
Package ‘funtimes’
July 22, 2025

Type Package

Title Functions for Time Series Analysis

Version 9.1

Date 2023-03-21

Depends R (>= 3.5.0)

License GPL (>= 2)

Imports dbscan, Kendall, lmtest, mlVAR, parallel, Rdpack, sandwich,
vars

Suggests covid19us, Ecdat, ggplot2, gridExtra, knitr, patchwork,
randomcoloR, readxl, reshape2, rmarkdown

Description Nonparametric estimators and tests for time series analysis. The functions use boot-
strap techniques and robust nonparametric difference-based estimators to test for the pres-
ence of possibly non-monotonic trends and for synchronicity of trends in multiple time series.

RdMacros Rdpack

RoxygenNote 7.2.3

Encoding UTF-8

VignetteBuilder knitr, rmarkdown

NeedsCompilation no

Author Vyacheslav Lyubchich [aut, cre] (ORCID:
<https://orcid.org/0000-0001-7936-4285>),

Yulia R. Gel [aut],
Alexander Brenning [ctb],
Calvin Chu [ctb],
Xin Huang [ctb],
Umar Islambekov [ctb],
Palina Niamkova [ctb],
Dorcas Ofori-Boateng [ctb],
Ethan D. Schaeffer [ctb],
Srishti Vishwakarma [aut],
Xingyu Wang [ctb]

Maintainer Vyacheslav Lyubchich <lyubchich@umces.edu>

1

https://orcid.org/0000-0001-7936-4285

2 funtimes-package

Repository CRAN

Date/Publication 2023-03-21 23:40:02 UTC

Contents
funtimes-package . 2
ARest . 4
AuePolyReg_test . 6
beales . 8
BICC . 9
causality_pred . 12
causality_predVAR . 15
ccf_boot . 17
CSlideCluster . 20
cumsumCPA_test . 21
CWindowCluster . 23
DR . 25
GombayCPA_test . 28
HVK . 30
mcusum_test . 31
notrend_test . 34
purity . 36
sync_cluster . 38
sync_test . 41
tails_i . 45
tails_q . 46
WAVK . 48
wavk_test . 49

Index 53

funtimes-package funtimes: Functions for Time Series Analysis

Description

Advances in multiple aspects of time-series analysis are documented in this package. See available
vignettes using
browseVignettes(package = "funtimes")

Tests for trends applicable to autocorrelated data, see
vignette("trendtests", package = "funtimes")
include bootstrapped versions of t-test and Mann–Kendall test (Noguchi et al. 2011) and boot-
strapped version of WAVK test for possibly non-monotonic trends (Lyubchich et al. 2013). The
WAVK test is further applied in testing synchronicity of trends (Lyubchich and Gel 2016); see an
implementation to climate data in Lyubchich (2016). With iterative testing, the synchronicity test is
also applied for identifying clusters of multiple time series (Ghahari et al. 2017).

funtimes-package 3

Additional clustering methods are implemented using functions BICC (Schaeffer et al. 2016) and DR
(Huang et al. 2018); function purity can be used to assess the accuracy of clustering if true classes
are known.

Changepoint detection methods include modified CUSUM-based bootstrapped test (Lyubchich et
al. 2020).

Additional functions include implementation of the Beale’s ratio estimator, see
vignette("beales", package = "funtimes")
Nonparametric comparison of tails of distributions is implemented using small bins defined based
on quantiles (Soliman et al. 2015) or intervals in the units in which the data are recorded (Lyubchich
and Gel 2017).

For a list of currently deprecated functions, use ?'funtimes-deprecated'

For a list of defunct (removed) functions, use ?'funtimes-defunct'

Author(s)

Maintainer: Vyacheslav Lyubchich <lyubchich@umces.edu> (ORCID)

Authors:

• Yulia R. Gel

• Srishti Vishwakarma

Other contributors:

• Alexander Brenning [contributor]

• Calvin Chu [contributor]

• Xin Huang [contributor]

• Umar Islambekov [contributor]

• Palina Niamkova [contributor]

• Dorcas Ofori-Boateng [contributor]

• Ethan D. Schaeffer [contributor]

• Xingyu Wang [contributor]

References

Ghahari A, Gel YR, Lyubchich V, Chun Y, Uribe D (2017). “On employing multi-resolution
weather data in crop insurance.” In Proceedings of the SIAM International Conference on Data
Mining (SDM17) Workshop on Mining Big Data in Climate and Environment (MBDCE 2017).

Huang X, Iliev IR, Lyubchich V, Gel YR (2018). “Riding down the bay: space-time clustering
of ecological trends.” Environmetrics, 29(5–6), e2455. doi:10.1002/env.2455.

Lyubchich V (2016). “Detecting time series trends and their synchronization in climate data.”
Intelligence. Innovations. Investments, 12, 132–137.

Lyubchich V, Gel YR (2016). “A local factor nonparametric test for trend synchronism in mul-
tiple time series.” Journal of Multivariate Analysis, 150, 91–104. doi:10.1016/j.jmva.2016.05.004.

https://orcid.org/0000-0001-7936-4285
https://doi.org/10.1002/env.2455
https://doi.org/10.1016/j.jmva.2016.05.004

4 ARest

Lyubchich V, Gel YR (2017). “Can we weather proof our insurance?” Environmetrics, 28(2),
e2433. doi:10.1002/env.2433.

Lyubchich V, Gel YR, El-Shaarawi A (2013). “On detecting non-monotonic trends in environ-
mental time series: a fusion of local regression and bootstrap.” Environmetrics, 24(4), 209–226.
doi:10.1002/env.2212.

Lyubchich V, Lebedeva TV, Testa JM (2020). “A data-driven approach to detecting change points
in linear regression models.” Environmetrics, 31(1), e2591. doi:10.1002/env.2591.

Noguchi K, Gel YR, Duguay CR (2011). “Bootstrap-based tests for trends in hydrological time se-
ries, with application to ice phenology data.” Journal of Hydrology, 410(3), 150–161. doi:10.1016/
j.jhydrol.2011.09.008.

Schaeffer ED, Testa JM, Gel YR, Lyubchich V (2016). “On information criteria for dynamic
spatio-temporal clustering.” In Banerjee A, Ding W, Dy JG, Lyubchich V, Rhines A (eds.), The
6th International Workshop on Climate Informatics: CI2016, 5–8. doi:10.5065/D6K072N6.

Soliman M, Lyubchich V, Gel YR, Naser D, Esterby S (2015). “Evaluating the impact of cli-
mate change on dynamics of house insurance claims.” In Lakshmanan V, Gilleland E, McGovern
A, Tingley M (eds.), Machine Learning and Data Mining Approaches to Climate Science, chapter
16, 175–183. Springer, Switzerland. doi:10.1007/9783319172200_16.

ARest Estimation of Autoregressive (AR) Parameters

Description

Estimate parameters ϕ of autoregressive time series model

Xt =

p∑
i=1

ϕiXt−i + et,

by default using robust difference-based estimator and Bayesian information criterion (BIC) to se-
lect the order p. This function is employed for time series filtering in the functions notrend_test,
sync_test, and wavk_test.

Usage

ARest(x, ar.order = NULL, ar.method = "HVK", ic = c("BIC", "AIC", "none"))

Arguments

x a vector containing a univariate time series. Missing values are not allowed.

ar.order order of the autoregressive model when ic = "none", or the maximal order for
IC-based filtering. Default is round(10*log10(length(x))), where x is the
time series.

https://doi.org/10.1002/env.2433
https://doi.org/10.1002/env.2212
https://doi.org/10.1002/env.2591
https://doi.org/10.1016/j.jhydrol.2011.09.008
https://doi.org/10.1016/j.jhydrol.2011.09.008
https://doi.org/10.5065/D6K072N6
https://doi.org/10.1007/978-3-319-17220-0_16

ARest 5

ar.method method of estimating autoregression coefficients. Default "HVK" delivers robust
difference-based estimates by Hall and Van Keilegom (2003). Alternatively,
options of ar function can be used, such as "burg", "ols", "mle", and "yw".

ic information criterion used to select the order of autoregressive filter (AIC of
BIC), considering models of orders p = 0,1,...,ar.order. If ic = "none", the
AR(p) model with p = ar.order is used, without order selection.

Details

The formula for information criteria used consistently for all methods:

IC = n ln(σ̂2) + (p+ 1)k,

where n = length(x), p is the autoregressive order (p+1 is the number of model parameters), and
k is the penalty (k = ln(n) in BIC, and k = 2 in AIC).

Value

A vector of estimated AR coefficients. Returns numeric(0) if the final p = 0.

Author(s)

Vyacheslav Lyubchich

References

Hall P, Van Keilegom I (2003). “Using difference-based methods for inference in nonparametric
regression with time series errors.” Journal of the Royal Statistical Society, Series B (Statistical
Methodology), 65(2), 443–456. doi:10.1111/14679868.00395.

See Also

ar, HVK, notrend_test, sync_test, wavk_test

Examples

Simulate a time series Y:
Y <- arima.sim(n = 200, list(order = c(2, 0, 0), ar = c(-0.7, -0.1)))
plot.ts(Y)

Estimate the coefficients:
ARest(Y) # HVK, by default
ARest(Y, ar.method = "yw") # Yule--Walker
ARest(Y, ar.method = "burg") # Burg

https://doi.org/10.1111/1467-9868.00395

6 AuePolyReg_test

AuePolyReg_test Testing for Change Points in Time Series via Polynomial Regression

Description

The function uses a nonlinear polynomial regression model in which it tests for the null hypothesis
of structural stability in the regression parameters against the alternative of a break at an unknown
time. The method is based on the extreme value distribution of a maximum-type test statistic which
is asymptotically equivalent to the maximally selected likelihood ratio. The resulting testing ap-
proach is easily tractable and delivers accurate size and power of the test, even in small samples
(Aue et al. 2008).

Usage

AuePolyReg_test(
y,
a.order,
alpha = 0.05,
crit.type = c("asymptotic", "bootstrap"),
bootstrap.method = c("nonparametric", "parametric"),
num.bootstrap = 1000

)

Arguments

y a vector that contains univariate time series observations. Missing values are not
allowed.

a.order order of the autoregressive model which must be a non-negative integer number.

alpha significance level for testing hypothesis of no change point. Default value is
0.05.

crit.type method of obtaining critical values: "asymptotic" (default) or "bootstrap".
bootstrap.method

type of bootstrap if crit.type = "bootstrap": "nonparametric" (default) or
"parametric".

num.bootstrap number of bootstrap replications if crit.type = "bootstrap". Default number
is 1000.

Value

A list with the following components:

index time point where the change point has occurred.

stat test statistic.

crit.val critical region value (CV(alpha, n)).

p.value p-value of the change point test.

AuePolyReg_test 7

Author(s)

Palina Niamkova, Dorcas Ofori-Boateng, Yulia R. Gel

References

Aue A, Horvath L, Huskova M, Kokoszka P (2008). “Testing for changes in polynomial regression.”
Bernoulli, 14(3), 637–660. doi:10.3150/08BEJ122.

See Also

mcusum.test change point test for regression

Examples

Not run:
#Example 1:

#Simulate some time series:
set.seed(23450)
series_1 = rnorm(137, 3, 5)
series_2 = rnorm(213, 0, 1)
series_val = c(series_1, series_2)
AuePolyReg_test(series_1, 1) # no change (asymptotic)
AuePolyReg_test(series_val,1) # one change (asymptotic)

#Example 2:

#Consider a time series with annual number of world terrorism incidents from 1970 till 2016:
c.data = Ecdat::terrorism["incidents"]
incidents.ts <- ts(c.data, start = 1970, end = 2016)

#Run a test for change points:
AuePolyReg_test(incidents.ts, 2) # one change (asymptotic)
AuePolyReg_test(incidents.ts, 2, 0.05,"bootstrap", "parametric", 200)
one change (bootstrap)
incidents.ts[44] #number of victims at the value of change point
year <- 197 + 44 - 1 # year when the change point occurred
plot(incidents.ts) # see the visualized data

#The structural change point occurred at the 44th value which corresponds to 2013,
#with 11,990 identified incidents in that year. These findings can be explained with
#a recent rise of nationalism and extremism due to appearance of the social media,
#Fisher (2019): White Terrorism Shows 'Stunning' Parallels to Islamic State's Rise.
#The New York Times.

End(Not run)

https://doi.org/10.3150/08-BEJ122

8 beales

beales Beale’s Estimator and Sample Size

Description

Beale’s ratio estimator (Beale 1962) for estimating population total and confidence intervals, with
an option of calculating sample size for a required relative error (p) or margin of error (d).

Usage

beales(x, y, level = 0.95, N = NULL, p = NULL, d = NULL, verbose = TRUE)

Arguments

x a numeric vector with quantities of interest, such as river discharge per month.
Missing values (NA) are allowed.

y a numeric vector with quantities of interest for which the total shall be estimated,
such as total nutrient loads per month. Missing values (NA) are allowed. Lengths
of x and y mush be the same.

level confidence level, from 0 to 1. Default is 0.95, that is, 95% confidence.
N population size for which the estimate of the total y is required. By default,

length(x) is used.
p optional argument specifying the required relative error, from 0 to 1, for com-

puting the corresponding sample size. For example, p = 0.15 defines a 15%
relative error.

d optional argument specifying the required margin of error for computing the
corresponding sample size. If both p and d are specified, only p is used.

verbose logical value defining whether the output should be printed out in words. Default
is set to TRUE to give such output.

Value

A list with the following components:

estimate Beale’s estimate of the population total for the variable y.
se standard error of the estimate.
CI a vector of length 2 with a confidence interval (lower and upper value) for the

estimate.
level confidence level for the interval.
N population size.
n the actual sample size.
p the relative error used for sample size calculations. Reported only if p was

specified in the input.
d the margin of error used for sample size calculations. Reported only if d was

specified and p was not specified in the input.
nhat estimated sample size for the given level and error (p or d).

BICC 9

Author(s)

Vyacheslav Lyubchich, thanks to Dave Lorenz for pointing out an error in version 7 and below of
the package

References

Beale EML (1962). “Some uses of computers in operational research.” Industrielle Organisation,
31(1), 27–28.

See Also

vignette("beales", package = "funtimes")

Examples

#Some hypothetical data for monthly river discharge
#and corresponding nutrient loads:
discharge <- c(NA, 50, 90, 100, 80, 90, 100, 90, 80, 70, NA, NA)
loads <- c(33, 22, 44, 48, NA, 44, 49, NA, NA, 36, NA, NA)

#Example 1:
#Estimate total annual load (12 months),
#with 90% confidence intervals
beales(discharge, loads, level = 0.9)

#Example 2:
#Calculate sample size required for 90% confidence intervals
#with a margin of error 30 units
beales(discharge, loads, level = 0.9, d = 30)

BICC BIC-Based Spatio-Temporal Clustering

Description

Apply the algorithm of unsupervised spatio-temporal clustering, TRUST (Ciampi et al. 2010), with
automatic selection of its tuning parameters Delta and Epsilon based on Bayesian information
criterion, BIC (Schaeffer et al. 2016).

Usage

BICC(X, Alpha = NULL, Beta = NULL, Theta = 0.8, p, w, s)

10 BICC

Arguments

X a matrix of time series observed within a slide (time series in columns).

Alpha lower limit of the time-series domain, passed to CSlideCluster.

Beta upper limit of the time-series domain passed to CSlideCluster.

Theta connectivity parameter passed to CSlideCluster.

p number of layers (time-series observations) in each slide.

w number of slides in each window.

s step to shift a window, calculated in the number of slides. The recommended
values are 1 (overlapping windows) or equal to w (non-overlapping windows).

Details

This is the upper-level function for time series clustering. It exploits the functions CWindowCluster
and CSlideCluster to cluster time series based on closeness and homogeneity measures. Cluster-
ing is performed multiple times with a range of equidistant values for the parameters Delta and
Epsilon, then optimal parameters Delta and Epsilon along with the corresponding clustering
results are shown (see Schaeffer et al. 2016, for more details).

The total length of time series (number of levels, i.e., nrow(X)) should be divisible by p.

Value

A list with the following elements:

delta.opt optimal value for the clustering parameter Delta.

epsilon.opt optimal value for the clustering parameter Epsilon.

clusters vector of length ncol(X) with cluster labels.

IC values of the information criterion (BIC) for each considered combination of
Delta (rows) and Epsilon (columns).

delta.all vector of considered values for Delta.

epsilon.all vector of considered values for Epsilon.

Author(s)

Ethan Schaeffer, Vyacheslav Lyubchich

References

Ciampi A, Appice A, Malerba D (2010). “Discovering trend-based clusters in spatially distributed
data streams.” In International Workshop of Mining Ubiquitous and Social Environments, 107–122.

Schaeffer ED, Testa JM, Gel YR, Lyubchich V (2016). “On information criteria for dynamic
spatio-temporal clustering.” In Banerjee A, Ding W, Dy JG, Lyubchich V, Rhines A (eds.), The
6th International Workshop on Climate Informatics: CI2016, 5–8. doi:10.5065/D6K072N6.

https://doi.org/10.5065/D6K072N6

BICC 11

See Also

CSlideCluster, CWindowCluster, purity

Examples

Fix seed for reproducible simulations:
set.seed(1)

Example 1
Similar to Schaeffer et al. (2016), simulate 3 years of monthly data
#for 10 locations and apply clustering:
1.1 Simulation
T <- 36 #total months
N <- 10 #locations
phi <- c(0.5) #parameter of autoregression
burn <- 300 #burn-in period for simulations
X <- sapply(1:N, function(x)

arima.sim(n = T + burn,
list(order = c(length(phi), 0, 0), ar = phi)))[(burn + 1):(T + burn),]

colnames(X) <- paste("TS", c(1:dim(X)[2]), sep = "")

1.2 Clustering
Assume that information arrives in year-long slides or data chunks
p <- 12 #number of time layers (months) in a slide
Let the upper level of clustering (window) be the whole period of 3 years, so
w <- 3 #number of slides in a window
s <- w #step to shift a window, but it does not matter much here as we have only one window of data
tmp <- BICC(X, p = p, w = w, s = s)

1.3 Evaluate clustering
In these simulations, it is known that all time series belong to one class,
#since they were all simulated the same way:
classes <- rep(1, 10)
Use the information on the classes to calculate clustering purity:
purity(classes, tmp$clusters[1,])

Example 2
2.1 Modify time series and update classes accordingly:
Add a mean shift to a half of the time series:
X2 <- X
X2[, 1:(N/2)] <- X2[, 1:(N/2)] + 3
classes2 <- rep(c(1, 2), each = N/2)

2.2 Re-apply clustering procedure and evaluate clustering purity:
tmp2 <- BICC(X2, p = p, w = w, s = s)
tmp2$clusters
purity(classes2, tmp2$clusters[1,])

12 causality_pred

causality_pred Out-of-sample Tests of Granger Causality

Description

Test for Granger causality using out-of-sample prediction errors from an autoregression (AR) model,
where some of the near-contemporaneous lags can be removed:

Yt =

p1∑
i=1

αiYt−i +

p2∑
i=lag.restrict+1

βiXt−i + et,

where Yt is the dependent variable, Xt is the cause variable, p1 and p2 are the AR orders (if
p.free = FALSE, p1 = p2), lag.restrict is the number of restricted first lags (see the argument
lag.restrict).

Usage

causality_pred(
y,
cause = NULL,
p = NULL,
p.free = FALSE,
lag.restrict = 0L,
lag.max = NULL,
k = 2,
B = 500L,
test = 0.3,
cl = 1L

)

Arguments

y matrix, data frame, or ts object with two columns (a dependent and an explana-
tory time-series variable). Missing values are not allowed.

cause name of the cause variable. If not specified, the first variable in y is treated as
the dependent variable and the second is treated as the cause.

p a vector of one or two positive integers specifying the order p of autoregressive
dependence. The input of length one is recycled, then p[1] is used for the de-
pendent variable and p[2] is used for the cause variable. The user must specify
p or lag.max. If lag.max is specified, the argument p is ignored.

p.free logical value indicating whether the autoregressive orders for the dependent and
cause variables should be selected independently. The default p.free = FALSE
means the same autoregressive order is selected for both variables. Note that
if p.free = TRUE and lag.max is specified, then lag.max[1] * (lag.max[2] -
lag.restrict) models are compared, which might be slow depending on the
maximal lags and sample size.

causality_pred 13

lag.restrict integer for the number of short-term lags in the cause variable to remove from
consideration (default is zero, meaning no lags are removed). This setting does
not affect the dependent variable lags that are always present.

lag.max a vector of one or two positive integers for the highest lag orders to explore. The
input of length one is recycled, then lag.max[1] used for the dependent variable
and lag.max[2] is used for the cause variable. The order is then selected using
the Akaike information criterion (AIC; default), see the argument k to change
the criterion. lag.max of length 2 automatically sets p.free = TRUE.

k numeric scalar specifying the weight of the equivalent degrees of freedom part
in the AIC formula. Default k = 2 corresponds to the traditional AIC. Use k =
log(n) to use the Bayesian information criterion instead (see extractAIC).

B number of bootstrap replications. Default is 500.

test a numeric value specifying the size of the testing set. If test < 1, the value is
treated as a proportion of the sample size to be used as the testing set. Otherwise,
test is treated as the number of the most recent values to be used as the testing
set. Default is 0.3, which means that 30% of the sample is used for calculating
out-of-sample errors. The testing set is always at the end of the time series.

cl parameter to specify computer cluster for bootstrapping passed to the package
parallel (default cl = 1, means no cluster is used). Possible values are:

• cluster object (list) produced by makeCluster. In this case, a new cluster is
not started nor stopped;

• NULL. In this case, the function will detect available cores (see detectCores)
and, if there are multiple cores (> 1), a cluster will be started with makeClus-
ter. If started, the cluster will be stopped after the computations are finished;

• positive integer defining the number of cores to start a cluster. If cl = 1
(default), no attempt to create a cluster will be made. If cl > 1, a cluster will
be started (using makeCluster) and stopped afterward (using stopCluster).

Details

The tests include the MSE-t approach (McCracken 2007) and MSE-correlation test as in Chapter
9.3 of Granger and Newbold (1986). The bootstrap is used to empirically derive distributions of the
statistics.

In the implemented bootstrapping, residuals of the restricted model under the null hypothesis of
no Granger causality are bootstrapped to generate new data under the null hypothesis. Then, the
full and restricted models are re-estimated on the bootstrapped data to obtain new (bootstrapped)
forecast errors.

In the current implementation, the bootstrapped p-value is calculated using Equation 4.10 in Davi-
son and Hinkley (1997): p.value = (1 + n) / (B + 1), where n is the number of bootstrapped
statistics smaller or equal to the observed statistic.

This function tests the Granger causation of X to Y or from Y to X (to test in both directions, need
to run the function twice, with different argument cause). To use the symmetric vector autoregres-
sion (VAR), use the function causality_predVAR.

14 causality_pred

Value

A list containing the following elements:

stat a table with the observed values of the test statistics and p-values.

cause the cause variable.

p the AR orders used for the dependent variable (p[1]) and for the cause variable
(p[2]).

Author(s)

Vyacheslav Lyubchich

References

Davison AC, Hinkley DV (1997). Bootstrap Methods and Their Application. Cambridge University
Press, Cambridge.

Granger CWJ, Newbold P (1986). Forecasting economic time series, 2 edition. Academic Press.

McCracken MW (2007). “Asymptotics for out of sample tests of Granger causality.” Journal of
Econometrics, 140(2), 719–752. doi:10.1016/j.jeconom.2006.07.020.

See Also

causality_predVAR

Examples

Not run:
Example 1: Canada time series (ts object)
Canada <- vars::Canada
causality_pred(Canada[,1:2], cause = "e", lag.max = 5, p.free = TRUE)
causality_pred(Canada[,1:2], cause = "e", lag.restrict = 3, lag.max = 15, p.free = TRUE)

Example 2 (run in parallel, initiate the cluster automatically)
Box & Jenkins time series
of sales and a leading indicator, see ?BJsales

D <- cbind(BJsales.lead, BJsales)
causality_pred(D, cause = "BJsales.lead", lag.max = 5, B = 1000, cl = NULL)

Example 3 (run in parallel, initiate the cluster manually)

Initiate a local cluster
cores <- parallel::detectCores()
cl <- parallel::makeCluster(cores)
parallel::clusterSetRNGStream(cl, 123) # to make parallel computations reproducible

causality_pred(D, cause = "BJsales.lead", lag.max = 5, B = 1000, cl = cl)
causality_pred(D, cause = "BJsales.lead", lag.restrict = 3, p = 5, B = 1000, cl = cl)

https://doi.org/10.1016/j.jeconom.2006.07.020

causality_predVAR 15

parallel::stopCluster(cl)

End(Not run)

causality_predVAR Out-of-sample Tests of Granger Causality using (Restricted) Vector
Autoregression

Description

Test for Granger causality using out-of-sample prediction errors from a vector autoregression (VAR),
where the original VAR can be restricted (see Details). The tests include the MSE-t approach (Mc-
Cracken 2007) and MSE-correlation test as in Chapter 9.3 of Granger and Newbold (1986). The
bootstrap is used to empirically derive distributions of the statistics.

Usage

causality_predVAR(
y,
p = NULL,
cause = NULL,
B = 500L,
test = 0.3,
cl = 1L,
...

)

Arguments

y data frame or ts object for estimating VAR(p).

p an integer specifying the order p in VAR. By default (if p is not specified), p is
selected based on the information criterion ic (see ... arguments; default ic is
AIC).

cause name of the cause variable. If not specified, the first variable in y is treated as
the dependent variable and the second is treated as the cause.

B number of bootstrap replications. Default is 500.

test a numeric value specifying the size of the testing set. If test < 1, the value is
treated as a proportion of the sample size to be used as the testing set. Otherwise,
test is treated as the number of the most recent values to be used as the testing
set. Default is 0.3, which means that 30% of the sample is used for calculating
out-of-sample errors. The testing set is always at the end of the time series.

cl parameter to specify computer cluster for bootstrapping passed to the package
parallel (default cl = 1, means no cluster is used). Possible values are:

• cluster object (list) produced by makeCluster. In this case, a new cluster is
not started nor stopped;

16 causality_predVAR

• NULL. In this case, the function will detect available cores (see detectCores)
and, if there are multiple cores (> 1), a cluster will be started with makeClus-
ter. If started, the cluster will be stopped after the computations are finished;

• positive integer defining the number of cores to start a cluster. If cl = 1
(default), no attempt to create a cluster will be made. If cl > 1, a cluster will
be started (using makeCluster) and stopped afterward (using stopCluster).

... other arguments passed to the function for VAR estimation. The arguments
include lag.restrict that is used to remove the first lags in the cause variable
from consideration (use restricted VAR to avoid testing for short-term causality);
default lag.restrict = 0L, i.e., no restrictions. Other possible arguments are
as in the VAR function. Also, see Details and Examples.

Details

The arguments specified in ... are passed to the VAR function. Additionally, lag.restrict can
be specified to remove short-term lags from consideration (lag.restrict is not an option in the
original package vars). Note that if p is specified, lag.restrict must be smaller than p other-
wise the default lag.restrict = 0 will be used. If lag.max is specified instead of p, VAR orders
lag.restrict + 1, . . . , lag.max will be considered using the training data and the order p will be
automatically selected according to the information criterion (by default, AIC).

In the current implementation, the bootstrapped p-value is calculated using equation 4.10 of Davison
and Hinkley (1997): p.value = (1 + n) / (B + 1), where n is the number of bootstrapped statistics
smaller or equal to the observed statistic. In the fast bootstrap, n is the number of bootstrapped
statistics greater or equal to 0.

This function uses symmetric VAR with the same orders p for modeling both Y to X . To select
these orders more independently, consider using the function causality_pred.

Value

Two lists (one for the fast bootstrap, another for the bootstrap under the null hypothesis) each
containing the following elements:

result a table with the observed values of the test statistics and p-values.
cause the cause variable.
p the AR order used.

Author(s)

Vyacheslav Lyubchich

References

Davison AC, Hinkley DV (1997). Bootstrap Methods and Their Application. Cambridge University
Press, Cambridge.

Granger CWJ, Newbold P (1986). Forecasting economic time series, 2 edition. Academic Press.

McCracken MW (2007). “Asymptotics for out of sample tests of Granger causality.” Journal of
Econometrics, 140(2), 719–752. doi:10.1016/j.jeconom.2006.07.020.

https://doi.org/10.1016/j.jeconom.2006.07.020

ccf_boot 17

See Also

causality_pred

Examples

Not run:
Example 1: Canada time series (ts object)
Canada <- vars::Canada
causality_predVAR(Canada[,1:2], cause = "e", lag.max = 5)
causality_predVAR(Canada[,1:2], cause = "e", lag.restrict = 3, lag.max = 15)

Example 2 (run in parallel, initiate the cluster manually):
Box & Jenkins time series
of sales and a leading indicator, see ?BJsales

Initiate a local cluster
cores <- parallel::detectCores()
cl <- parallel::makeCluster(cores)
parallel::clusterSetRNGStream(cl, 123) # to make parallel computations reproducible

D <- cbind(BJsales.lead, BJsales)
causality_predVAR(D, cause = "BJsales.lead", lag.max = 5, B = 1000, cl = cl)
causality_predVAR(D, cause = "BJsales.lead", lag.restrict = 3, p = 5, B = 1000, cl = cl)
parallel::stopCluster(cl)

End(Not run)

ccf_boot Cross-Correlation of Autocorrelated Time Series

Description

Account for possible autocorrelation of time series when assessing the statistical significance of
their cross-correlation. A sieve bootstrap approach is used to generate multiple copies of the time
series with the same autoregressive dependence, under the null hypothesis of the two time series
under investigation being uncorrelated. The significance of cross-correlation coefficients is assessed
based on the distribution of their bootstrapped counterparts. Both Pearson and Spearman types of
coefficients are obtained, but a plot is provided for only one type, with significant correlations shown
using filled circles (see Examples).

Usage

ccf_boot(
x,
y,
lag.max = NULL,
plot = c("Pearson", "Spearman", "none"),

18 ccf_boot

level = 0.95,
B = 1000,
smooth = FALSE,
cl = 1L,
...

)

Arguments

x, y univariate numeric time-series objects or numeric vectors for which to compute
cross-correlation. Different time attributes in ts objects are acknowledged, see
Example 2 below.

lag.max maximum lag at which to calculate the cross-correlation. Will be automatically
limited as in ccf.

plot choose whether to plot results for Pearson correlation (default, or use plot =
"Pearson"), Spearman correlation (use plot = "Spearman"), or suppress plot-
ting (use plot = "none"). Both Pearson’s and Spearman’s results are given in
the output, regardless of the plot setting.

level confidence level, from 0 to 1. Default is 0.95, that is, 95% confidence.

B number of bootstrap simulations to obtain empirical critical values. Default is
1000.

smooth logical value indicating whether the bootstrap confidence bands should be smoothed
across lags. Default is FALSE meaning no smoothing.

cl parameter to specify computer cluster for bootstrapping passed to the package
parallel (default cl = 1, means no cluster is used). Possible values are:

• cluster object (list) produced by makeCluster. In this case, a new cluster is
not started nor stopped;

• NULL. In this case, the function will detect available cores (see detectCores)
and, if there are multiple cores (> 1), a cluster will be started with makeClus-
ter. If started, the cluster will be stopped after the computations are finished;

• positive integer defining the number of cores to start a cluster. If cl = 1
(default), no attempt to create a cluster will be made. If cl > 1, a cluster will
be started (using makeCluster) and stopped afterward (using stopCluster).

... other parameters passed to the function ARest to control how autoregressive
dependencies are estimated. The same set of parameters is used separately on x
and y.

Details

Note that the smoothing of confidence bands is implemented purely for the look. This smoothing
is different from the smoothing methods that can be applied to adjust bootstrap performance (De
Angelis and Young 1992). For correlations close to the significance bounds, the setting of smooth
might affect the decision on the statistical significance. In this case, it is recommended to keep
smooth = FALSE and set a higher B.

ccf_boot 19

Value

A data frame with the following columns:

Lag lags for which the following values were obtained.

r_P observed Pearson correlations.
lower_P, upper_P

lower and upper confidence bounds (for the confidence level set by level) for
Pearson correlations.

r_S observed Spearman correlations.
lower_S, upper_S

lower and upper confidence bounds (for the confidence level set by level) for
Spearman correlations.

Author(s)

Vyacheslav Lyubchich

See Also

ARest, ar, ccf, HVK

Examples

Not run:
Fix seed for reproducible simulations:
set.seed(1)

Example 1
Simulate independent normal time series of same lengths
x <- rnorm(100)
y <- rnorm(100)
Default CCF with parametric confidence band
ccf(x, y)
CCF with bootstrap
tmp <- ccf_boot(x, y)
One can extract results for both Pearson and Spearman correlations
tmp$rP
tmp$rS

Example 2
Simulated ts objects of different lengths and starts (incomplete overlap)
x <- arima.sim(list(order = c(1, 0, 0), ar = 0.5), n = 30)
x <- ts(x, start = 2001)
y <- arima.sim(list(order = c(2, 0, 0), ar = c(0.5, 0.2)), n = 40)
y <- ts(y, start = 2020)
Show how x and y are aligned
ts.plot(x, y, col = 1:2, lty = 1:2)
The usual CCF
ccf(x, y)
CCF with bootstrap confidence intervals

20 CSlideCluster

ccf_boot(x, y, plot = "Spearman")
Notice that only +-7 lags can be calculated in both cases because of the small
overlap of the time series. If we save these time series as plain vectors, the time
information would be lost, and the time series will be misaligned.
ccf(as.numeric(x), as.numeric(y))

Example 3
Box & Jenkins time series of sales and a leading indicator, see ?BJsales
plot.ts(cbind(BJsales.lead, BJsales))
Each of the BJ time series looks as having a stochastic linear trend, so apply differences
plot.ts(cbind(diff(BJsales.lead), diff(BJsales)))
Get cross-correlation of the differenced series
ccf_boot(diff(BJsales.lead), diff(BJsales), plot = "Spearman")
The leading indicator "stands out" with significant correlations at negative lags,
showing it can be used to predict the sales 2-3 time steps ahead (that is,
diff(BJsales.lead) at times t-2 and t-3 is strongly correlated with diff(BJsales) at
current time t).

End(Not run)

CSlideCluster Slide-Level Time Series Clustering

Description

Cluster time series at a slide level, based on Algorithm 1 of Ciampi et al. (2010).

Usage

CSlideCluster(X, Alpha = NULL, Beta = NULL, Delta = NULL, Theta = 0.8)

Arguments

X a matrix of time series observed within a slide (time series in columns).

Alpha lower limit of the time series domain. Default is quantile(X)[2] -
1.5*(quantile(X)[4] - quantile(X)[2]).

Beta upper limit of the time series domain. Default is quantile(X)[2] +
1.5*(quantile(X)[4] - quantile(X)[2]).

Delta closeness parameter, a real value in [0, 1]. Default is 0.1*(Beta - Alpha).

Theta connectivity parameter, a real value in [0, 1]. Default is 0.8.

Value

A vector of length ncol(X) with cluster labels.

Author(s)

Vyacheslav Lyubchich

cumsumCPA_test 21

References

Ciampi A, Appice A, Malerba D (2010). “Discovering trend-based clusters in spatially distributed
data streams.” In International Workshop of Mining Ubiquitous and Social Environments, 107–122.

See Also

CSlideCluster, CWindowCluster, and BICC

Examples

set.seed(123)
X <- matrix(rnorm(50), 10, 5)
CSlideCluster(X)

cumsumCPA_test Change Point Detection in Time Series via a Linear Regression with
Temporally Correlated Errors

Description

The function tests for a change point in parameters of a linear regression model with errors exhibit-
ing a general weakly dependent structure. The approach extends earlier methods based on cumu-
lative sums derived under the assumption of independent errors. The approach applies smoothing
when the time series is dominated by high frequencies. To detect multiple changes, it is recom-
mended to employ a binary or wild segmentation (Gombay 2010).

Usage

cumsumCPA_test(
y,
a.order,
crit.type = c("asymptotic", "bootstrap"),
bootstrap.method = c("nonparametric", "parametric"),
num.bootstrap = 1000

)

Arguments

y a numeric time series vector. Missing values are not allowed.
a.order order of the autoregressive model which must be a non-negative integer number.
crit.type a string parameter allowing to choose "asymptotic" or "bootstrap" options.
bootstrap.method

a string parameter allowing to choose "nonparametric" or "parametric" method
of bootstrapping. "nonparametric" – resampling of the estimated residuals (with
replacement); "parametric" – sampling innovations from a normal distribution.

num.bootstrap number of bootstrap replications if crit.type = "bootstrap". The default
number is 1000.

22 cumsumCPA_test

Value

A list with the following components:

index time point where the change has occurred.

stat test statistic.

p.value p-value of the change point test.

Author(s)

Palina Niamkova, Dorcas Ofori-Boateng, Yulia R. Gel

References

Gombay E (2010). “Change detection in linear regression with time series errors.” Canadian
Journal of Statistics, 38(1), 65–79.

See Also

mcusum.test for change point test for regression

Examples

Not run:
#Example 1:

#Simulate some time series:
series_1 = rnorm(157, 2, 1)
series_2 = rnorm(43, 7, 10)
main_val = c(series_1, series_2)

#Now perform a change point detection:
cumsumCPA_test(series_1, 1) # no change
cumsumCPA_test(main_val, 1) # one change, asymptotic critical region
cumsumCPA_test(main_val, 1, "bootstrap", "parametric") # one change, parametric bootstrap
cumsumCPA_test(main_val, 1, "bootstrap", "nonparametric") # one change, nonparametric
#bootstrap

#Example 2:

#Consider time series with ratio of real GDP per family to the median income. This is a
#skewness and income inequality measure for the US families from 1947 till 2012.
e.data = (Ecdat::incomeInequality['mean.median'])
incomeInequality.ts = ts(e.data, start = 1947, end = 2012, frequency = 1)

#Now perform a change point detection:
cumsumCPA_test(incomeInequality.ts, 0)
cumsumCPA_test(incomeInequality.ts, 0, "bootstrap", "parametric")
cumsumCPA_test(incomeInequality.ts, 0, "bootstrap", "nonparametric")
incomeInequality.ts[13] # median income
Ecdat::incomeInequality$Year[13] + 1 # year of change point

CWindowCluster 23

#The first change point occurs at the 13th time point, that is 1960, where the ratio of real
#GDP per family to the median income is 1.940126. This ratio shows that in 1960 the national
#wealth was not distributed equally between all the population and that most people earn
#almost twice less than the equal share of the all produced goods and services by the nation.

#Note: To look for the other possible change points, run the same function for the
#segment of time series after value 13.

End(Not run)

CWindowCluster Window-Level Time Series Clustering

Description

Cluster time series at a window level, based on Algorithm 2 of Ciampi et al. (2010).

Usage

CWindowCluster(
X,
Alpha = NULL,
Beta = NULL,
Delta = NULL,
Theta = 0.8,
p,
w,
s,
Epsilon = 1

)

Arguments

X a matrix of time series observed within a slide (time series in columns).

Alpha lower limit of the time-series domain, passed to CSlideCluster.

Beta upper limit of the time-series domain passed to CSlideCluster.

Delta closeness parameter passed to CSlideCluster.

Theta connectivity parameter passed to CSlideCluster.

p number of layers (time-series observations) in each slide.

w number of slides in each window.

s step to shift a window, calculated in the number of slides. The recommended
values are 1 (overlapping windows) or equal to w (non-overlapping windows).

Epsilon a real value in [0, 1] used to identify each pair of time series that are clustered
together over at least w*Epsilon slides within a window; see Definition 7 by
Ciampi et al. (2010). Default is 1.

24 CWindowCluster

Details

This is the upper-level function for time series clustering. It exploits the function CSlideCluster
to cluster time series within each slide based on closeness and homogeneity measures. Then, it uses
slide-level cluster assignments to cluster time series within each window.

The total length of time series (number of levels, i.e., nrow(X)) should be divisible by p.

Value

A vector (if X contains only one window) or matrix with cluster labels for each time series (columns)
and window (rows).

Author(s)

Vyacheslav Lyubchich

References

Ciampi A, Appice A, Malerba D (2010). “Discovering trend-based clusters in spatially distributed
data streams.” In International Workshop of Mining Ubiquitous and Social Environments, 107–122.

See Also

CSlideCluster, CWindowCluster, and BICC

Examples

#For example, weekly data come in slides of 4 weeks
p <- 4 #number of layers in each slide (data come in a slide)

#We want to analyze the trend clusters within a window of 1 year
w <- 13 #number of slides in each window
s <- w #step to shift a window

#Simulate 26 autoregressive time series with two years of weekly data (52*2 weeks),
#with a 'burn-in' period of 300.
N <- 26
T <- 2*p*w

set.seed(123)
phi <- c(0.5) #parameter of autoregression
X <- sapply(1:N, function(x) arima.sim(n = T + 300,

list(order = c(length(phi), 0, 0), ar = phi)))[301:(T + 300),]
colnames(X) <- paste("TS", c(1:dim(X)[2]), sep = "")

tmp <- CWindowCluster(X, Delta = NULL, Theta = 0.8, p = p, w = w, s = s, Epsilon = 1)

#Time series were simulated with the same parameters, but based on the clustering parameters,
#not all time series join the same cluster. We can plot the main cluster for each window, and
#time series out of the cluster:
par(mfrow = c(2, 2))
ts.plot(X[c(1:(p*w)), tmp[1,] == 1], ylim = c(-4, 4),

DR 25

main = "Time series cluster 1 in window 1")
ts.plot(X[c(1:(p*w)), tmp[1,] != 1], ylim = c(-4, 4),

main = "The rest of the time series in window 1")
ts.plot(X[c(1:(p*w)) + s*p, tmp[2,] == 1], ylim = c(-4, 4),

main = "Time series cluster 1 in window 2")
ts.plot(X[c(1:(p*w)) + s*p, tmp[2,] != 1], ylim = c(-4, 4),

main = "The rest of the time series in window 2")

DR Downhill Riding (DR) Procedure

Description

Downhill riding procedure for selecting optimal tuning parameters in clustering algorithms, using
an (in)stability probe.

Usage

DR(X, method, minPts = 3, theta = 0.9, B = 500, lb = -30, ub = 10)

Arguments

X an n × k matrix where columns are k objects to be clustered, and each object
contains n observations (objects could be a set of time series).

method the clustering method to be used – currently either “TRUST” (Ciampi et al.
2010) or “DBSCAN” (Ester et al. 1996). If the method is DBSCAN, then set
MinPts and optimal ϵ is selected using DR. If the method is TRUST, then set
theta, and optimal δ is selected using DR.

minPts the minimum number of samples in an ϵ-neighborhood of a point to be consid-
ered as a core point. The minPts is to be used only with the DBSCAN method.
The default value is 3.

theta connectivity parameter θ ∈ (0, 1), which is to be used only with the TRUST
method. The default value is 0.9.

B number of random splits in calculating the Average Cluster Deviation (ACD).
The default value is 500.

lb, ub endpoints for a range of search for the optimal parameter.

Details

Parameters lb,ub are endpoints for the search for the optimal parameter. The parameter candidates
are calculated in a way such that P := 1.1x, x ∈ lb, lb+ 0.5, lb+ 1.0, ..., ub. Although the default
range of search is sufficiently wide, in some cases lb,ub can be further extended if a warning
message is given.

For more discussion on properties of the considered clustering algorithms and the DR procedure
see Huang et al. (2016) and Huang et al. (2018).

26 DR

Value

A list containing the following components:

P_opt the value of the optimal parameter. If the method is DBSCAN, then P_opt is
optimal ϵ. If the method is TRUST, then P_opt is optimal δ.

ACD_matrix a matrix that returns ACD for different values of a tuning parameter. If the method
is DBSCAN, then the tuning parameter is ϵ. If the method is TRUST, then the tuning
parameter is δ.

Author(s)

Xin Huang, Yulia R. Gel

References

Ciampi A, Appice A, Malerba D (2010). “Discovering trend-based clusters in spatially distributed
data streams.” In International Workshop of Mining Ubiquitous and Social Environments, 107–122.

Ester M, Kriegel H, Sander J, Xu X (1996). “A density-based algorithm for discovering clusters
in large spatial databases with noise.” In Proceedings of the International Conference on Knowl-
edge Discovery and Data Mining (KDD), volume 96(34), 226–231.

Huang X, Iliev IR, Brenning A, Gel YR (2016). “Space-time clustering with stability probe while
riding downhill.” In Proceedings of the 2nd SIGKDD Workshop on Mining and Learning from Time
Series (MiLeTS).

Huang X, Iliev IR, Lyubchich V, Gel YR (2018). “Riding down the bay: space-time clustering
of ecological trends.” Environmetrics, 29(5–6), e2455. doi:10.1002/env.2455.

See Also

BICC, dbscan

Examples

Not run:
example 1
use iris data to test DR procedure

data(iris)
require(clue) # calculate NMI to compare the clustering result with the ground truth
require(scatterplot3d)

Data <- scale(iris[,-5])
ground_truth_label <- iris[,5]

perform DR procedure to select optimal eps for DBSCAN
and save it in variable eps_opt
eps_opt <- DR(t(Data), method="DBSCAN", minPts = 5)$P_opt

https://doi.org/10.1002/env.2455

DR 27

apply DBSCAN with the optimal eps on iris data
and save the clustering result in variable res
res <- dbscan(Data, eps = eps_opt, minPts =5)$cluster

calculate NMI to compare the clustering result with the ground truth label
clue::cl_agreement(as.cl_partition(ground_truth_label),

as.cl_partition(as.numeric(res)), method = "NMI")
visualize the clustering result and compare it with the ground truth result
3D visualization of clustering result using variables Sepal.Width, Sepal.Length,
and Petal.Length
scatterplot3d(Data[,-4],color = res)
3D visualization of ground truth result using variables Sepal.Width, Sepal.Length,
and Petal.Length
scatterplot3d(Data[,-4],color = as.numeric(ground_truth_label))

example 2
use synthetic time series data to test DR procedure

require(funtimes)
require(clue)
require(zoo)

simulate 16 time series for 4 clusters, each cluster contains 4 time series
set.seed(114)
samp_Ind <- sample(12,replace=F)
time_points <- 30
X <- matrix(0,nrow=time_points,ncol = 12)
cluster1 <- sapply(1:4,function(x) arima.sim(list(order = c(1, 0, 0), ar = c(0.2)),

n = time_points, mean = 0, sd = 1))
cluster2 <- sapply(1:4,function(x) arima.sim(list(order = c(2 ,0, 0), ar = c(0.1, -0.2)),

n = time_points, mean = 2, sd = 1))
cluster3 <- sapply(1:4,function(x) arima.sim(list(order = c(1, 0, 1), ar = c(0.3), ma = c(0.1)),

n = time_points, mean = 6, sd = 1))

X[,samp_Ind[1:4]] <- t(round(cluster1, 4))
X[,samp_Ind[5:8]] <- t(round(cluster2, 4))
X[,samp_Ind[9:12]] <- t(round(cluster3, 4))

create ground truth label of the synthetic data
ground_truth_label = matrix(1, nrow = 12, ncol = 1)
for(k in 1:3){

ground_truth_label[samp_Ind[(4*k - 4 + 1):(4*k)]] = k
}

perform DR procedure to select optimal delta for TRUST
and save it in variable delta_opt
delta_opt <- DR(X, method = "TRUST")$P_opt

apply TRUST with the optimal delta on the synthetic data
and save the clustering result in variable res
res <- CSlideCluster(X, Delta = delta_opt, Theta = 0.9)

28 GombayCPA_test

calculate NMI to compare the clustering result with the ground truth label
clue::cl_agreement(as.cl_partition(as.numeric(ground_truth_label)),

as.cl_partition(as.numeric(res)), method = "NMI")

visualize the clustering result and compare it with the ground truth result
visualization of the clustering result obtained by TRUST
plot.zoo(X, type = "l", plot.type = "single", col = res, xlab = "Time index", ylab = "")
visualization of the ground truth result
plot.zoo(X, type = "l", plot.type = "single", col = ground_truth_label,

xlab = "Time index", ylab = "")

End(Not run)

GombayCPA_test Change Point Detection in Autoregressive Time Series

Description

The function detects change points in autoregressive (AR) models for time series. Changes can be
detected in any of p + 2 (mean, var, phi) autoregressive parameters where p is the order of the AR
model. The test statistic is based on the efficient score vector (Gombay 2008).

Usage

GombayCPA_test(
y,
a.order,
alternatives = c("two-sided", "greater", "lesser", "temporary"),
crit.type = c("asymptotic", "bootstrap"),
num.bootstrap = 1000

)

Arguments

y a vector that contains univariate time-series observations. Missing values are
not allowed.

a.order order of the autoregressive model which must be a non-negative integer number.

alternatives a string parameter that specifies a type of the test (i.e., "two-sided", "greater",
"lesser", and "temporary"). The option "temporary" examines the temporary
change in one of the parameters (Gombay 2008).

crit.type method of obtaining critical values: "asymptotic" (default) or "bootstrap".

num.bootstrap number of bootstrap replications if crit.type = "bootstrap". The default
number is 1000.

GombayCPA_test 29

Details

The function tests for a temporary change and a change in specific model parameters. Critical
values can be estimated via asymptotic distribution "asymptotic" (i.e., the default option) or sieve
bootstrap "bootstrap". The function employs internal function change.point and sieve bootstrap
change.point.sieve function.

Value

A list with the following components:

index points of change for each parameter. The value of the "alternatives" deter-
mines the return: "temporary" – returns max, min, and abs.max points; "greater"
– returns max points; "lesser" – returns min points; "two-sided" – returns abs.max.

stats test statistic values for change points in mean, var, phi.

p.values p-value of the change point test.

Author(s)

Palina Niamkova, Dorcas Ofori-Boateng, Yulia R. Gel

References

Gombay E (2008). “Change detection in autoregressive time series.” Journal of Multivariate Anal-
ysis, 99(3), 451–464. doi:10.1016/j.jmva.2007.01.003.

See Also

mcusum.test change point test for regression and terrorism dataset used in the Example 2

Examples

Not run:
#Example 1:

#Simulate some time series:
series_1 = arima.sim(n = 100, list(order = c(2,0,0), ar = c(-0.7, -0.1)))
series_2 = arima.sim(n = 200, list(order = c(2,0,0), ar = c(0.1, -0.6)))
main_series = c(series_1, series_2)

result11 = GombayCPA_test(series_1, 2, "two-sided")
result11 #== No change point ===#

result12 = GombayCPA_test(main_series, 2, "two-sided")
result12 #=== One change at phi values ===#

result13 = GombayCPA_test(main_series, 2, "two-sided", "bootstrap")
result13 #=== One change at phi values ===#

https://doi.org/10.1016/j.jmva.2007.01.003

30 HVK

#Example 2:

#From the package 'Ecdat' consider a time series with annual world number of victims of
#terrorism in the US from 1970 till 2016:
c.data = Ecdat::terrorism['nkill.us']
nkill.us.ts <- ts(c.data, start = 1970, end = 2016)

#Now perform a change point detection with one sided tests:
GombayCPA_test(nkill.us.ts, 0, "lesser")
GombayCPA_test(nkill.us.ts, 0, "greater")
nkill.us.ts[32]
year = 1970 + 31
print(year)
plot(nkill.us.ts)

#In both cases we find that the change point is located at the position 31 or 32. We can
examine it further by checking the value of this position (using: nkill.us.ts[32]) as well as
by plotting the graph (using: plot(nkill.us.ts)). The detected change point corresponds to
#the year of 2001, when the 9/11 attack happened.

End(Not run)

HVK HVK Estimator

Description

Estimate coefficients in nonparametric autoregression using the difference-based approach by Hall
and Van Keilegom (2003).

Usage

HVK(X, m1 = NULL, m2 = NULL, ar.order = 1)

Arguments

X univariate time series. Missing values are not allowed.

m1, m2 subsidiary smoothing parameters. Default m1 = round(length(X)^(0.1)), m2
= round(length(X)^(0.5)).

ar.order order of the nonparametric autoregression (specified by user).

Details

First, autocovariances are estimated using formula (2.6) by Hall and Van Keilegom (2003):

γ̂(0) =
1

m2 −m1 + 1

m2∑
m=m1

1

2(n−m)

n∑
i=m+1

{(DmX)i}2,

mcusum_test 31

γ̂(j) = γ̂(0)− 1

2(n− j)

n∑
i=j+1

{(DjX)i}2,

where n = length(X) is sample size, Dj is a difference operator such that (DjX)i = Xi −Xi−j .
Then, Yule–Walker method is used to derive autoregression coefficients.

Value

Vector of length ar.order with estimated autoregression coefficients.

Author(s)

Yulia R. Gel, Vyacheslav Lyubchich, Xingyu Wang

References

Hall P, Van Keilegom I (2003). “Using difference-based methods for inference in nonparametric
regression with time series errors.” Journal of the Royal Statistical Society, Series B (Statistical
Methodology), 65(2), 443–456. doi:10.1111/14679868.00395.

See Also

ar, ARest

Examples

X <- arima.sim(n = 300, list(order = c(1, 0, 0), ar = c(0.6)))
HVK(as.vector(X), ar.order = 1)

mcusum_test Change Point Test for Regression

Description

Apply change point test by Horvath et al. (2017) for detecting at-most-m changes in regression
coefficients, where test statistic is a modified cumulative sum (CUSUM), and critical values are
obtained with sieve bootstrap (Lyubchich et al. 2020).

Usage

mcusum_test(
e,
k,
m = length(k),
B = 1000,
shortboot = FALSE,
ksm = FALSE,

https://doi.org/10.1111/1467-9868.00395

32 mcusum_test

ksm.arg = list(kernel = "gaussian", bw = "sj"),
...

)

Arguments

e vector of regression residuals (a stationary time series).

k an integer vector or scalar with hypothesized change point location(s) to test.

m an integer specifying the maximum number of change points being confirmed as
statistically significant (from those specified in k) would be ≤ m. Thus, m must
be in 1,...,k.

B number of bootstrap simulations to obtain empirical critical values. Default is
1000.

shortboot if TRUE, then a heuristic is used to perform the test with a reduced number of
bootstrap replicates. Specifically, B/4 replicates are used, which may reduce
computing time by up to 75% when the number of retained null hypotheses is
large. A p-value of 999 is reported whenever a null hypothesis is retained as a
result of this mechanism.

ksm logical value indicating whether a kernel smoothing to innovations in sieve boot-
strap shall be applied (default is FALSE, that is, the original estimated innovations
are bootstrapped, without the smoothing).

ksm.arg used only if ksm = TRUE. A list of arguments for kernel smoothing to be passed
to density function. Default settings specify the use of the Gaussian kernel and
the "sj" rule to choose the bandwidth.

... additional arguments passed to ARest (for example, ar.method).

Details

The sieve bootstrap is applied by approximating regression residuals e with an AR(p) model using
function ARest, where the autoregressive coefficients are estimated with ar.method, and order p
is selected based on ar.order and BIC settings (see ARest). At the next step, B autoregressive
processes are simulated under the null hypothesis of no change points. The distribution of test
statistics MT computed on each of those bootstrapped series is used to obtain bootstrap-based p-
values for the test (Lyubchich et al. 2020).

In the current implementation, the bootstrapped p-value is calculated using equation 4.10 of Davison
and Hinkley (1997): p.value = (1 + n) / (B + 1), where n is number of bootstrapped statistics greater
or equal to the observed statistic.

The test statistic corresponds to the maximal value of the modified CUSUM over up to m combi-
nations of hypothesized change points specified in k. The change points that correspond to that
maximum are reported in estimate$khat, and their number is reported as the parameter.

Value

A list of class "htest" containing the following components:

method name of the method.

mcusum_test 33

data.name name of the data.

statistic obseved value of the test statistic.

parameter mhat is the final number of change points, from those specified in the input k,
for which the test statistic is reported. See the corresponding locations, khat, in
the estimate.

p.value bootstrapped p-value of the test.

alternative alternative hypothesis.

estimate list with elements: AR_order and AR_coefficients (the autoregressive order
and estimated autoregressive coefficients used in sieve bootstrap procedure),
khat (final change points, from those specified in the input k for which the
test statistic is reported), and B (the number of bootstrap replications).

Author(s)

Vyacheslav Lyubchich

References

Davison AC, Hinkley DV (1997). Bootstrap Methods and Their Application. Cambridge University
Press, Cambridge.

Horvath L, Pouliot W, Wang S (2017). “Detecting at-most-m changes in linear regression mod-
els.” Journal of Time Series Analysis, 38, 552–590. doi:10.1111/jtsa.12228.

Lyubchich V, Lebedeva TV, Testa JM (2020). “A data-driven approach to detecting change points
in linear regression models.” Environmetrics, 31(1), e2591. doi:10.1002/env.2591.

Examples

Model 1 with normal errors, by Horvath et al. (2017)
T <- 100 #length of time series
X <- rnorm(T, mean = 1, sd = 1)
E <- rnorm(T, mean = 0, sd = 1)
SizeOfChange <- 1
TimeOfChange <- 50
Y <- c(1 * X[1:TimeOfChange] + E[1:TimeOfChange],

(1 + SizeOfChange)*X[(TimeOfChange + 1):T] + E[(TimeOfChange + 1):T])
ehat <- lm(Y ~ X)$resid
mcusum_test(ehat, k = c(30, 50, 70))

#Same, but with bootstrapped innovations obtained from a kernel smoothed distribution:
mcusum_test(ehat, k = c(30, 50, 70), ksm = TRUE)

https://doi.org/10.1111/jtsa.12228
https://doi.org/10.1002/env.2591

34 notrend_test

notrend_test Sieve Bootstrap Based Test for the Null Hypothesis of no Trend

Description

A combination of time series trend tests for testing the null hypothesis of no trend, versus the
alternative hypothesis of a linear trend (Student’s t-test), or monotonic trend (Mann–Kendall test),
or more general, possibly non-monotonic trend (WAVK test).

Usage

notrend_test(
x,
B = 1000,
test = c("t", "MK", "WAVK"),
ar.method = "HVK",
ar.order = NULL,
ic = "BIC",
factor.length = c("user.defined", "adaptive.selection"),
Window = NULL,
q = 3/4,
j = c(8:11)

)

Arguments

x a vector containing a univariate time series. Missing values are not allowed.

B number of bootstrap simulations to obtain empirical critical values. Default is
1000.

test trend test to implement: Student’s t-test ("t", default), Mann–Kendall test ("MK"),
or WAVK test ("WAVK", see WAVK).

ar.method method of estimating autoregression coefficients. Default "HVK" delivers robust
difference-based estimates by Hall and Van Keilegom (2003). Alternatively,
options of ar function can be used, such as "burg", "ols", "mle", and "yw".

ar.order order of the autoregressive model when ic = "none", or the maximal order for
IC-based filtering. Default is round(10*log10(length(x))), where x is the
time series.

ic information criterion used to select the order of autoregressive filter (AIC of
BIC), considering models of orders p = 0,1,...,ar.order. If ic = "none", the
AR(p) model with p = ar.order is used, without order selection.

factor.length method to define the length of local windows (factors). Used only if test =
"WAVK". Default option "user.defined" allows to set only one value of the ar-
gument Window. The option "adaptive.selection" sets method = "boot" and
employs heuristic m-out-of-n subsampling algorithm (Bickel and Sakov 2008)
to select an optimal window from the set of possible windows length(x)*q^j

notrend_test 35

whose values are mapped to the largest previous integer and greater than 2. Vec-
tor x is the time series tested.

Window length of the local window (factor), default is round(0.1*length(x)). Used
only if test = "WAVK". This argument is ignored if
factor.length = "adaptive.selection".

q scalar from 0 to 1 to define the set of possible windows when factor.length
= "adaptive.selection". Used only if test = "WAVK". Default is 3/4. This
argument is ignored if factor.length = "user.defined".

j numeric vector to define the set of possible windows when factor.length =
"adaptive.selection". Used only if test = "WAVK". Default is c(8:11).
This argument is ignored if factor.length = "user.defined".

Details

This function tests the null hypothesis of no trend versus different alternatives. To set some other
shape of trend as the null hypothesis, use wavk_test. Note that wavk_test employs hybrid boot-
strap, which is an alternative to the sieve bootstrap employed by the current function.

Value

A list with class "htest" containing the following components:

method name of the method.

data.name name of the data.

statistic value of the test statistic.

p.value p-value of the test.

alternative alternative hypothesis.

estimate list with the following elements: employed AR order and estimated AR coeffi-
cients.

parameter window that was used in WAVK test, included in the output only if test =
"WAVK".

Author(s)

Vyacheslav Lyubchich

References

Bickel PJ, Sakov A (2008). “On the choice of m in the m out of n bootstrap and confidence bounds
for extrema.” Statistica Sinica, 18(3), 967–985.

Hall P, Van Keilegom I (2003). “Using difference-based methods for inference in nonparamet-
ric regression with time series errors.” Journal of the Royal Statistical Society, Series B (Statistical
Methodology), 65(2), 443–456. doi:10.1111/14679868.00395.

See Also

ar, HVK, WAVK, wavk_test, vignette("trendtests", package = "funtimes")

https://doi.org/10.1111/1467-9868.00395

36 purity

Examples

Not run:
Fix seed for reproducible simulations:
set.seed(1)

#Simulate autoregressive time series of length n with smooth linear trend:
n <- 200
tsTrend <- 1 + 2*(1:n/n)
tsNoise <- arima.sim(n = n, list(order = c(2, 0, 0), ar = c(0.5, -0.1)))
U <- tsTrend + tsNoise
plot.ts(U)

#Use t-test
notrend_test(U)

#Use Mann--Kendall test and Yule-Walker estimates of the AR parameters
notrend_test(U, test = "MK", ar.method = "yw")

#Use WAVK test for the H0 of no trend, with m-out-of-n selection of the local window:
notrend_test(U, test = "WAVK", factor.length = "adaptive.selection")
Sample output:
Sieve-bootstrap WAVK trend test
##
##data: U
##WAVK test statistic = 21.654, moving window = 15, p-value < 2.2e-16
##alternative hypothesis: (non-)monotonic trend.
##sample estimates:
##$AR_order
##[1] 1
##
##$AR_coefficients
phi_1
##0.4041848

End(Not run)

purity Clustering Purity

Description

Calculate the purity of the clustering results. For example, see Schaeffer et al. (2016).

Usage

purity(classes, clusters)

purity 37

Arguments

classes a vector with labels of true classes.

clusters a vector with labels of assigned clusters for which purity is to be tested. Should
be of the same length as classes.

Details

Following Manning et al. (2008), each cluster is assigned to the class which is most frequent in the
cluster, then

Purity(Ω, C) =
1

N

∑
k

max
j

|ωk ∩ cj |,

where Ω = {ω1, . . . , ωK} is the set of identified clusters and C = {c1, . . . , cJ} is the set of classes.
That is, within each class j = 1, . . . , J find the size of the most populous cluster from the K − j
unassigned clusters. Then, sum together the min(K,J) sizes found and divide by N , where N =
length(classes) = length(clusters).

If maxj |ωk ∩ cj | is not unique for some j, it is assigned to the class which the second maximum is
the smallest, to maximize the Purity (see ‘Examples’).

The number of unique elements in classes and clusters may differ.

Value

A list with two elements:

pur purity value.

out table with min(K,J) = min(length(unique(classes)),length(unique(clusters)))
rows and the following columns: ClassLabels, ClusterLabels, and ClusterSize.

Author(s)

Vyacheslav Lyubchich

References

Manning CD, Raghavan P, Schutze H (2008). Introduction to Information Retrieval. Cambridge
University Press, New York.

Schaeffer ED, Testa JM, Gel YR, Lyubchich V (2016). “On information criteria for dynamic
spatio-temporal clustering.” In Banerjee A, Ding W, Dy JG, Lyubchich V, Rhines A (eds.), The
6th International Workshop on Climate Informatics: CI2016, 5–8. doi:10.5065/D6K072N6.

Examples

Fix seed for reproducible simulations:
RNGkind(sample.kind = "Rounding") #run this line to have same seed across R versions > R 3.6.0
set.seed(1)

Example 1
#Create some classes and cluster labels:

https://doi.org/10.5065/D6K072N6

38 sync_cluster

classes <- rep(LETTERS[1:3], each = 5)
clusters <- sample(letters[1:5], length(classes), replace = TRUE)

#From the table below:
- cluster 'b' corresponds to class A;
- either of the clusters 'd' and 'e' can correspond to class B,
however, 'e' should be chosen, because cluster 'd' also highly
intersects with Class C. Thus,
- cluster 'd' corresponds to class C.
table(classes, clusters)
clusters
##classes a b c d e
A 0 3 1 0 1
B 1 0 0 2 2
C 1 2 0 2 0

#The function does this choice automatically:
purity(classes, clusters)

#Sample output:
##$pur
##[1] 0.4666667
##
##$out
ClassLabels ClusterLabels ClusterSize
##1 A b 3
##2 B e 2
##3 C d 2

Example 2
#The labels can be also numeric:
classes <- rep(1:5, each = 3)
clusters <- sample(1:3, length(classes), replace = TRUE)
purity(classes, clusters)

sync_cluster Time Series Clustering based on Trend Synchronism

Description

Cluster time series with a common parametric trend using the sync_test function (Lyubchich and
Gel 2016; Ghahari et al. 2017).

Usage

sync_cluster(formula, rate = 1, alpha = 0.05, ...)

sync_cluster 39

Arguments

formula an object of class "formula", specifying the type of common trend for cluster-
ing the time series in a T by N matrix of time series (time series in columns)
which is passed to sync_test. Variable t should be used to specify the form
of the trend, where t is specified within the function automatically as a regular
sequence of length T on the interval (0,1]. See Examples.

rate rate of removal of time series. Default is 1 (i.e., if the hypothesis of synchronism
is rejected one time series is removed at a time to re-test the remaining time
series). Integer values above 1 are treated as the number of time series to be
removed. Values from 0 to 1 are treated as a fraction of the time series to be
removed.

alpha significance level for testing the hypothesis of a common trend (using sync_test)
of the parametric form specified in the formula.

... arguments to be passed to sync_test, for example, number of bootstrap repli-
cations (B).

Details

The sync_cluster function recursively clusters time series having a pre-specified common para-
metric trend until there is no time series left. Starting with the given N time series, the sync_test
function is used to test for a common trend. If the null hypothesis of common trend is not rejected
by sync_test, the time series are grouped (i.e., assigned to a cluster). Otherwise, the time series
with the largest contribution to the test statistics are temporarily removed (the number of time series
to remove depends on the rate of removal), and sync_test is applied again. The contribution to
the test statistic is assessed by the WAVK test statistic calculated for each time series.

Value

A list with the elements:

cluster an integer vector indicating the cluster to which each time series is allocated. A
label '0' is assigned to time series which do not have a common trend with other
time series (that is, all time series labeled with '0' are separate one-element
clusters).

elements a list with names of the time series in each cluster.

The further elements combine results of sync_test for each cluster with at least two elements (that
is, single-element clusters labeled with '0' are excluded):

estimate a list with common parametric trend estimates obtained by sync_test for each
cluster. The length of this list is max(cluster).

pval a list of p-values of sync_test for each cluster. The length of this list is
max(cluster).

statistic a list with values of sync_test test statistic for each cluster. The length of this
list is max(cluster).

ar_order a list of AR filter orders used in sync_test for each time series. The results are
grouped by cluster in the list of length max(cluster).

40 sync_cluster

window_used a list of local windows used in sync_test for each time series. The results are
grouped by cluster in the list of length max(cluster).

all_considered_windows

a list of all windows considered in sync_test and corresponding test results,
for each cluster. The length of this list is max(cluster).

WAVK_obs a list of WAVK test statistics obtained in sync_test for each time series. The
results are grouped by cluster in the list of length max(cluster).

Author(s)

Srishti Vishwakarma, Vyacheslav Lyubchich

References

Ghahari A, Gel YR, Lyubchich V, Chun Y, Uribe D (2017). “On employing multi-resolution
weather data in crop insurance.” In Proceedings of the SIAM International Conference on Data
Mining (SDM17) Workshop on Mining Big Data in Climate and Environment (MBDCE 2017).

Lyubchich V, Gel YR (2016). “A local factor nonparametric test for trend synchronism in mul-
tiple time series.” Journal of Multivariate Analysis, 150, 91–104. doi:10.1016/j.jmva.2016.05.004.

See Also

BICC, DR, sync_test

Examples

Not run:
Simulate 4 autoregressive time series,
3 having a linear trend and 1 without a trend:
set.seed(123)
T = 100 #length of time series
N = 4 #number of time series
X = sapply(1:N, function(x) arima.sim(n = T,

list(order = c(1, 0, 0), ar = c(0.6))))
X[,1] <- 5 * (1:T)/T + X[,1]
plot.ts(X)

Finding clusters with common linear trends:
LinTrend <- sync_cluster(X ~ t)

Sample Output:
##[1] "Cluster labels:"
##[1] 0 1 1 1
##[1] "Number of single-element clusters (labeled with '0'): 1"

plotting the time series of the cluster obtained
for(i in 1:max(LinTrend$cluster)) {

plot.ts(X[, LinTrend$cluster == i],
main = paste("Cluster", i))

}

https://doi.org/10.1016/j.jmva.2016.05.004

sync_test 41

Simulating 7 autoregressive time series,
where first 4 time series have a linear trend added
set.seed(234)
T = 100 #length of time series
a <- sapply(1:4, function(x) -10 + 0.1 * (1:T) +

arima.sim(n = T, list(order = c(1, 0, 0), ar = c(0.6))))
b <- sapply(1:3, function(x) arima.sim(n = T,

list(order = c(1, 0, 0), ar = c(0.6))))
Y <- cbind(a, b)
plot.ts(Y)

Clustering based on linear trend with rate of removal = 2
and confidence level for the synchronism test 90%
LinTrend7 <- sync_cluster(Y ~ t, rate = 2, alpha = 0.1, B = 99)

Sample output:
##[1] "Cluster labels:"
##[1] 1 1 1 0 2 0 2
##[1] "Number of single-element clusters (labeled with '0'): 2"

End(Not run)

sync_test Time Series Trend Synchronicity Test

Description

Nonparametric test for synchronicity of parametric trends in multiple time series (Lyubchich and
Gel 2016). The method tests whether N observed time series exhibit the same trend of some pre-
specified smooth parametric form.

Usage

sync_test(
formula,
B = 1000,
Window = NULL,
q = NULL,
j = NULL,
ar.order = NULL,
ar.method = "HVK",
ic = "BIC"

)

42 sync_test

Arguments

formula an object of class "formula", specifying the form of the common parametric
time trend to be tested in a T by N matrix of time series (time series in columns).
Variable t should be used to specify the form of the trend, where t is specified
within the function as a regular sequence on the interval (0,1]. See ‘Examples’.

B number of bootstrap simulations to obtain empirical critical values. Default is
1000.

Window scalar or N -vector with lengths of the local windows (factors). If only one value
is set, the same Window is applied to each time series. An N -vector gives a
specific window for each time series. If Window is not specified, an automatic
algorithm for optimal window selection is applied as a default option (see ‘De-
tails’).

q scalar from 0 to 1 to define the set of possible windows T*q^j and to auto-
matically select an optimal window for each time series. Default is 3/4. This
argument is ignored if the Window is set by the user.

j numeric vector to define the set of possible windows T*q^j and to automati-
cally select an optimal window for each time series. Default is c(8:11). This
argument is ignored if the Window is set by the user.

ar.order order of the autoregressive filter when ic = "none", or the maximal order for
IC-based filtering. Default is round(10*log10(T)). The ar.order can be a
scalar or N -vector. If scalar, the same ar.order is applied to each time series.
An N -vector specifies a separate ar.order for each time series.

ar.method method of estimating autoregression coefficients. Default "HVK" delivers robust
difference-based estimates by Hall and Van Keilegom (2003). Alternatively,
options of ar function can be used, such as "burg", "ols", "mle", and "yw".

ic information criterion used to select the order of autoregressive filter (AIC of
BIC), considering models of orders p = 0,1,...,ar.order. If ic = "none", the
AR(p) model with p = ar.order is used, without order selection.

Details

Arguments Window, j, and q are used to set windows for the local regression. Current version of
the function assumes two options: (1) user specifies one fixed window for each time series using
the argument Window (if Window is set, j and q are ignored), and (2) user specifies a set of windows
by j and q to apply this set to each time series and to select an optimal window using a heuristic
m-out-of-n subsampling algorithm (Bickel and Sakov 2008). The option of selecting windows
automatically for some of the time series, while for other time series the window is fixed, is not
available yet. If none of these three arguments is set, default j and q are used. Values T*q^j are
mapped to the largest previous integer, then only those greater than 2 are used.

See more details in Lyubchich and Gel (2016) and Lyubchich (2016).

Value

A list of class "htest" containing the following components:

method name of the method.

sync_test 43

data.name name of the data.

statistic value of the test statistic.

p.value p-value of the test.

alternative alternative hypothesis.

estimate list with elements common_trend_estimates, ar_order_used, Window_used,
wavk_obs, and all_considered_windows. The latter is a table with bootstrap
and asymptotic test results for all considered windows, that is, without adaptive
selection of the local window.

Author(s)

Yulia R. Gel, Vyacheslav Lyubchich, Ethan Schaeffer, Xingyu Wang

References

Bickel PJ, Sakov A (2008). “On the choice of m in the m out of n bootstrap and confidence bounds
for extrema.” Statistica Sinica, 18(3), 967–985.

Hall P, Van Keilegom I (2003). “Using difference-based methods for inference in nonparamet-
ric regression with time series errors.” Journal of the Royal Statistical Society, Series B (Statistical
Methodology), 65(2), 443–456. doi:10.1111/14679868.00395.

Lyubchich V (2016). “Detecting time series trends and their synchronization in climate data.”
Intelligence. Innovations. Investments, 12, 132–137.

Lyubchich V, Gel YR (2016). “A local factor nonparametric test for trend synchronism in mul-
tiple time series.” Journal of Multivariate Analysis, 150, 91–104. doi:10.1016/j.jmva.2016.05.004.

See Also

ar, HVK, WAVK, wavk_test

Examples

#Fix seed for reproducible simulations:
set.seed(1)

Simulate two autoregressive time series of length n without trend
#(i.e., with zero or constant trend)
and arrange the series into a matrix:
n <- 200
y1 <- arima.sim(n = n, list(order = c(1, 0, 0), ar = c(0.6)))
y2 <- arima.sim(n = n, list(order = c(1, 0, 0), ar = c(-0.2)))
Y <- cbind(y1, y2)
plot.ts(Y)

#Test H0 of a common linear trend:
Not run:

https://doi.org/10.1111/1467-9868.00395
https://doi.org/10.1016/j.jmva.2016.05.004

44 sync_test

sync_test(Y ~ t, B = 500)

End(Not run)
Sample output:
Nonparametric test for synchronism of parametric trends
##
##data: Y
##Test statistic = -0.0028999, p-value = 0.7
##alternative hypothesis: common trend is not of the form Y ~ t.
##sample estimates:
##$common_trend_estimates
Estimate Std. Error t value Pr(>|t|)
##(Intercept) -0.02472566 0.1014069 -0.2438261 0.8076179
##t 0.04920529 0.1749859 0.2811958 0.7788539
##
##$ar.order_used
y1 y2
##ar.order 1 1
##
##$Window_used
y1 y2
##Window 15 8
##
##$all_considered_windows
Window Statistic p-value Asympt. p-value
8 -0.000384583 0.728 0.9967082
11 -0.024994408 0.860 0.7886005
15 -0.047030164 0.976 0.6138976
20 -0.015078579 0.668 0.8714980
##
##$wavk_obs
##[1] 0.05827148 -0.06117136

Add a time series y3 with a different linear trend and re-apply the test:
y3 <- 1 + 3*((1:n)/n) + arima.sim(n = n, list(order = c(1, 0, 0), ar = c(-0.2)))
Y2 <- cbind(Y, y3)
plot.ts(Y2)
Not run:

sync_test(Y2 ~ t, B = 500)
End(Not run)
Sample output:
Nonparametric test for synchronism of parametric trends
##
##data: Y2
##Test statistic = 0.48579, p-value < 2.2e-16
##alternative hypothesis: common trend is not of the form Y2 ~ t.
##sample estimates:
##$common_trend_estimates
Estimate Std. Error t value Pr(>|t|)
##(Intercept) -0.3632963 0.07932649 -4.57976 8.219360e-06
##t 0.7229777 0.13688429 5.28167 3.356552e-07
##
##$ar.order_used

tails_i 45

Y.y1 Y.y2 y3
##ar.order 1 1 0
##
##$Window_used
Y.y1 Y.y2 y3
##Window 8 11 8
##
##$all_considered_windows
Window Statistic p-value Asympt. p-value
8 0.4930069 0 1.207378e-05
11 0.5637067 0 5.620248e-07
15 0.6369703 0 1.566057e-08
20 0.7431621 0 4.201484e-11
##
##$wavk_obs
##[1] 0.08941797 -0.07985614 0.34672734

#Other hypothesized trend forms can be specified, for example:
Not run:

sync_test(Y ~ 1) #constant trend
sync_test(Y ~ poly(t, 2)) #quadratic trend
sync_test(Y ~ poly(t, 3)) #cubic trend

End(Not run)

tails_i Interval-Based Tails Comparison

Description

Compare right tails of two sample distributions using an interval-based approach (IBA); see Chu et
al. (2015) and Lyubchich and Gel (2017).

Usage

tails_i(x0, x1, d = NULL)

Arguments

x0, x1 vectors of the same length (preferably). Tail in x1 is compared against the tail
in x0.

d a threshold defining the tail. The threshold is the same for both x0 and x1.
Default is quantile(x0, probs = 0.99).

Details

Sturges’ formula is used to calculate the number of intervals (k) for x0 ≥ d, then interval width is
derived. The tails, x0 ≥ d and x1 ≥ d, are divided into intervals. The number of x1-values within
each interval is compared with the number of x0-values within the same interval (this difference is
reported as Nk).

46 tails_q

Value

A list with two elements:

Nk vector that tells how many more x1-values compared with x0-values there are
within each interval.

Ck vector of the intervals’ centers.

Author(s)

Calvin Chu, Yulia R. Gel, Vyacheslav Lyubchich

References

Chu C, Gel YR, Lyubchich V (2015). “Climate change from an insurance perspective: a case study
of Norway.” In Dy JG, Emile-Geay J, Lakshmanan V, Liu Y (eds.), The 5th International Workshop
on Climate Informatics: CI2015.

Lyubchich V, Gel YR (2017). “Can we weather proof our insurance?” Environmetrics, 28(2),
e2433. doi:10.1002/env.2433.

See Also

q.tails

Examples

x0 <- rnorm(1000)
x1 <- rt(1000, 5)
tails_i(x0, x1)

tails_q Quantile-Based Tails Comparison

Description

Compare right tails of two sample distributions using a quantile-based approach (QBA); see Soli-
man et al. (2014), Soliman et al. (2015), and Lyubchich and Gel (2017).

Usage

tails_q(x0, x1, q = 0.99)

https://doi.org/10.1002/env.2433

tails_q 47

Arguments

x0, x1 vectors of the same length (preferably). Tail in x1 is compared against the tail
in x0.

q a quantile defining the right tail for both x0 and x1. Values above the thresholds
quantile(x0, probs = q) and quantile(x1, probs = q) are considered as the
respective right tails.

Details

Sturges’ formula is used to calculate the number of intervals (k) to split the upper 100(1− q)\ (the
right tails). Then, each tail is divided into equally-filled intervals with a quantile step d = (1−q)/k.
Pk reports the difference between corresponding intervals’ centers obtained from x0 and x1.

Value

A list with two elements:

d the step in probabilities for defining the quantiles.

Pk vector of differences of the intervals’ centers.

Author(s)

Vyacheslav Lyubchich, Yulia R. Gel

References

Lyubchich V, Gel YR (2017). “Can we weather proof our insurance?” Environmetrics, 28(2),
e2433. doi:10.1002/env.2433.

Soliman M, Lyubchich V, Gel YR, Naser D, Esterby S (2015). “Evaluating the impact of cli-
mate change on dynamics of house insurance claims.” In Lakshmanan V, Gilleland E, McGovern
A, Tingley M (eds.), Machine Learning and Data Mining Approaches to Climate Science, chapter
16, 175–183. Springer, Switzerland. doi:10.1007/9783319172200_16.

Soliman M, Naser D, Lyubchich V, Gel YR, Esterby S (2014). “Evaluating the impact of climate
change on dynamics of house insurance claims.” In Ebert-Uphoff I (ed.), The 4th International
Workshop on Climate Informatics: CI2014.

See Also

i.tails

Examples

x0 <- rnorm(1000)
x1 <- rt(1000, 5)
tails_q(x0, x1)

https://doi.org/10.1002/env.2433
https://doi.org/10.1007/978-3-319-17220-0_16

48 WAVK

WAVK WAVK Statistic

Description

Statistic for testing the parametric form of a regression function, suggested by Wang et al. (2008).

Usage

WAVK(z, kn = NULL)

Arguments

z filtered univariate time series (see formula (2.1) by Wang and Van Keilegom
2007):

Zi =

Yi+p −
p∑

j=1

ϕ̂j,nYi+p−j

−

f(θ̂, ti+p)−
p∑

j=1

ϕ̂j,nf(θ̂, ti+p−j)

 ,

where Yi is observed time series of length n, θ̂ is an estimator of hypothesized
parametric trend f(θ, t), and ϕ̂p = (ϕ̂1,n, . . . , ϕ̂p,n)

′ are estimated coefficients
of an autoregressive filter of order p. Missing values are not allowed.

kn length of the local window.

Value

A list with following components:

Tn test statistic based on artificial ANOVA and defined by Wang and Van Keilegom
(2007) as a difference of mean square for treatments (MST) and mean square
for errors (MSE):

Tn = MST−MSE =
kn

n− 1

T∑
t=1

(
V t.−V ..

)2

− 1

n(kn − 1)

n∑
t=1

kn∑
j=1

(
Vtj−V t.

)2

,

where {Vt1, . . . , Vtkn
} = {Zj : j ∈ Wt}, Wt is a local window, V t. and V .. are

the mean of the tth group and the grand mean, respectively.

Tns standardized version of Tn according to Theorem 3.1 by Wang and Van Keile-
gom (2007):

Tns =

(
n

kn

) 1
2

Tn

/(
4

3

) 1
2

σ2,

where n is the length and σ2 is the variance of the time series. Robust difference-
based Rice’s estimator (Rice 1984) is used to estimate σ2.

p.value p-value for Tns based on its asymptotic N(0, 1) distribution.

wavk_test 49

Author(s)

Yulia R. Gel, Vyacheslav Lyubchich

References

Rice J (1984). “Bandwidth choice for nonparametric regression.” The Annals of Statistics, 12(4),
1215–1230. doi:10.1214/aos/1176346788.

Wang L, Akritas MG, Van Keilegom I (2008). “An ANOVA-type nonparametric diagnostic test
for heteroscedastic regression models.” Journal of Nonparametric Statistics, 20(5), 365–382.

Wang L, Van Keilegom I (2007). “Nonparametric test for the form of parametric regression with
time series errors.” Statistica Sinica, 17, 369–386.

See Also

wavk_test

Examples

z <- rnorm(300)
WAVK(z, kn = 7)

wavk_test WAVK Trend Test

Description

Nonparametric test to detect (non-)monotonic parametric trends in time series (based on Lyubchich
et al. 2013).

Usage

wavk_test(
formula,
factor.length = c("user.defined", "adaptive.selection"),
Window = NULL,
q = 3/4,
j = c(8:11),
B = 1000,
method = c("boot", "asympt"),
ar.order = NULL,
ar.method = "HVK",
ic = "BIC",
out = FALSE

)

https://doi.org/10.1214/aos/1176346788

50 wavk_test

Arguments

formula an object of class "formula", specifying the form of the parametric time trend
to be tested. Variable t should be used to specify the form, where t is specified
within the function as a regular sequence on the interval (0,1]. See Examples.

factor.length method to define the length of local windows (factors). Default option
"user.defined" allows setting only one value of the argument Window. The
option "adaptive.selection" sets method = "boot" and employs heuristic
m-out-of-n subsampling algorithm (Bickel and Sakov 2008) to select an op-
timal window from the set of possible windows length(x)*q^j whose values
are mapped to the largest previous integer and greater than 2. Vector x is the
time series tested.

Window length of the local window (factor), default is round(0.1*length(x)), where
x is the time series tested. This argument is ignored if
factor.length = "adaptive.selection".

q scalar from 0 to 1 to define the set of possible windows when factor.length =
"adaptive.selection". Default is 3/4. This argument is ignored if
factor.length = "user.defined".

j numeric vector to define the set of possible windows when factor.length =
"adaptive.selection". Default is c(8:11). This argument is ignored if
factor.length = "user.defined".

B number of bootstrap simulations to obtain empirical critical values. Default is
1000.

method method of obtaining critical values: from asymptotical ("asympt") or bootstrap
("boot") distribution. If factor.length = "adaptive.selection" the option
"boot" is used.

ar.order order of the autoregressive model when ic = "none", or the maximal order for
IC-based filtering. Default is round(10*log10(length(x))), where x is the
time series.

ar.method method of estimating autoregression coefficients. Default "HVK" delivers robust
difference-based estimates by Hall and Van Keilegom (2003). Alternatively,
options of ar function can be used, such as "burg", "ols", "mle", and "yw".

ic information criterion used to select the order of autoregressive filter (AIC of
BIC), considering models of orders p = 0,1,...,ar.order. If ic = "none", the
AR(p) model with p = ar.order is used, without order selection.

out logical value indicates whether the full output should be shown. Default is
FALSE.

Details

See more details in Lyubchich and Gel (2016) and Lyubchich (2016).

Value

A list with class "htest" containing the following components:

method name of the method.

wavk_test 51

data.name name of the data.

statistic value of the test statistic.

p.value p-value of the test.

alternative alternative hypothesis.

parameter window that was used.

estimate list with the following elements: estimated trend coefficients; user-defined or IC-
selected AR order; estimated AR coefficients; and, if factor.length = "adaptive.selection",
test results for all considered windows.

Author(s)

Yulia R. Gel, Vyacheslav Lyubchich, Ethan Schaeffer

References

Bickel PJ, Sakov A (2008). “On the choice of m in the m out of n bootstrap and confidence bounds
for extrema.” Statistica Sinica, 18(3), 967–985.

Hall P, Van Keilegom I (2003). “Using difference-based methods for inference in nonparamet-
ric regression with time series errors.” Journal of the Royal Statistical Society, Series B (Statistical
Methodology), 65(2), 443–456. doi:10.1111/14679868.00395.

Lyubchich V (2016). “Detecting time series trends and their synchronization in climate data.”
Intelligence. Innovations. Investments, 12, 132–137.

Lyubchich V, Gel YR (2016). “A local factor nonparametric test for trend synchronism in mul-
tiple time series.” Journal of Multivariate Analysis, 150, 91–104. doi:10.1016/j.jmva.2016.05.004.

Lyubchich V, Gel YR, El-Shaarawi A (2013). “On detecting non-monotonic trends in environ-
mental time series: a fusion of local regression and bootstrap.” Environmetrics, 24(4), 209–226.
doi:10.1002/env.2212.

See Also

ar, HVK, WAVK, sync_test, vignette("trendtests", package = "funtimes")

Examples

Fix seed for reproducible simulations:
set.seed(1)

#Simulate autoregressive time series of length n with smooth quadratic trend:
n <- 100
tsTrend <- 1 + 2*(1:n/n) + 4*(1:n/n)^2
tsNoise <- arima.sim(n = n, list(order = c(2, 0, 0), ar = c(-0.7, -0.1)))
U <- tsTrend + tsNoise
plot.ts(U)

#Test H0 of a linear trend, with m-out-of-n selection of the local window:

https://doi.org/10.1111/1467-9868.00395
https://doi.org/10.1016/j.jmva.2016.05.004
https://doi.org/10.1002/env.2212

52 wavk_test

Not run:
wavk_test(U ~ t, factor.length = "adaptive.selection")

End(Not run)
Sample output:
Trend test by Wang, Akritas, and Van Keilegom (bootstrap p-values)
##
##data: U
##WAVK test statistic = 5.3964, adaptively selected window = 4, p-value < 2.2e-16
##alternative hypothesis: trend is not of the form U ~ t.

#Test H0 of a quadratic trend, with m-out-of-n selection of the local window
#and output of all results:
Not run:

wavk_test(U ~ poly(t, 2), factor.length = "adaptive.selection", out = TRUE)
End(Not run)
Sample output:
Trend test by Wang, Akritas, and Van Keilegom (bootstrap p-values)
##
##data: U
##WAVK test statistic = 0.40083, adaptively selected window = 4, p-value = 0.576
##alternative hypothesis: trend is not of the form U ~ poly(t, 2).
##sample estimates:
##$trend_coefficients
##(Intercept) poly(t, 2)1 poly(t, 2)2
3.408530 17.681422 2.597213
##
##$AR_order
##[1] 1
##
##$AR_coefficients
phi_1
##[1] -0.7406163
##
##$all_considered_windows
Window WAVK-statistic p-value
4 0.40083181 0.576
5 0.06098625 0.760
7 -0.57115451 0.738
10 -1.02982929 0.360

Test H0 of no trend (constant trend) using asymptotic distribution of statistic.
wavk_test(U ~ 1, method = "asympt")
Sample output:
Trend test by Wang, Akritas, and Van Keilegom (asymptotic p-values)
##
##data: U
##WAVK test statistic = 25.999, user-defined window = 10, p-value < 2.2e-16
##alternative hypothesis: trend is not of the form U ~ 1.

Index

∗ causality
causality_pred, 12
causality_predVAR, 15

∗ changepoint
AuePolyReg_test, 6
cumsumCPA_test, 21
GombayCPA_test, 28
mcusum_test, 31

∗ cluster
BICC, 9
CSlideCluster, 20
CWindowCluster, 23
purity, 36
sync_cluster, 38

∗ htest
causality_pred, 12
causality_predVAR, 15
mcusum_test, 31
notrend_test, 34
sync_test, 41
wavk_test, 49

∗ power
beales, 8

∗ sample
beales, 8

∗ synchrony
sync_cluster, 38
sync_test, 41

∗ trend
BICC, 9
CSlideCluster, 20
CWindowCluster, 23
DR, 25
notrend_test, 34
sync_cluster, 38
sync_test, 41
WAVK, 48
wavk_test, 49

∗ ts

ARest, 4
AuePolyReg_test, 6
beales, 8
BICC, 9
causality_pred, 12
causality_predVAR, 15
ccf_boot, 17
CSlideCluster, 20
cumsumCPA_test, 21
CWindowCluster, 23
DR, 25
GombayCPA_test, 28
HVK, 30
mcusum_test, 31
notrend_test, 34
sync_test, 41
tails_i, 45
tails_q, 46
WAVK, 48
wavk_test, 49

ar, 5, 19, 31, 35, 43, 51
ARest, 4, 18, 19, 31, 32
AuePolyReg_test, 6

beales, 8
BICC, 9, 21, 24, 26, 40

causality_pred, 12, 16, 17
causality_predVAR, 13, 14, 15
ccf, 18, 19
ccf_boot, 17
CSlideCluster, 10, 11, 20, 21, 23, 24
cumsumCPA_test, 21
CWindowCluster, 10, 11, 21, 23, 24

dbscan, 26
density, 32
detectCores, 13, 16, 18
DR, 25, 40

53

54 INDEX

extractAIC, 13

formula, 39, 42, 50
funtimes (funtimes-package), 2
funtimes-package, 2

GombayCPA_test, 28

HVK, 5, 19, 30, 35, 43, 51

i.tails, 47

makeCluster, 13, 15, 16, 18
mcusum.test, 7, 22, 29
mcusum_test, 31

notrend_test, 4, 5, 34

purity, 11, 36

q.tails, 46

stopCluster, 13, 16, 18
sync_cluster, 38
sync_test, 4, 5, 38–40, 41, 51

tails_i, 45
tails_q, 46
terrorism, 29

VAR, 16

WAVK, 34, 35, 43, 48, 51
wavk_test, 4, 5, 35, 43, 49, 49

	funtimes-package
	ARest
	AuePolyReg_test
	beales
	BICC
	causality_pred
	causality_predVAR
	ccf_boot
	CSlideCluster
	cumsumCPA_test
	CWindowCluster
	DR
	GombayCPA_test
	HVK
	mcusum_test
	notrend_test
	purity
	sync_cluster
	sync_test
	tails_i
	tails_q
	WAVK
	wavk_test
	Index

