (sequence length-k+1) and the number of rows is equal to the number of sequences.
If the outFormat is ’txt’, the output is written to a tab-delimited file.

Note

This function is provided for sequences with the same lengths. Users can use ’txt’ option in out-
Format for sequences with different lengths. Warning: If outFormat is set to ’mat’ for sequences
with different lengths, it returns an error. Also, when output format is ’txt’, label information is not
shown in the text file. It is noteworthy that ’txt’ format is not usable for machine learning purposes if
sequences have different sizes. Otherwise ’txt’ format is also usable for machine learning purposes.

Examples

dir = tempdir()
ptmSeqsADR<-system.file("extdata/",package="ftrCOOL")
ptmSeqsVect<-as.vector(read.csv(paste0(ptmSeqsADR,"/ptmVect101AA.csv"))[,2])
mat<-LocalPoSpKAAF(seqs = ptmSeqsVect, k=2,outFormat="mat")

ad<-paste0(dir,"/LocalPoSpKaaF.txt")
filePrs<-system.file("extdata/proteins.fasta",package="ftrCOOL")
LocalPoSpKAAF(seqs = filePrs, k=1,outFormat="txt"
,outputFileDist=ad)

unlink("dir", recursive = TRUE)

LocalPoSpKNUCF_DNA Local Position Specific k Nucleotide Frequency (LocalPoSp-
KNUCF_DNA)

LocalPoSpKNUCF_DNA 99

Description

For each sequence, this function creates a feature vector denoted as (f1,f2, f3, . . . , fN), where fi =
freq(i’th k-mer of the sequence) / i. It should be applied to sequences with the same length.

Usage

LocalPoSpKNUCF_DNA(
seqs,
k = 2,
label = c(),
outFormat = "mat",
outputFileDist = ""

)

Arguments

seqs is a FASTA file containing nucleotide sequences. The sequences start with ’>’.
Also, seqs could be a string vector. Each element of the vector is a nucleotide
sequence.

k is a numeric value which holds the value of k in the k-mers.

label is an optional parameter. It is a vector whose length is equivalent to the number
of sequences. It shows the class of each entry (i.e., sequence).

outFormat (output format) can take two values: ’mat’(matrix) and ’txt’. The default value
is ’mat’.

outputFileDist shows the path and name of the ’txt’ output file.

Value

The output depends on the outFormat parameter which can be either ’mat’ or ’txt’. If outFormat is
’mat’, the function returns a feature matrix for sequences with the same length such that the number
of columns is (sequence length-k+1) and the number of rows is equal to the number of sequences.
If the outFormat is ’txt’, the output is written to a tab-delimited file.

Note

This function is provided for sequences with the same lengths. Users can use ’txt’ option in out-
Format for sequences with different lengths. Warning: If outFormat is set to ’mat’ for sequences
with different lengths, it returns an error. Also, when output format is ’txt’, label information is not
shown in the text file. It is noteworthy that ’txt’ format is not usable for machine learning purposes if
sequences have different sizes. Otherwise ’txt’ format is also usable for machine learning purposes.

Examples

dir = tempdir()
LNCSeqsADR<-system.file("extdata/",package="ftrCOOL")
LNC50Nuc<-as.vector(read.csv(paste0(LNCSeqsADR,"/LNC50Nuc.csv"))[,2])
mat<-LocalPoSpKNUCF_DNA(seqs = LNC50Nuc, k=2,outFormat="mat")

100 LocalPoSpKNUCF_RNA

ad<-paste0(dir,"/LocalPoSpKnucF.txt")
fileLNC<-system.file("extdata/Athaliana_LNCRNA.fa",package="ftrCOOL")
LocalPoSpKNUCF_DNA(seqs = fileLNC,k=1,outFormat="txt"
,outputFileDist=ad)

unlink("dir", recursive = TRUE)

LocalPoSpKNUCF_RNA Local Position Specific k riboNucleotide Frequency (LocalPoSp-
KNUCF_RNA)

Description

For each sequence, this function creates a feature vector denoted as (f1,f2, f3, . . . , fN), where fi =
freq(i’th k-mer of the sequence) / i. It should be applied to sequences with the same length.

Usage

LocalPoSpKNUCF_RNA(
seqs,
k = 2,
label = c(),
outFormat = "mat",
outputFileDist = ""

)

Arguments

seqs is a FASTA file containing ribonucleotide sequences. The sequences start with
’>’. Also, seqs could be a string vector. Each element of the vector is a ribonu-
cleotide sequence.

k is a numeric value which holds the value of k in the k-mers.

label is an optional parameter. It is a vector whose length is equivalent to the number
of sequences. It shows the class of each entry (i.e., sequence).

outFormat (output format) can take two values: ’mat’(matrix) and ’txt’. The default value
is ’mat’.

outputFileDist shows the path and name of the ’txt’ output file.

Value

The output depends on the outFormat parameter which can be either ’mat’ or ’txt’. If outFormat is
’mat’, the function returns a feature matrix for sequences with the same length such that the number
of columns is (sequence length-k+1) and the number of rows is equal to the number of sequences.
If the outFormat is ’txt’, the output is written to a tab-delimited file.

maxORF 101

Note

This function is provided for sequences with the same lengths. Users can use ’txt’ option in out-
Format for sequences with different lengths. Warning: If outFormat is set to ’mat’ for sequences
with different lengths, it returns an error. Also, when output format is ’txt’, label information is not
shown in the text file. It is noteworthy that ’txt’ format is not usable for machine learning purposes if
sequences have different sizes. Otherwise ’txt’ format is also usable for machine learning purposes.

Examples

dir = tempdir()
fileLNC<-system.file("extdata/Carica_papaya101RNA.txt",package="ftrCOOL")
mat<-LocalPoSpKNUCF_RNA(seqs = fileLNC, k=2,outFormat="mat")

ad<-paste0(dir,"/LocalPoSpKnucF.txt")
fileLNC<-system.file("extdata/Carica_papaya101RNA.txt",package="ftrCOOL")
LocalPoSpKNUCF_RNA(seqs = fileLNC,k=1,outFormat="txt"
,outputFileDist=ad)

unlink("dir", recursive = TRUE)

maxORF Maximum Open Reading Frame in DNA (maxORF)

Description

This function gets a sequence as the input. If reverse is true, the function extracts the max Open
Reading Frame in the sequence and its reverse complement (hint: Six frames). Otherwise, only the
sequence is searched (hint: Three frames).

Usage

maxORF(seqs, reverse = TRUE, label = c())

Arguments

seqs is a FASTA file containing nucleotide sequences. The sequences start with ’>’.
Also, seqs could be a string vector. Each element of the vector is a nucleotide
sequence.

reverse It is a logical parameter which assumes the reverse complement of the sequence.

label is an optional parameter. It is a vector whose length is equivalent to the number
of sequences. It shows the class of each entry (i.e., sequence).

Value

A vector containing a subsequence for each given sequences. The subsequence is the maximum
ORF of the sequence.

102 maxORFlength_DNA

Note

If a sequence does not contain ORF, the function deletes the sequence.

Examples

fileLNC<-system.file("extdata/Athaliana_LNCRNA.fa",package="ftrCOOL")
ORF<-maxORF(seqs=fileLNC,reverse=FALSE)

maxORFlength_DNA Maximum Open Reading Frame length in DNA (maxOR-
Flength_DNA)

Description

This function returns the length of the maximum Open Reading Frame for each sequence. If reverse
is FALSE, ORF region will be searched in a sequence. Otherwise, it will be searched both in the
sequence and its reverse complement.

Usage

maxORFlength_DNA(seqs, reverse = TRUE, normalized = FALSE, label = c())

Arguments

seqs is a FASTA file containing nucleotide sequences. The sequences start with ’>’.
Also, seqs could be a string vector. Each element of the vector is a nucleotide
sequence.

reverse It is a logical parameter which assumes the reverse complement of the sequence.

normalized is a logical parameter. When it is FALSE, the return value of the function does
not change. Otherwise, the return value is normalized using the length of the
sequence.

label is an optional parameter. It is a vector whose length is equivalent to the number
of sequences. It shows the class of each entry (i.e., sequence).

Value

A vector containing the lengths of maximum ORFs for each sequence.

Examples

fileLNC<-system.file("extdata/Athaliana_LNCRNA.fa",package="ftrCOOL")
vect<-maxORFlength_DNA(seqs=fileLNC,reverse=TRUE,normalized=TRUE)

maxORFlength_RNA 103

maxORFlength_RNA Maximum Open Reading Frame length in RNA (maxORFlength_RNA)

Description

This function returns the length of the maximum Open Reading Frame for each sequence. If reverse
is FALSE, ORF region will be searched in a sequence. Otherwise, it will be searched both in the
sequence and its reverse complement.

Usage

maxORFlength_RNA(seqs, reverse = TRUE, normalized = FALSE, label = c())

Arguments

seqs is a FASTA file containing ribonucleotide sequences. The sequences start with
’>’. Also, seqs could be a string vector. Each element of the vector is a ribonu-
cleotide sequence.

reverse It is a logical parameter which assumes the reverse complement of the sequence.

normalized is a logical parameter. When it is FALSE, the return value of the function does
not change. Otherwise, the return value is normalized using the length of the
sequence.

label is an optional parameter. It is a vector whose length is equivalent to the number
of sequences. It shows the class of each entry (i.e., sequence).

Value

A vector containing the lengths of maximum ORFs for each sequence.

Examples

fileLNC<-system.file("extdata/Carica_papaya101RNA.txt",package="ftrCOOL")
vect<-maxORFlength_RNA(seqs=fileLNC,reverse=TRUE,normalized=TRUE)

maxORF_RNA Maximum Open Reading Frame in RNA (maxORF_RNA)

Description

This function gets a sequence as the input. If reverse is true, the function extracts the max Open
Reading Frame in the sequence and its reverse complement (hint: Six frames). Otherwise, only the
sequence is searched (hint: Three frames).

104 Mismatch_DNA

Usage

maxORF_RNA(seqs, reverse = TRUE, label = c())

Arguments

seqs is a FASTA file containing ribonucleotide sequences. The sequences start with
’>’. Also, seqs could be a string vector. Each element of the vector is a ribonu-
cleotide sequence.

reverse It is a logical parameter which assumes the reverse complement of the sequence.

label is an optional parameter. It is a vector whose length is equivalent to the number
of sequences. It shows the class of each entry (i.e., sequence).

Value

A vector containing a subsequence for each given sequences. The subsequence is the maximum
ORF of the sequence.

Note

If a sequence does not contain ORF, the function deletes the sequence.

Examples

fileLNC<-system.file("extdata/Carica_papaya101RNA.txt",package="ftrCOOL")
ORF<-maxORF_RNA(seqs=fileLNC,reverse=FALSE)

Mismatch_DNA Mismatch_DNA (Mismatch_DNA)

Description

This function also calculates the frequencies of all k-mers in the sequence but alows maximum m
mismatch. m<k.

Usage

Mismatch_DNA(seqs, k = 3, m = 2, label = c())

Arguments

seqs is a FASTA file containing nucleotide sequences. The sequences start with ’>’.
Also, seqs could be a string vector. Each element of the vector is a nucleotide
sequence.

k This parameter can be a number which shows kmer.

m This parametr shows muximum number of mismatches.

label is an optional parameter. It is a vector whose length is equivalent to the number
of sequences. It shows the class of each entry (i.e., sequence).

Mismatch_RNA 105

Value

This function returns a feature matrix. The number of rows is equal to the number of sequences and
the number of columns depends on the rng vector. For each value k in the vector, (4)^k columns are
created in the matrix.

References

Liu, B., Gao, X. and Zhang, H. BioSeq-Analysis2.0: an updated platform for analyzing DNA, RNA
and protein sequences at sequence level and residue level based on machine learning approaches.
Nucleic Acids Res (2019).

Examples

fileLNC<-system.file("extdata/Athaliana_LNCRNA.fa",package="ftrCOOL")
mat<-Mismatch_DNA(seqs=fileLNC)

Mismatch_RNA Mismatch_RNA (Mismatch_RNA)

Description

This function also calculates the frequencies of all k-mers in the sequence but alows maximum m
mismatch. m<k.

Usage

Mismatch_RNA(seqs, k = 3, m = 2, label = c())

Arguments

seqs is a FASTA file containing ribonucleotide sequences. The sequences start with
’>’. Also, seqs could be a string vector. Each element of the vector is a ribonu-
cleotide sequence.

k This parameter can be a number which shows kmer.

m This parametr shows muximum number of mismatches.

label is an optional parameter. It is a vector whose length is equivalent to the number
of sequences. It shows the class of each entry (i.e., sequence).

Value

This function returns a feature matrix. The number of rows is equal to the number of sequences and
the number of columns depends on the rng vector. For each value k in the vector, (4)^k columns are
created in the matrix.

106 MMI_DNA

References

Liu, B., Gao, X. and Zhang, H. BioSeq-Analysis2.0: an updated platform for analyzing DNA, RNA
and protein sequences at sequence level and residue level based on machine learning approaches.
Nucleic Acids Res (2019).

Examples

fileLNC<-system.file("extdata/Carica_papaya101RNA.txt",package="ftrCOOL")
mat<-Mismatch_RNA(seqs=fileLNC)

MMI_DNA Multivariate Mutual Information_DNA (MMI_DNA)

Description

MMI computes mutual information based on 2-mers T2 = AA, AC, AG, AT, CC, CG, CT, GG,
GT, TT and 3-mers T3 = AAA, AAC, AAG, AAT, ACC, ACG, ACT, AGG, AGT, ATT, CCC, CCG,
CCT, CGG, CGT, CTT, GGG, GGT, GTT and TTT for more information please check the reference
part.

Usage

MMI_DNA(seqs, label = c())

Arguments

seqs is a FASTA file containing nucleotide sequences. The sequences start with ’>’.
Also, seqs could be a string vector. Each element of the vector is a nucleotide
sequence.

label is an optional parameter. It is a vector whose length is equivalent to the number
of sequences. It shows the class of each entry (i.e., sequence).

Value

It is a feature matrix. The number of columns is 30 and the number of rows is equal to the number
of sequences.

References

Zhen Chen, Pei Zhao, Chen Li, Fuyi Li, Dongxu Xiang, Yong-Zi Chen, Tatsuya Akutsu, Roger J
Daly, Geoffrey I Webb, Quanzhi Zhao, Lukasz Kurgan, Jiangning Song. iLearnPlus: a compre-
hensive and automated machine-learning platform for nucleic acid and protein sequence analysis,
prediction and visualization, Nucleic Acids Research (2021).

MMI_RNA 107

Examples

fileLNC<-system.file("extdata/Athaliana_LNCRNA.fa",package="ftrCOOL")
mat<-MMI_DNA(seqs=fileLNC)

MMI_RNA Multivariate Mutual Information_RNA (MMI_RNA)

Description

MMI computes mutual information based on 2-mers T2 = AA, AC, AG, AU, CC, CG, CU, GG,
GU, U and 3-mers T3 = AAA, AAC, AAG, AAU, ACC, ACG, ACU, AGG, AGU, AUU, CCC,
CCG, CCU, CGG, CGU, CUU, GGG, GGU, GUU and UUU for more information please check
the reference part.

Usage

MMI_RNA(seqs, label = c())

Arguments

seqs is a FASTA file containing ribonucleotide sequences. The sequences start with
’>’. Also, seqs could be a string vector. Each element of the vector is a ribonu-
cleotide sequence.

label is an optional parameter. It is a vector whose length is equivalent to the number
of sequences. It shows the class of each entry (i.e., sequence).

Value

It is a feature matrix. The number of columns is 30 and the number of rows is equal to the number
of sequences.

References

Zhen Chen, Pei Zhao, Chen Li, Fuyi Li, Dongxu Xiang, Yong-Zi Chen, Tatsuya Akutsu, Roger J
Daly, Geoffrey I Webb, Quanzhi Zhao, Lukasz Kurgan, Jiangning Song. iLearnPlus: a comprehen-
sive and automated machine-learning platform for ribonucleic acid and protein sequence analysis,
prediction and visualization, Nucleic Acids Research (2021).

Examples

fileLNC<-system.file("extdata/Carica_papaya101RNA.txt",package="ftrCOOL")
mat<-MMI_RNA(seqs=fileLNC)

108 NCP_DNA

nameKmer naming Kmer (nameKmer)

Description

This function creates all possible k-combinations of the given alphabets.

Usage

nameKmer(k = 3, type = "aa", num = 0)

Arguments

k is a numeric value.
type can be one of "aa", "rna", "dna", or "num".
num When type is set to "num", it shows the numeric alphabet(1,..„num).

Value

a string vector of length (20^k for ’aa’ type), (4^k for ’dna’ type), (4^k for ’rna’ type), and (num^k
for ’num’ type).

Examples

all_kmersAA<-nameKmer(k=2,type="aa")

all_kmersDNA<-nameKmer(k=3,type="dna")

all_kmersNUM<-nameKmer(k=3,type="num",num=2)

NCP_DNA Nucleotide Chemical Property (NCP_DNA)

Description

This function replaces nucleotides with a three-length vector. The vector represent the nucleotides
such that ’A’ will be replaced with c(1, 1, 1), ’C’ with c(0, 1, 0),’G’ with c(1, 0, 0), and ’T’ with
c(0, 0, 1).

Usage

NCP_DNA(
seqs,
binaryType = "numBin",
outFormat = "mat",
outputFileDist = "",
label = c()

)

NCP_DNA 109

Arguments

seqs is a FASTA file containing nucleotide sequences. The sequences start with ’>’.
Also, seqs could be a string vector. Each element of the vector is a nucleotide
sequence.

binaryType It can take any of the following values: (’strBin’,’logicBin’,’numBin’). ’strBin’(String
binary): each nucleotide is represented by a string containing 4 characters(0-1).
A = "0001" , C = "0010" , G = "0100" , T = "1000" ’logicBin’(logical value):
Each nucleotide is represented by a vector containing 4 logical entries. A =
c(F,F,F,T) , ... , T = c(T,F,F,F) ’numBin’ (numeric bin): Each nucleotide is rep-
resented by a numeric (i.e., integer) vector containing 4 numerals. A = c(0,0,0,1)
, ... , T = c(1,0,0,0)

outFormat (output format) can take two values: ’mat’(matrix) and ’txt’. The default value
is ’mat’.

outputFileDist shows the path and name of the ’txt’ output file.

label is an optional parameter. It is a vector whose length is equivalent to the number
of sequences. It shows the class of each entry (i.e., sequence).

Value

The output is different depending on the outFormat parameter (’mat’ or ’txt’). If outFormat is set
to ’mat’, it returns a feature matrix for sequences with the same lengths. The number of rows is
equal to the number of sequences and if binaryType is ’strBin’, the number of columns is the length
of the sequences. Otherwise, it is equal to (length of the sequences)*3. If outFormat is ’txt’, all
binary values will be written to a tab-delimited file. Each line in the file shows the binary format of
a sequence.

Note

This function is provided for sequences with the same lengths. Users can use ’txt’ option in out-
Format for sequences with different lengths. Warning: If outFormat is set to ’mat’ for sequences
with different lengths, it returns an error. Also, when output format is ’txt’, label information is not
shown in the text file. It is noteworthy that ’txt’ format is not usable for machine learning purposes if
sequences have different sizes. Otherwise ’txt’ format is also usable for machine learning purposes.

References

Chen, Zhen, et al. "iLearn: an integrated platform and meta-learner for feature engineering, machine-
learning analysis and modeling of DNA, RNA and protein sequence data." Briefings in bioinformat-
ics 21.3 (2020): 1047-1057.

Examples

dir = tempdir()
LNCSeqsADR<-system.file("extdata/",package="ftrCOOL")
LNC50Nuc<-as.vector(read.csv(paste0(LNCSeqsADR,"/LNC50Nuc.csv"))[,2])
mat<-NCP_DNA(seqs = LNC50Nuc,binaryType="strBin",outFormat="mat")

ad<-paste0(dir,"/NCP.txt")

110 NCP_RNA

fileLNC<-system.file("extdata/Athaliana_LNCRNA.fa",package="ftrCOOL")
NCP_DNA(seqs = fileLNC,binaryType="numBin",outFormat="txt",outputFileDist=ad)

unlink("dir", recursive = TRUE)

NCP_RNA riboNucleotide Chemical Property (NCP_RNA)

Description

This function replaces ribonucleotides with a three-length vector. The vector represent the ribonu-
cleotides such that ’A’ will be replaced with c(1, 1, 1), ’C’ with c(0, 1, 0),’G’ with c(1, 0, 0), and
’U’ with c(0, 0, 1).

Usage

NCP_RNA(
seqs,
binaryType = "numBin",
outFormat = "mat",
outputFileDist = "",
label = c()

)

Arguments

seqs is a FASTA file containing ribonucleotide sequences. The sequences start with
’>’. Also, seqs could be a string vector. Each element of the vector is a ribonu-
cleotide sequence.

binaryType It can take any of the following values: (’strBin’,’logicBin’,’numBin’). ’strBin’(String
binary): each ribonucleotide is represented by a string containing 4 characters(0-
1). A = "0001" , C = "0010" , G = "0100" , T = "1000" ’logicBin’(logical value):
Each ribonucleotide is represented by a vector containing 4 logical entries. A
= c(F,F,F,T) , ... , T = c(T,F,F,F) ’numBin’ (numeric bin): Each ribonucleotide
is represented by a numeric (i.e., integer) vector containing 4 numerals. A =
c(0,0,0,1) , ... , T = c(1,0,0,0)

outFormat (output format) can take two values: ’mat’(matrix) and ’txt’. The default value
is ’mat’.

outputFileDist shows the path and name of the ’txt’ output file.

label is an optional parameter. It is a vector whose length is equivalent to the number
of sequences. It shows the class of each entry (i.e., sequence).

needleman 111

Value

The output is different depending on the outFormat parameter (’mat’ or ’txt’). If outFormat is set
to ’mat’, it returns a feature matrix for sequences with the same lengths. The number of rows is
equal to the number of sequences and if binaryType is ’strBin’, the number of columns is the length
of the sequences. Otherwise, it is equal to (length of the sequences)*3. If outFormat is ’txt’, all
binary values will be written to a tab-delimited file. Each line in the file shows the binary format of
a sequence.

Note

This function is provided for sequences with the same lengths. Users can use ’txt’ option in out-
Format for sequences with different lengths. Warning: If outFormat is set to ’mat’ for sequences
with different lengths, it returns an error. Also, when output format is ’txt’, label information is not
shown in the text file. It is noteworthy that ’txt’ format is not usable for machine learning purposes if
sequences have different sizes. Otherwise ’txt’ format is also usable for machine learning purposes.

References

Chen, Zhen, et al. "iLearn: an integrated platform and meta-learner for feature engineering, machine-
learning analysis and modeling of DNA, RNA and protein sequence data." Briefings in bioinformat-
ics 21.3 (2020): 1047-1057.

Examples

dir = tempdir()
fileLNC<-system.file("extdata/Carica_papaya101RNA.txt",package="ftrCOOL")
mat<-NCP_RNA(seqs = fileLNC,binaryType="strBin",outFormat="mat")

ad<-paste0(dir,"/NCP.txt")
NCP_RNA(seqs = fileLNC,binaryType="numBin",outFormat="txt",outputFileDist=ad)
unlink("dir", recursive = TRUE)

needleman Needleman-Wunsch (needleman)

Description

This function works based on Needleman-Wunsch algorithm which computes similarity score of
two sequences.

Usage

needleman(seq1, seq2, gap = -1, mismatch = -1, match = 1)

112 nonStandardSeq

Arguments

seq1 (sequence1) is a string.

seq2 (sequence2) is a string.

gap The penalty for gaps in sequence alignment. Usually, it is a negative value.

mismatch The penalty for the mismatch in the sequence alignment. Usually, it is a negative
value.

match A score for the match in sequence alignment. Usually, it is a positive value.

Value

The function returns a number which indicates the similarity between sequence1 and sequence2.

References

https://gist.github.com/juliuskittler/ed53696ac1e590b413aac2dddf0457f6

Examples

simScore<-needleman(seq1="Hello",seq2="Hello",gap=-1,mismatch=-2,match=1)

nonStandardSeq nonStandard sequence (nonStandardSeq)

Description

This function returns sequences which contain at least one non-standard alphabet.

Usage

nonStandardSeq(file, legacy.mode = TRUE, seqonly = FALSE, alphabet = "aa")

Arguments

file The address of fasta file which contains all the sequences.

legacy.mode It comments all lines starting with ";"

seqonly If it is set to true, the function returns sequences with no description.

alphabet It is a vector which contains the amino acid, RNA, or DNA alphabets.

Value

This function returns a string vector. Each element of the vector is a sequence which contains at
least one non-standard alphabet.

NUC2Binary_DNA 113

Examples

filePrs<-system.file("extdata/proteins.fasta",package="ftrCOOL")
nonStandardPrSeq<-nonStandardSeq(file = filePrs,alphabet="aa")

fileLNC<-system.file("extdata/Athaliana_LNCRNA.fa",package="ftrCOOL")
nonStandardNUCSeq<-nonStandardSeq(file = filePrs, alphabet="dna")

NUC2Binary_DNA Nucleotide To Binary (NUC2Binary_DNA)

Description

This function transforms a nucleotide to a binary format. The type of the binary format is deter-
mined by the binaryType parameter. For details about each format, please refer to the description
of the binaryType parameter.

Usage

NUC2Binary_DNA(
seqs,
binaryType = "numBin",
label = c(),
outFormat = "mat",
outputFileDist = ""

)

Arguments

seqs is a FASTA file containing nucleotide sequences. The sequences start with ’>’.
Also, seqs could be a string vector. Each element of the vector is a nucleotide
sequence.

binaryType It can take any of the following values: (’strBin’,’logicBin’,’numBin’). ’strBin’(String
binary): each nucleotide is represented by a string containing 4 characters(0-1).
A = "0001" , C = "0010" , G = "0100" , T = "1000" ’logicBin’(logical value):
Each nucleotide is represented by a vector containing 4 logical entries. A =
c(F,F,F,T) , ... , T = c(T,F,F,F) ’numBin’ (numeric bin): Each nucleotide is rep-
resented by a numeric (i.e., integer) vector containing 4 numerals. A = c(0,0,0,1)
, ... , T = c(1,0,0,0)

label is an optional parameter. It is a vector whose length is equivalent to the number
of sequences. It shows the class of each entry (i.e., sequence).

outFormat (output format) can take two values: ’mat’(matrix) and ’txt’. The default value
is ’mat’.

outputFileDist shows the path and name of the ’txt’ output file.

114 NUC2Binary_RNA

Value

The output is different depending on the outFormat parameter (’mat’ or ’txt’). If outFormat is set to
’mat’, it returns a feature matrix for sequences with the same lengths. The number of rows is equal
to the number of sequences and if binaryType is ’strBin’, the number of columns is the length of
the sequences. Otherwise, it is equal to (length of the sequences)*4. If outFormat is ’txt’, all binary
values will be written to a ’txt’ file. Each line in the file shows the binary format of a sequence.

Note

This function is provided for sequences with the same lengths. Users can use ’txt’ option in out-
Format parameter for sequences with different lengths. Warning: If outFormat is set to ’mat’ for
sequences with different lengths, it returns an error. Also, when output format is ’txt’, label infor-
mation is not shown in the text file. It is noteworthy that ’txt’ format is not usable for machine
learning purposes.

Examples

dir = tempdir()
LNCSeqsADR<-system.file("extdata/",package="ftrCOOL")
LNC50Nuc<-as.vector(read.csv(paste0(LNCSeqsADR,"/LNC50Nuc.csv"))[,2])
mat<-NUC2Binary_DNA(seqs = LNC50Nuc,outFormat="mat")

ad<-paste0(dir,"/NUC2Binary.txt")
fileLNC<-system.file("extdata/Athaliana_LNCRNA.fa",package="ftrCOOL")
NUC2Binary_DNA(seqs = fileLNC,binaryType="numBin",outFormat="txt",outputFileDist=ad)

unlink("dir", recursive = TRUE)

NUC2Binary_RNA riboNucleotide To Binary (NUC2Binary_RNA)

Description

This function transforms a ribonucleotide to a binary format. The type of the binary format is de-
termined by the binaryType parameter. For details about each format, please refer to the description
of the binaryType parameter.

Usage

NUC2Binary_RNA(
seqs,
binaryType = "numBin",
label = c(),
outFormat = "mat",
outputFileDist = ""

)

NUC2Binary_RNA 115

Arguments

seqs is a FASTA file containing ribonucleotide sequences. The sequences start with
’>’. Also, seqs could be a string vector. Each element of the vector is a ribonu-
cleotide sequence.

binaryType It can take any of the following values: (’strBin’,’logicBin’,’numBin’). ’strBin’(String
binary): each ribonucleotide is represented by a string containing 4 characters(0-
1). A = "0001" , C = "0010" , G = "0100" , U = "1000" ’logicBin’(logical value):
Each ribonucleotide is represented by a vector containing 4 logical entries. A
= c(F,F,F,T) , ... , U = c(T,F,F,F) ’numBin’ (numeric bin): Each ribonucleotide
is represented by a numeric (i.e., integer) vector containing 4 numerals. A =
c(0,0,0,1) , ... , U = c(1,0,0,0)

label is an optional parameter. It is a vector whose length is equivalent to the number
of sequences. It shows the class of each entry (i.e., sequence).

outFormat (output format) can take two values: ’mat’(matrix) and ’txt’. The default value
is ’mat’.

outputFileDist shows the path and name of the ’txt’ output file.

Value

The output is different depending on the outFormat parameter (’mat’ or ’txt’). If outFormat is set to
’mat’, it returns a feature matrix for sequences with the same lengths. The number of rows is equal
to the number of sequences and if binaryType is ’strBin’, the number of columns is the length of
the sequences. Otherwise, it is equal to (length of the sequences)*4. If outFormat is ’txt’, all binary
values will be written to a ’txt’ file. Each line in the file shows the binary format of a sequence.

Note

This function is provided for sequences with the same lengths. Users can use ’txt’ option in out-
Format parameter for sequences with different lengths. Warning: If outFormat is set to ’mat’ for
sequences with different lengths, it returns an error. Also, when output format is ’txt’, label infor-
mation is not shown in the text file. It is noteworthy that ’txt’ format is not usable for machine
learning purposes.

Examples

dir = tempdir()
fileLNC<-system.file("extdata/Carica_papaya101RNA.txt",package="ftrCOOL")
mat<-NUC2Binary_RNA(seqs = fileLNC,outFormat="mat")

ad<-paste0(dir,"/NUC2Binary.txt")
NUC2Binary_RNA(seqs = fileLNC,binaryType="numBin",outFormat="txt",outputFileDist=ad)

unlink("dir", recursive = TRUE)

116 NUCKpartComposition_DNA

NUCKpartComposition_DNA

Nucleotide to K Part Composition (NUCKpartComposition_DNA)

Description

In this function, each sequence is divided into k equal partitions. The length of each part is equal to
ceiling(l(lenght of the sequence)/k). The last part can have a different length containing the residual
nucleotides. The nucleotide composition is calculated for each part.

Usage

NUCKpartComposition_DNA(
seqs,
k = 5,
ORF = FALSE,
reverseORF = TRUE,
normalized = TRUE,
label = c()

)

Arguments

seqs is a FASTA file containing nucleotide sequences. The sequences start with ’>’.
Also, seqs could be a string vector. Each element of the vector is a nucleotide
sequence.

k is an integer value. Each sequence should be divided to k partition(s).

ORF (Open Reading Frame) is a logical parameter. If it is set to true, ORF region of
each sequence is considered instead of the original sequence (i.e., 3-frame).

reverseORF is a logical parameter. It is enabled only if ORF is true. If reverseORF is true,
ORF region will be searched in the sequence and also in the reverse complement
of the sequence (i.e., 6-frame).

normalized is a logical parameter. When it is FALSE, the return value of the function does
not change. Otherwise, the return value is normalized using the length of the
sequence.

label is an optional parameter. It is a vector whose length is equivalent to the number
of sequences. It shows the class of each entry (i.e., sequence).

Value

a feature matrix with k*4 number of columns. The number of rows is equal to the number of
sequences.

Note

Warning: The length of all sequences should be greater than k.

NUCKpartComposition_RNA 117

Examples

fileLNC<-system.file("extdata/Athaliana_LNCRNA.fa",package="ftrCOOL")
mat<-NUCKpartComposition_DNA(seqs=fileLNC,k=5,ORF=TRUE,reverseORF=FALSE,normalized=FALSE)

NUCKpartComposition_RNA

riboNucleotide to K Part Composition (NUCKpartComposition_RNA)

Description

In this function, each sequence is divided into k equal partitions. The length of each part is equal to
ceiling(l(lenght of the sequence)/k). The last part can have a different length containing the residual
ribonucleotides. The ribonucleotide composition is calculated for each part.

Usage

NUCKpartComposition_RNA(
seqs,
k = 5,
ORF = FALSE,
reverseORF = TRUE,
normalized = TRUE,
label = c()

)

Arguments

seqs is a FASTA file containing ribonucleotide sequences. The sequences start with
’>’. Also, seqs could be a string vector. Each element of the vector is a ribonu-
cleotide sequence.

k is an integer value. Each sequence should be divided to k partition(s).

ORF (Open Reading Frame) is a logical parameter. If it is set to true, ORF region of
each sequence is considered instead of the original sequence (i.e., 3-frame).

reverseORF is a logical parameter. It is enabled only if ORF is true. If reverseORF is true,
ORF region will be searched in the sequence and also in the reverse complement
of the sequence (i.e., 6-frame).

normalized is a logical parameter. When it is FALSE, the return value of the function does
not change. Otherwise, the return value is normalized using the length of the
sequence.

label is an optional parameter. It is a vector whose length is equivalent to the number
of sequences. It shows the class of each entry (i.e., sequence).

Value

a feature matrix with k*4 number of columns. The number of rows is equal to the number of
sequences.

118 OPF_10bit

Note

Warning: The length of all sequences should be greater than k.

Examples

fileLNC<-system.file("extdata/Carica_papaya101RNA.txt",package="ftrCOOL")
mat<-NUCKpartComposition_RNA(seqs=fileLNC,k=5,ORF=TRUE,reverseORF=FALSE,normalized=FALSE)

OPF_10bit Overlapping Property Features_10bit (OPF_10bit)

Description

This group of functions (OPF Group) categorize amino acids in different groups based on the type.
This function includes 10 amino acid properties. OPF_10bit substitutes each amino acid with a
10-dimensional vector. Each element of the vector shows if that amino acid locates in a special
property category or not. ’0’ means that amino acid is not located in that property group and ’1’
means it is located.

Usage

OPF_10bit(seqs, label = c(), outFormat = "mat", outputFileDist = "")

Arguments

seqs is a FASTA file with amino acid sequences. Each sequence starts with a ’>’
character. Also, seqs could be a string vector. Each element of the vector is a
peptide/protein sequence.

label is an optional parameter. It is a vector whose length is equivalent to the number
of sequences. It shows the class of each entry (i.e., sequence).

outFormat (output format) can take two values: ’mat’(matrix) and ’txt’. The default value
is ’mat’.

outputFileDist shows the path and name of the ’txt’ output file.

Value

The output is different depending on the outFormat parameter (’mat’ or ’txt’). If outFormat is set to
’mat’, it returns a feature matrix for sequences with the same lengths. Number of columns for this
feature matrix is equal to (length of the sequences)*10 and number of rows is equal to the number
of sequences. If outFormat is ’txt’, all binary values will be written to a the output is written to a
tab-delimited file. Each line in the file shows the binary format of a sequence.

OPF_7bit_T1 119

Note

This function is provided for sequences with the same lengths. Users can use ’txt’ option in out-
Format for sequences with different lengths. Warning: If outFormat is set to ’mat’ for sequences
with different lengths, it returns an error. Also, when output format is ’txt’, label information is not
shown in the text file. It is noteworthy that ’txt’ format is not usable for machine learning purposes if
sequences have different sizes. Otherwise ’txt’ format is also usable for machine learning purposes.

References

Wei,L., Zhou,C., Chen,H., Song,J. and Su,R. ACPred-FL: a sequence-based predictor using effec-
tive feature representation to improve the prediction of anti-cancer peptides. Bioinformatics (2018).

Examples

ptmSeqsADR<-system.file("extdata/",package="ftrCOOL")
ptmSeqsVect<-as.vector(read.csv(paste0(ptmSeqsADR,"/ptmVect101AA.csv"))[,2])
mat<-OPF_10bit(seqs = ptmSeqsVect,outFormat="mat")

OPF_7bit_T1 Overlapping property features_7bit_T1 (OPF_7bit_T1)

Description

This group of functions (OPF Group) categorize amino acids in different groups based on the type.
This function includes 7 amino acid properties. OPF_7bit_T1 substitutes each amino acid with
a 7-dimensional vector. Each element of the vector shows if that amino acid locates in a special
property category or not. ’0’ means that amino acid is not located in that property group and ’1’
means it is located. The only difference between OPF_7bit type1, type2, and type3 is in localization
of amino acids in the properties groups.

Usage

OPF_7bit_T1(seqs, label = c(), outFormat = "mat", outputFileDist = "")

Arguments

seqs is a FASTA file with amino acid sequences. Each sequence starts with a ’>’
character. Also, seqs could be a string vector. Each element of the vector is a
peptide/protein sequence.

label is an optional parameter. It is a vector whose length is equivalent to the number
of sequences. It shows the class of each entry (i.e., sequence).

outFormat (output format) can take two values: ’mat’(matrix) and ’txt’. The default value
is ’mat’.

outputFileDist shows the path and name of the ’txt’ output file.

120 OPF_7bit_T2

Value

The output is different depending on the outFormat parameter (’mat’ or ’txt’). If outFormat is set to
’mat’, it returns a feature matrix for sequences with the same lengths. Number of columns for this
feature matrix is equal to (length of the sequences)*7 and number of rows is equal to the number
of sequences. If outFormat is ’txt’, all binary values will be written to a the output is written to a
tab-delimited file. Each line in the file shows the binary format of a sequence.

Note

This function is provided for sequences with the same lengths. Users can use ’txt’ option in out-
Format for sequences with different lengths. Warning: If outFormat is set to ’mat’ for sequences
with different lengths, it returns an error. Also, when output format is ’txt’, label information is not
shown in the text file. It is noteworthy that ’txt’ format is not usable for machine learning purposes if
sequences have different sizes. Otherwise ’txt’ format is also usable for machine learning purposes.

References

Wei,L., Zhou,C., Chen,H., Song,J. and Su,R. ACPred-FL: a sequence-based predictor using effec-
tive feature representation to improve the prediction of anti-cancer peptides. Bioinformatics (2018).

Examples

ptmSeqsADR<-system.file("extdata/",package="ftrCOOL")
ptmSeqsVect<-as.vector(read.csv(paste0(ptmSeqsADR,"/ptmVect101AA.csv"))[,2])
mat<-OPF_7bit_T1(seqs = ptmSeqsVect,outFormat="mat")

OPF_7bit_T2 Overlapping property features_7bit_T2 (OPF_7bit_T2)

Description

This group of functions (OPF Group) categorize amino acids in different groups based on the type.
This function includes 7 amino acid properties. OPF_7bit_T2 substitutes each amino acid with
a 7-dimensional vector. Each element of the vector shows if that amino acid locates in a special
property category or not. ’0’ means that amino acid is not located in that property group and ’1’
means it is located. The only difference between OPF_7bit type1, type2, and type3 is in localization
of amino acids in the properties groups.

Usage

OPF_7bit_T2(seqs, label = c(), outFormat = "mat", outputFileDist = "")

OPF_7bit_T3 121

Arguments

seqs is a FASTA file with amino acid sequences. Each sequence starts with a ’>’
character. Also, seqs could be a string vector. Each element of the vector is a
peptide/protein sequence.

label is an optional parameter. It is a vector whose length is equivalent to the number
of sequences. It shows the class of each entry (i.e., sequence).

outFormat (output format) can take two values: ’mat’(matrix) and ’txt’. The default value
is ’mat’.

outputFileDist shows the path and name of the ’txt’ output file.

Value

The output is different depending on the outFormat parameter (’mat’ or ’txt’). If outFormat is set to
’mat’, it returns a feature matrix for sequences with the same lengths. Number of columns for this
feature matrix is equal to (length of the sequences)*7 and number of rows is equal to the number
of sequences. If outFormat is ’txt’, all binary values will be written to a the output is written to a
tab-delimited file. Each line in the file shows the binary format of a sequence.

Note

This function is provided for sequences with the same lengths. Users can use ’txt’ option in out-
Format for sequences with different lengths. Warning: If outFormat is set to ’mat’ for sequences
with different lengths, it returns an error. Also, when output format is ’txt’, label information is not
shown in the text file. It is noteworthy that ’txt’ format is not usable for machine learning purposes if
sequences have different sizes. Otherwise ’txt’ format is also usable for machine learning purposes.

References

Wei,L., Zhou,C., Chen,H., Song,J. and Su,R. ACPred-FL: a sequence-based predictor using effec-
tive feature representation to improve the prediction of anti-cancer peptides. Bioinformatics (2018).

Examples

ptmSeqsADR<-system.file("extdata/",package="ftrCOOL")
ptmSeqsVect<-as.vector(read.csv(paste0(ptmSeqsADR,"/ptmVect101AA.csv"))[,2])
mat<-OPF_7bit_T2(seqs = ptmSeqsVect,outFormat="mat")

OPF_7bit_T3 Overlapping property features_7bit_T3 (OPF_7bit_T3)

122 OPF_7bit_T3

Description

This group of functions (OPF Group) categorize amino acids in different groups based on the type.
This function includes 7 amino acid properties. OPF_7bit_T3 substitutes each amino acid with
a 7-dimensional vector. Each element of the vector shows if that amino acid locates in a special
property category or not. ’0’ means that amino acid is not located in that property group and ’1’
means it is located. The only difference between OPF_7bit type1, type2, and type3 is in localization
of amino acids in the properties groups.

Usage

OPF_7bit_T3(seqs, label = c(), outFormat = "mat", outputFileDist = "")

Arguments

seqs is a FASTA file with amino acid sequences. Each sequence starts with a ’>’
character. Also, seqs could be a string vector. Each element of the vector is a
peptide/protein sequence.

label is an optional parameter. It is a vector whose length is equivalent to the number
of sequences. It shows the class of each entry (i.e., sequence).

outFormat (output format) can take two values: ’mat’(matrix) and ’txt’. The default value
is ’mat’.

outputFileDist shows the path and name of the ’txt’ output file.

Value

The output is different depending on the outFormat parameter (’mat’ or ’txt’). If outFormat is set to
’mat’, it returns a feature matrix for sequences with the same lengths. Number of columns for this
feature matrix is equal to (length of the sequences)*7 and number of rows is equal to the number
of sequences. If outFormat is ’txt’, all binary values will be written to a the output is written to a
tab-delimited file. Each line in the file shows the binary format of a sequence.

Note

This function is provided for sequences with the same lengths. Users can use ’txt’ option in out-
Format for sequences with different lengths. Warning: If outFormat is set to ’mat’ for sequences
with different lengths, it returns an error. Also, when output format is ’txt’, label information is not
shown in the text file. It is noteworthy that ’txt’ format is not usable for machine learning purposes if
sequences have different sizes. Otherwise ’txt’ format is also usable for machine learning purposes.

References

Wei,L., Zhou,C., Chen,H., Song,J. and Su,R. ACPred-FL: a sequence-based predictor using effec-
tive feature representation to improve the prediction of anti-cancer peptides. Bioinformatics (2018).

PCPseDNC 123

Examples

ptmSeqsADR<-system.file("extdata/",package="ftrCOOL")
ptmSeqsVect<-as.vector(read.csv(paste0(ptmSeqsADR,"/ptmVect101AA.csv"))[,2])
mat<-OPF_7bit_T3(seqs = ptmSeqsVect,outFormat="mat")

PCPseDNC Parallel Correlation Pseudo Dinucleotide Composition (PCPseDNC)

Description

This function works like PSEkNUCdi_DNA except that the default value of selectedIdx parameter
is different.

Usage

PCPseDNC(
seqs,
selectedIdx = c("Base stacking", "Protein induced deformability", "B-DNA twist",

"A-philicity", "Propeller twist", "Duplex stability:(freeenergy)",
"DNA denaturation", "Bending stiffness", "Protein DNA twist", "Aida_BA_transition",
"Breslauer_dG", "Breslauer_dH", "Electron_interaction", "Hartman_trans_free_energy",
"Helix-Coil_transition", "Lisser_BZ_transition", "Polar_interaction",

"SantaLucia_dG", "SantaLucia_dS", "Sarai_flexibility", "Stability", "Sugimoto_dG",
"Sugimoto_dH", "Sugimoto_dS", "Duplex tability(disruptenergy)",
"Stabilising energy of Z-DNA", "Breslauer_dS", "Ivanov_BA_transition",
"SantaLucia_dH", "Stacking_energy", "Watson-Crick_interaction",
"Dinucleotide GC Content", "Rise", "Roll", "Shift", "Slide", "Tilt", "Twist"),

lambda = 3,
w = 0.05,
l = 2,
ORF = FALSE,
reverseORF = TRUE,
threshold = 1,
label = c()

)

Arguments

seqs is a FASTA file containing nucleotide sequences. The sequences start with ’>’.
Also, seqs could be a string vector. Each element of the vector is a nucleotide
sequence.

selectedIdx is a vector of Ids or indices of the desired physicochemical properties of din-
ucleotides. Users can choose the desired indices by their ids or their names
in the DI_DNA index file. Default value of this parameter is a vector with
("Base stacking","Protein induced deformability","B-DNA twist","A-philicity",
"Propeller twist","Duplex stability:(freeenergy)","DNA denaturation","Bending

124 PS2_DNA

stiffness", "Protein DNA twist","Aida_BA_transition","Breslauer_dG","Breslauer_dH","Electron_interaction",
"Hartman_trans_free_energy","Helix-Coil_transition","Lisser_BZ_transition","Polar_interaction",
"SantaLucia_dG","SantaLucia_dS","Sarai_flexibility","Stability","Sugimoto_dG",
"Sugimoto_dH","Sugimoto_dS","Duplex tability(disruptenergy)","Stabilising en-
ergy of Z-DNA", "Breslauer_dS","Ivanov_BA_transition","SantaLucia_dH","Stacking_energy","Watson-
Crick_interaction","Dinucleotide GC Content", "Rise", "Roll", "Shift", "Slide",
"Tilt", "Twist") entries.

lambda is a tuning parameter. This integer value shows the maximum limit of spaces
between dinucleotide pairs. The Number of spaces changes from 1 to lambda.

w (weight) is a tuning parameter. It changes in the range of 0 to 1. The default
value is 0.05.

l This parameter keeps the value of l in lmer composition. The lmers form the
first 4^l elements of the APkNCdi descriptor.

ORF (Open Reading Frame) is a logical parameter. If it is set to true, ORF region of
each sequence is considered instead of the original sequence (i.e., 3-frame).

reverseORF is a logical parameter. It is enabled only if ORF is true. If reverseORF is true,
ORF region will be searched in the sequence and also in the reverse complement
of the sequence (i.e., 6-frame).

threshold is a number between (0 , 1]. In selectedIdx, indices with a correlation higher
than the threshold will be deleted. The default value is 1.

label is an optional parameter. It is a vector whose length is equivalent to the number
of sequences. It shows the class of each entry (i.e., sequence).

Details

This function computes the pseudo nucleotide composition for each physicochemical property of
di-nucleotides. We have provided users with the ability to choose among the 148 properties in the
di-nucleotide index database.

Value

a feature matrix such that the number of columns is 4^l+lambda and the number of rows is equal to
the number of sequences.

Examples

fileLNC<-system.file("extdata/Athaliana_LNCRNA.fa",package="ftrCOOL")
mat<-PSEkNUCdi_DNA(seqs=fileLNC,l=2,ORF=TRUE,threshold=0.8)

PS2_DNA Position-specific of two nucleotide_DNA (PS2_DNA)

Description

This function transforms each di-nucleotide of the sequence to a binary format. The type of the
binary format is determined by the binaryType parameter. For details about each format, please
refer to the description of the binaryType parameter.

PS2_DNA 125

Usage

PS2_DNA(
seqs,
binaryType = "numBin",
label = c(),
outFormat = "mat",
outputFileDist = ""

)

Arguments

seqs is a FASTA file containing nucleotide sequences. The sequences start with ’>’.
Also, seqs could be a string vector. Each element of the vector is a nucleotide
sequence.

binaryType It can take any of the following values: (’strBin’,’logicBin’,’numBin’). ’strBin’(String
binary): each di-nucleotide is represented by a string containing 16 characters(0-
1). For example, ’AA’ = "1000000000000000", ’AC’ = "0100000000000000",
..., ’TT’= "0000000000000001" ’logicBin’(logical value): Each amino acid is
represented by a vector containing 16 logical entries. For example, ’AA’ =
c(T,F,F,F,F,F,F,F,F,F,F,F,F,F,F,F), ... ’numBin’ (numeric bin): Each amino acid
is represented by a numeric (i.e., integer) vector containing 16 numerals. For
example, ’AA’ = c(1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0)

label is an optional parameter. It is a vector whose length is equivalent to the number
of sequences. It shows the class of each entry (i.e., sequence).

outFormat (output format) can take two values: ’mat’(matrix) and ’txt’. The default value
is ’mat’.

outputFileDist shows the path and name of the ’txt’ output file.

Value

The output is different depending on the outFormat parameter (’mat’ or ’txt’). If outFormat is set to
’mat’, it returns a feature matrix for sequences with the same lengths. The number of rows is equal
to the number of sequences and if binaryType is ’strBin’, the number of columns is the length of the
sequences. Otherwise, it is equal to (length of the sequences-1)*16. If outFormat is ’txt’, all binary
values will be written to a the output is written to a tab-delimited file. Each line in the file shows
the binary format of a sequence.

Note

This function is provided for sequences with the same lengths. Users can use ’txt’ option in out-
Format for sequences with different lengths. Warning: If outFormat is set to ’mat’ for sequences
with different lengths, it returns an error. Also, when output format is ’txt’, label information is not
shown in the text file. It is noteworthy that ’txt’ format is not usable for machine learning purposes if
sequences have different sizes. Otherwise ’txt’ format is also usable for machine learning purposes.

126 PS2_RNA

References

Zhen Chen, Pei Zhao, Chen Li, Fuyi Li, Dongxu Xiang, Yong-Zi Chen, Tatsuya Akutsu, Roger
J Daly, Geoffrey I Webb, Quanzhi Zhao, Lukasz Kurgan, Jiangning Song, iLearnPlus: a compre-
hensive and automated machine-learning platform for nucleic acid and protein sequence analysis,
prediction and visualization, Nucleic Acids Research, (2021).

Examples

LNCSeqsADR<-system.file("extdata/",package="ftrCOOL")
LNC50Nuc<-as.vector(read.csv(paste0(LNCSeqsADR,"/LNC50Nuc.csv"))[,2])
mat<-PS2_DNA(seqs = LNC50Nuc,outFormat="mat")

PS2_RNA Position-specific of two nucleotide_RNA (PS2_RNA)

Description

This function transforms each di-ribonucleotide of the sequence to a binary format. The type of
the binary format is determined by the binaryType parameter. For details about each format, please
refer to the description of the binaryType parameter.

Usage

PS2_RNA(
seqs,
binaryType = "numBin",
label = c(),
outFormat = "mat",
outputFileDist = ""

)

Arguments

seqs is a FASTA file containing nucleotide sequences. The sequences start with ’>’.
Also, seqs could be a string vector. Each element of the vector is a nucleotide
sequence.

binaryType It can take any of the following values: (’strBin’,’logicBin’,’numBin’). ’strBin’(String
binary): each di-nucleotide is represented by a string containing 16 characters(0-
1). For example, ’AA’ = "1000000000000000", ’AC’ = "0100000000000000",
..., ’TT’= "0000000000000001" ’logicBin’(logical value): Each amino acid is
represented by a vector containing 16 logical entries. For example, ’AA’ =
c(T,F,F,F,F,F,F,F,F,F,F,F,F,F,F,F), ... ’numBin’ (numeric bin): Each amino acid
is represented by a numeric (i.e., integer) vector containing 16 numerals. For
example, ’AA’ = c(1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0)

PS3_DNA 127

label is an optional parameter. It is a vector whose length is equivalent to the number
of sequences. It shows the class of each entry (i.e., sequence).

outFormat (output format) can take two values: ’mat’(matrix) and ’txt’. The default value
is ’mat’.

outputFileDist shows the path and name of the ’txt’ output file.

Value

The output is different depending on the outFormat parameter (’mat’ or ’txt’). If outFormat is set to
’mat’, it returns a feature matrix for sequences with the same lengths. The number of rows is equal
to the number of sequences and if binaryType is ’strBin’, the number of columns is the length of the
sequences. Otherwise, it is equal to (length of the sequences-1)*16. If outFormat is ’txt’, all binary
values will be written to a the output is written to a tab-delimited file. Each line in the file shows
the binary format of a sequence.

Note

This function is provided for sequences with the same lengths. Users can use ’txt’ option in out-
Format for sequences with different lengths. Warning: If outFormat is set to ’mat’ for sequences
with different lengths, it returns an error. Also, when output format is ’txt’, label information is not
shown in the text file. It is noteworthy that ’txt’ format is not usable for machine learning purposes if
sequences have different sizes. Otherwise ’txt’ format is also usable for machine learning purposes.

References

Zhen Chen, Pei Zhao, Chen Li, Fuyi Li, Dongxu Xiang, Yong-Zi Chen, Tatsuya Akutsu, Roger
J Daly, Geoffrey I Webb, Quanzhi Zhao, Lukasz Kurgan, Jiangning Song, iLearnPlus: a compre-
hensive and automated machine-learning platform for nucleic acid and protein sequence analysis,
prediction and visualization, Nucleic Acids Research, (2021).

Examples

fileLNC<-system.file("extdata/Carica_papaya101RNA.txt",package="ftrCOOL")
mat<-PS2_RNA(seqs = fileLNC, binaryType="numBin",outFormat="mat")

PS3_DNA Position-specific of three nucleotide_DNA (PS3_DNA)

Description

This function transforms each tri-nucleotide of the sequence to a binary format. The type of the
binary format is determined by the binaryType parameter. For details about each format, please
refer to the description of the binaryType parameter.

128 PS3_DNA

Usage

PS3_DNA(
seqs,
binaryType = "numBin",
label = c(),
outFormat = "mat",
outputFileDist = ""

)

Arguments

seqs is a FASTA file containing nucleotide sequences. The sequences start with ’>’.
Also, seqs could be a string vector. Each element of the vector is a nucleotide
sequence.

binaryType It can take any of the following values: (’strBin’,’logicBin’,’numBin’). ’strBin’(String
binary): each di-nucleotide is represented by a string containing 64 characters
(63 times ’0’ and one ’1’). For example, ’AAA’ = "1000000000000000...0",
’logicBin’(logical value): Each amino acid is represented by a vector containing
64 logical entries (63 times F and one T). For example, ’AA’ = c(T,F,F,F,F,F,F,F,F,F,F,F,F,F,F,F,...,F),
... ’numBin’ (numeric bin): Each amino acid is represented by a numeric (i.e.,
integer) vector containing 64 numerals (63 times ’0’ and one ’1’). For example,
’AA’ = c(1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,...,0)

label is an optional parameter. It is a vector whose length is equivalent to the number
of sequences. It shows the class of each entry (i.e., sequence).

outFormat (output format) can take two values: ’mat’(matrix) and ’txt’. The default value
is ’mat’.

outputFileDist shows the path and name of the ’txt’ output file.

Value

The output is different depending on the outFormat parameter (’mat’ or ’txt’). If outFormat is set to
’mat’, it returns a feature matrix for sequences with the same lengths. The number of rows is equal
to the number of sequences and if binaryType is ’strBin’, the number of columns is the length of the
sequences. Otherwise, it is equal to (length of the sequences-2)*64. If outFormat is ’txt’, all binary
values will be written to a the output is written to a tab-delimited file. Each line in the file shows
the binary format of a sequence.

Note

This function is provided for sequences with the same lengths. Users can use ’txt’ option in out-
Format for sequences with different lengths. Warning: If outFormat is set to ’mat’ for sequences
with different lengths, it returns an error. Also, when output format is ’txt’, label information is not
shown in the text file. It is noteworthy that ’txt’ format is not usable for machine learning purposes if
sequences have different sizes. Otherwise ’txt’ format is also usable for machine learning purposes.

PS3_RNA 129

References

Zhen Chen, Pei Zhao, Chen Li, Fuyi Li, Dongxu Xiang, Yong-Zi Chen, Tatsuya Akutsu, Roger
J Daly, Geoffrey I Webb, Quanzhi Zhao, Lukasz Kurgan, Jiangning Song, iLearnPlus: a compre-
hensive and automated machine-learning platform for nucleic acid and protein sequence analysis,
prediction and visualization, Nucleic Acids Research, (2021).

Examples

LNCSeqsADR<-system.file("extdata/",package="ftrCOOL")
LNC50Nuc<-as.vector(read.csv(paste0(LNCSeqsADR,"/LNC50Nuc.csv"))[,2])
mat<-PS3_DNA(seqs = LNC50Nuc,outFormat="mat")

PS3_RNA Position-specific of three ribonucleotide_RNA (PS3_RNA)

Description

This function transforms each tri-ribonucleotide of the sequence to a binary format. The type of
the binary format is determined by the binaryType parameter. For details about each format, please
refer to the description of the binaryType parameter.

Usage

PS3_RNA(
seqs,
binaryType = "numBin",
label = c(),
outFormat = "mat",
outputFileDist = ""

)

Arguments

seqs is a FASTA file containing ribonucleotide sequences. The sequences start with
’>’. Also, seqs could be a string vector. Each element of the vector is a ribonu-
cleotide sequence.

binaryType It can take any of the following values: (’strBin’,’logicBin’,’numBin’). ’strBin’(String
binary): each di-ribonucleotide is represented by a string containing 64 charac-
ters (63 times ’0’ and one ’1’). For example, ’AAA’ = "1000000000000000...0",
.... ’logicBin’(logical value): Each amino acid is represented by a vector con-
taining 64 logical entries (63 times F and one T). For example, ’AA’ = c(T,F,F,F,F,F,F,F,F,F,F,F,F,F,F,F,...,F),
... ’numBin’ (numeric bin): Each amino acid is represented by a numeric (i.e.,
integer) vector containing 64 numerals (63 times ’0’ and one ’1’). For example,
’AA’ = c(1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,...,0)

130 PS4_DNA

label is an optional parameter. It is a vector whose length is equivalent to the number
of sequences. It shows the class of each entry (i.e., sequence).

outFormat (output format) can take two values: ’mat’(matrix) and ’txt’. The default value
is ’mat’.

outputFileDist shows the path and name of the ’txt’ output file.

Value

The output is different depending on the outFormat parameter (’mat’ or ’txt’). If outFormat is set to
’mat’, it returns a feature matrix for sequences with the same lengths. The number of rows is equal
to the number of sequences and if binaryType is ’strBin’, the number of columns is the length of the
sequences. Otherwise, it is equal to (length of the sequences-2)*64. If outFormat is ’txt’, all binary
values will be written to a the output is written to a tab-delimited file. Each line in the file shows
the binary format of a sequence.

Note

This function is provided for sequences with the same lengths. Users can use ’txt’ option in out-
Format for sequences with different lengths. Warning: If outFormat is set to ’mat’ for sequences
with different lengths, it returns an error. Also, when output format is ’txt’, label information is not
shown in the text file. It is noteworthy that ’txt’ format is not usable for machine learning purposes if
sequences have different sizes. Otherwise ’txt’ format is also usable for machine learning purposes.

References

Zhen Chen, Pei Zhao, Chen Li, Fuyi Li, Dongxu Xiang, Yong-Zi Chen, Tatsuya Akutsu, Roger
J Daly, Geoffrey I Webb, Quanzhi Zhao, Lukasz Kurgan, Jiangning Song, iLearnPlus: a compre-
hensive and automated machine-learning platform for nucleic acid and protein sequence analysis,
prediction and visualization, Nucleic Acids Research, (2021).

Examples

fileLNC<-system.file("extdata/Carica_papaya101RNA.txt",package="ftrCOOL")
mat<-PS3_RNA(seqs = fileLNC, binaryType="numBin",outFormat="mat")

PS4_DNA Position-specific of four nucleotide_DNA (PS4_DNA)

Description

This function transforms each 4-nucleotide of the sequence to a binary format. The type of the
binary format is determined by the binaryType parameter. For details about each format, please
refer to the description of the binaryType parameter.

PS4_DNA 131

Usage

PS4_DNA(
seqs,
binaryType = "numBin",
label = c(),
outFormat = "mat",
outputFileDist = ""

)

Arguments

seqs is a FASTA file containing nucleotide sequences. The sequences start with ’>’.
Also, seqs could be a string vector. Each element of the vector is a nucleotide
sequence.

binaryType It can take any of the following values: (’strBin’,’logicBin’,’numBin’). ’strBin’(String
binary): each di-nucleotide is represented by a string containing 256 characters
(255 times ’0’ and one ’1’). For example, ’AAA’ = "1000000000000000...0",
’logicBin’(logical value): Each amino acid is represented by a vector containing
256 logical entries (255 times F and one T). For example, ’AA’ = c(T,F,F,F,F,F,F,F,F,F,F,F,F,F,F,F,...,F),
... ’numBin’ (numeric bin): Each amino acid is represented by a numeric (i.e.,
integer) vector containing 256 numerals (255 times ’0’ and one ’1’). For exam-
ple, ’AA’ = c(1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,...,0)

label is an optional parameter. It is a vector whose length is equivalent to the number
of sequences. It shows the class of each entry (i.e., sequence).

outFormat (output format) can take two values: ’mat’(matrix) and ’txt’. The default value
is ’mat’.

outputFileDist shows the path and name of the ’txt’ output file.

Value

The output is different depending on the outFormat parameter (’mat’ or ’txt’). If outFormat is set to
’mat’, it returns a feature matrix for sequences with the same lengths. The number of rows is equal
to the number of sequences and if binaryType is ’strBin’, the number of columns is the length of
the sequences. Otherwise, it is equal to (length of the sequences-3)*256. If outFormat is ’txt’, all
binary values will be written to a the output is written to a tab-delimited file. Each line in the file
shows the binary format of a sequence.

Note

This function is provided for sequences with the same lengths. Users can use ’txt’ option in out-
Format for sequences with different lengths. Warning: If outFormat is set to ’mat’ for sequences
with different lengths, it returns an error. Also, when output format is ’txt’, label information is not
shown in the text file. It is noteworthy that ’txt’ format is not usable for machine learning purposes if
sequences have different sizes. Otherwise ’txt’ format is also usable for machine learning purposes.

132 PS4_RNA

References

Zhen Chen, Pei Zhao, Chen Li, Fuyi Li, Dongxu Xiang, Yong-Zi Chen, Tatsuya Akutsu, Roger
J Daly, Geoffrey I Webb, Quanzhi Zhao, Lukasz Kurgan, Jiangning Song, iLearnPlus: a compre-
hensive and automated machine-learning platform for nucleic acid and protein sequence analysis,
prediction and visualization, Nucleic Acids Research, (2021).

Examples

LNCSeqsADR<-system.file("extdata/",package="ftrCOOL")
LNC50Nuc<-as.vector(read.csv(paste0(LNCSeqsADR,"/LNC50Nuc.csv"))[,2])
mat<-PS4_DNA(seqs = LNC50Nuc,outFormat="mat")

PS4_RNA Position-specific of four ribonucleotide (PS4_RNA)

Description

This function transforms each 4-ribonucleotide of the sequence to a binary format. The type of the
binary format is determined by the binaryType parameter. For details about each format, please
refer to the description of the binaryType parameter.

Usage

PS4_RNA(
seqs,
binaryType = "numBin",
label = c(),
outFormat = "mat",
outputFileDist = ""

)

Arguments

seqs is a FASTA file containing ribonucleotide sequences. The sequences start with
’>’. Also, seqs could be a string vector. Each element of the vector is a ribonu-
cleotide sequence.

binaryType It can take any of the following values: (’strBin’,’logicBin’,’numBin’). ’strBin’(String
binary): each di-ribonucleotide is represented by a string containing 256 charac-
ters (255 times ’0’ and one ’1’). For example, ’AAA’ = "1000000000000000...0",
.... ’logicBin’(logical value): Each amino acid is represented by a vector con-
taining 256 logical entries (255 times F and one T). For example, ’AA’ = c(T,F,F,F,F,F,F,F,F,F,F,F,F,F,F,F,...,F),
... ’numBin’ (numeric bin): Each amino acid is represented by a numeric (i.e.,
integer) vector containing 256 numerals (255 times ’0’ and one ’1’). For exam-
ple, ’AA’ = c(1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,...,0)

PSEAAC 133

label is an optional parameter. It is a vector whose length is equivalent to the number
of sequences. It shows the class of each entry (i.e., sequence).

outFormat (output format) can take two values: ’mat’(matrix) and ’txt’. The default value
is ’mat’.

outputFileDist shows the path and name of the ’txt’ output file.

Value

The output is different depending on the outFormat parameter (’mat’ or ’txt’). If outFormat is set to
’mat’, it returns a feature matrix for sequences with the same lengths. The number of rows is equal
to the number of sequences and if binaryType is ’strBin’, the number of columns is the length of
the sequences. Otherwise, it is equal to (length of the sequences-3)*256. If outFormat is ’txt’, all
binary values will be written to a the output is written to a tab-delimited file. Each line in the file
shows the binary format of a sequence.

Note

This function is provided for sequences with the same lengths. Users can use ’txt’ option in out-
Format for sequences with different lengths. Warning: If outFormat is set to ’mat’ for sequences
with different lengths, it returns an error. Also, when output format is ’txt’, label information is not
shown in the text file. It is noteworthy that ’txt’ format is not usable for machine learning purposes if
sequences have different sizes. Otherwise ’txt’ format is also usable for machine learning purposes.

References

Zhen Chen, Pei Zhao, Chen Li, Fuyi Li, Dongxu Xiang, Yong-Zi Chen, Tatsuya Akutsu, Roger
J Daly, Geoffrey I Webb, Quanzhi Zhao, Lukasz Kurgan, Jiangning Song, iLearnPlus: a compre-
hensive and automated machine-learning platform for nucleic acid and protein sequence analysis,
prediction and visualization, Nucleic Acids Research, (2021).

Examples

fileLNC<-system.file("extdata/Carica_papaya101RNA.txt",package="ftrCOOL")
mat<-PS4_RNA(seqs = fileLNC, binaryType="numBin",outFormat="mat")

PSEAAC Pseudo-Amino Acid Composition (Parallel) (PSEAAC)

Description

This function calculates the pseudo amino acid composition (parallel) for each sequence.

134 PSEAAC

Usage

PSEAAC(
seqs,
aaIDX = c("ARGP820101", "HOPT810101", "Mass"),
lambda = 30,
w = 0.05,
l = 1,
threshold = 1,
label = c()

)

Arguments

seqs is a FASTA file with amino acid sequences. Each sequence starts with a ’>’
character. Also, seqs could be a string vector. Each element of the vector is a
peptide/protein sequence.

aaIDX is a vector of Ids or indexes of the user-selected physicochemical properties in
the aaIndex2 database. The default values of the vector are the hydrophobicity
ids and hydrophilicity ids and Mass of residual in the amino acid index file.

lambda is a tuning parameter. Its value indicates the maximum number of spaces be-
tween amino acid pairs. The number changes from 1 to lambda.

w (weight) is a tuning parameter. It changes in from 0 to 1. The default value is
0.05.

l This parameter keeps the value of l in lmer composition. The lmers form the
first 20^l elements of the APAAC descriptor.

threshold is a number between (0 , 1]. It deletes aaIndexes which have a correlation bigger
than the threshold. The default value is 1.

label is an optional parameter. It is a vector whose length is equivalent to the number
of sequences. It shows the class of each entry (i.e., sequence).

Value

A feature matrix such that the number of columns is 20^l+(lambda) and the number of rows is equal
to the number of sequences.

Examples

filePrs<-system.file("extdata/proteins.fasta",package="ftrCOOL")
mat<-PSEAAC(seqs=filePrs,l=2)

PseEIIP 135

PseEIIP Pseudo Electron-Ion Interaction Pseudopotentials of Trinucleotide
(PseEIIP)

Description

This function calculates the pseudo electron-ion interaction for each sequence. It creates a feature
vector for each sequence. The vector contains a value for each for each tri-nucleotide. The value is
computed by multiplying the aggregate value of electron-ion interaction of each nucleotide

Usage

PseEIIP(seqs, label = c())

Arguments

seqs is a FASTA file containing nucleotide sequences. The sequences start with ’>’.
Also, seqs could be a string vector. Each element of the vector is a nucleotide
sequence.

label is an optional parameter. It is a vector whose length is equivalent to the number
of sequences. It shows the class of each entry (i.e., sequence).

Value

This function returns a feature matrix which the number of rows is equal to the number of sequences
and the number of columns is 4^3=64.

References

Chen, Zhen, et al. "iLearn: an integrated platform and meta-learner for feature engineering, machine-
learning analysis and modeling of DNA, RNA and protein sequence data." Briefings in bioinformat-
ics 21.3 (2020): 1047-1057.

Examples

LNCSeqsADR<-system.file("extdata/",package="ftrCOOL")
LNC50Nuc<-as.vector(read.csv(paste0(LNCSeqsADR,"/LNC50Nuc.csv"))[,2])
mat<-PseEIIP(seqs = LNC50Nuc)

136 PSEkNUCdi_DNA

PSEkNUCdi_DNA Pseudo k Nucleotide Composition-Di(Parallel) (PSEkNUCdi_DNA)

Description

This function calculates the pseudo-k nucleotide composition(Di) (Parallel) for each sequence.

Usage

PSEkNUCdi_DNA(
seqs,
selectedIdx = c("Rise", "Roll", "Shift", "Slide", "Tilt", "Twist"),
lambda = 3,
w = 0.05,
l = 2,
ORF = FALSE,
reverseORF = TRUE,
threshold = 1,
label = c()

)

Arguments

seqs is a FASTA file containing nucleotide sequences. The sequences start with ’>’.
Also, seqs could be a string vector. Each element of the vector is a nucleotide
sequence.

selectedIdx is a vector of Ids or indices of the desired physicochemical properties of dinu-
cleotides. Users can choose the desired indices by their ids or their names in
the DI_DNA file. The default values of the parameter is a vector with ("Rise",
"Roll", "Shift", "Slide", "Tilt", "Twist") ids.

lambda is a tuning parameter. This integer value shows the maximum limit of spaces
between dinucleotide pairs. The Number of spaces changes from 1 to lambda.

w (weight) is a tuning parameter. It changes in the range of 0 to 1. The default
value is 0.05.

l This parameter keeps the value of l in lmer composition. The lmers form the
first 4^l elements of the APkNCdi descriptor.

ORF (Open Reading Frame) is a logical parameter. If it is set to true, ORF region of
each sequence is considered instead of the original sequence (i.e., 3-frame).

reverseORF is a logical parameter. It is enabled only if ORF is true. If reverseORF is true,
ORF region will be searched in the sequence and also in the reverse complement
of the sequence (i.e., 6-frame).

threshold is a number between (0 , 1]. In selectedIdx, indices with a correlation higher
than the threshold will be deleted. The default value is 1.

label is an optional parameter. It is a vector whose length is equivalent to the number
of sequences. It shows the class of each entry (i.e., sequence).

PSEkNUCdi_RNA 137

Details

This function computes the pseudo nucleotide composition for each physicochemical property of
di-nucleotides. We have provided users with the ability to choose among the 148 properties in the
di-nucleotide index database.

Value

a feature matrix such that the number of columns is 4^l+lambda and the number of rows is equal to
the number of sequences.

Examples

fileLNC<-system.file("extdata/Athaliana_LNCRNA.fa",package="ftrCOOL")
mat<-PSEkNUCdi_DNA(seqs=fileLNC,l=2,ORF=TRUE,threshold=0.8)

PSEkNUCdi_RNA Pseudo k riboNucleotide Composition-Di(Parallel)
(PSEkNUCdi_RNA)

Description

This function calculates the pseudo-k ribonucleotide composition(Di) (Parallel) for each sequence.

Usage

PSEkNUCdi_RNA(
seqs,
selectedIdx = c("Rise (RNA)", "Roll (RNA)", "Shift (RNA)", "Slide (RNA)",
"Tilt (RNA)", "Twist (RNA)"),

lambda = 3,
w = 0.05,
l = 2,
ORF = FALSE,
reverseORF = TRUE,
threshold = 1,
label = c()

)

Arguments

seqs is a FASTA file containing ribonucleotide sequences. The sequences start with
’>’. Also, seqs could be a string vector. Each element of the vector is a ribonu-
cleotide sequence.

selectedIdx is a vector of Ids or indices of the desired physicochemical properties of di-
ribonucleotides. Users can choose the desired indices by their ids or their names
in the DI_RNA peoperties file. The default value of this parameter is a vec-
tor with ("Rise (RNA)", "Roll (RNA)", "Shift (RNA)", "Slide (RNA)", "Tilt
(RNA)","Twist (RNA)") ids.

138 PSEkNUCTri_DNA

lambda is a tuning parameter. This integer value shows the maximum limit of spaces be-
tween di-ribonucleotide pairs. The Number of spaces changes from 1 to lambda.

w (weight) is a tuning parameter. It changes in the range of 0 to 1. The default
value is 0.5.

l This parameter keeps the value of l in lmer composition. The lmers form the
first 4^l elements of the APkNCdi descriptor.

ORF (Open Reading Frame) is a logical parameter. If it is set to true, ORF region of
each sequence is considered instead of the original sequence (i.e., 3-frame).

reverseORF is a logical parameter. It is enabled only if ORF is true. If reverseORF is true,
ORF region will be searched in the sequence and also in the reverse complement
of the sequence (i.e., 6-frame).

threshold is a number between (0 , 1]. In selectedIdx, indices with a correlation higher
than the threshold will be deleted. The default value is 1.

label is an optional parameter. It is a vector whose length is equivalent to the number
of sequences. It shows the class of each entry (i.e., sequence).

Details

This function computes the pseudo ribonucleotide composition for each physicochemical property
of di-ribonucleotides. We have provided users with the ability to choose among the 22 properties in
the di-ribonucleotide index database.

Value

a feature matrix such that the number of columns is 4^l+lambda and the number of rows is equal to
the number of sequences.

Examples

fileLNC<-system.file("extdata/Carica_papaya101RNA.txt",package="ftrCOOL")
mat<-PSEkNUCdi_RNA(seqs=fileLNC,l=2,ORF=TRUE,threshold=0.8)

PSEkNUCTri_DNA Pseudo k Nucleotide Composition-Tri(Parallel) (PSEkNUCTri_RNA)

Description

This function calculates pseudo-k nucleotide composition(Tri) (Parallel) for each sequence.

Usage

PSEkNUCTri_DNA(
seqs,
selectedIdx = c("Dnase I", "Bendability (DNAse)"),
lambda = 3,
w = 0.05,

PSEkNUCTri_DNA 139

l = 3,
ORF = FALSE,
reverseORF = TRUE,
threshold = 1,
label = c()

)

Arguments

seqs is a FASTA file containing nucleotide sequences. The sequences start with ’>’.
Also, seqs could be a string vector. Each element of the vector is a nucleotide
sequence.

selectedIdx is a vector of Ids or indices of the desired physicochemical properties of trin-
ucleotides. Users can choose the desired indices by their ids or their names in
the TRI_DNA index file. The default value of this parameter is a vector with
("Dnase I", "Bendability (DNAse)") ids.

lambda is a tuning parameter. This integer value shows the maximum limit of spaces
between Tri-nucleotide pairs. The Number of spaces changes from 1 to lambda.

w (weight) is a tuning parameter. It can take a value in the range 0 to 1. The default
value is 0.05.

l This parameter keeps the value of l in lmer composition. The lmers form the
first 4^l elements of the APkNCTri descriptor.

ORF (Open Reading Frame) is a logical parameter. If it is set to true, ORF region of
each sequence is considered instead of the original sequence (i.e., 3-frame).

reverseORF is a logical parameter. It is enabled only if ORF is true. If reverseORF is true,
ORF region will be searched in the sequence and also in the reverse complement
of the sequence (i.e., 6-frame).

threshold is a number between (0 , 1]. In selectedIdx, indices with a correlation higher
than the threshold will be deleted. The default value is 1.

label is an optional parameter. It is a vector whose length is equivalent to the number
of sequences. It shows the class of each entry (i.e., sequence).

Details

This function computes the pseudo nucleotide composition for each physicochemical property of
trinucleotides. We have provided users with the ability to choose among the 12 properties in the
tri-nucleotide index database.

Value

a feature matrix such that the number of columns is 4^l+lambda and the number of rows is equal to
the number of sequences.

Examples

fileLNC<-system.file("extdata/Athaliana_LNCRNA.fa",package="ftrCOOL")
mat<-PSEkNUCTri_DNA(seqs=fileLNC, l=2,ORF=TRUE,threshold=0.8)

140 PseKRAAC_T1

PseKRAAC_T1 Pseudo K_tuple Reduced Amino Acid Composition Type-1
(PseKRAAC_T1)

Description

There are 16 types of PseKRAAC function. In the functions, a (user-selected) grouping of the
amino acids might be used to reduce the amino acid alphabet. Also, the functions have a type
parameter. The parameter determines the protein sequence analyses which can be either gap or
lambda-correlation. PseKRAAC_type1(PseKRAAC_T1) contains Grp 2 to 20.

Usage

PseKRAAC_T1(
seqs,
type = "gap",
Grp = 5,
GapOrLambdaValue = 2,
k = 2,
label = c()

)

Arguments

seqs is a FASTA file with amino acid sequences. Each sequence starts with a ’>’
character. Also, seqs could be a string vector. Each element of the vector is a
peptide/protein sequence.

type This parameter has two valid value "lambda" and "gap". "lambda" calls lambda_model
function and "gap" calls gap_model function.

Grp is a numeric value. It shows the id of an amino acid group. Please find the
available groups in the detail section.

GapOrLambdaValue

is an integer. If type is gap, this value shows number of gaps between two k-
mers. If type is lambda, the value of GapOrLambdaValue shows the number of
gaps between each two amino acids of k-mers.

k This parameter keeps the value of k in k-mer.

label is an optional parameter. It is a vector whose length is equivalent to the number
of sequences. It shows the class of each entry (i.e., sequence).

Details

Groups: 2=c("CMFILVWY", "AGTSNQDEHRKP"), 3=c("CMFILVWY", "AGTSP", "NQDEHRK"),
4=c("CMFWY", "ILV", "AGTS", "NQDEHRKP"), 5=c("WFYH", "MILV", "CATSP", "G", "NQDERK"),
6=c("WFYH", "MILV", "CATS", "P", "G", "NQDERK"), 7=c("WFYH", "MILV", "CATS", "P",
"G", "NQDE", "RK"), 8=c("WFYH", "MILV", "CA", "NTS", "P", "G", "DE", "QRK"), 9=c("WFYH",
"MI", "LV", "CA", "NTS", "P", "G", "DE", "QRK"), 10=c("WFY", "ML", "IV", "CA", "TS",

PseKRAAC_T10 141

"NH", "P", "G", "DE", "QRK"), 11=c("WFY", "ML", "IV", "CA", "TS", "NH", "P", "G", "D",
"QE", "RK"), 12=c("WFY", "ML", "IV", "C", "A", "TS", "NH", "P", "G", "D", "QE", "RK"),
13=c("WFY", "ML", "IV", "C", "A", "T", "S", "NH", "P", "G", "D", "QE", "RK"), 14=c("WFY",
"ML", "IV", "C", "A", "T", "S", "NH", "P", "G", "D", "QE", "R", "K"), 15=c("WFY", "ML", "IV",
"C", "A", "T", "S", "N", "H", "P", "G", "D", "QE", "R", "K"), 16=c("W", "FY", "ML", "IV", "C",
"A", "T", "S", "N", "H", "P", "G", "D", "QE", "R", "K"), 17=c("W", "FY", "ML", "IV", "C", "A",
"T", "S", "N", "H", "P", "G", "D", "Q", "E", "R", "K"), 18=c("W", "FY", "M", "L", "IV", "C", "A",
"T", "S", "N", "H", "P", "G", "D", "Q", "E", "R", "K"), 19=c("W", "F", "Y", "M", "L", "IV", "C",
"A", "T", "S", "N", "H", "P", "G", "D", "Q", "E", "R", "K"), 20=c("W", "F", "Y", "M", "L", "I",
"V", "C", "A", "T", "S", "N", "H", "P", "G", "D", "Q", "E", "R", "K")

Value

This function returns a feature matrix. The number of rows is equal to the number of sequences and
the number of columns is (Grp)^k.

References

Zuo, Yongchun, et al. "PseKRAAC: a flexible web server for generating pseudo K-tuple reduced
amino acids composition." Bioinformatics 33.1 (2017): 122-124.

Examples

filePrs<-system.file("extdata/proteins.fasta",package="ftrCOOL")

mat1<-PseKRAAC_T1(seqs=filePrs,type="gap",Grp=4,GapOrLambdaValue=3,k=2)

mat2<-PseKRAAC_T1(seqs=filePrs,type="lambda",Grp=4,GapOrLambdaValue=3,k=2)

PseKRAAC_T10 Pseudo K_tuple Reduced Amino Acid Composition Type-10
(PseKRAAC_T10)

Description

There are 16 types of PseKRAAC function. In the functions, a (user-selected) grouping of the
amino acids might be used to reduce the amino acid alphabet. Also, the functions have a type
parameter. The parameter determines the protein sequence analyses which can be either gap or
lambda-correlation. PseKRAAC_type10(PseKRAAC_T10) contains Grp 2-20.

Usage

PseKRAAC_T10(
seqs,
type = "gap",
Grp = 5,
GapOrLambdaValue = 2,
k = 4,
label = c()

)

142 PseKRAAC_T10

Arguments

seqs is a FASTA file with amino acid sequences. Each sequence starts with a ’>’
character. Also, seqs could be a string vector. Each element of the vector is a
peptide/protein sequence.

type This parameter has two valid value "lambda" and "gap". "lambda" calls lambda_model
function and "gap" calls gap_model function.

Grp is a numeric value. It shows the id of an amino acid group. Please find the
available groups in the detail section.

GapOrLambdaValue

is an integer. If type is gap, this value shows number of gaps between two k-
mers. If type is lambda, the value of GapOrLambdaValue shows the number of
gaps between each two amino acids of k-mers.

k This parameter keeps the value of k in k-mer.

label is an optional parameter. It is a vector whose length is equivalent to the number
of sequences. It shows the class of each entry (i.e., sequence).

Details

Groups: 2=c(’CMFILVWY’, ’AGTSNQDEHRKP’), 3=c(’CMFILVWY’, ’AGTSP’, ’NQDEHRK’),
4=c(’CMFWY’, ’ILV’, ’AGTS’, ’NQDEHRKP’), 5=c(’FWYH’, ’MILV’, ’CATSP’, ’G’, ’NQDERK’),
6=c(’FWYH’, ’MILV’, ’CATS’, ’P’, ’G’, ’NQDERK’), 7=c(’FWYH’, ’MILV’, ’CATS’, ’P’, ’G’,
’NQDE’, ’RK’), 8=c(’FWYH’, ’MILV’, ’CA’, ’NTS’, ’P’, ’G’, ’DE’, ’QRK’), 9=c(’FWYH’, ’ML’,
’IV’, ’CA’, ’NTS’, ’P’, ’G’, ’DE’, ’QRK’), 10=c(’FWY’, ’ML’, ’IV’, ’CA’, ’TS’, ’NH’, ’P’, ’G’,
’DE’, ’QRK’), 11=c(’FWY’, ’ML’, ’IV’, ’CA’, ’TS’, ’NH’, ’P’, ’G’, ’D’, ’QE’, ’RK’), 12=c(’FWY’,
’ML’, ’IV’, ’C’, ’A’, ’TS’, ’NH’, ’P’, ’G’, ’D’, ’QE’, ’RK’), 13=c(’FWY’, ’ML’, ’IV’, ’C’, ’A’, ’T’,
’S’, ’NH’, ’P’, ’G’, ’D’, ’QE’, ’RK’), 14=c(’FWY’, ’ML’, ’IV’, ’C’, ’A’, ’T’, ’S’, ’NH’, ’P’, ’G’,
’D’, ’QE’, ’R’, ’K’), 15=c(’FWY’, ’ML’, ’IV’, ’C’, ’A’, ’T’, ’S’, ’N’, ’H’, ’P’, ’G’, ’D’, ’QE’,
’R’, ’K’), 16=c(’W’, ’FY’, ’ML’, ’IV’, ’C’, ’A’, ’T’, ’S’, ’N’, ’H’, ’P’, ’G’, ’D’, ’QE’, ’R’, ’K’),
17=c(’W’, ’FY’, ’ML’, ’IV’, ’C’, ’A’, ’T’, ’S’, ’N’, ’H’, ’P’, ’G’, ’D’, ’Q’, ’E’, ’R’, ’K’), 18=c(’W’,
’FY’, ’M’, ’L’, ’IV’, ’C’, ’A’, ’T’, ’S’, ’N’, ’H’, ’P’, ’G’, ’D’, ’Q’, ’E’, ’R’, ’K’), 19=c(’W’, ’F’,
’Y’, ’M’, ’L’, ’IV’, ’C’, ’A’, ’T’, ’S’, ’N’, ’H’, ’P’, ’G’, ’D’, ’Q’, ’E’, ’R’, ’K’), 20=c(’W’, ’F’, ’Y’,
’M’, ’L’, ’I’, ’V’, ’C’, ’A’, ’T’, ’S’, ’N’, ’H’, ’P’, ’G’, ’D’, ’Q’, ’E’, ’R’, ’K’)

Value

This function returns a feature matrix. The number of rows is equal to the number of sequences and
the number of columns is (Grp)^k.

References

Zuo, Yongchun, et al. "PseKRAAC: a flexible web server for generating pseudo K-tuple reduced
amino acids composition." Bioinformatics 33.1 (2017): 122-124.

Examples

filePrs<-system.file("extdata/proteins.fasta",package="ftrCOOL")

mat1<-PseKRAAC_T10(seqs=filePrs,type="gap",Grp=4,GapOrLambdaValue=3,k=2)

PseKRAAC_T11 143

mat2<-PseKRAAC_T10(seqs=filePrs,type="lambda",Grp=4,GapOrLambdaValue=3,k=2)

PseKRAAC_T11 Pseudo K_tuple Reduced Amino Acid Composition Type-11
(PseKRAAC_T11)

Description

There are 16 types of PseKRAAC function. In the functions, a (user-selected) grouping of the
amino acids might be used to reduce the amino acid alphabet. Also, the functions have a type
parameter. The parameter determines the protein sequence analyses which can be either gap or
lambda-correlation. PseKRAAC_type11(PseKRAAC_T11) contains Grp 2-20.

Usage

PseKRAAC_T11(
seqs,
type = "gap",
Grp = 5,
GapOrLambdaValue = 2,
k = 4,
label = c()

)

Arguments

seqs is a FASTA file with amino acid sequences. Each sequence starts with a ’>’
character. Also, seqs could be a string vector. Each element of the vector is a
peptide/protein sequence.

type This parameter has two valid value "lambda" and "gap". "lambda" calls lambda_model
function and "gap" calls gap_model function.

Grp is a numeric value. It shows the id of an amino acid group. Please find the
available groups in the detail section.

GapOrLambdaValue

is an integer. If type is gap, this value shows number of gaps between two k-
mers. If type is lambda, the value of GapOrLambdaValue shows the number of
gaps between each two amino acids of k-mers.

k This parameter keeps the value of k in k-mer.

label is an optional parameter. It is a vector whose length is equivalent to the number
of sequences. It shows the class of each entry (i.e., sequence).

144 PseKRAAC_T12

Details

Groups: 2=c(’CFYWMLIV’, ’GPATSNHQEDRK’), 3=c(’CFYWMLIV’, ’GPATS’, ’NHQEDRK’),
4=c(’CFYW’, ’MLIV’, ’GPATS’, ’NHQEDRK’), 5=c(’CFYW’, ’MLIV’, ’G’, ’PATS’, ’NHQE-
DRK’), 6=c(’CFYW’, ’MLIV’, ’G’, ’P’, ’ATS’, ’NHQEDRK’), 7=c(’CFYW’, ’MLIV’, ’G’, ’P’,
’ATS’, ’NHQED’, ’RK’), 8=c(’CFYW’, ’MLIV’, ’G’, ’P’, ’ATS’, ’NH’, ’QED’, ’RK’), 9=c(’CFYW’,
’ML’, ’IV’, ’G’, ’P’, ’ATS’, ’NH’, ’QED’, ’RK’), 10=c(’C’, ’FYW’, ’ML’, ’IV’, ’G’, ’P’, ’ATS’,
’NH’, ’QED’, ’RK’), 11=c(’C’, ’FYW’, ’ML’, ’IV’, ’G’, ’P’, ’A’, ’TS’, ’NH’, ’QED’, ’RK’),
12=c(’C’, ’FYW’, ’ML’, ’IV’, ’G’, ’P’, ’A’, ’TS’, ’NH’, ’QE’, ’D’, ’RK’), 13=c(’C’, ’FYW’, ’ML’,
’IV’, ’G’, ’P’, ’A’, ’T’, ’S’, ’NH’, ’QE’, ’D’, ’RK’), 14=c(’C’, ’FYW’, ’ML’, ’IV’, ’G’, ’P’, ’A’, ’T’,
’S’, ’N’, ’H’, ’QE’, ’D’, ’RK’), 15=c(’C’, ’FYW’, ’ML’, ’IV’, ’G’, ’P’, ’A’, ’T’, ’S’, ’N’, ’H’, ’QE’,
’D’, ’R’, ’K’), 16=c(’C’, ’FY’, ’W’, ’ML’, ’IV’, ’G’, ’P’, ’A’, ’T’, ’S’, ’N’, ’H’, ’QE’, ’D’, ’R’, ’K’),
17=c(’C’, ’FY’, ’W’, ’ML’, ’IV’, ’G’, ’P’, ’A’, ’T’, ’S’, ’N’, ’H’, ’Q’, ’E’, ’D’, ’R’, ’K’), 18=c(’C’,
’FY’, ’W’, ’M’, ’L’, ’IV’, ’G’, ’P’, ’A’, ’T’, ’S’, ’N’, ’H’, ’Q’, ’E’, ’D’, ’R’, ’K’), 19=c(’C’, ’F’,
’Y’, ’W’, ’M’, ’L’, ’IV’, ’G’, ’P’, ’A’, ’T’, ’S’, ’N’, ’H’, ’Q’, ’E’, ’D’, ’R’, ’K’), 20=c(’C’, ’F’, ’Y’,
’W’, ’M’, ’L’, ’I’, ’V’, ’G’, ’P’, ’A’, ’T’, ’S’, ’N’, ’H’, ’Q’, ’E’, ’D’, ’R’, ’K’)

Value

This function returns a feature matrix. The number of rows is equal to the number of sequences and
the number of columns is (Grp)^k.

References

Zuo, Yongchun, et al. "PseKRAAC: a flexible web server for generating pseudo K-tuple reduced
amino acids composition." Bioinformatics 33.1 (2017): 122-124.

Examples

filePrs<-system.file("extdata/proteins.fasta",package="ftrCOOL")

mat1<-PseKRAAC_T11(seqs=filePrs,type="gap",Grp=4,GapOrLambdaValue=3,k=2)

mat2<-PseKRAAC_T11(seqs=filePrs,type="lambda",Grp=4,GapOrLambdaValue=3,k=2)

PseKRAAC_T12 Pseudo K_tuple Reduced Amino Acid Composition Type-12
(PseKRAAC_T12)

Description

There are 16 types of PseKRAAC function. In the functions, a (user-selected) grouping of the
amino acids might be used to reduce the amino acid alphabet. Also, the functions have a type
parameter. The parameter determines the protein sequence analyses which can be either gap or
lambda-correlation. PseKRAAC_type12(PseKRAAC_T12) contains Grp 2-18,20.

PseKRAAC_T12 145

Usage

PseKRAAC_T12(
seqs,
type = "gap",
Grp = 5,
GapOrLambdaValue = 2,
k = 4,
label = c()

)

Arguments

seqs is a FASTA file with amino acid sequences. Each sequence starts with a ’>’
character. Also, seqs could be a string vector. Each element of the vector is a
peptide/protein sequence.

type This parameter has two valid value "lambda" and "gap". "lambda" calls lambda_model
function and "gap" calls gap_model function.

Grp is a numeric value. It shows the id of an amino acid group. Please find the
available groups in the detail section.

GapOrLambdaValue

is an integer. If type is gap, this value shows number of gaps between two k-
mers. If type is lambda, the value of GapOrLambdaValue shows the number of
gaps between each two amino acids of k-mers.

k This parameter keeps the value of k in k-mer.

label is an optional parameter. It is a vector whose length is equivalent to the number
of sequences. It shows the class of each entry (i.e., sequence).

Details

Groups: 2=c(’IVMLFWYC’, ’ARNDQEGHKPST’), 3=c(’IVLMFWC’, ’YA’, ’RNDQEGHKPST’),
4=c(’IVLMFW’, ’C’, ’YA’, ’RNDQEGHKPST’), 5=c(’IVLMFW’, ’C’, ’YA’, ’G’, ’RNDQEHKPST’),
6=c(’IVLMF’, ’WY’, ’C’, ’AH’, ’G’, ’RNDQEKPST’), 7=c(’IVLMF’, ’WY’, ’C’, ’AH’, ’GP’,
’R’, ’NDQEKST’), 8=c(’IVLMF’, ’WY’, ’C’, ’A’, ’G’, ’R’, ’Q’, ’NDEHKPST’), 9=c(’IVLMF’,
’WY’, ’C’, ’A’, ’G’, ’P’, ’H’, ’K’, ’RNDQEST’), 10=c(’IVLM’, ’F’, ’W’, ’Y’, ’C’, ’A’, ’H’,
’G’, ’RN’, ’DQEKPST’), 11=c(’IVLMF’, ’W’, ’Y’, ’C’, ’A’, ’H’, ’G’, ’R’, ’N’, ’Q’, ’DEKPST’),
12=c(’IVLM’, ’F’, ’W’, ’Y’, ’C’, ’A’, ’H’, ’G’, ’N’, ’Q’, ’T’, ’RDEKPS’), 13=c(’IVLM’, ’F’, ’W’,
’Y’, ’C’, ’A’, ’H’, ’G’, ’N’, ’Q’, ’P’, ’R’, ’DEKST’), 14=c(’IVLM’, ’F’, ’W’, ’Y’, ’C’, ’A’, ’H’,
’G’, ’N’, ’Q’, ’P’, ’R’, ’K’, ’DEST’), 15=c(’IVLM’, ’F’, ’W’, ’Y’, ’C’, ’A’, ’H’, ’G’, ’N’, ’Q’,
’P’, ’R’, ’K’, ’D’, ’EST’), 16=c(’IVLM’, ’F’, ’W’, ’Y’, ’C’, ’A’, ’H’, ’G’, ’N’, ’Q’, ’P’, ’R’, ’K’,
’S’, ’T’, ’DE’), 17=c(’IVL’, ’M’, ’F’, ’W’, ’Y’, ’C’, ’A’, ’H’, ’G’, ’N’, ’Q’, ’P’, ’R’, ’K’, ’S’, ’T’,
’DE’), 18=c(’IVL’, ’M’, ’F’, ’W’, ’Y’, ’C’, ’A’, ’H’, ’G’, ’N’, ’Q’, ’P’, ’R’, ’K’, ’S’, ’T’, ’D’, ’E’),
20=c(’I’, ’V’, ’L’, ’M’, ’F’, ’W’, ’Y’, ’C’, ’A’, ’H’, ’G’, ’N’, ’Q’, ’P’, ’R’, ’K’, ’S’, ’T’, ’D’, ’E’)

Value

This function returns a feature matrix. The number of rows is equal to the number of sequences and
the number of columns is (Grp)^k.

146 PseKRAAC_T13

References

Zuo, Yongchun, et al. "PseKRAAC: a flexible web server for generating pseudo K-tuple reduced
amino acids composition." Bioinformatics 33.1 (2017): 122-124.

Examples

filePrs<-system.file("extdata/proteins.fasta",package="ftrCOOL")

mat1<-PseKRAAC_T12(seqs=filePrs,type="gap",Grp=4,GapOrLambdaValue=3,k=2)

mat2<-PseKRAAC_T12(seqs=filePrs,type="lambda",Grp=4,GapOrLambdaValue=3,k=2)

PseKRAAC_T13 Pseudo K_tuple Reduced Amino Acid Composition Type_13
(PseKRAAC_T13)

Description

There are 16 types of PseKRAAC function. In the functions, a (user-selected) grouping of the
amino acids might be used to reduce the amino acid alphabet. Also, the functions have a type
parameter. The parameter determines the protein sequence analyses which can be either gap or
lambda-correlation. PseKRAAC_type13(PseKRAAC_T13) contains Grp 4,12,17,20.

Usage

PseKRAAC_T13(
seqs,
type = "gap",
Grp = 4,
GapOrLambdaValue = 2,
k = 4,
label = c()

)

Arguments

seqs is a FASTA file with amino acid sequences. Each sequence starts with a ’>’
character. Also, seqs could be a string vector. Each element of the vector is a
peptide/protein sequence.

type This parameter has two valid value "lambda" and "gap". "lambda" calls lambda_model
function and "gap" calls gap_model function.

Grp is a numeric value. It shows the id of an amino acid group. Please find the
available groups in the detail section.

GapOrLambdaValue

is an integer. If type is gap, this value shows number of gaps between two k-
mers. If type is lambda, the value of GapOrLambdaValue shows the number of
gaps between each two amino acids of k-mers.

PseKRAAC_T14 147

k This parameter keeps the value of k in k-mer.
label is an optional parameter. It is a vector whose length is equivalent to the number

of sequences. It shows the class of each entry (i.e., sequence).

Details

Groups: 4=c(’ADKERNTSQ’, ’YFLIVMCWH’, ’G’, ’P’), 12=c(’A’, ’D’, ’KER’, ’N’, ’TSQ’,
’YF’, ’LIVM’, ’C’, ’W’, ’H’, ’G’, ’P’), 17=c(’A’, ’D’, ’KE’, ’R’, ’N’, ’T’, ’S’, ’Q’, ’Y’, ’F’, ’LIV’,
’M’, ’C’, ’W’, ’H’, ’G’, ’P’), 20=c(’A’, ’D’, ’K’, ’E’, ’R’, ’N’, ’T’, ’S’, ’Q’, ’Y’, ’F’, ’L’, ’I’, ’V’,
’M’, ’C’, ’W’, ’H’, ’G’, ’P’)

Value

This function returns a feature matrix. The number of rows is equal to the number of sequences and
the number of columns is (Grp)^k.

References

Zuo, Yongchun, et al. "PseKRAAC: a flexible web server for generating pseudo K-tuple reduced
amino acids composition." Bioinformatics 33.1 (2017): 122-124.

Examples

filePrs<-system.file("extdata/proteins.fasta",package="ftrCOOL")

mat1<-PseKRAAC_T13(seqs=filePrs,type="gap",Grp=17,GapOrLambdaValue=3,k=2)

mat2<-PseKRAAC_T13(seqs=filePrs,type="lambda",Grp=17,GapOrLambdaValue=3,k=2)

PseKRAAC_T14 Pseudo K_tuple Reduced Amino Acid Composition Type-14
(PseKRAAC_T14)

Description

There are 16 types of PseKRAAC function. In the functions, a (user-selected) grouping of the
amino acids might be used to reduce the amino acid alphabet. Also, the functions have a type
parameter. The parameter determines the protein sequence analyses which can be either gap or
lambda-correlation. PseKRAAC_type14(PseKRAAC_T14) contains Grp 2-20.

Usage

PseKRAAC_T14(
seqs,
type = "gap",
Grp = 2,
GapOrLambdaValue = 2,
k = 4,
label = c()

)

148 PseKRAAC_T14

Arguments

seqs is a FASTA file with amino acid sequences. Each sequence starts with a ’>’
character. Also, seqs could be a string vector. Each element of the vector is a
peptide/protein sequence.

type This parameter has two valid value "lambda" and "gap". "lambda" calls lambda_model
function and "gap" calls gap_model function.

Grp is a numeric value. It shows the id of an amino acid group. Please find the
available groups in the detail section.

GapOrLambdaValue

is an integer. If type is gap, this value shows number of gaps between two k-
mers. If type is lambda, the value of GapOrLambdaValue shows the number of
gaps between each two amino acids of k-mers.

k This parameter keeps the value of k in k-mer.

label is an optional parameter. It is a vector whose length is equivalent to the number
of sequences. It shows the class of each entry (i.e., sequence).

Details

Groups: 2=c(’ARNDCQEGHKPST’, ’ILMFWYV’), 3=c(’ARNDQEGHKPST’, ’C’, ’ILMFWYV’),
4=c(’ARNDQEGHKPST’, ’C’, ’ILMFYV’, ’W’), 5=c(’AGPST’, ’RNDQEHK’, ’C’, ’ILMFYV’,
’W’), 6=c(’AGPST’, ’RNDQEK’, ’C’, ’H’, ’ILMFYV’, ’W’), 7=c(’ANDGST’, ’RQEK’, ’C’, ’H’,
’ILMFYV’, ’P’, ’W’), 8=c(’ANDGST’, ’RQEK’, ’C’, ’H’, ’ILMV’, ’FY’, ’P’, ’W’), 9=c(’AGST’,
’RQEK’, ’ND’, ’C’, ’H’, ’ILMV’, ’FY’, ’P’, ’W’), 10=c(’AGST’, ’RK’, ’ND’, ’C’, ’QE’, ’H’,
’ILMV’, ’FY’, ’P’, ’W’), 11=c(’AST’, ’RK’, ’ND’, ’C’, ’QE’, ’G’, ’H’, ’ILMV’, ’FY’, ’P’, ’W’),
12=c(’AST’, ’RK’, ’ND’, ’C’, ’QE’, ’G’, ’H’, ’IV’, ’LM’, ’FY’, ’P’, ’W’), 13=c(’AST’, ’RK’, ’N’,
’D’, ’C’, ’QE’, ’G’, ’H’, ’IV’, ’LM’, ’FY’, ’P’, ’W’), 14=c(’AST’, ’RK’, ’N’, ’D’, ’C’, ’Q’, ’E’,
’G’, ’H’, ’IV’, ’LM’, ’FY’, ’P’, ’W’), 15=c(’A’, ’RK’, ’N’, ’D’, ’C’, ’Q’, ’E’, ’G’, ’H’, ’IV’, ’LM’,
’FY’, ’P’, ’ST’, ’W’), 16=c(’A’, ’RK’, ’N’, ’D’, ’C’, ’Q’, ’E’, ’G’, ’H’, ’IV’, ’LM’, ’F’, ’P’, ’ST’,
’W’, ’Y’), 17=c(’A’, ’R’, ’N’, ’D’, ’C’, ’Q’, ’E’, ’G’, ’H’, ’IV’, ’LM’, ’K’, ’F’, ’P’, ’ST’, ’W’,
’Y’), 18=c(’A’, ’R’, ’N’, ’D’, ’C’, ’Q’, ’E’, ’G’, ’H’, ’IV’, ’LM’, ’K’, ’F’, ’P’, ’S’, ’T’, ’W’, ’Y’),
19=c(’A’, ’R’, ’N’, ’D’, ’C’, ’Q’, ’E’, ’G’, ’H’, ’IV’, ’L’, ’K’, ’M’, ’F’, ’P’, ’S’, ’T’, ’W’, ’Y’),
20=c(’A’, ’R’, ’N’, ’D’, ’C’, ’Q’, ’E’, ’G’, ’H’, ’I’, ’V’, ’L’, ’K’, ’M’, ’F’, ’P’, ’S’, ’T’, ’W’, ’Y’)

Value

This function returns a feature matrix. The number of rows is equal to the number of sequences and
the number of columns is (Grp)^k.

References

Zuo, Yongchun, et al. "PseKRAAC: a flexible web server for generating pseudo K-tuple reduced
amino acids composition." Bioinformatics 33.1 (2017): 122-124.

Examples

filePrs<-system.file("extdata/proteins.fasta",package="ftrCOOL")

mat1<-PseKRAAC_T14(seqs=filePrs,type="gap",Grp=4,GapOrLambdaValue=3,k=2)

PseKRAAC_T15 149

mat2<-PseKRAAC_T14(seqs=filePrs,type="lambda",Grp=4,GapOrLambdaValue=3,k=2)

PseKRAAC_T15 Pseudo K_tuple Reduced Amino Acid Composition Type-15
(PseKRAAC_T15)

Description

There are 16 types of PseKRAAC function. In the functions, a (user-selected) grouping of the
amino acids might be used to reduce the amino acid alphabet. Also, the functions have a type
parameter. The parameter determines the protein sequence analyses which can be either gap or
lambda-correlation. PseKRAAC_type15(PseKRAAC_T15) contains Grp 2-16,20.

Usage

PseKRAAC_T15(
seqs,
type = "gap",
Grp = 2,
GapOrLambdaValue = 2,
k = 4,
label = c()

)

Arguments

seqs is a FASTA file with amino acid sequences. Each sequence starts with a ’>’
character. Also, seqs could be a string vector. Each element of the vector is a
peptide/protein sequence.

type This parameter has two valid value "lambda" and "gap". "lambda" calls lambda_model
function and "gap" calls gap_model function.

Grp is a numeric value. It shows the id of an amino acid group. Please find the
available groups in the detail section.

GapOrLambdaValue

is an integer. If type is gap, this value shows number of gaps between two k-
mers. If type is lambda, the value of GapOrLambdaValue shows the number of
gaps between each two amino acids of k-mers.

k This parameter keeps the value of k in k-mer.

label is an optional parameter. It is a vector whose length is equivalent to the number
of sequences. It shows the class of each entry (i.e., sequence).

150 PseKRAAC_T16

Details

Groups:

Grp2=c(’MFILVAW’, ’CYQHPGTSNRKDE’), Grp3=c(’MFILVAW’, ’CYQHPGTSNRK’, ’DE’),
Grp4=c(’MFILV’, ’ACW’, ’YQHPGTSNRK’, ’DE’), Grp5=c(’MFILV’, ’ACW’, ’YQHPGTSN’,
’RK’, ’DE’), Grp6=c(’MFILV’, ’A’, ’C’, ’WYQHPGTSN’, ’RK’, ’DE’), Grp7=c(’MFILV’, ’A’,
’C’, ’WYQHP’, ’GTSN’, ’RK’, ’DE’), Grp8=c(’MFILV’, ’A’, ’C’, ’WYQHP’, ’G’, ’TSN’, ’RK’,
’DE’), Grp9=c(’MF’, ’ILV’, ’A’, ’C’, ’WYQHP’, ’G’, ’TSN’, ’RK’, ’DE’), Grp10=c(’MF’, ’ILV’,
’A’, ’C’, ’WYQHP’, ’G’, ’TSN’, ’RK’, ’D’, ’E’), Grp11=c(’MF’, ’IL’, ’V’, ’A’, ’C’, ’WYQHP’,
’G’, ’TSN’, ’RK’, ’D’, ’E’), Grp12=c(’MF’, ’IL’, ’V’, ’A’, ’C’, ’WYQHP’, ’G’, ’TS’, ’N’, ’RK’,
’D’, ’E’), Grp13=c(’MF’, ’IL’, ’V’, ’A’, ’C’, ’WYQHP’, ’G’, ’T’, ’S’, ’N’, ’RK’, ’D’, ’E’), Grp14=c(’MF’,
’I’, ’L’, ’V’, ’A’, ’C’, ’WYQHP’, ’G’, ’T’, ’S’, ’N’, ’RK’, ’D’, ’E’), Grp15=c(’MF’, ’IL’, ’V’, ’A’,
’C’, ’WYQ’, ’H’, ’P’, ’G’, ’T’, ’S’, ’N’, ’RK’, ’D’, ’E’), Grp16=c(’MF’, ’I’, ’L’, ’V’, ’A’, ’C’,
’WYQ’, ’H’, ’P’, ’G’, ’T’, ’S’, ’N’, ’RK’, ’D’, ’E’), Grp20=c(’M’, ’F’, ’I’, ’L’, ’V’, ’A’, ’C’, ’W’,
’Y’, ’Q’, ’H’, ’P’, ’G’, ’T’, ’S’, ’N’, ’R’, ’K’, ’D’, ’E’)

Value

This function returns a feature matrix. The number of rows is equal to the number of sequences and
the number of columns is (Grp)^k.

References

Zuo, Yongchun, et al. "PseKRAAC: a flexible web server for generating pseudo K-tuple reduced
amino acids composition." Bioinformatics 33.1 (2017): 122-124.

Examples

filePrs<-system.file("extdata/proteins.fasta",package="ftrCOOL")

mat1<-PseKRAAC_T15(seqs=filePrs,type="gap",Grp=4,GapOrLambdaValue=3,k=2)

mat2<-PseKRAAC_T15(seqs=filePrs,type="lambda",Grp=4,GapOrLambdaValue=3,k=2)

PseKRAAC_T16 Pseudo K_tuple Reduced Amino Acid Composition Type-16
(PseKRAAC_T16)

Description

There are 16 types of PseKRAAC function. In the functions, a (user-selected) grouping of the
amino acids might be used to reduce the amino acid alphabet. Also, the functions have a type
parameter. The parameter determines the protein sequence analyses which can be either gap or
lambda-correlation. PseKRAAC_type16(PseKRAAC_T16) contains Grp 2-16,20.

PseKRAAC_T16 151

Usage

PseKRAAC_T16(
seqs,
type = "gap",
Grp = 2,
GapOrLambdaValue = 2,
k = 4,
label = c()

)

Arguments

seqs is a FASTA file with amino acid sequences. Each sequence starts with a ’>’
character. Also, seqs could be a string vector. Each element of the vector is a
peptide/protein sequence.

type This parameter has two valid value "lambda" and "gap". "lambda" calls lambda_model
function and "gap" calls gap_model function.

Grp is a numeric value. It shows the id of an amino acid group. Please find the
available groups in the detail section.

GapOrLambdaValue

is an integer. If type is gap, this value shows number of gaps between two k-
mers. If type is lambda, the value of GapOrLambdaValue shows the number of
gaps between each two amino acids of k-mers.

k This parameter keeps the value of k in k-mer.

label is an optional parameter. It is a vector whose length is equivalent to the number
of sequences. It shows the class of each entry (i.e., sequence).

Details

Groups:

2=c(’IMVLFWY’, ’GPCASTNHQEDRK’), 3=c(’IMVLFWY’, ’GPCAST’, ’NHQEDRK’), 4=c(’IMVLFWY’,
’G’, ’PCAST’, ’NHQEDRK’), 5=c(’IMVL’, ’FWY’, ’G’, ’PCAST’, ’NHQEDRK’), 6=c(’IMVL’,
’FWY’, ’G’, ’P’, ’CAST’, ’NHQEDRK’), 7=c(’IMVL’, ’FWY’, ’G’, ’P’, ’CAST’, ’NHQED’,
’RK’), 8=c(’IMV’, ’L’, ’FWY’, ’G’, ’P’, ’CAST’, ’NHQED’, ’RK’), 9=c(’IMV’, ’L’, ’FWY’, ’G’,
’P’, ’C’, ’AST’, ’NHQED’, ’RK’), 10=c(’IMV’, ’L’, ’FWY’, ’G’, ’P’, ’C’, ’A’, ’STNH’, ’RKQE’,
’D’), 11=c(’IMV’, ’L’, ’FWY’, ’G’, ’P’, ’C’, ’A’, ’STNH’, ’RKQ’, ’E’, ’D’), 12=c(’IMV’, ’L’,
’FWY’, ’G’, ’P’, ’C’, ’A’, ’ST’, ’N’, ’HRKQ’, ’E’, ’D’), 13=c(’IMV’, ’L’, ’F’, ’WY’, ’G’, ’P’,
’C’, ’A’, ’ST’, ’N’, ’HRKQ’, ’E’, ’D’), 14=c(’IMV’, ’L’, ’F’, ’WY’, ’G’, ’P’, ’C’, ’A’, ’S’, ’T’,
’N’, ’HRKQ’, ’E’, ’D’), 15=c(’IMV’, ’L’, ’F’, ’WY’, ’G’, ’P’, ’C’, ’A’, ’S’, ’T’, ’N’, ’H’, ’RKQ’,
’E’, ’D’), 16=c(’IMV’, ’L’, ’F’, ’W’, ’Y’, ’G’, ’P’, ’C’, ’A’, ’S’, ’T’, ’N’, ’H’, ’RKQ’, ’E’, ’D’),
20=c(’I’, ’M’, ’V’, ’L’, ’F’, ’W’, ’Y’, ’G’, ’P’, ’C’, ’A’, ’S’, ’T’, ’N’, ’H’, ’R’, ’K’, ’Q’, ’E’, ’D’)

Value

This function returns a feature matrix. The number of rows is equal to the number of sequences and
the number of columns is (Grp)^k.

152 PseKRAAC_T2

References

Zuo, Yongchun, et al. "PseKRAAC: a flexible web server for generating pseudo K-tuple reduced
amino acids composition." Bioinformatics 33.1 (2017): 122-124.

Examples

filePrs<-system.file("extdata/proteins.fasta",package="ftrCOOL")

mat1<-PseKRAAC_T16(seqs=filePrs,type="gap",Grp=4,GapOrLambdaValue=3,k=2)

mat2<-PseKRAAC_T16(seqs=filePrs,type="lambda",Grp=4,GapOrLambdaValue=3,k=2)

PseKRAAC_T2 Pseudo K_tuple Reduced Amino Acid Composition Type-2
(PseKRAAC_T2)

Description

There are 16 types of PseKRAAC function. In the functions, a (user-selected) grouping of the
amino acids might be used to reduce the amino acid alphabet. Also, the functions have a type
parameter. The parameter determines the protein sequence analyses which can be either gap or
lambda-correlation. PseKRAAC_type2(PseKRAAC_T2) contains Grp 2-6,8,15,20.

Usage

PseKRAAC_T2(
seqs,
type = "gap",
Grp = 2,
GapOrLambdaValue = 2,
k = 4,
label = c()

)

Arguments

seqs is a FASTA file with amino acid sequences. Each sequence starts with a ’>’
character. Also, seqs could be a string vector. Each element of the vector is a
peptide/protein sequence.

type This parameter has two valid value "lambda" and "gap". "lambda" calls lambda_model
function and "gap" calls gap_model function.

Grp is a numeric value. It shows the id of an amino acid group. Please find the
available groups in the detail section.

GapOrLambdaValue

is an integer. If type is gap, this value shows number of gaps between two k-
mers. If type is lambda, the value of GapOrLambdaValue shows the number of
gaps between each two amino acids of k-mers.

PseKRAAC_T3A 153

k This parameter keeps the value of k in k-mer.

label is an optional parameter. It is a vector whose length is equivalent to the number
of sequences. It shows the class of each entry (i.e., sequence).

Details

Groups:

2=c(’LVIMCAGSTPFYW’, ’EDNQKRH’), 3=c(’LVIMCAGSTP’, ’FYW’, ’EDNQKRH’), 4=c(’LVIMC’,
’AGSTP’, ’FYW’, ’EDNQKRH’), 5=c(’LVIMC’, ’AGSTP’, ’FYW’, ’EDNQ’, ’KRH’), 6=c(’LVIM’,
’AGST’, ’PHC’, ’FYW’, ’EDNQ’, ’KR’), 8=c(’LVIMC’, ’AG’, ’ST’, ’P’, ’FYW’, ’EDNQ’, ’KR’,
’H’), 15=c(’LVIM’, ’C’, ’A’, ’G’, ’S’, ’T’, ’P’, ’FY’, ’W’, ’E’, ’D’, ’N’, ’Q’, ’KR’, ’H’), 20=c(’L’,
’V’, ’I’, ’M’, ’C’, ’A’, ’G’, ’S’, ’T’, ’P’, ’F’, ’Y’, ’W’, ’E’, ’D’, ’N’, ’Q’, ’K’, ’R’, ’H’)

Value

This function returns a feature matrix. The number of rows is equal to the number of sequences and
the number of columns is (Grp)^k.

References

Zuo, Yongchun, et al. "PseKRAAC: a flexible web server for generating pseudo K-tuple reduced
amino acids composition." Bioinformatics 33.1 (2017): 122-124.

Examples

filePrs<-system.file("extdata/proteins.fasta",package="ftrCOOL")

mat1<-PseKRAAC_T2(seqs=filePrs,type="gap",Grp=4,GapOrLambdaValue=3,k=2)

mat2<-PseKRAAC_T2(seqs=filePrs,type="lambda",Grp=4,GapOrLambdaValue=3,k=2)

PseKRAAC_T3A Pseudo K_tuple Reduced Amino Acid Composition Type-3A
(PseKRAAC_T3A)

Description

There are 16 types of PseKRAAC function. In the functions, a (user-selected) grouping of the
amino acids might be used to reduce the amino acid alphabet. Also, the functions have a type
parameter. The parameter determines the protein sequence analyses which can be either gap or
lambda-correlation. PseKRAAC_type3 contain two type: type3A and type3B. ’PseKRAAC_T3A’
contains Grp 2-20.

154 PseKRAAC_T3A

Usage

PseKRAAC_T3A(
seqs,
type = "gap",
Grp = 2,
GapOrLambdaValue = 2,
k = 4,
label = c()

)

Arguments

seqs is a FASTA file with amino acid sequences. Each sequence starts with a ’>’
character. Also, seqs could be a string vector. Each element of the vector is a
peptide/protein sequence.

type This parameter has two valid value "lambda" and "gap". "lambda" calls lambda_model
function and "gap" calls gap_model function.

Grp is a numeric value. It shows the id of an amino acid group. Please find the
available groups in the detail section.

GapOrLambdaValue

is an integer. If type is gap, this value shows number of gaps between two k-
mers. If type is lambda, the value of GapOrLambdaValue shows the number of
gaps between each two amino acids of k-mers.

k This parameter keeps the value of k in k-mer.

label is an optional parameter. It is a vector whose length is equivalent to the number
of sequences. It shows the class of each entry (i.e., sequence).

Details

Groups: Grp2=c(’AGSPDEQNHTKRMILFYVC’, ’W’), Grp3=c(’AGSPDEQNHTKRMILFYV’,
’W’, ’C’), Grp4=c(’AGSPDEQNHTKRMIV’, ’W’, ’YFL’, ’C’), Grp5=c(’AGSPDEQNHTKR’, ’W’,
’YF’, ’MIVL’, ’C’), Grp6=c(’AGSP’, ’DEQNHTKR’, ’W’, ’YF’, ’MIL’, ’VC’), Grp7=c(’AGP’,
’DEQNH’, ’TKRMIV’, ’W’, ’YF’, ’L’, ’CS’), Grp8=c(’AG’, ’DEQN’, ’TKRMIV’, ’HY’, ’W’, ’L’,
’FP’, ’CS’), Grp9=c(’AG’, ’P’, ’DEQN’, ’TKRMI’, ’HY’, ’W’, ’F’, ’L’, ’VCS’), Grp10=c(’AG’,
’P’, ’DEQN’, ’TKRM’, ’HY’, ’W’, ’F’, ’I’, ’L’, ’VCS’), Grp11=c(’AG’, ’P’, ’DEQN’, ’TK’, ’RI’,
’H’, ’Y’, ’W’, ’F’, ’ML’, ’VCS’), Grp12=c(’FAS’, ’P’, ’G’, ’DEQ’, ’NL’, ’TK’, ’R’, ’H’, ’W’,
’Y’, ’IM’, ’VC’), Grp13=c(’FAS’, ’P’, ’G’, ’DEQ’, ’NL’, ’T’, ’K’, ’R’, ’H’, ’W’, ’Y’, ’IM’, ’VC’),
Grp14=c(’FA’, ’P’, ’G’, ’T’, ’DE’, ’QM’, ’NL’, ’K’, ’R’, ’H’, ’W’, ’Y’, ’IV’, ’CS’), Grp15=c(’FAS’,
’P’, ’G’, ’T’, ’DE’, ’Q’, ’NL’, ’K’, ’R’, ’H’, ’W’, ’Y’, ’M’, ’I’, ’VC’), Grp16=c(’FA’, ’P’, ’G’, ’ST’,
’DE’, ’Q’, ’N’, ’K’, ’R’, ’H’, ’W’, ’Y’, ’M’, ’L’, ’I’, ’VC’), Grp17=c(’FA’, ’P’, ’G’, ’S’, ’T’, ’DE’,
’Q’, ’N’, ’K’, ’R’, ’H’, ’W’, ’Y’, ’M’, ’L’, ’I’, ’VC’), Grp18=c(’FA’, ’P’, ’G’, ’S’, ’T’, ’DE’, ’Q’,
’N’, ’K’, ’R’, ’H’, ’W’, ’Y’, ’M’, ’L’, ’I’, ’V’, ’C’), Grp19=c(’FA’, ’P’, ’G’, ’S’, ’T’, ’D’, ’E’, ’Q’,
’N’, ’K’, ’R’, ’H’, ’W’, ’Y’, ’M’, ’L’, ’I’, ’V’, ’C’), Grp20=c(’F’, ’A’, ’P’, ’G’, ’S’, ’T’, ’D’, ’E’,
’Q’, ’N’, ’K’, ’R’, ’H’, ’W’, ’Y’, ’M’, ’L’, ’I’, ’V’, ’C’)

PseKRAAC_T3B 155

Value

This function returns a feature matrix. The number of rows is equal to the number of sequences and
the number of columns is (Grp)^k.

References

Zuo, Yongchun, et al. "PseKRAAC: a flexible web server for generating pseudo K-tuple reduced
amino acids composition." Bioinformatics 33.1 (2017): 122-124.

Examples

filePrs<-system.file("extdata/proteins.fasta",package="ftrCOOL")

mat1<-PseKRAAC_T3A(seqs=filePrs,type="gap",Grp=4,GapOrLambdaValue=3,k=2)

mat2<-PseKRAAC_T3A(seqs=filePrs,type="lambda",Grp=4,GapOrLambdaValue=3,k=2)

PseKRAAC_T3B Pseudo K_tuple Reduced Amino Acid Composition Type_3B
(PseKRAAC_T3B)

Description

There are 16 types of PseKRAAC function. In the functions, a (user-selected) grouping of the
amino acids might be used to reduce the amino acid alphabet. Also, the functions have a type
parameter. The parameter determines the protein sequence analyses which can be either gap or
lambda-correlation. PseKRAAC_type3 contain two type: type3A and type3B. ’PseKRAAC_T3B’
contains Grp 2-20.

Usage

PseKRAAC_T3B(
seqs,
type = "gap",
Grp = 2,
GapOrLambdaValue = 2,
k = 4,
label = c()

)

Arguments

seqs is a FASTA file with amino acid sequences. Each sequence starts with a ’>’
character. Also, seqs could be a string vector. Each element of the vector is a
peptide/protein sequence.

type This parameter has two valid value "lambda" and "gap". "lambda" calls lambda_model
function and "gap" calls gap_model function.

156 PseKRAAC_T3B

Grp is a numeric value. It shows the id of an amino acid group. Please find the
available groups in the detail section.

GapOrLambdaValue

is an integer. If type is gap, this value shows number of gaps between two k-
mers. If type is lambda, the value of GapOrLambdaValue shows the number of
gaps between each two amino acids of k-mers.

k This parameter keeps the value of k in k-mer.

label is an optional parameter. It is a vector whose length is equivalent to the number
of sequences. It shows the class of each entry (i.e., sequence).

Details

Groups: 2=c(’HRKQNEDSTGPACVIM’, ’LFYW’), 3=c(’HRKQNEDSTGPACVIM’, ’LFY’, ’W’),
4=c(’HRKQNEDSTGPA’, ’CIV’, ’MLFY’, ’W’), 5=c(’HRKQNEDSTGPA’, ’CV’, ’IML’, ’FY’,
’W’), 6=c(’HRKQNEDSTPA’, ’G’, ’CV’, ’IML’, ’FY’, ’W’), 7=c(’HRKQNEDSTA’, ’G’, ’P’, ’CV’,
’IML’, ’FY’, ’W’), 8=c(’HRKQSTA’, ’NED’, ’G’, ’P’, ’CV’, ’IML’, ’FY’, ’W’), 9=c(’HRKQ’,
’NED’, ’ASTG’, ’P’, ’C’, ’IV’, ’MLF’, ’Y’, ’W’), 10=c(’RKHSA’, ’Q’, ’NED’, ’G’, ’P’, ’C’,
’TIV’, ’MLF’, ’Y’, ’W’), 11=c(’RKQ’, ’NG’, ’ED’, ’AST’, ’P’, ’C’, ’IV’, ’HML’, ’F’, ’Y’, ’W’),
12=c(’RKQ’, ’ED’, ’NAST’, ’G’, ’P’, ’C’, ’IV’, ’H’, ’ML’, ’F’, ’Y’, ’W’), 13=c(’RK’, ’QE’, ’D’,
’NG’, ’HA’, ’ST’, ’P’, ’C’, ’IV’, ’ML’, ’F’, ’Y’, ’W’), 14=c(’R’, ’K’, ’QE’, ’D’, ’NG’, ’HA’, ’ST’,
’P’, ’C’, ’IV’, ’ML’, ’F’, ’Y’, ’W’), 15=c(’R’, ’K’, ’QE’, ’D’, ’NG’, ’HA’, ’ST’, ’P’, ’C’, ’IV’,
’M’, ’L’, ’F’, ’Y’, ’W’), 16=c(’R’, ’K’, ’Q’, ’E’, ’D’, ’NG’, ’HA’, ’ST’, ’P’, ’C’, ’IV’, ’M’, ’L’,
’F’, ’Y’, ’W’), 17=c(’R’, ’K’, ’Q’, ’E’, ’D’, ’NG’, ’HA’, ’S’, ’T’, ’P’, ’C’, ’IV’, ’M’, ’L’, ’F’, ’Y’,
’W’), 18=c(’R’, ’K’, ’Q’, ’E’, ’D’, ’NG’, ’HA’, ’S’, ’T’, ’P’, ’C’, ’I’, ’V’, ’M’, ’L’, ’F’, ’Y’, ’W’),
19=c(’R’, ’K’, ’Q’, ’E’, ’D’, ’NG’, ’H’, ’A’, ’S’, ’T’, ’P’, ’C’, ’I’, ’V’, ’M’, ’L’, ’F’, ’Y’, ’W’),
20=c(’R’, ’K’, ’Q’, ’E’, ’D’, ’N’, ’G’, ’H’, ’A’, ’S’, ’T’, ’P’, ’C’, ’I’, ’V’, ’M’, ’L’, ’F’, ’Y’, ’W’)

Value

This function returns a feature matrix. The number of rows is equal to the number of sequences and
the number of columns is (Grp)^k.

References

Zuo, Yongchun, et al. "PseKRAAC: a flexible web server for generating pseudo K-tuple reduced
amino acids composition." Bioinformatics 33.1 (2017): 122-124.

Examples

filePrs<-system.file("extdata/proteins.fasta",package="ftrCOOL")

mat1<-PseKRAAC_T3B(seqs=filePrs,type="gap",Grp=4,GapOrLambdaValue=3,k=2)

mat2<-PseKRAAC_T3B(seqs=filePrs,type="lambda",Grp=4,GapOrLambdaValue=3,k=2)

PseKRAAC_T4 157

PseKRAAC_T4 Pseudo K_tuple Reduced Amino Acid Composition Type-4
(PseKRAAC_T4)

Description

There are 16 types of PseKRAAC function. In the functions, a (user-selected) grouping of the
amino acids might be used to reduce the amino acid alphabet. Also, the functions have a type
parameter. The parameter determines the protein sequence analyses which can be either gap or
lambda-correlation. PseKRAAC_type4(PseKRAAC_T4) contains Grp 5,8,9,11,13,20.

Usage

PseKRAAC_T4(
seqs,
type = "gap",
Grp = 5,
GapOrLambdaValue = 2,
k = 4,
label = c()

)

Arguments

seqs is a FASTA file with amino acid sequences. Each sequence starts with a ’>’
character. Also, seqs could be a string vector. Each element of the vector is a
peptide/protein sequence.

type This parameter has two valid value "lambda" and "gap". "lambda" calls lambda_model
function and "gap" calls gap_model function.

Grp is a numeric value. It shows the id of an amino acid group. Please find the
available groups in the detail section.

GapOrLambdaValue

is an integer. If type is gap, this value shows number of gaps between two k-
mers. If type is lambda, the value of GapOrLambdaValue shows the number of
gaps between each two amino acids of k-mers.

k This parameter keeps the value of k in k-mer.

label is an optional parameter. It is a vector whose length is equivalent to the number
of sequences. It shows the class of each entry (i.e., sequence).

Details

Groups: 5=c(’G’, ’IVFYW’, ’ALMEQRK’, ’P’, ’NDHSTC’), 8=c(’G’, ’IV’, ’FYW’, ’ALM’, ’EQRK’,
’P’, ’ND’, ’HSTC’), 9=c(’G’, ’IV’, ’FYW’, ’ALM’, ’EQRK’, ’P’, ’ND’, ’HS’, ’TC’), 11=c(’G’,
’IV’, ’FYW’, ’A’, ’LM’, ’EQRK’, ’P’, ’ND’, ’HS’, ’T’, ’C’), 13=c(’G’, ’IV’, ’FYW’, ’A’, ’L’, ’M’,
’E’, ’QRK’, ’P’, ’ND’, ’HS’, ’T’, ’C’), 20=c(’G’, ’I’, ’V’, ’F’, ’Y’, ’W’, ’A’, ’L’, ’M’, ’E’, ’Q’, ’R’,
’K’, ’P’, ’N’, ’D’, ’H’, ’S’, ’T’, ’C’)

158 PseKRAAC_T5

Value

This function returns a feature matrix. The number of rows is equal to the number of sequences and
the number of columns is (Grp)^k.

References

Zuo, Yongchun, et al. "PseKRAAC: a flexible web server for generating pseudo K-tuple reduced
amino acids composition." Bioinformatics 33.1 (2017): 122-124.

Examples

filePrs<-system.file("extdata/proteins.fasta",package="ftrCOOL")

mat1<-PseKRAAC_T4(seqs=filePrs,type="gap",Grp=8,GapOrLambdaValue=3,k=2)

mat2<-PseKRAAC_T4(seqs=filePrs,type="lambda",Grp=8,GapOrLambdaValue=3,k=2)

PseKRAAC_T5 Pseudo K_tuple Reduced Amino Acid Composition Type-5
(PseKRAAC_T5)

Description

There are 16 types of PseKRAAC function. In the functions, a (user-selected) grouping of the
amino acids might be used to reduce the amino acid alphabet. Also, the functions have a type
parameter. The parameter determines the protein sequence analyses which can be either gap or
lambda-correlation. PseKRAAC_type5(PseKRAAC_T5) contains Grp 3,4,8,10,15,20.

Usage

PseKRAAC_T5(
seqs,
type = "gap",
Grp = 4,
GapOrLambdaValue = 2,
k = 4,
label = c()

)

Arguments

seqs is a FASTA file with amino acid sequences. Each sequence starts with a ’>’
character. Also, seqs could be a string vector. Each element of the vector is a
peptide/protein sequence.

type This parameter has two valid value "lambda" and "gap". "lambda" calls lambda_model
function and "gap" calls gap_model function.

PseKRAAC_T6A 159

Grp is a numeric value. It shows the id of an amino acid group. Please find the
available groups in the detail section.

GapOrLambdaValue

is an integer. If type is gap, this value shows number of gaps between two k-
mers. If type is lambda, the value of GapOrLambdaValue shows the number of
gaps between each two amino acids of k-mers.

k This parameter keeps the value of k in k-mer.

label is an optional parameter. It is a vector whose length is equivalent to the number
of sequences. It shows the class of each entry (i.e., sequence).

Details

Groups: 3=c(’FWYCILMVAGSTPHNQ’, ’DE’, ’KR’), 4=c(’FWY’, ’CILMV’, ’AGSTP’, ’EQNDHKR’),
8=c(’FWY’, ’CILMV’, ’GA’, ’ST’, ’P’, ’EQND’, ’H’, ’KR’), 10=c(’G’, ’FYW’, ’A’, ’ILMV’,
’RK’, ’P’, ’EQND’, ’H’, ’ST’, ’C’), 15=c(’G’, ’FY’, ’W’, ’A’, ’ILMV’, ’E’, ’Q’, ’RK’, ’P’, ’N’,
’D’, ’H’, ’S’, ’T’, ’C’), 20=c(’G’, ’I’, ’V’, ’F’, ’Y’, ’W’, ’A’, ’L’, ’M’, ’E’, ’Q’, ’R’, ’K’, ’P’, ’N’,
’D’, ’H’, ’S’, ’T’, ’C’)

Value

This function returns a feature matrix. The number of rows is equal to the number of sequences and
the number of columns is (Grp)^k.

References

Zuo, Yongchun, et al. "PseKRAAC: a flexible web server for generating pseudo K-tuple reduced
amino acids composition." Bioinformatics 33.1 (2017): 122-124.

Examples

filePrs<-system.file("extdata/proteins.fasta",package="ftrCOOL")

mat1<-PseKRAAC_T5(seqs=filePrs,type="gap",Grp=4,GapOrLambdaValue=3,k=2)

mat2<-PseKRAAC_T5(seqs=filePrs,type="lambda",Grp=4,GapOrLambdaValue=3,k=2)

PseKRAAC_T6A Pseudo K_tuple Reduced Amino Acid Composition Type-6A
(PseKRAAC_T6A)

Description

There are 16 types of PseKRAAC function. In the functions, a (user-selected) grouping of the
amino acids might be used to reduce the amino acid alphabet. Also, the functions have a type
parameter. The parameter determines the protein sequence analyses which can be either gap or
lambda-correlation. PseKRAAC_type6 contain two type: type6A and type6B. ’PseKRAAC_T6A’
contains Grp 4,5,20.

160 PseKRAAC_T6A

Usage

PseKRAAC_T6A(
seqs,
type = "gap",
Grp = 5,
GapOrLambdaValue = 2,
k = 4,
label = c()

)

Arguments

seqs is a FASTA file with amino acid sequences. Each sequence starts with a ’>’
character. Also, seqs could be a string vector. Each element of the vector is a
peptide/protein sequence.

type This parameter has two valid value "lambda" and "gap". "lambda" calls lambda_model
function and "gap" calls gap_model function.

Grp is a numeric value. It shows the id of an amino acid group. Please find the
available groups in the detail section.

GapOrLambdaValue

is an integer. If type is gap, this value shows number of gaps between two k-
mers. If type is lambda, the value of GapOrLambdaValue shows the number of
gaps between each two amino acids of k-mers.

k This parameter keeps the value of k in k-mer.

label is an optional parameter. It is a vector whose length is equivalent to the number
of sequences. It shows the class of each entry (i.e., sequence).

Details

Groups: 4=c(’AGPST’, ’CILMV’, ’DEHKNQR’, ’FYW’), 5=c(’AHT’, ’CFILMVWY’, ’DE’, ’GP’,
’KNQRS’), 20=c(’A’, ’C’, ’D’, ’E’, ’F’, ’G’, ’H’, ’I’, ’K’, ’L’, ’M’, ’N’, ’P’, ’Q’, ’R’, ’S’, ’T’, ’V’,
’W’, ’Y’)

Value

This function returns a feature matrix. The number of rows is equal to the number of sequences and
the number of columns is (Grp)^k.

References

Zuo, Yongchun, et al. "PseKRAAC: a flexible web server for generating pseudo K-tuple reduced
amino acids composition." Bioinformatics 33.1 (2017): 122-124.

Examples

filePrs<-system.file("extdata/proteins.fasta",package="ftrCOOL")

mat1<-PseKRAAC_T6A(seqs=filePrs,type="gap",Grp=4,GapOrLambdaValue=3,k=2)

PseKRAAC_T6B 161

mat2<-PseKRAAC_T6A(seqs=filePrs,type="lambda",Grp=4,GapOrLambdaValue=3,k=2)

PseKRAAC_T6B Pseudo K_tuple Reduced Amino Acid Composition Type-6B
(PseKRAAC_T6B)

Description

There are 16 types of PseKRAAC function. In the functions, a (user-selected) grouping of the
amino acids might be used to reduce the amino acid alphabet. Also, the functions have a type
parameter. The parameter determines the protein sequence analyses which can be either gap or
lambda-correlation. PseKRAAC_type6 contain two type: type6A and type6B. ’PseKRAAC_T6B’
contains Grp 5.

Usage

PseKRAAC_T6B(
seqs,
type = "gap",
Grp = 5,
GapOrLambdaValue = 2,
k = 4,
label = c()

)

Arguments

seqs is a FASTA file with amino acid sequences. Each sequence starts with a ’>’
character. Also, seqs could be a string vector. Each element of the vector is a
peptide/protein sequence.

type This parameter has two valid value "lambda" and "gap". "lambda" calls lambda_model
function and "gap" calls gap_model function.

Grp is a numeric value. It shows the id of an amino acid group. Please find the
available groups in the detail section.

GapOrLambdaValue

is an integer. If type is gap, this value shows number of gaps between two k-
mers. If type is lambda, the value of GapOrLambdaValue shows the number of
gaps between each two amino acids of k-mers.

k This parameter keeps the value of k in k-mer.

label is an optional parameter. It is a vector whose length is equivalent to the number
of sequences. It shows the class of each entry (i.e., sequence).

Details

Groups: 5=c(’AEHKQRST’, ’CFILMVWY’, ’DN’, ’G’, ’P’)

162 PseKRAAC_T7

Value

This function returns a feature matrix. The number of rows is equal to the number of sequences and
the number of columns is (Grp)^k.

References

Zuo, Yongchun, et al. "PseKRAAC: a flexible web server for generating pseudo K-tuple reduced
amino acids composition." Bioinformatics 33.1 (2017): 122-124.

Examples

filePrs<-system.file("extdata/proteins.fasta",package="ftrCOOL")

mat1<-PseKRAAC_T6B(seqs=filePrs,type="gap",Grp=5,GapOrLambdaValue=3,k=2)

mat2<-PseKRAAC_T6B(seqs=filePrs,type="lambda",Grp=5,GapOrLambdaValue=3,k=2)

PseKRAAC_T7 Pseudo K_tuple Reduced Amino Acid Composition Type-7
(PseKRAAC_T7)

Description

There are 16 types of PseKRAAC function. In the functions, a (user-selected) grouping of the
amino acids might be used to reduce the amino acid alphabet. Also, the functions have a type
parameter. The parameter determines the protein sequence analyses which can be either gap or
lambda-correlation. PseKRAAC_type7(PseKRAAC_T7) contains Grp 2-20.

Usage

PseKRAAC_T7(
seqs,
type = "gap",
Grp = 5,
GapOrLambdaValue = 2,
k = 4,
label = c()

)

Arguments

seqs is a FASTA file with amino acid sequences. Each sequence starts with a ’>’
character. Also, seqs could be a string vector. Each element of the vector is a
peptide/protein sequence.

type This parameter has two valid value "lambda" and "gap". "lambda" calls lambda_model
function and "gap" calls gap_model function.

PseKRAAC_T7 163

Grp is a numeric value. It shows the id of an amino acid group. Please find the
available groups in the detail section.

GapOrLambdaValue

is an integer. If type is gap, this value shows number of gaps between two k-
mers. If type is lambda, the value of GapOrLambdaValue shows the number of
gaps between each two amino acids of k-mers.

k This parameter keeps the value of k in k-mer.

label is an optional parameter. It is a vector whose length is equivalent to the number
of sequences. It shows the class of each entry (i.e., sequence).

Details

Groups: Grp2=c(’C’, ’MFILVWYAGTSNQDEHRKP’), Grp3=c(’C’, ’MFILVWYAKR’, ’GTSNQDEHP’),
Grp4=c(’C’, ’KR’, ’MFILVWYA’, ’GTSNQDEHP’), Grp5=c(’C’, ’KR’, ’MFILVWYA’, ’DE’, ’GT-
SNQHP’), Grp6=c(’C’, ’KR’, ’WYA’, ’MFILV’, ’DE’, ’GTSNQHP’), Grp7=c(’C’, ’KR’, ’WYA’,
’MFILV’, ’DE’, ’QH’, ’GTSNP’), Grp8=c(’C’, ’KR’, ’WYA’, ’MFILV’, ’D’, ’E’, ’QH’, ’GTSNP’),
Grp9=c(’C’, ’KR’, ’WYA’, ’MFILV’, ’D’, ’E’, ’QH’, ’TP’, ’GSN’), Grp10=c(’C’, ’KR’, ’WY’,
’A’, ’MFILV’, ’D’, ’E’, ’QH’, ’TP’, ’GSN’), Grp11=c(’C’, ’K’, ’R’, ’WY’, ’A’, ’MFILV’, ’D’, ’E’,
’QH’, ’TP’, ’GSN’), Grp12=c(’C’, ’K’, ’R’, ’WY’, ’A’, ’MFILV’, ’D’, ’E’, ’QH’, ’TP’, ’GS’, ’N’),
Grp13=c(’C’, ’K’, ’R’, ’W’, ’Y’, ’A’, ’MFILV’, ’D’, ’E’, ’QH’, ’TP’, ’GS’, ’N’), Grp14=c(’C’, ’K’,
’R’, ’W’, ’Y’, ’A’, ’FILV’, ’M’, ’D’, ’E’, ’QH’, ’TP’, ’GS’, ’N’), Grp15=c(’C’, ’K’, ’R’, ’W’, ’Y’,
’A’, ’FILV’, ’M’, ’D’, ’E’, ’Q’, ’H’, ’TP’, ’GS’, ’N’), Grp16=c(’C’, ’K’, ’R’, ’W’, ’Y’, ’A’, ’FILV’,
’M’, ’D’, ’E’, ’Q’, ’H’, ’TP’, ’G’, ’S’, ’N’), Grp17=c(’C’, ’K’, ’R’, ’W’, ’Y’, ’A’, ’FI’, ’LV’, ’M’,
’D’, ’E’, ’Q’, ’H’, ’TP’, ’G’, ’S’, ’N’), Grp18=c(’C’, ’K’, ’R’, ’W’, ’Y’, ’A’, ’FI’, ’LV’, ’M’, ’D’,
’E’, ’Q’, ’H’, ’T’, ’P’, ’G’, ’S’, ’N’), Grp19=c(’C’, ’K’, ’R’, ’W’, ’Y’, ’A’, ’F’, ’I’, ’LV’, ’M’, ’D’,
’E’, ’Q’, ’H’, ’T’, ’P’, ’G’, ’S’, ’N’), Grp20=c(’C’, ’K’, ’R’, ’W’, ’Y’, ’A’, ’F’, ’I’, ’L’, ’V’, ’M’,
’D’, ’E’, ’Q’, ’H’, ’T’, ’P’, ’G’, ’S’, ’N’)

Value

This function returns a feature matrix. The number of rows is equal to the number of sequences and
the number of columns is (Grp)^k.

References

Zuo, Yongchun, et al. "PseKRAAC: a flexible web server for generating pseudo K-tuple reduced
amino acids composition." Bioinformatics 33.1 (2017): 122-124.

Examples

filePrs<-system.file("extdata/proteins.fasta",package="ftrCOOL")

mat1<-PseKRAAC_T7(seqs=filePrs,type="gap",Grp=4,GapOrLambdaValue=3,k=2)

mat2<-PseKRAAC_T7(seqs=filePrs,type="lambda",Grp=4,GapOrLambdaValue=3,k=2)

164 PseKRAAC_T8

PseKRAAC_T8 Pseudo K_tuple Reduced Amino Acid Composition Type-8
(PseKRAAC_T8)

Description

There are 16 types of PseKRAAC function. In the functions, a (user-selected) grouping of the
amino acids might be used to reduce the amino acid alphabet. Also, the functions have a type
parameter. The parameter determines the protein sequence analyses which can be either gap or
lambda-correlation. PseKRAAC_type8(PseKRAAC_T8) contains Grp 2-20.

Usage

PseKRAAC_T8(
seqs,
type = "gap",
Grp = 5,
GapOrLambdaValue = 2,
k = 4,
label = c()

)

Arguments

seqs is a FASTA file with amino acid sequences. Each sequence starts with a ’>’
character. Also, seqs could be a string vector. Each element of the vector is a
peptide/protein sequence.

type This parameter has two valid value "lambda" and "gap". "lambda" calls lambda_model
function and "gap" calls gap_model function.

Grp is a numeric value. It shows the id of an amino acid group. Please find the
available groups in the detail section.

GapOrLambdaValue

is an integer. If type is gap, this value shows number of gaps between two k-
mers. If type is lambda, the value of GapOrLambdaValue shows the number of
gaps between each two amino acids of k-mers.

k This parameter keeps the value of k in k-mer.

label is an optional parameter. It is a vector whose length is equivalent to the number
of sequences. It shows the class of each entry (i.e., sequence).

Details

Groups: Grp2=c(’ADEGKNPQRST’, ’CFHILMVWY’), Grp3=c(’ADEGNPST’, ’CHKQRW’, ’FILMVY’),
Grp4=c(’AGNPST’, ’CHWY’, ’DEKQR’, ’FILMV’), Grp5=c(’AGPST’, ’CFWY’, ’DEN’, ’HKQR’,
’ILMV’), Grp6=c(’APST’, ’CW’, ’DEGN’, ’FHY’, ’ILMV’, ’KQR’), Grp7=c(’AGST’, ’CW’, ’DEN’,
’FY’, ’HP’, ’ILMV’, ’KQR’), Grp8=c(’AST’, ’CG’, ’DEN’, ’FY’, ’HP’, ’ILV’, ’KQR’, ’MW’),
Grp9=c(’AST’, ’CW’, ’DE’, ’FY’, ’GN’, ’HQ’, ’ILV’, ’KR’, ’MP’), Grp10=c(’AST’, ’CW’, ’DE’,

PseKRAAC_T9 165

’FY’, ’GN’, ’HQ’, ’IV’, ’KR’, ’LM’, ’P’), Grp11=c(’AST’, ’C’, ’DE’, ’FY’, ’GN’, ’HQ’, ’IV’,
’KR’, ’LM’, ’P’, ’W’), Grp12=c(’AST’, ’C’, ’DE’, ’FY’, ’G’, ’HQ’, ’IV’, ’KR’, ’LM’, ’N’, ’P’,
’W’), Grp13=c(’AST’, ’C’, ’DE’, ’FY’, ’G’, ’H’, ’IV’, ’KR’, ’LM’, ’N’, ’P’, ’Q’, ’W’), Grp14=c(’AST’,
’C’, ’DE’, ’FL’, ’G’, ’H’, ’IV’, ’KR’, ’M’, ’N’, ’P’, ’Q’, ’W’, ’Y’), Grp15=c(’AST’, ’C’, ’DE’, ’F’,
’G’, ’H’, ’IV’, ’KR’, ’L’, ’M’, ’N’, ’P’, ’Q’, ’W’, ’Y’), Grp16=c(’AT’, ’C’, ’DE’, ’F’, ’G’, ’H’, ’IV’,
’KR’, ’L’, ’M’, ’N’, ’P’, ’Q’, ’S’, ’W’, ’Y’), Grp17=c(’AT’, ’C’, ’DE’, ’F’, ’G’, ’H’, ’IV’, ’K’, ’L’,
’M’, ’N’, ’P’, ’Q’, ’R’, ’S’, ’W’, ’Y’), Grp18=c(’A’, ’C’, ’DE’, ’F’, ’G’, ’H’, ’IV’, ’K’, ’L’, ’M’,
’N’, ’P’, ’Q’, ’R’, ’S’, ’T’, ’W’, ’Y’), Grp19=c(’A’, ’C’, ’D’, ’E’, ’F’, ’G’, ’H’, ’IV’, ’K’, ’L’, ’M’,
’N’, ’P’, ’Q’, ’R’, ’S’, ’T’, ’W’, ’Y’), Grp20=c(’A’, ’C’, ’D’, ’E’, ’F’, ’G’, ’H’, ’I’, ’V’, ’K’, ’L’,
’M’, ’N’, ’P’, ’Q’, ’R’, ’S’, ’T’, ’W’, ’Y’)

Value

This function returns a feature matrix. The number of rows is equal to the number of sequences and
the number of columns is (Grp)^k.

References

Zuo, Yongchun, et al. "PseKRAAC: a flexible web server for generating pseudo K-tuple reduced
amino acids composition." Bioinformatics 33.1 (2017): 122-124.

Examples

filePrs<-system.file("extdata/proteins.fasta",package="ftrCOOL")

mat1<-PseKRAAC_T8(seqs=filePrs,type="gap",Grp=4,GapOrLambdaValue=3,k=2)

mat2<-PseKRAAC_T8(seqs=filePrs,type="lambda",Grp=4,GapOrLambdaValue=3,k=2)

PseKRAAC_T9 Pseudo K_tuple Reduced Amino Acid Composition Type-9
(PseKRAAC_T9)

Description

There are 16 types of PseKRAAC function. In the functions, a (user-selected) grouping of the
amino acids might be used to reduce the amino acid alphabet. Also, the functions have a type
parameter. The parameter determines the protein sequence analyses which can be either gap or
lambda-correlation. PseKRAAC_type9(PseKRAAC_T9) contains Grp 2-20.

Usage

PseKRAAC_T9(
seqs,
type = "gap",
Grp = 5,
GapOrLambdaValue = 2,
k = 4,
label = c()

)

166 PseKRAAC_T9

Arguments

seqs is a FASTA file with amino acid sequences. Each sequence starts with a ’>’
character. Also, seqs could be a string vector. Each element of the vector is a
peptide/protein sequence.

type This parameter has two valid value "lambda" and "gap". "lambda" calls lambda_model
function and "gap" calls gap_model function.

Grp is a numeric value. It shows the id of an amino acid group. Please find the
available groups in the detail section.

GapOrLambdaValue

is an integer. If type is gap, this value shows number of gaps between two k-
mers. If type is lambda, the value of GapOrLambdaValue shows the number of
gaps between each two amino acids of k-mers.

k This parameter keeps the value of k in k-mer.

label is an optional parameter. It is a vector whose length is equivalent to the number
of sequences. It shows the class of each entry (i.e., sequence).

Details

Groups: Grp2=c(’ADEGKNPQRST’, ’CFHILMVWY’), Grp3=c(’ADEGNPST’, ’CHKQRW’, ’FILMVY’),
Grp4=c(’AGNPST’, ’CHWY’, ’DEKQR’, ’FILMV’), Grp5=c(’AGPST’, ’CFWY’, ’DEN’, ’HKQR’,
’ILMV’), Grp6=c(’APST’, ’CW’, ’DEGN’, ’FHY’, ’ILMV’, ’KQR’), Grp7=c(’AGST’, ’CW’, ’DEN’,
’FY’, ’HP’, ’ILMV’, ’KQR’), Grp8=c(’AST’, ’CG’, ’DEN’, ’FY’, ’HP’, ’ILV’, ’KQR’, ’MW’),
Grp9=c(’AST’, ’CW’, ’DE’, ’FY’, ’GN’, ’HQ’, ’ILV’, ’KR’, ’MP’), Grp10=c(’AST’, ’CW’, ’DE’,
’FY’, ’GN’, ’HQ’, ’IV’, ’KR’, ’LM’, ’P’), Grp11=c(’AST’, ’C’, ’DE’, ’FY’, ’GN’, ’HQ’, ’IV’,
’KR’, ’LM’, ’P’, ’W’), Grp12=c(’AST’, ’C’, ’DE’, ’FY’, ’G’, ’HQ’, ’IV’, ’KR’, ’LM’, ’N’, ’P’,
’W’), Grp13=c(’AST’, ’C’, ’DE’, ’FY’, ’G’, ’H’, ’IV’, ’KR’, ’LM’, ’N’, ’P’, ’Q’, ’W’), Grp14=c(’AST’,
’C’, ’DE’, ’FL’, ’G’, ’H’, ’IV’, ’KR’, ’M’, ’N’, ’P’, ’Q’, ’W’, ’Y’), Grp15=c(’AST’, ’C’, ’DE’, ’F’,
’G’, ’H’, ’IV’, ’KR’, ’L’, ’M’, ’N’, ’P’, ’Q’, ’W’, ’Y’), Grp16=c(’AT’, ’C’, ’DE’, ’F’, ’G’, ’H’, ’IV’,
’KR’, ’L’, ’M’, ’N’, ’P’, ’Q’, ’S’, ’W’, ’Y’), Grp17=c(’AT’, ’C’, ’DE’, ’F’, ’G’, ’H’, ’IV’, ’K’, ’L’,
’M’, ’N’, ’P’, ’Q’, ’R’, ’S’, ’W’, ’Y’), Grp18=c(’A’, ’C’, ’DE’, ’F’, ’G’, ’H’, ’IV’, ’K’, ’L’, ’M’,
’N’, ’P’, ’Q’, ’R’, ’S’, ’T’, ’W’, ’Y’), Grp19=c(’A’, ’C’, ’D’, ’E’, ’F’, ’G’, ’H’, ’IV’, ’K’, ’L’, ’M’,
’N’, ’P’, ’Q’, ’R’, ’S’, ’T’, ’W’, ’Y’), Grp20=c(’A’, ’C’, ’D’, ’E’, ’F’, ’G’, ’H’, ’I’, ’V’, ’K’, ’L’,
’M’, ’N’, ’P’, ’Q’, ’R’, ’S’, ’T’, ’W’, ’Y’)

Value

This function returns a feature matrix. The number of rows is equal to the number of sequences and
the number of columns is (Grp)^k.

References

Zuo, Yongchun, et al. "PseKRAAC: a flexible web server for generating pseudo K-tuple reduced
amino acids composition." Bioinformatics 33.1 (2017): 122-124.

Examples

filePrs<-system.file("extdata/proteins.fasta",package="ftrCOOL")

PSSM 167

mat1<-PseKRAAC_T9(seqs=filePrs,type="gap",Grp=4,GapOrLambdaValue=3,k=2)

mat2<-PseKRAAC_T9(seqs=filePrs,type="lambda",Grp=4,GapOrLambdaValue=3,k=2)

PSSM Position-Specific Scoring Matrix (PSSM)

Description

This functions receives as input PSSM matrices (which are created by PSI-BLAST software) and
converts them into feature vectors.

Usage

PSSM(dirPath, outFormat = "mat", outputFileDist = "")

Arguments

dirPath Path of the directory which contains all output files of PSI-BLAST. Each file
belongs to a sequence.

outFormat It can take two values: ’mat’ (which stands for matrix) and ’txt’. The default
value is ’mat’.

outputFileDist It shows the path and name of the ’txt’ output file.

Value

The output depends on the outFormat parameter which can be either ’mat’ or ’txt’. If outFormat is
’mat’, the function returns a feature matrix for sequences with the same length such that the number
of columns is (sequence length)*(20) and the number of rows is equal to the number of sequences.
If the outFormat is ’txt’, the output is written to a tab-delimited file.

Note

This function is provided for sequences with the same lengths. Users can use ’txt’ option in out-
Format for sequences with different lengths. Warning: If outFormat is set to ’mat’ for sequences
with different lengths, it returns an error. Also, when output format is ’txt’, label information is not
shown in the text file. It is noteworthy that ’txt’ format is not usable for machine learning purposes if
sequences have different sizes. Otherwise ’txt’ format is also usable for machine learning purposes.

Examples

dir = tempdir()
ad<-paste0(dir,"/pssm.txt")

PSSMdir<-system.file("testForder",package="ftrCOOL")
PSSMdir<-paste0(PSSMdir,"/PSSMdir/")
mat<-PSSM(PSSMdir,outFormat="txt",outputFileDist=ad)

unlink("dir", recursive = TRUE)

168 PSTNPds

PSTNPds Position-Specific Trinucleotide Propensity based on double-strand
(PSTNPds)

Description

This function works like PSTNPss_DNA except that it considers T as A and G as C. So it converts
Ts in the sequence to A and Gs to C. Then, it works with 2 alphabets A and C. For more details
refer to PSTNPss_DNA.

Usage

PSTNPds(seqs, pos, neg, label = c())

Arguments

seqs is a FASTA file containing nucleotide sequences. The sequences start with ’>’.
Also, seqs could be a string vector. Each element of the vector is a nucleotide
sequence.

pos is a fasta file containing nucleotide sequences. Each sequence starts with ’>’.
Also, the value of this parameter can be a string vector. The sequences are
positive sequences in the training model.

neg is a fasta file containing nucleotide sequences. Each sequence starts with ’>’.
Also, the value of this parameter can be a string vector. The sequences are
negative sequences in the training model.

label is an optional parameter. It is a vector whose length is equal to the number of
sequences. It shows the class of each entry (i.e., sequence).

Value

It returns a feature matrix. The number of columns is equal to the length of sequences minus two
and the number of rows is equal to the number of sequences.

Note

The length of the sequences in positive and negative data sets and the input sets should be equal.

References

Chen, Zhen, et al. "iLearn: an integrated platform and meta-learner for feature engineering, machine-
learning analysis and modeling of DNA, RNA and protein sequence data." Briefings in bioinformat-
ics 21.3 (2020): 1047-1057.

PSTNPss_DNA 169

Examples

ptmSeqsADR<-system.file("extdata/",package="ftrCOOL")

posSeqs<-fa.read(file=paste0(ptmSeqsADR,"/posData.txt"),alphabet="dna")
negSeqs<-fa.read(file=paste0(ptmSeqsADR,"/negData.txt"),alphabet="dna")
seqs<-fa.read(file=paste0(ptmSeqsADR,"/testData.txt"),alphabet="dna")

PSTNPds(seqs=seqs,pos=posSeqs[1],neg=negSeqs[1])

PSTNPss_DNA Position-Specific Trinucleotide Propensity based on single-strand
DNA (PSTNPss_DNA)

Description

The inputs to this function are positive and negative data sets and a set of sequences. The output of
the function is a matrix of feature vectors. The number of rows of the output matrix is equal to the
number of sequences. The feature vector for an input sequence with length L is [u(1),u(2),...u(L-2)].
For each input sequence, u(1) is calculated by subtracting the frequency of sequences (which start
with the same trinucleotides as the input sequence) in the positive set with those starting with the
same trinucleotide in the negative set. We compute u(i) like u(1) with the exception that instead of
the first trinucleotide, the ith trinucletide is considered.

Usage

PSTNPss_DNA(seqs, pos, neg, label = c())

Arguments

seqs is a FASTA file containing nucleotide sequences. The sequences start with ’>’.
Also, seqs could be a string vector. Each element of the vector is a nucleotide
sequence.

pos is a fasta file containing nucleotide sequences. Each sequence starts with ’>’.
Also, the value of this parameter can be a string vector. The sequences are
positive sequences in the training model.

neg is a fasta file containing nucleotide sequences. Each sequence starts with ’>’.
Also, the value of this parameter can be a string vector.

label is an optional parameter. It is a vector whose length is equal to the number of
sequences. It shows the class of each entry (i.e., sequence).

Value

It returns a feature matrix. The number of columns is equal to the length of sequences minus two
and the number of rows is equal to the number of sequences.

170 PSTNPss_RNA

Note

The length of the sequences in positive and negative data sets and the input sets should be equal.

Examples

ptmSeqsADR<-system.file("extdata/",package="ftrCOOL")

posSeqs<-fa.read(file=paste0(ptmSeqsADR,"/posDNA.txt"),alphabet="dna")
negSeqs<-fa.read(file=paste0(ptmSeqsADR,"/negDNA.txt"),alphabet="dna")
seqs<-fa.read(file=paste0(ptmSeqsADR,"/DNA_testing.txt"),alphabet="dna")

mat=PSTNPss_DNA(seqs=seqs,pos=posSeqs,neg=negSeqs)

PSTNPss_RNA Position-Specific Tri-ribonucleotide Propensity based on single-strand
RNA (PSTNPss_RNA)

Description

The inputs to this function are positive and negative data sets and a set of sequences. The output of
the function is a matrix of feature vectors. The number of rows of the output matrix is equal to the
number of sequences. The feature vector for an input sequence with length L is [u(1),u(2),...u(L-2)].
For each input sequence, u(1) is calculated by subtracting the frequency of sequences (which start
with the same tri-ribonucleotides as the input sequence) in the positive set with those starting with
the same tri-ribonucleotide in the negative set. We compute u(i) like u(1) with the exception that
instead of the first tri-ribonucleotide, the ith tri-ribonucletide is considered.

Usage

PSTNPss_RNA(seqs, pos, neg, label = c())

Arguments

seqs is a FASTA file containing ribonucleotide sequences. The sequences start with
’>’. Also, seqs could be a string vector. Each element of the vector is a ribonu-
cleotide sequence.

pos is a fasta file containing ribonucleotide sequences. Each sequence starts with
’>’. Also, the value of this parameter can be a string vector. The sequences are
positive sequences in the training model

neg is a fasta file containing ribonucleotide sequences. Each sequence starts with
’>’. Also, the value of this parameter can be a string vector.

label is an optional parameter. It is a vector whose length is equal to the number of
sequences. It shows the class of each entry (i.e., sequence).

QSOrder 171

Value

It returns a feature matrix. The number of columns is equal to the length of sequences minus two
and the number of rows is equal to the number of sequences.

Note

The length of the sequences in positive and negative data sets and the input sets should be equal.

Examples

ptmSeqsADR<-system.file("extdata/",package="ftrCOOL")

posSeqs<-fa.read(file=paste0(ptmSeqsADR,"/pos2RNA.txt"),alphabet="rna")
negSeqs<-fa.read(file=paste0(ptmSeqsADR,"/neg2RNA.txt"),alphabet="rna")
seqs<-fa.read(file=paste0(ptmSeqsADR,"/testSeq2RNA.txt"),alphabet="rna")

PSTNPss_RNA(seqs=seqs,pos=posSeqs,neg=negSeqs)

QSOrder Quasi Sequence Order (QSOrder)

Description

This function computes the quasi-sequence-order for sequences. It is for amino acid pairs with d
distances (d can be any number between 1 and 20). First, it calculates the frequencies of each amino
acid ("A", "C",..., "Y"). Then, it normalizes the frequencies by dividing the frequency of an amino
acid to the frequency of all amino acids plus the sum of tau values which is multiplied by W. tau
values are given by function SOCNumber. For d bigger than 20, it computes tau for d in the range
"1 to (nlag-20) * W" and normalizes them like before.

Usage

QSOrder(seqs, nlag = 25, W = 0.1, label = c())

Arguments

seqs is a FASTA file with amino acid sequences. Each sequence starts with a ’>’
character. Also, seqs could be a string vector. Each element of the vector is a
peptide/protein sequence.

nlag is a numeric value which shows the maximum distance between two amino
acids. Distances can be 1, 2, ..., or nlag.

W (weight) is a tuning parameter.

172 readASAdir

label is an optional parameter. It is a vector whose length is equivalent to the number
of sequences. It shows the class of each entry (i.e., sequence).

Details

Please find details about tau in function SOCNumber.

Value

It returns a feature matrix which the number of rows equals to the number of sequences and the
number of columns is (nlag*2). For each distance d, there are two values. One value for Granthman
and another one for Schneider distance.

Note

For d between 21 to nlag, the function calculates tau values for (d-20) to (nlag-20).

Examples

filePrs<-system.file("extdata/proteins.fasta",package="ftrCOOL")

mat<-QSOrder(seqs=filePrs,nlag=25)

readASAdir Read Directory of Accessible Solvent accessibility predicted files
(readASAdir)

Description

This function reads a directory that contains the output files of SPINE-X. It gets the directory path
as the input and returns a list of vectors. Each vector includes the ASA predicted value for amino
acids of the sequence.

Usage

readASAdir(dirPath)

Arguments

dirPath path of the directory which contains all the output files of SPINE-X. Each file
belongs to a sequence.

Value

a list of vectors with all the predicted ASA value for each amino acid. The length of the list is the
number of files(sequences) and the length of each vector is (length of sequence(i))

readDisDir 173

Examples

PredASAdir<-system.file("testForder",package="ftrCOOL")
PredASAdir<-paste0(PredASAdir,"/ASAdir/")
PredVectASA<-readASAdir(PredASAdir)

readDisDir Read disorder predicted Directory (readDisDir)

Description

This function reads a directory that contains the output VSL2 files. It gets the directory path as the
input and returns a list of vectors. Each vector includes the disorder/order type for the amino acids
of the sequence.

Usage

readDisDir(dirPath)

Arguments

dirPath the path of a directory which contains all the VSL2 output files.

Value

a list of vectors with all the predicted disorder/order type for each amino acid. The length of the
list is equal to the number of files(sequences) and the length of each vector is the length of the
sequence(i).

Examples

PredDisdir<-system.file("testForder",package="ftrCOOL")
PredDisdir<-paste0(PredDisdir,"/Disdir/")
listPredVect<-readDisDir(PredDisdir)

174 readss2Dir

readPSSMdir Read PSSM Directory (readPSSMdir)

Description

This function reads a directory that contains the output psi-blast. It gets the directory path as the
input and returns a list of vectors. Each vector includes the type for the amino acids of the sequence.

Usage

readPSSMdir(dirPath)

Arguments

dirPath the path of a directory which contains all the VSL2 output files.

Value

a list of vectors with all the predicted disorder/order type for each amino acid. The length of the
list is equal to the number of files(sequences) and the length of each vector is the length of the
sequence(i).

Examples

pssmDir<-system.file("testForder",package="ftrCOOL")
pssmDir<-paste0(pssmDir,"/PSSMdir/")
listPredVect<-readPSSMdir(pssmDir)

readss2Dir Read ss2 predicted Directory (readss2Dir)

Description

This function reads a directory that contains the output files of PSIPRED It gets the directory path
as the input and returns a list of vectors. Each vector contains the secondary structure of the amino
acids in a peptide/protein sequence.

Usage

readss2Dir(dirPath)

Arguments

dirPath The path of the directory which contains all predss2 files. Each file belongs to a
sequence.

readTorsionDir 175

Value

returns a list of vectors with all the predicted secondary structure for each amino acid. The length
of the list is the number of files(sequences) and the length of each vector is (length sequence(i))

Examples

PredSS2dir<-system.file("testForder",package="ftrCOOL")
PredSS2dir<-paste0(PredSS2dir,"/ss2Dir/")
listPredVect<-readss2Dir(PredSS2dir)

readTorsionDir Read Directory of Torsion predicted files (readTorsionDir)

Description

This function reads a directory that contains the output files of SPINE-X. It gets the directory path
as the input and returns a list of vectors. Each vector includes the phi and psi angle of the amino
acids of the sequence.

Usage

readTorsionDir(dirPath)

Arguments

dirPath The path of the directory which contains all output files of SPINE-X. Each file
belongs to a sequence.

Value

returns a list of vectors with all the predicted phi and psi angles for each amino acid. The length
of the list is the number of files(sequences) and the length of each vector is (2(phi-psi)*length
sequence(i)).

Examples

PredTorsioNdir<-system.file("testForder",package="ftrCOOL")
PredTorsioNdir<-paste0(PredTorsioNdir,"/TorsioNdir/")
PredVectASA<-readTorsionDir(PredTorsioNdir)

176 SAAC

revComp reverseCompelement (revComp)

Description

This function returns the reverse compelement of a dna sequence.

Usage

revComp(seq, outputType = "str")

Arguments

seq is a dna sequence.

outputType this parameter can take two values: ’char’ or ’str’. If outputType is ’str’, the re-
verse complement sequence of the input sequence is returned as a string. Other-
wise, a vector of characters which represent the reverse complement is returned.
Default value is ’str’.

Value

The reverse complement of the input sequence.

Examples

ptmSeqsADR<-system.file("extdata/",package="ftrCOOL")
ptmSeqsVect<-as.vector(read.csv(paste0(ptmSeqsADR,"/ptmVect101AA.csv"))[,2])
Seq<-ptmSeqsVect[1]
revCompSeq<-revComp(seq=Seq,outputType="char")

SAAC Splitted Amino Acid Composition (SAAC)

Description

This function splits the input sequence into three parts. The first part is N-terminal and the third
part is C-terminal and middle part contains all amino acids between these two part. N-terminal will
be determined by the first numNterm amino acid in the sequences and C-terminal is determined by
numCterm of the last amino acids in the sequence. Users should enter numNterm and numCterm
parameters. Their default value is 25. The function calculates kAAComposition for each of the
three parts.

Usage

SAAC(seqs, k = 1, numNterm = 5, numCterm = 5, normalized = TRUE, label = c())

SGAAC 177

Arguments

seqs is a FASTA file with amino acid sequences. Each sequence starts with a ’>’
character. Also, seqs could be a string vector. Each element of the vector is a
peptide/protein sequence.

k shows which type of amino acid composition applies to the parts. For example,
the amino acid composition is applied when k=1 and when k=2, the dipeptide
Composition is applied.

numNterm shows how many amino acids should be considered for N-terminal.

numCterm shows how many amino acids should be considered for C-terminal.

normalized is a logical parameter. When it is FALSE, the return value of the function does
not change. Otherwise, the return value is normalized using the length of the
sequence.

label is an optional parameter. It is a vector whose length is equivalent to the number
of sequences. It shows the class of each entry (i.e., sequence).

Value

It returns a feature matrix. The number of rows is equal to the number of sequences. The number
of columns is (3*(20^k)).

Examples

filePrs<-system.file("extdata/proteins.fasta",package="ftrCOOL")
mat<-SAAC(seqs=filePrs,k=1,numNterm=15,numCterm=15)

SGAAC Splitted Group Amino Acid Composition (SGAAC)

Description

In this function, amino acids are first grouped into a user-defined category. Later, the splitted amino
Acid composition is computed. Please note that this function differs from SAAC which works on
individual amino acids.

Usage

SGAAC(
seqs,
k = 1,
numNterm = 25,
numCterm = 25,
Grp = "locFus",
normalized = TRUE,
label = c()

)

178 SOCNumber

Arguments

seqs is a FASTA file with amino acid sequences. Each sequence starts with a ’>’
character. Also, seqs could be a string vector. Each element of the vector is a
peptide/protein sequence.

k shows which type of amino acid composition applies to the parts. For example,
the amino acid composition is applied when k=1 and when k=2, the dipeptide
Composition is applied.

numNterm shows how many amino acids should be considered for N-terminal.

numCterm shows how many amino acids should be considered for C-terminal.

Grp is a list of vectors containig amino acids. Each vector represents a category.
Users can define a customized amino acid grouping, provided that the sum of
all amino acids is 20 and there is no repeated amino acid in the groups. Also,
users can choose ’cTriad’(conjointTriad), ’locFus’, or ’aromatic’. Each option
provides specific information about the type of an amino acid grouping.

normalized is a logical parameter. When it is FALSE, the return value of the function does
not change. Otherwise, the return value is normalized using the length of the
sequence.

label is an optional parameter. It is a vector whose length is equivalent to the number
of sequences. It shows the class of each entry (i.e., sequence).

Value

It returns a feature matrix. The number of rows is equal to the number of sequences. The number
of columns is 3*((number of groups)^k).

Examples

filePrs<-system.file("extdata/proteins.fasta",package="ftrCOOL")
mat<-SGAAC(seqs=filePrs,k=1,numNterm=15,numCterm=15,Grp="aromatic")

SOCNumber Sequence Order Coupling Number (SOCNumber)

Description

This function uses dissimilarity matrices Grantham and Schneider to compute the dissimilarity be-
tween amino acid pairs. The distance between amino acid pairs is determined by d which varies
between 1 to nlag. For each d, it computes the sum of the dissimilarities of all amino acid pairs.
The sum shows the value of tau for a value d. The feature vector contains the values of taus for both
matrices. Thus, the length of the feature vector is equal to nlag*2.

Usage

SOCNumber(seqs, nlag = 30, label = c())

SSEB 179

Arguments

seqs is a FASTA file with amino acid sequences. Each sequence starts with a ’>’
character. Also, seqs could be a string vector. Each element of the vector is a
peptide/protein sequence.

nlag is a numeric value which shows the maximum distance between two amino
acids. Distances can be 1, 2, ..., or nlag. Defult is 30.

label is an optional parameter. It is a vector whose length is equivalent to the number
of sequences. It shows the class of each entry (i.e., sequence).

Value

It returns a feature matrix. The number of rows is equal to the number of sequences and the number
of columns is (nlag*2). For each distance d, there are two values. One value for Granthman and
another one for Schneider distance.

Note

When d=1, the pairs of amino acids have no gap and when d=2, there is one gap between the amino
acid pairs in the sequence. It will repeat likewise for other values of d.

Examples

filePrs<-system.file("extdata/proteins.fasta",package="ftrCOOL")

mat<-SOCNumber(seqs=filePrs,nlag=25)

SSEB Secondary Structure Elements Binary (SSEB)

Description

This function works based on the output of PSIPRED which predicts the secondary structure of the
amino acids in a sequence. The output of the PSIPRED is a tab-delimited file which contains the sec-
ondary structure in the third column. SSEB gives a binary number (i.e., ’001’=’H’,’010’=E’,’100’=’C’)
for each amino acid.

Usage

SSEB(dirPath, binaryType = "numBin", outFormat = "mat", outputFileDist = "")

Arguments

dirPath Path of the directory which contains all output files of PSIPRED. Each file be-
longs to a sequence.

180 SSEB

binaryType It can take any of the following values: (’strBin’,’logicBin’,’numBin’). ’strBin’(String
binary): each structure is represented by a string containing 3 characters(0-1).
Helix = "001" , Extended = "010" , coil = "100". ’logicBin’(logical value):
Each structure is represented by a vector containing 3 logical entries. He-
lix = c(FALSE,FALSE,TRUE) , Extended = c(FALSE,TRUE,FALSE) , Coil
= c(TRUE,FALSE,FALSE). ’numBin’ (numeric bin): Each structure is repre-
sented by a numeric (i.e., integer) vector containing 3 numerals. Helix = c(0,0,1)
, Extended = c(0,1,0) , coil = c(1,0,0).

outFormat It can take two values: ’mat’ (which stands for matrix) and ’txt’. The default
value is ’mat’.

outputFileDist It shows the path and name of the ’txt’ output file.

Details

This function converts each amino acid to a 3-bit value, such that 2 bits are 0 and 1 bit is 1. The
position of 1 shows the type of the secondary structure of the amino acids in the protein/peptide. In
this function, ’001’ is used to show Helix structure, ’010’ to show Extended structure and ’100’ to
show coil structure.

Value

The output is different depending on the outFormat parameter (’mat’ or ’txt’). If outFormat is set
to ’mat’, it returns a feature matrix for sequences with the same lengths. The number of rows is
equal to the number of sequences and if binaryType is ’strBin’, the number of columns is the length
of the sequences. Otherwise, it is equal to (length of the sequences)*3. If outFormat is ’txt’, all
binary values will be written to a tab-delimited file. Each line in the file shows the binary format of
a sequence.

Note

This function is provided for sequences with the same lengths. Users can use ’txt’ option in the
outFormat parameter for sequences with different lengths. Warning: If the outFormat is set to ’mat’
for sequences with different lengths, it returns an error. It is noteworthy that ’txt’ format is not
usable for machine learning purposes.

Examples

dir = tempdir()
ad<-paste0(dir,"/SSEB.txt")

Predss2dir<-system.file("testForder",package="ftrCOOL")
Predss2dir<-paste0(Predss2dir,"/ss2Dir/")
mat<-SSEB(Predss2dir,binaryType="numBin",outFormat="txt",outputFileDist=ad)

unlink("dir", recursive = TRUE)

SSEC 181

SSEC Secondary Structure Elements Composition (SSEC)

Description

This function works based on the output of PSIPRED which predicts the secondary structure of the
amino acids in a sequence. The output of the PSIPRED is a tab-delimited file which contains the
secondary structure in the third column. SSEC returns the frequency of the secondary structures
(i.e., Helix, Extended, Coil) of the sequences.

Usage

SSEC(dirPath)

Arguments

dirPath Path of the directory which contains all output files of PSIPRED. Each file be-
longs to a sequence.

Value

It returns a feature matrix which the number of rows is the number of sequences and the number
of columns is 3. The first column shows the number of amino acids which participate in the coil
structure. The second column shows the number of amino acids in the extended structure and the
last column shows the number of amino acids in the helix structure.

Examples

Predss2dir<-system.file("testForder",package="ftrCOOL")
Predss2dir<-paste0(Predss2dir,"/ss2Dir/")
mat<-SSEC(Predss2dir)

SSES Secondary Structure Elements Simple (SSES)

Description

This function works based on the output of PSIPRED which predicts the secondary structure of the
amino acids in a sequence. The output of the PSIPRED is a tab-delimited file which contains the
secondary structure in the third column. The function represent amino acids in the helix structure
by ’H’, amino acids in the extended structure by ’E’, and amino acids in the coil structure by ’C’.

Usage

SSES(dirPath, outFormat = "mat", outputFileDist = "")

182 TorsionAngle

Arguments

dirPath Path of the directory which contains all output files of PSIPRED. Each file be-
longs to a sequence.

outFormat It can take two values: ’mat’ (which stands for matrix) and ’txt’. The default
value is ’mat’.

outputFileDist It shows the path and name of the ’txt’ output file.

Value

The output depends on the outFormat which can be either ’mat’ or ’txt’. If outFormat is ’mat’,
the function returns a feature matrix for sequences with the same lengths such that the number of
columns is equal to the length of the sequences and the number of rows is equal to the number of
sequences. If the outFormat is ’txt’, the output is written to a tab-delimited file.

Note

This function is provided for the sequences with the same lengths. However, the users can use ’txt’
option in the outFormat parameter for sequences with different lengths. Warning: If the outFormat
is set to ’mat’ for sequences with different lengths, it returns an error. Also, when the output format
is ’txt’, the label information is not displayed in the text file. It is noteworthy that, ’txt’ format is
not usable for machine learning purposes.

Examples

dir = tempdir()
ad<-paste0(dir,"/simpleSSE.txt")

Predss2dir<-system.file("testForder",package="ftrCOOL")
Predss2dir<-paste0(Predss2dir,"/ss2Dir/")
mat<-SSES(Predss2dir,outFormat="txt",outputFileDist=ad)

unlink("dir", recursive = TRUE)

TorsionAngle Torsion Angle (TorsionAngle)

Description

The inputs to this function are phi and psi angles of each amino acid in the sequence. We use the
output of SPINE-X software to obtain the angles. Further, the TA function replaces each amino acid
of the sequence with a vector. The vector contain two elements: The phi and psi angles.

Usage

TorsionAngle(dirPath, outFormat = "mat", outputFileDist = "")

TPCP_DNA 183

Arguments

dirPath Path of the directory which contains all output files of SPINE-X. Each file be-
longs to a sequence.

outFormat It can take two values: ’mat’ (which stands for matrix) and ’txt’. The default
value is ’mat’.

outputFileDist It shows the path and name of the ’txt’ output file.

Value

The output is differnet depending on the outFormat parameter (’mat’ or ’txt’). If the outFormat is
set to ’mat’, it returns a feature matrix for sequences with the same lengths. The number of rows
is equal to the number of sequences and the number of columns is (length of the sequence)*2. If
the outFormat is set to ’txt’, all binary values will be writen in a ’txt’ file. Each row belongs to a
sequence.

Note

This function is provided for sequences with the same lengths. Users can use ’txt’ option in outFor-
mat parameter for sequences with different lengths. Warning: If the outFormat is set to ’mat’ for
sequences with different lengths, it returns an error. It is noteworthy that ’txt’ format is not usable
for machine learning purposes.

Examples

dir = tempdir()
ad<-paste0(dir,"/ta.txt")

PredTorsioNdir<-system.file("testForder",package="ftrCOOL")
PredTorsioNdir<-paste0(PredTorsioNdir,"/TorsioNdir/")
mat<-TorsionAngle(PredTorsioNdir,outFormat="txt",outputFileDist=ad)

unlink("dir", recursive = TRUE)

TPCP_DNA Trinucleotide physicochemical properties (TPCP_DNA)

Description

This function replaces trinucleotides in a sequence with their physicochemical properties which is
multiplied by normalized frequency of that tri-nucleotide.

Usage

TPCP_DNA(
seqs,
selectedIdx = c("Dnase I", "Bendability (DNAse)"),
threshold = 1,

184 TPCP_DNA

label = c(),
outFormat = "mat",
outputFileDist = ""

)

Arguments

seqs is a FASTA file containing nucleotide sequences. The sequences start with ’>’.
Also, seqs could be a string vector. Each element of the vector is a nucleotide
sequence.

selectedIdx TPCP_DNA function works based on physicochemical properties. Users, select
the properties by their ids or indexes in TRI_DNA index file. The default values
of the vector are the ids in "Dnase I", "Bendability (DNAse)".

threshold is a number between 0 to 1. In selectedIdx, indices with a correlation higher
than the threshold will be deleted. The default value is 1.

label is an optional parameter. It is a vector whose length is equivalent to the number
of sequences. It shows the class of each entry (i.e., sequence).

outFormat (output format) can take two values: ’mat’(matrix) and ’txt’. The default value
is ’mat’.

outputFileDist shows the path and name of the ’txt’ output file.

Details

There are 12 physicochemical indexes in the trinucleotide database.

Value

The output depends on the outFormat parameter which can be either ’mat’ or ’txt’. If outFormat is
’mat’, the function returns a feature matrix for sequences with the same length such that the number
of columns is (sequence length-2)*(number of selected trinucleotide properties) and the number
of rows is equal to the number of sequences. If the outFormat is ’txt’, the output is written to a
tab-delimited file.

Note

This function is provided for sequences with the same lengths. Users can use ’txt’ option in out-
Format for sequences with different lengths. Warning: If outFormat is set to ’mat’ for sequences
with different lengths, it returns an error. Also, when output format is ’txt’, label information is not
shown in the text file. It is noteworthy that ’txt’ format is not usable for machine learning purposes if
sequences have different sizes. Otherwise ’txt’ format is also usable for machine learning purposes.

Examples

fileLNC<-system.file("extdata/Athaliana1.fa",package="ftrCOOL")
vect<-TPCP_DNA(seqs = fileLNC,threshold=1,outFormat="mat")

TriNUCindex_DNA 185

TriNUCindex_DNA Tri Nucleotide Index (TriNucIndex)

Description

This function replaces trinucleotides in a sequence with their physicochemical properties in the
trinucleotide index file.

Usage

TriNUCindex_DNA(
seqs,
selectedNucIdx = c("Dnase I", "Bendability (DNAse)"),
threshold = 1,
label = c(),
outFormat = "mat",
outputFileDist = ""

)

Arguments

seqs is a FASTA file containing nucleotide sequences. The sequences start with ’>’.
Also, seqs could be a string vector. Each element of the vector is a nucleotide
sequence.

selectedNucIdx TriNucIndex function works based on physicochemical properties. Users, select
the properties by their ids or indexes in TRI_DNA index file. The default values
of the vector are the ids in "Dnase I", "Bendability (DNAse)".

threshold is a number between 0 to 1. In selectedNucIdx, indices with a correlation higher
than the threshold will be deleted. The default value is 1.

label is an optional parameter. It is a vector whose length is equivalent to the number
of sequences. It shows the class of each entry (i.e., sequence).

outFormat (output format) can take two values: ’mat’(matrix) and ’txt’. The default value
is ’mat’.

outputFileDist shows the path and name of the ’txt’ output file.

Details

There are 12 physicochemical indexes in the trinucleotide database.

Value

The output depends on the outFormat parameter which can be either ’mat’ or ’txt’. If outFormat is
’mat’, the function returns a feature matrix for sequences with the same length such that the number
of columns is (sequence length-2)*(number of selected trinucleotide properties) and the number
of rows is equal to the number of sequences. If the outFormat is ’txt’, the output is written to a
tab-delimited file.

186 Zcurve12bit_DNA

Note

This function is provided for sequences with the same lengths. Users can use ’txt’ option in out-
Format parameter for sequences with different lengths. Warning: If outFormat is set to ’mat’ for
sequences with different lengths, it returns an error. Also, when output format is ’txt’, label infor-
mation is not shown in the text file. It is noteworthy that ’txt’ format is not usable for machine
learning purposes.

Examples

fileLNC<-system.file("extdata/Athaliana1.fa",package="ftrCOOL")
vect<-TriNUCindex_DNA(seqs = fileLNC,threshold=1,outFormat="mat")

Zcurve12bit_DNA Z_curve_12bit_DNA (Zcurve12bit_DNA)

Description

These group of functions (Zcurve (9, 12, 36, 48, 144)_bit) function calculates the Z-curves. Z-
curves are based on freqiencies of nucleotides, di-nucleotides, or tri-nucleotides and their positions
on the sequences. For more information about the methods please refer to reference part.

Usage

Zcurve12bit_DNA(seqs, ORF = FALSE, reverseORF = TRUE, label = c())

Arguments

seqs is a FASTA file containing nucleotide sequences. The sequences start with ’>’.
Also, seqs could be a string vector. Each element of the vector is a nucleotide
sequence.

ORF (Open Reading Frame) is a logical parameter. If it is set to true, ORF region of
each sequence is considered instead of the original sequence (i.e., 3-frame).

reverseORF is a logical parameter. It is enabled only if ORF is true. If reverseORF is true,
ORF region will be searched in the sequence and also in the reverse complement
of the sequence (i.e., 6-frame).

label is an optional parameter. It is a vector whose length is equivalent to the number
of sequences. It shows the class of each entry (i.e., sequence).

Value

This function returns a feature matrix. The number of rows is equal to the number of sequences and
the number of columns is 12.

References

Gao,F. and Zhang,C.T. Comparison of various algorithms for recognizing short coding sequences
of human genes. Bioinformatics, (2004).

Zcurve12bit_RNA 187

Examples

fileLNC<-system.file("extdata/Athaliana_LNCRNA.fa",package="ftrCOOL")
mat<-Zcurve12bit_DNA(seqs=fileLNC,ORF=TRUE,reverseORF=FALSE)

Zcurve12bit_RNA Z_curve_12bit_RNA (Zcurve12bit_RNA)

Description

These group of functions (Zcurve (9, 12, 36, 48, 144)_bit) function calculates the Z-curves. Z-
curves are based on freqiencies of ribonucleotides, di-ribonucleotides, or tri-ribonucleotides and
their positions on the sequences. For more information about the methods please refer to reference
part.

Usage

Zcurve12bit_RNA(seqs, ORF = FALSE, reverseORF = TRUE, label = c())

Arguments

seqs is a FASTA file containing ribonucleotide sequences. The sequences start with
’>’. Also, seqs could be a string vector. Each element of the vector is a ribonu-
cleotide sequence.

ORF (Open Reading Frame) is a logical parameter. If it is set to true, ORF region of
each sequence is considered instead of the original sequence (i.e., 3-frame).

reverseORF is a logical parameter. It is enabled only if ORF is true. If reverseORF is true,
ORF region will be searched in the sequence and also in the reverse complement
of the sequence (i.e., 6-frame).

label is an optional parameter. It is a vector whose length is equivalent to the number
of sequences. It shows the class of each entry (i.e., sequence).

Value

This function returns a feature matrix. The number of rows is equal to the number of sequences and
the number of columns is 12.

References

Gao,F. and Zhang,C.T. Comparison of various algorithms for recognizing short coding sequences
of human genes. Bioinformatics, (2004).

Examples

fileLNC<-system.file("extdata/Carica_papaya101RNA.txt",package="ftrCOOL")
mat<-Zcurve12bit_RNA(seqs=fileLNC,ORF=TRUE,reverseORF=FALSE)

188 Zcurve144bit_DNA

Zcurve144bit_DNA Z_curve_144bit_DNA (Zcurve144bit_DNA)

Description

These group of functions (Zcurve (9, 12, 36, 48, 144)_bit) function calculates the Z-curves. Z-
curves are based on freqiencies of nucleotides, di-nucleotides, or tri-nucleotides and their positions
on the sequences. For more information about the methods please refer to reference part.

Usage

Zcurve144bit_DNA(seqs, ORF = FALSE, reverseORF = TRUE, label = c())

Arguments

seqs is a FASTA file containing nucleotide sequences. The sequences start with ’>’.
Also, seqs could be a string vector. Each element of the vector is a nucleotide
sequence.

ORF (Open Reading Frame) is a logical parameter. If it is set to true, ORF region of
each sequence is considered instead of the original sequence (i.e., 3-frame).

reverseORF is a logical parameter. It is enabled only if ORF is true. If reverseORF is true,
ORF region will be searched in the sequence and also in the reverse complement
of the sequence (i.e., 6-frame).

label is an optional parameter. It is a vector whose length is equivalent to the number
of sequences. It shows the class of each entry (i.e., sequence).

Value

This function returns a feature matrix. The number of rows is equal to the number of sequences and
the number of columns is 144.

References

Gao,F. and Zhang,C.T. Comparison of various algorithms for recognizing short coding sequences
of human genes. Bioinformatics, (2004).

Examples

fileLNC<-system.file("extdata/Athaliana_LNCRNA.fa",package="ftrCOOL")
mat<-Zcurve144bit_DNA(seqs=fileLNC,ORF=TRUE,reverseORF=FALSE)

Zcurve144bit_RNA 189

Zcurve144bit_RNA Z_curve_144bit_RNA (Zcurve144bit_RNA)

Description

These group of functions (Zcurve (9, 12, 36, 48, 144)_bit) function calculates the Z-curves. Z-
curves are based on freqiencies of ribonucleotides, di-ribonucleotides, or tri-ribonucleotides and
their positions on the sequences. For more information about the methods please refer to reference
part.

Usage

Zcurve144bit_RNA(seqs, ORF = FALSE, reverseORF = TRUE, label = c())

Arguments

seqs is a FASTA file containing ribonucleotide sequences. The sequences start with
’>’. Also, seqs could be a string vector. Each element of the vector is a ribonu-
cleotide sequence.

ORF (Open Reading Frame) is a logical parameter. If it is set to true, ORF region of
each sequence is considered instead of the original sequence (i.e., 3-frame).

reverseORF is a logical parameter. It is enabled only if ORF is true. If reverseORF is true,
ORF region will be searched in the sequence and also in the reverse complement
of the sequence (i.e., 6-frame).

label is an optional parameter. It is a vector whose length is equivalent to the number
of sequences. It shows the class of each entry (i.e., sequence).

Value

This function returns a feature matrix. The number of rows is equal to the number of sequences and
the number of columns is 144.

References

Gao,F. and Zhang,C.T. Comparison of various algorithms for recognizing short coding sequences
of human genes. Bioinformatics, (2004).

Examples

fileLNC<-system.file("extdata/Carica_papaya101RNA.txt",package="ftrCOOL")
mat<-Zcurve144bit_RNA(seqs=fileLNC,ORF=TRUE,reverseORF=FALSE)

190 Zcurve36bit_DNA

Zcurve36bit_DNA Z_curve_36bit_DNA (Zcurve36bit_DNA)

Description

These group of functions (Zcurve (9, 12, 36, 48, 144)_bit) function calculates the Z-curves. Z-
curves are based on freqiencies of nucleotides, di-nucleotides, or tri-nucleotides and their positions
on the sequences. For more information about the methods please refer to reference part.

Usage

Zcurve36bit_DNA(seqs, ORF = FALSE, reverseORF = TRUE, label = c())

Arguments

seqs is a FASTA file containing nucleotide sequences. The sequences start with ’>’.
Also, seqs could be a string vector. Each element of the vector is a nucleotide
sequence.

ORF (Open Reading Frame) is a logical parameter. If it is set to true, ORF region of
each sequence is considered instead of the original sequence (i.e., 3-frame).

reverseORF is a logical parameter. It is enabled only if ORF is true. If reverseORF is true,
ORF region will be searched in the sequence and also in the reverse complement
of the sequence (i.e., 6-frame).

label is an optional parameter. It is a vector whose length is equivalent to the number
of sequences. It shows the class of each entry (i.e., sequence).

Value

This function returns a feature matrix. The number of rows is equal to the number of sequences and
the number of columns is 36.

References

Gao,F. and Zhang,C.T. Comparison of various algorithms for recognizing short coding sequences
of human genes. Bioinformatics, (2004).

Examples

fileLNC<-system.file("extdata/Athaliana_LNCRNA.fa",package="ftrCOOL")
mat<-Zcurve36bit_DNA(seqs=fileLNC,ORF=TRUE,reverseORF=FALSE)

Zcurve36bit_RNA 191

Zcurve36bit_RNA Z_curve_36bit_RNA (Zcurve36bit_RNA)

Description

These group of functions (Zcurve (9, 12, 36, 48, 144)_bit) function calculates the Z-curves. Z-
curves are based on freqiencies of ribonucleotides, di-ribonucleotides, or tri-ribonucleotides and
their positions on the sequences. For more information about the methods please refer to reference
part.

Usage

Zcurve36bit_RNA(seqs, ORF = FALSE, reverseORF = TRUE, label = c())

Arguments

seqs is a FASTA file containing ribonucleotide sequences. The sequences start with
’>’. Also, seqs could be a string vector. Each element of the vector is a ribonu-
cleotide sequence.

ORF (Open Reading Frame) is a logical parameter. If it is set to true, ORF region of
each sequence is considered instead of the original sequence (i.e., 3-frame).

reverseORF is a logical parameter. It is enabled only if ORF is true. If reverseORF is true,
ORF region will be searched in the sequence and also in the reverse complement
of the sequence (i.e., 6-frame).

label is an optional parameter. It is a vector whose length is equivalent to the number
of sequences. It shows the class of each entry (i.e., sequence).

Value

This function returns a feature matrix. The number of rows is equal to the number of sequences and
the number of columns is 36.

References

Gao,F. and Zhang,C.T. Comparison of various algorithms for recognizing short coding sequences
of human genes. Bioinformatics, (2004).

Examples

fileLNC<-system.file("extdata/Carica_papaya101RNA.txt",package="ftrCOOL")
mat<-Zcurve36bit_RNA(seqs=fileLNC,ORF=TRUE,reverseORF=FALSE)

192 Zcurve48bit_DNA

Zcurve48bit_DNA Z_curve_48bit_DNA (Zcurve48bit_DNA)

Description

These group of functions (Zcurve (9, 12, 36, 48, 144)_bit) function calculates the Z-curves. Z-
curves are based on freqiencies of nucleotides, di-nucleotides, or tri-nucleotides and their positions
on the sequences. For more information about the methods please refer to reference part.

Usage

Zcurve48bit_DNA(seqs, ORF = FALSE, reverseORF = TRUE, label = c())

Arguments

seqs is a FASTA file containing nucleotide sequences. The sequences start with ’>’.
Also, seqs could be a string vector. Each element of the vector is a nucleotide
sequence.

ORF (Open Reading Frame) is a logical parameter. If it is set to true, ORF region of
each sequence is considered instead of the original sequence (i.e., 3-frame).

reverseORF is a logical parameter. It is enabled only if ORF is true. If reverseORF is true,
ORF region will be searched in the sequence and also in the reverse complement
of the sequence (i.e., 6-frame).

label is an optional parameter. It is a vector whose length is equivalent to the number
of sequences. It shows the class of each entry (i.e., sequence).

Value

This function returns a feature matrix. The number of rows is equal to the number of sequences and
the number of columns is 48.

References

Gao,F. and Zhang,C.T. Comparison of various algorithms for recognizing short coding sequences
of human genes. Bioinformatics, (2004).

Examples

fileLNC<-system.file("extdata/Athaliana_LNCRNA.fa",package="ftrCOOL")
mat<-Zcurve48bit_DNA(seqs=fileLNC,ORF=TRUE,reverseORF=FALSE)

Zcurve48bit_RNA 193

Zcurve48bit_RNA Z_curve_48bit_RNA (Zcurve48bit_RNA)

Description

These group of functions (Zcurve (9, 12, 36, 48, 144)_bit) function calculates the Z-curves. Z-
curves are based on freqiencies of ribo ribonucleotides, di-ribonucleotides, or tri-ribonucleotides
and their positions on the sequences. For more information about the methods please refer to
reference part.

Usage

Zcurve48bit_RNA(seqs, ORF = FALSE, reverseORF = TRUE, label = c())

Arguments

seqs is a FASTA file containing ribonucleotide sequences. The sequences start with
’>’. Also, seqs could be a string vector. Each element of the vector is a ribonu-
cleotide sequence.

ORF (Open Reading Frame) is a logical parameter. If it is set to true, ORF region of
each sequence is considered instead of the original sequence (i.e., 3-frame).

reverseORF is a logical parameter. It is enabled only if ORF is true. If reverseORF is true,
ORF region will be searched in the sequence and also in the reverse complement
of the sequence (i.e., 6-frame).

label is an optional parameter. It is a vector whose length is equivalent to the number
of sequences. It shows the class of each entry (i.e., sequence).

Value

This function returns a feature matrix. The number of rows is equal to the number of sequences and
the number of columns is 48.

References

Gao,F. and Zhang,C.T. Comparison of various algorithms for recognizing short coding sequences
of human genes. Bioinformatics, (2004).

Examples

fileLNC<-system.file("extdata/Carica_papaya101RNA.txt",package="ftrCOOL")
mat<-Zcurve48bit_RNA(seqs=fileLNC,ORF=TRUE,reverseORF=FALSE)

194 Zcurve9bit_DNA

Zcurve9bit_DNA Z_curve_9bit_DNA (Zcurve9bit_DNA)

Description

These group of functions (Zcurve (9, 12, 36, 48, 144)_bit) function calculates the Z-curves. Z-
curves are based on freqiencies of nucleotides, di-nucleotides, or tri-nucleotides and their positions
on the sequences. For more information about the methods please refer to reference part.

Usage

Zcurve9bit_DNA(seqs, ORF = FALSE, reverseORF = TRUE, label = c())

Arguments

seqs is a FASTA file containing nucleotide sequences. The sequences start with ’>’.
Also, seqs could be a string vector. Each element of the vector is a nucleotide
sequence.

ORF (Open Reading Frame) is a logical parameter. If it is set to true, ORF region of
each sequence is considered instead of the original sequence (i.e., 3-frame).

reverseORF is a logical parameter. It is enabled only if ORF is true. If reverseORF is true,
ORF region will be searched in the sequence and also in the reverse complement
of the sequence (i.e., 6-frame).

label is an optional parameter. It is a vector whose length is equivalent to the number
of sequences. It shows the class of each entry (i.e., sequence).

Value

This function returns a feature matrix. The number of rows is equal to the number of sequences and
the number of columns is 9.

References

Gao,F. and Zhang,C.T. Comparison of various algorithms for recognizing short coding sequences
of human genes. Bioinformatics, (2004).

Examples

fileLNC<-system.file("extdata/Athaliana_LNCRNA.fa",package="ftrCOOL")
mat<-Zcurve9bit_DNA(seqs=fileLNC,ORF=TRUE,reverseORF=FALSE)

Zcurve9bit_RNA 195

Zcurve9bit_RNA Z_curve_9bit_RNA (Zcurve9bit_RNA)

Description

These group of functions (Zcurve (9, 12, 36, 48, 144)_bit) function calculates the Z-curves. Z-
curves are based on freqiencies of ribo ribonucleotides, di-ribonucleotides, or tri-ribonucleotides
and their positions on the sequences. For more information about the methods please refer to
reference part.

Usage

Zcurve9bit_RNA(seqs, ORF = FALSE, reverseORF = TRUE, label = c())

Arguments

seqs is a FASTA file containing ribonucleotide sequences. The sequences start with
’>’. Also, seqs could be a string vector. Each element of the vector is a ribonu-
cleotide sequence.

ORF (Open Reading Frame) is a logical parameter. If it is set to true, ORF region of
each sequence is considered instead of the original sequence (i.e., 3-frame).

reverseORF is a logical parameter. It is enabled only if ORF is true. If reverseORF is true,
ORF region will be searched in the sequence and also in the reverse complement
of the sequence (i.e., 6-frame).

label is an optional parameter. It is a vector whose length is equivalent to the number
of sequences. It shows the class of each entry (i.e., sequence).

Value

This function returns a feature matrix. The number of rows is equal to the number of sequences and
the number of columns is 9.

References

Gao,F. and Zhang,C.T. Comparison of various algorithms for recognizing short coding sequences
of human genes. Bioinformatics, (2004).

Examples

fileLNC<-system.file("extdata/Carica_papaya101RNA.txt",package="ftrCOOL")
mat<-Zcurve9bit_RNA(seqs=fileLNC,ORF=TRUE,reverseORF=FALSE)

196 zSCALE

zSCALE Z-SCALE (zSCALE)

Description

This function converts the amino acids of a sequence to five physicochemical descriptor variables
which were developed by Sandberg et al. in 1998. The Z-SCALE function can be applied to encode
peptides of equal length.

Usage

zSCALE(seqs, label = c(), outFormat = "mat", outputFileDist = "")

Arguments

seqs is a FASTA file with amino acid sequences. Each sequence starts with a ’>’
character. Also, seqs could be a string vector. Each element of the vector is a
peptide/protein sequence.

label is an optional parameter. It is a vector whose length is equivalent to the number
of sequences. It shows the class of each entry (i.e., sequence).

outFormat (output format) can take two values: ’mat’(matrix) and ’txt’. The default value
is ’mat’.

outputFileDist shows the path and name of the ’txt’ output file.

Value

The output depends on the outFormat parameter which can be either ’mat’ or ’txt’. If outFormat is
’mat’, the function returns a feature matrix for sequences with the same length such that the number
of columns is (sequence length)*(5) and the number of rows is equal to the number of sequences.
If the outFormat is ’txt’, the output is written to a tab-delimited file.

Note

This function is provided for sequences with the same lengths. Users can use ’txt’ option in out-
Format parameter for sequences with different lengths. Warning: If outFormat is set to ’mat’ for
sequences with different lengths, it returns an error. Also, when output format is ’txt’, label infor-
mation is not shown in the text file. It is noteworthy that ’txt’ format is not usable for machine
learning purposes.

Examples

ptmSeqsADR<-system.file("extdata/",package="ftrCOOL")
ptmSeqsVect<-as.vector(read.csv(paste0(ptmSeqsADR,"/ptmVect101AA.csv"))[,2])
mat<-zSCALE(seqs = ptmSeqsVect,outFormat="mat")

Index

AA2Binary, 5
AAindex, 7
AAKpartComposition, 8, 84
AAutoCor, 9
AESNN3, 11
alphabetCheck, 12
ANF_DNA, 13
ANF_RNA, 14
APAAC, 15
APkNUCdi_DNA, 16
APkNUCdi_RNA, 17
APkNUCTri_DNA, 19
ASA, 20
ASDC, 21
ASDC_DNA, 22
ASDC_RNA, 23
AutoCorDiNUC_DNA, 24
AutoCorDiNUC_RNA, 25
AutoCorTriNUC_DNA, 27

binary_3bit_T1, 28
binary_3bit_T2, 29
binary_3bit_T3, 31
binary_3bit_T4, 32
binary_3bit_T5, 33
binary_3bit_T6, 35
binary_3bit_T7, 36
binary_5bit_T1, 37
binary_5bit_T2, 39
binary_6bit, 40
BLOSUM62, 41

CkSAApair, 42, 43
CkSGAApair, 43
CkSNUCpair_DNA, 45
CkSNUCpair_RNA, 46
codonAdaptionIndex, 47
CodonFraction, 48
CodonUsage_DNA, 49
CodonUsage_RNA, 50

conjointTriad, 51
conjointTriadKS, 51
CTD, 52, 53–55
CTDC, 53, 53
CTDD, 53, 54
CTDT, 53, 55

DDE, 56, 85
DiNUC2Binary_DNA, 57
DiNUC2Binary_RNA, 58
DiNUCindex_DNA, 59
DiNUCindex_RNA, 61
DisorderB, 62
DisorderC, 63
DisorderS, 64
DistancePair, 65
DPCP_DNA, 66
DPCP_RNA, 67

EAAComposition, 68, 71
EffectiveNumberCodon, 70
EGAAComposition, 71
EIIP, 72
ENUComposition_DNA, 74
ENUComposition_RNA, 75
ExpectedValKmerNUC_DNA, 76
ExpectedValKmerNUC_RNA, 77
ExpectedValueAA, 78, 79
ExpectedValueGAA, 79
ExpectedValueGKmerAA, 80
ExpectedValueKmerAA, 80, 81

fa.read, 82
fickettScore, 83

G_Ccontent_DNA, 86
G_Ccontent_RNA, 87
GAAKpartComposition, 84
GrpDDE, 85

kAAComposition, 88, 89, 176

197

198 INDEX

kGAAComposition, 89
KNN_DNA, 93
KNN_RNA, 94
KNNPeptide, 90, 91, 93, 94
KNNProtein, 91
kNUComposition_DNA, 95
kNUComposition_RNA, 96

LocalPoSpKAAF, 97
LocalPoSpKNUCF_DNA, 98
LocalPoSpKNUCF_RNA, 100

maxORF, 101
maxORF_RNA, 103
maxORFlength_DNA, 102
maxORFlength_RNA, 103
Mismatch_DNA, 104
Mismatch_RNA, 105
MMI_DNA, 106
MMI_RNA, 107

nameKmer, 108
NCP_DNA, 108
NCP_RNA, 110
needleman, 111
nonStandardSeq, 112
NUC2Binary_DNA, 113
NUC2Binary_RNA, 114
NUCKpartComposition_DNA, 116
NUCKpartComposition_RNA, 117

OPF_10bit, 118
OPF_7bit_T1, 119
OPF_7bit_T2, 120
OPF_7bit_T3, 121

PCPseDNC, 123
PS2_DNA, 124
PS2_RNA, 126
PS3_DNA, 127
PS3_RNA, 129
PS4_DNA, 130
PS4_RNA, 132
PSEAAC, 133
PseEIIP, 135
PSEkNUCdi_DNA, 123, 136
PSEkNUCdi_RNA, 137
PSEkNUCTri_DNA, 138
PseKRAAC_T1, 140

PseKRAAC_T10, 141
PseKRAAC_T11, 143
PseKRAAC_T12, 144
PseKRAAC_T13, 146
PseKRAAC_T14, 147
PseKRAAC_T15, 149
PseKRAAC_T16, 150
PseKRAAC_T2, 152
PseKRAAC_T3A, 153
PseKRAAC_T3B, 155
PseKRAAC_T4, 157
PseKRAAC_T5, 158
PseKRAAC_T6A, 159
PseKRAAC_T6B, 161
PseKRAAC_T7, 162
PseKRAAC_T8, 164
PseKRAAC_T9, 165
PSSM, 167
PSTNPds, 168
PSTNPss_DNA, 168, 169
PSTNPss_RNA, 170

QSOrder, 171

readASAdir, 172
readDisDir, 173
readPSSMdir, 174
readss2Dir, 174
readTorsionDir, 175
revComp, 176

SAAC, 176, 177
SGAAC, 177
SOCNumber, 171, 172, 178
SSEB, 179
SSEC, 181
SSES, 181

TorsionAngle, 182
TPCP_DNA, 183
TriNUCindex_DNA, 185

Zcurve12bit_DNA, 186
Zcurve12bit_RNA, 187
Zcurve144bit_DNA, 188
Zcurve144bit_RNA, 189
Zcurve36bit_DNA, 190
Zcurve36bit_RNA, 191
Zcurve48bit_DNA, 192

INDEX 199

Zcurve48bit_RNA, 193
Zcurve9bit_DNA, 194
Zcurve9bit_RNA, 195
zSCALE, 196

	AA2Binary
	AAindex
	AAKpartComposition
	AAutoCor
	AESNN3
	alphabetCheck
	ANF_DNA
	ANF_RNA
	APAAC
	APkNUCdi_DNA
	APkNUCdi_RNA
	APkNUCTri_DNA
	ASA
	ASDC
	ASDC_DNA
	ASDC_RNA
	AutoCorDiNUC_DNA
	AutoCorDiNUC_RNA
	AutoCorTriNUC_DNA
	binary_3bit_T1
	binary_3bit_T2
	binary_3bit_T3
	binary_3bit_T4
	binary_3bit_T5
	binary_3bit_T6
	binary_3bit_T7
	binary_5bit_T1
	binary_5bit_T2
	binary_6bit
	BLOSUM62
	CkSAApair
	CkSGAApair
	CkSNUCpair_DNA
	CkSNUCpair_RNA
	codonAdaptionIndex
	CodonFraction
	CodonUsage_DNA
	CodonUsage_RNA
	conjointTriad
	conjointTriadKS
	CTD
	CTDC
	CTDD
	CTDT
	DDE
	DiNUC2Binary_DNA
	DiNUC2Binary_RNA
	DiNUCindex_DNA
	DiNUCindex_RNA
	DisorderB
	DisorderC
	DisorderS
	DistancePair
	DPCP_DNA
	DPCP_RNA
	EAAComposition
	EffectiveNumberCodon
	EGAAComposition
	EIIP
	ENUComposition_DNA
	ENUComposition_RNA
	ExpectedValKmerNUC_DNA
	ExpectedValKmerNUC_RNA
	ExpectedValueAA
	ExpectedValueGAA
	ExpectedValueGKmerAA
	ExpectedValueKmerAA
	fa.read
	fickettScore
	GAAKpartComposition
	GrpDDE
	G_Ccontent_DNA
	G_Ccontent_RNA
	kAAComposition
	kGAAComposition
	KNNPeptide
	KNNProtein
	KNN_DNA
	KNN_RNA
	kNUComposition_DNA
	kNUComposition_RNA
	LocalPoSpKAAF
	LocalPoSpKNUCF_DNA
	LocalPoSpKNUCF_RNA
	maxORF
	maxORFlength_DNA
	maxORFlength_RNA
	maxORF_RNA
	Mismatch_DNA
	Mismatch_RNA
	MMI_DNA
	MMI_RNA
	nameKmer
	NCP_DNA
	NCP_RNA
	needleman
	nonStandardSeq
	NUC2Binary_DNA
	NUC2Binary_RNA
	NUCKpartComposition_DNA
	NUCKpartComposition_RNA
	OPF_10bit
	OPF_7bit_T1
	OPF_7bit_T2
	OPF_7bit_T3
	PCPseDNC
	PS2_DNA
	PS2_RNA
	PS3_DNA
	PS3_RNA
	PS4_DNA
	PS4_RNA
	PSEAAC
	PseEIIP
	PSEkNUCdi_DNA
	PSEkNUCdi_RNA
	PSEkNUCTri_DNA
	PseKRAAC_T1
	PseKRAAC_T10
	PseKRAAC_T11
	PseKRAAC_T12
	PseKRAAC_T13
	PseKRAAC_T14
	PseKRAAC_T15
	PseKRAAC_T16
	PseKRAAC_T2
	PseKRAAC_T3A
	PseKRAAC_T3B
	PseKRAAC_T4
	PseKRAAC_T5
	PseKRAAC_T6A
	PseKRAAC_T6B
	PseKRAAC_T7
	PseKRAAC_T8
	PseKRAAC_T9
	PSSM
	PSTNPds
	PSTNPss_DNA
	PSTNPss_RNA
	QSOrder
	readASAdir
	readDisDir
	readPSSMdir
	readss2Dir
	readTorsionDir
	revComp
	SAAC
	SGAAC
	SOCNumber
	SSEB
	SSEC
	SSES
	TorsionAngle
	TPCP_DNA
	TriNUCindex_DNA
	Zcurve12bit_DNA
	Zcurve12bit_RNA
	Zcurve144bit_DNA
	Zcurve144bit_RNA
	Zcurve36bit_DNA
	Zcurve36bit_RNA
	Zcurve48bit_DNA
	Zcurve48bit_RNA
	Zcurve9bit_DNA
	Zcurve9bit_RNA
	zSCALE
	Index

