
Package ‘garray’
July 22, 2025

Type Package

Title Generalized Array Arithmetic for Ragged Arrays with Named
Margins

Version 1.1.2

Author Qingsheng Huang

Maintainer Qingsheng Huang <huangqqss@126.com>

Depends R (>= 3.4.0)

Suggests parallel (>= 3.4.0)

Description Organize a so-called ragged array as generalized arrays, which
is simply an array with sub-dimensions denoting the subdivision of
dimensions (grouping of members within dimensions).
By the margins (names of dimensions and sub-dimensions) in generalized
arrays, operators and utility functions provided in this package
automatically match the margins,
doing map-reduce style parallel computation
along margins. Generalized arrays are also cooperative to R's native
functions that work on simple arrays.

License GPL-3

Encoding UTF-8

RoxygenNote 6.1.0

NeedsCompilation no

Repository CRAN

Date/Publication 2018-11-05 19:20:08 UTC

Contents
abind . 2
amap . 3
amult . 4
aperm.garray . 5
areduce . 6

1

2 abind

as.data.frame.garray . 7
awipe . 7
dim.garray . 8
garray . 9
margins . 10
print.garray . 11
psummary . 11
read.ctable . 12
sdim . 13
[.garray . 14
%+% . 15

Index 17

abind Combine generalized arrays

Description

Combine generalized arrays, similar to the manner cbind and rbind work. Put a sequence of gener-
alized arrays and get a single generalized array of the same or one more margins.

Usage

abind(..., margins = character(), along = character())

Arguments

... arrays, or a list of several arrays. Margins of these arrays should be the same.

margins Resulting margins. If includes a totally new margin (not used by any arrays in
...), then along is neglected and the new margin setting along. If no new name
and length(along)==0L, the last margins become along. If 0L==length(margins),
along will become last dimensions of output.

along The dimension along which to bind the arrays. The arrays may have different
lengths along that dimension, and are bind along it, with addition subdimension
’*.bind.from’ indicating the composition of the along dimension. Some arrays
may not have that margin, then the dimension of these arrays expand to 1. If
along is a totally new margin, it is created. In such case, all arrays should have
the same dimension.

Details

Combine sdim correctly. Saving or dropping of subdimensions follow a few rules: subdimensions
of the margin with bound along are dropped; of the other margins are save unless the names of
subdimensions are the same; subdimensions of the same names are dropped except the first one.

amap 3

Examples

a <- garray(1:24, c(4,6),
dimnames=list(X=1:4, Y=letters[1:6]),

sdim=list(XX=c(x1=3,x2=1), YY=c(y1=1,y2=2)))
b <- garray(1:6/10,6,dimnames=list(Y=letters[1:6]))
ab <- abind(a=a, b=b, along="X")
#abind(a, b, margins=c("X","Y")) # Error
ab2 <- abind(a=a, b=b, margins=c("X","Y"), along="X")
aa <- abind(a=a, a=a, along="Z")
ab3 <- abind(a, b, along="X")

amap Mapping matching dimension of arrays with a function

Description

Generalized and smart mapply()/Map()/outer()/sweep() for data mapping. Matching is checked
automatically.

Usage

amap(FUN, ..., MoreArgs = NULL, SIMPLIFY = TRUE, VECTORIZED = NA)

S3 method for class 'garray'
Ops(e1, e2)

Arguments

FUN Known vectorized function is recognized if passed in as character. Other func-
tions will be vectorized by .mapply().

... Arrays with margins (names of dimnames) and maybe with sdim. Orders of their
margins can be different, but the extent along a margin is matched. Unmatched
margins are broadcasting like outer(). Scalar (length 1 vector) do not contribute
margins and not broadcast here (they will broadcast by .mapply() later).

MoreArgs a list of other arguments to ’FUN’, no matching of margins.

SIMPLIFY logical, attempt to reduce the result to exclude recursive structure (no list hier-
achy but plain generalized array).

VECTORIZED Whether FUN is vectorized will affect the behaviours. Some combination of
FUN and VECTORIZED is not simply slowing down, but produces meaningless
results or even stop (e.g., cumsum). TRUE - call FUN once with arrays being
reorganize on dimensions; FALSE - call FUN many times (via .mapply), with
each cell of arrays.

e1, e2 Generalized arrays, being operands.

Value

The dimensions is deduced from inputs.

4 amult

Examples

a <- garray(1:24, c(4,6,2), dimnames=list(X=1:4, Y=letters[1:6], Z=NULL),
sdim=list(XX=c(x1=3,x2=1), YY=c(y1=1,y2=2)))
b <- garray(1:6/10,6,dimnames=list(Y=letters[1:6]))
c <- garray(1:4/100,c(X=4))
d <- garray(1:4/1000,c(Y=4))
e <- garray(1:2/1000,c(X=2))
f <- garray(0,c(Z=2))
g <- garray(0,c(ZZ=2))
m1 <- amap(psummary,c,a,b, 0.0001, VECTORIZED=FALSE)
m2 <- amap(sum, c,a,b, 0.0001, VECTORIZED=FALSE)
m3 <- c+a+b+ 0.0001
n1 <- amap(sum, c,a,b,d, 0.0001, VECTORIZED=FALSE)
n2 <- amap(sum, c,a,b,e, 0.0001, VECTORIZED=FALSE)
n3 <- amap(sum, c,a,b,e,f, 0.0001, VECTORIZED=FALSE)
p1 <- amap(sum, c,a,b,e,f,g,0.0001, VECTORIZED=FALSE)
q1 <- amap(sum, c,a,b,e,f,g,0.0001, SIMPLIFY=FALSE, VECTORIZED=FALSE)
q2 <- amap(c, c,a,b,e,f,g,0.0001, SIMPLIFY=FALSE, VECTORIZED=FALSE)
q3 <- amap(list,c,a,b,e,f,g,0.0001, SIMPLIFY=FALSE, VECTORIZED=FALSE)
m1==m2
m2==m3
m2==aperm(m3, 3:1)

amult Generalized array multiplication.

Description

Default to Einstein summation convention, without explicitly subscripts.

Usage

amult(X, Y, FUN = "*", SUM = "sum", BY = NULL, MoreArgs = NULL,
..., SIMPLIFY = TRUE, VECTORIZED = TRUE)

X %X% Y

Arguments

X, Y Generalized arrays that can be multiplied.

FUN The ’multiply’ function.

SUM The ’reduce’ function.

BY margins excluded from summary by SUM.
MoreArgs, SIMPLIFY, VECTORIZED

Argument used by ’amap()’.

... Argument used by ’areduce()’.

aperm.garray 5

Details

Margins shared by X and Y are parallelly mapped by FUN, and then reduced by SUM (inner product
like %*%); margins in BY and shared by X and Y are simply mapped by FUN but excluded from
reducing (parallel product like *); other margins are extended repeatly (outer product like %o%).
Shared margins not to be mapped have to be renamed (like outer product). For special FUN and
SUM, fast algorithms are implemented.

Examples

a <- garray(1:24, c(4,6), list(X=LETTERS[1:4], Y=letters[1:6]),
sdim=list(XX=c(x1=3,x2=1), YY=c(y1=1,y2=2)))
b <- garray(1:20, c(Z=5, X=4))
c <- garray(1:120, c(X=4,Y=6,Z=5))
m1 <- amult(a, b)
m2 <- amult(a, b, `*`, sum)
m3 <- amult(b, a)
all.equal(m1, m2)
all.equal(m1, m3)
all.equal(m1, t(m3))
n1 <- amult(a, c, `*`, sum)
n2 <- a%X%c
all.equal(n1, n2)
amult(garray(1:5,margins="I"), garray(1:8,margins="J"))
amult(garray(1:8,c(I=2,J=4)), garray(1:9,c(K=3,L=3)))

aperm.garray General array transposition

Description

Restore garray attributes that discarded by aperm.default(). Cannot permute between subdimension
(means to promote subdimension of equal length into regular dim and reduce dim into subdimen-
sion), sorry.

Usage

S3 method for class 'garray'
aperm(a, perm = NULL, ...)

Arguments

a A generalized array to be transposed.

perm Desired margins after permutation, integer or character.

... Useless, potential arguments inherited from the S3 generic.

6 areduce

areduce Generalized and smart apply()/Reduce()/tapply() for data folding.

Description

Generalized and smart apply()/Reduce()/tapply() for data folding.

Usage

areduce(FUN, X, MARGIN, ..., SIMPLIFY = TRUE, SAFE = FALSE)

Arguments

FUN Usually a summary function (like all and sum).

X A garray, with margins (names of dimnames) and maybe with sdim.

MARGIN Some margins of X and names of sdim. MARGIN=character() means to reduce
all margins (over no margin). In such case, areduce() is not needed actually.

... Further arguments to ’FUN’, no matching of margins.

SIMPLIFY TRUE - simplifies the result list to vector of atomic if possible, and triggers
warning and not simplifies if impossible; FALSE - not simplifies for non speed-
up function, and issues warning (and have to simplify) for speed-up function;
NA - simplifies but no warning if impossible.

SAFE TRUE - use safe but slow implementation, in which data splited from the array
are reorganized into small arrays (as are being subset by []) and passed to FUN
(other attributes are dropped, however); FALSE - faster, data are passed to FUN
as dimension-less vectors.

Value

A matrix (similar to return of apply() or tapply()), with the trailing margins the same as MAR-
GIN, while the leading margins depend on FUN and SIMPLIFY. If FUN returns a scalar or SIM-
PLIFY=FALSE, then no leading margins. In MARGIN, subdimension is replaced with superdims.

Examples

a <- garray(1:24, c(4,6),
dimnames=list(X=LETTERS[1:4], Y=letters[1:6]),
sdim=list(XX=c(x1=3,x2=1), YY=c(y1=1,y2=2)))
x1 <- areduce("sum", a, c("X"))
x2 <- areduce(`sum`, a, c("X"))
stopifnot(garray(c(66,72,78,84), margins="X")==x1, x2==x1)
yy1 <- areduce("sum", a, c("YY"))
yy2 <- areduce(`sum`, a, c("YY"))
stopifnot(garray(c(10,68,58,164), margins="Y")==yy1, yy2==yy1)
xyy1 <- areduce("sum", a, c("X","YY"))
xyy2 <- areduce(`sum`, a, c("X","YY"))
stopifnot(xyy1==xyy2)

as.data.frame.garray 7

xxyy1 <- areduce("sum", a, c("XX","YY"))
xxyy2 <- areduce(`sum`, a, c("XX","YY"))
stopifnot(garray(c(6,4,48,20,42,16,120,44), c(X=2,Y=4))==xxyy1)
stopifnot(xxyy2==xxyy1)
b <- garray(1:24, c(3,4,2),
dimnames=list(X=LETTERS[1:3], Y=letters[1:4], Z=NULL),
sdim=list(XX=c(x1=2,x2=1), YY=c(y1=1,y2=1)))
xxyyz1 <- areduce("sum", b, c("XX","YY","Z"))
xxyyz2 <- areduce(`sum`, b, c("XX","YY","Z"))
stopifnot(xxyyz1==xxyyz2)
xyz1 <- areduce(identity, b, c("XX","YY","Z"), SIMPLIFY=FALSE)
xyz2 <- areduce("c", b, c("XX","YY","Z"), SIMPLIFY=FALSE)
xy1 <- areduce(identity, b, c("XX","YY"), SIMPLIFY=FALSE, SAFE=TRUE)
stopifnot(identical(dimnames(xy1[2,3][[1]]), list(X="C",Y="c",Z=NULL)))
garray of lists, cannot use `xyz1==xyz2` etc to compare.

as.data.frame.garray Coerce to a Data Frame

Description

Convert a 2D generalized array into a data.frame, making print() work correctly.

Usage

S3 method for class 'garray'
as.data.frame(x, row.names = NULL, optional = FALSE,
col.names = NULL, ..., stringsAsFactors = FALSE)

Arguments

x A generalized array object.
row.names, optional, stringsAsFactors, ...

See the same arguments in ?as.data.frame.

col.names ’NULL’ or a character vector giving the column names.

awipe Generalized array’s sweep() for data cleaning.

Description

Return a generalized array, by wiping out a summary statistic.

Usage

awipe(X, FUN = "-", STATS = "mean", MARGIN = NULL, MoreArgs = NULL,
..., SIMPLIFY = TRUE, VECTORIZED = NA)

8 dim.garray

Arguments

X A generalized array.
FUN The wiping function.
STATS Numeric array or function.
MARGIN NULL - STATS is an array; character - STATS is a function, and by X being

reduced along MARGIN, X is wiped. Length 0 character vector means reducing
along no margin, resulting in a scalar (in this case, for example, areduce(sum,
X) is the same as sum(X).

MoreArgs, SIMPLIFY, VECTORIZED
Argument used by ’amap()’.

... Argument used by ’areduce()’.

Examples

a <- garray(1:24, c(4,6), list(X=LETTERS[1:4], Y=letters[1:6]),
sdim=list(XX=c(x1=3,x2=1), YY=c(y1=1,y2=2)))
m1 <- awipe(a, MARGIN="XX")
m2 <- awipe(a, `-`, mean, "XX")

dim.garray Dimensions of a generalized array

Description

Retrieve or set the dimension of a generalized array.

Usage

S3 method for class 'garray'
dim(x)

S3 replacement method for class 'garray'
dim(x) <- value

Arguments

x An generalized array.
value An integer (can be coerced from double numeric) vector, with names.

Details

The functions dim and dim<- are internal generic primitive functions. Here dim.garray and
dim<-.garray are methods for ’garray’s, which returns and setting with the named dimensions
(margins). The two function is usually used as, for example, dim(arr) and dim(arr) <- c(A=3,B=2).
Native R saves the names of dim but seldom uses it. However, it is undocumented and not stable
because some functions discard it (like: t()) . This package will totally neglect it but keeps the
margins in dimnames.

garray 9

garray Generalized and smart array

Description

Creates or tests for generalized arrays.

Usage

garray(data, dim = NULL, dimnames = NULL, margins = NULL,
sdim = attr(data, "sdim", exact = TRUE))

garray.array(x, sdim)

as.garray(x, ...)

S3 method for class 'garray'
as.garray(x, ...)

Default S3 method:
as.garray(x, ...)

is.garray(x)

is.garray.duck(x)

is.scalar(x)

Arguments

data Usually a simple array, and can be a vector without dimensions.

dim An integer vector giving the maximal indices in each dimension.

dimnames A list (or it will be ignored) with for each dimension one component, either
‘NULL’ or a character vector.

margins Override the names of dim and of dimnames.

sdim Optional, a named list of numeric vectors indicating the subdivision of some of
the dimensions. The value vill become, after validated, the attribute sdim. See
’Details’ and ’?sdim’.

x An R object.

... Additional arguments to be passed to or from methods.

Details

Generalized arrays are generalized because they handle dimensions and subdimensions that are
ragged; and they are also smart because they automatically match dimensions by margins (names of

10 margins

dimnames). Margins is implemented similar to R’s native class "table", i.e., use names of dimnames
to store the margins

Attribute sdim denotes subdimensions, which are the subdivision of dimensions or grouping of
members of a dimension, for organizing a ragged array. It is a named list of numeric vectors, each
of which indicates the lengths of subdivision groups within a dimension. Every name of the list
prefixed with a margin of the generalized array. By the matching of sdim names and dim names,
utility functions figure out which dimensions the sub dimensions reside in. Sum of a vector of
the list usually equals to the extent of the corresponding dimension. If they are not equal and the
extent can not be divided exactly by the sum, the subdimension is invalid and will be dropped. If
the extent can be divided exactly by the sum, the subdimension is still valid but non-canonical.
Non-canonical subdimension can be provided to garray() and sdim<- as argument, and the two
functions canonicalize it. Other utility functions cannot handle non-canonical subdimension, thus
manually constructing objects of garray class is permitted but dangerous. Values of each vector of
the list denotes the repeating times of subdimension residing in the coresponding dimension (called
superdim). More than 1 subdimension reside in the same superdim is allowed. This feature allows
dividing a subdimension further, organizing the subdims into hierachy.

By definition and for S3 dispatching, class(.)="garray" is required, but simple arrays with
proper margins actually work correctly with most functionalities of this package. For the sake
of compatibility and reducing warning message, is.garray.duck() tests whether the array has
proper margins.

A still problem is that attributes in R are fragile, even indexing will drop most attributes. Utility
functions and methods for dispatching for ’garray’ implemented in this package guaranttee to save
the margins (names of dimnames) and subdimension (attr(*,’sdim’)).

Functions

• garray.array: A simple and faster version of garray(), mainly for internal usage. Note that
garray() is not generic function, thus garray.array() will never be called by dispatching.

• is.garray: is.garray do simple validation, no check for validity of sdim because it is too
expensive. Operation of sdim by this package is always guaranteed the validity.

• is.garray.duck: is.garray.duck do duck-typing validation, ignoring the class
• is.scalar: Test whether the vector or array is actually a scalar (length(x)==1L).

Examples

a1 <- garray(1:27, c(A=3,B=9), sdim=list(AA=c(a=2,b=1),BB=c(a=3)))
a2 <- garray(1:27, c(A=3,B=9), sdim=list(AA=c(a=2,b=1),BB=c(a=4)))

margins The margins and dimensions of a generalized array object

Description

Margins means the names of dimnames of an array. margins<- and remargins are for renaming,
but margins<- ignores the names of value while remargins according to the names of value
renames the margins. Doing so, remargins may also keep sdim. margins<- always removes sdim.
For remargins the length of value can be shorter than that of the margins if the value has names.

print.garray 11

Usage

margins(x)

margins(x) <- value

remargins(x, value)

Arguments

x A generalized array.

value A character vector will become the margins (names of dimnames) of the general-
ized array. margins<- ignores the names of value while remargins according
to the names of value renames the margins. For remargins the length of value
can be shorter than that of the margins if the value has names.

print.garray Print Values

Description

Print out a generalized array and returns it invisibly.

Usage

S3 method for class 'garray'
print(x, ...)

Arguments

x A generalized array object.

... Additional arguments to be passed to or from methods.

psummary Parallel summary, inspired by pmax() and pmin().

Description

Functions of Summary group are all, any, max, min, prod, range, and sum, which reduce a vector
into a scalar (except range), thus the name of psummary(). Of course, other FUN can be passed-
in, but functions like range() that returns a non-scalar vector result in unpredictable return. For
arguments of different size, pmin() and pmax() make fractional recycling and issue warning, but
psummary() error since as.data.frame() do not fractionally recycle.

12 read.ctable

Usage

psummary(...)

S3 method for class 'garray'
psummary(...)

Default S3 method:
psummary(...)

Arguments

... Usually in the form psummary(x, y, z, FUN=sum, na.rm=TRUE), alternaitvely
psummary(list(x, y, z), FUN=sum, na.rm=TRUE).

read.ctable Read a complex table and return array in basic storagemode.

Description

A complex table has several row and colume headers, some of which indicate the hierarchy of the
dimensions (thus the returned array may have more dimensions than row and column), some of
which are real row.names and col.names that will be turn into dimnames, and some of which are
additional attributes. Cells of non-header are all in a same format (like double). The original header
are preserved as attributes. The dimnames strictly save the layout of the matrix, thus row.names
and col.names should be carefully chosen for matching the actual dimension. Sometime aperm() is
needed after this function. Sparse table, where dimnames is not complete (unbalanced) and needs
non-fractionally recycling, is not supported.

Usage

read.ctable(file, header, row.names, col.names, ...,
storagemode = "double")

Arguments

file The name of the file to be read in, see (’file’ in ?read.table).

header hierarchy structure of the header, a list of length 2, assigning the index of row
and col header, affecting parsing of the input table;

row.names, col.names
a list, whose elements can be a character vector assigning the name of one di-
mension directly, or a integer scalar which is the index (icol,irow) of row,col-
header that will be extracted; since the row and the col headers can have hi-
erarchy in the input table and the hierarchy will be organized into addisional
dimensions, rownames indicate the names of dimensions that are from the row
of the input table, while colnames, the col; in the input table, the header can be
in two pattern: AAA and AOO; in the AAA pattern, the names are repeated for

sdim 13

the cells that are in the same index in high dimension, while in the AOO pattern,
the names appear once at the first and the other cells that are in the same in-
dex in high dimension are left blank; in the output array, row,col.names are not
necessary dimnames[[1]] and dimnames[[2]]; if all elements of the list are a
integer scalar, then the list can also be coded as a integer vector (since they are
the same for lapply);

... Further arguments to be passed to ‘read.table’.

storagemode The storagemode of return matrix, usually ’double’.

sdim Subdimensions of an array

Description

Retireve or set the subdimension of an array.

Usage

sdim(x)

sdim(x, warn = TRUE) <- value

Arguments

x A generalized array.

warn Whether issue warning when some of subdimensions are invalid and get dropped.

value A named list of numeric vectors indicating the subdivision of some of the dimen-
sions. The value vill become, after validated, the attribute sdim. See ’?garray’.

Details

Validation of subdimension is expensive because its consistency with dim need checking. Thus
most of functions do not validate it. Operations of subdimension with functions discussed here are
guaranteed to be always keeping the consistency.

Value

The subdimensions (a non-empty list) or NULL

14 [.garray

[.garray Indexing for the garray class

Description

Indexing along margins as usual [.array, and along subdim.

Usage

S3 method for class 'garray'
...[drop=TRUE]
#`[.garray`(..., drop=TRUE)
#x[i]
#x[i,j,...,drop=TRUE]
#x[m]
#x[l]
#x[M=i,N=j,...]

#\method{[}{garray}(...) <- value
#`[<-.garray`(..., value)
#x[i] <- value
#x[i,j,...] <- value
#x[m] <- value
#x[l] <- value
#x[M=i,N=j,...] <- value

Arguments

drop Whether indeces where 1==dim are removed. Different from R’s native [, a
garray will become a garray or scalar, never a vector.

value An array or a scalar.
x A generalized array from which elements are extracted or replaced.
i, j, m, l, M, N, ...

In addition to the native styles (i, j, etc.) accepted by [, can be:
1. a matrix m with column names, which (colnames(m)) is a permutation of

margins of the array.
2. an list l <- list(i,j,...), can be unnamed or named, where NULL means

to select all;
3. arguments with names (M, N, etc), where NULL and missing means to select

all.
These extensions make indexing 3 times slower than native indexing. Since it is
hard to assign MissingArg in list(), at the moment MissingArg is only safe in na-
tive R subsettting style. Using NULL to select all like MissingArg is actually not
consistent in semantic of other uses of NULL. As shown by what c() returns,
NULL is a generalized form of logical(0), integer(0), and character(0),
all of which means to select none when indexing. So take care of NULL if
indexing with variables.

%+% 15

Examples

mm <- matrix(c(1:3,1), 2, 2, dimnames=list(NULL, c("B","A")))
a <- garray(1:27, c(A=3,B=9), sdim=list(AA=c(a=2,b=1),BB=c(a=3)))
b <- a[mm]
c1 <- a[B=1:2,A=NULL]
c2 <- a[B=1:2,A=]
c3 <- a[B=1:2]
c4 <- a[list(B=1:2)]
c5 <- a[list(B=1:2,A=NULL)]
c6 <- a[list(NULL,1:2)]
d1 <- a[,] ; d1[B=1:2,A=NULL] <- c1*10
d2 <- a[,] ; d2[B=1:2,A=] <- c1*10
d3 <- a[,] ; d3[B=1:2] <- c1*10
d4 <- a[,] ; d4[list(B=1:2)] <- c1*10
d5 <- a[,] ; d5[list(B=1:2,A=NULL)] <- c1*10
d6 <- a[,] ; d6[B=1:2,A=NULL] <- 1
d7 <- a[,] ; d7[mm] <- 1000
d8 <- a[,] ; d8[mm] <- 1:2*1000
e1 <- a[AA=1,drop=FALSE]
e11 <- a[AA=c(1,1),drop=FALSE]
e2 <- a[AA="b",drop=FALSE]
ebb <- a[AA=c("b","b"),drop=FALSE]
e3 <- a[,] ; e3[AA="b"] <- e2*10
e33 <- a[,] ; e33[AA=c("b","b")] <- c(e2*0.1, e2*100)
Work in the same manner of `e33[c(3,3),] <- c(e2*0.1, e2*100)`.
e4 <- a[A=c(TRUE,FALSE,FALSE),drop=FALSE]
e5 <- a[A=TRUE,drop=FALSE]
e6 <- a[B=c(TRUE,FALSE,FALSE),drop=FALSE]
e7 <- a[AA=TRUE,drop=FALSE]
e8 <- a[AA=c(TRUE,FALSE),drop=FALSE]

%+% Function composition operator

Description

Composite functions a and b into a(b(...)).

Usage

a %+% b

Arguments

a A function that can be called with one argument.

b A function that can be called with one or more argument, and result of b() can
be passed to a().

16 %+%

Value

A new function, whose arguments are what b() can accept, and whose result is what a() can return.

Examples

lse <- log%+%sum%+%exp
lse(1:10)
#logsumexp(1:10) # actual logsumexp() is more sophistic
log(sum(exp(1:10)))
sum <- sd
lse(1:10) # lse() is fixed at definition
log(sum(exp(1:10)))
(log%+%sum%+%exp)(1:10) # now is (log%+%sd%+%exp)

Index

[([.garray), 14
[.garray, 14
[<- ([.garray), 14
%X% (amult), 4
%+%, 15

abind, 2
amap, 3
amult, 4
aperm.garray, 5
areduce, 6
as.data.frame.garray, 7
as.garray (garray), 9
awipe, 7

dim (dim.garray), 8
dim.garray, 8
dim<- (dim.garray), 8

garray, 9

is.garray (garray), 9
is.scalar (garray), 9

margins, 10
margins<- (margins), 10

Ops.garray (amap), 3

print.garray, 11
psummary, 11

read.ctable, 12
remargins (margins), 10

sdim, 13
sdim<- (sdim), 13

17

	abind
	amap
	amult
	aperm.garray
	areduce
	as.data.frame.garray
	awipe
	dim.garray
	garray
	margins
	print.garray
	psummary
	read.ctable
	sdim
	[.garray
	+
	Index

