Package 'gesso'

July 22, 2025

Title Hierarchical GxE Interactions in a Regularized Regression Model

Type Package

Version 1.0.2

Date 2021-11-28
Author Natalia Zemlianskaia
Maintainer Natalia Zemlianskaia <natasha.zemlianskaia@gmail.com></natasha.zemlianskaia@gmail.com>
Description The method focuses on a single environmental exposure and induces a main-effect-before-interaction hierarchical structure for the joint selection of interaction terms in a regularized regression model. For details see Zemlianskaia et al. (2021) <doi:10.48550 arxiv.2103.13510="">.</doi:10.48550>
License MIT + file LICENSE
Imports Rcpp (>= 1.0.3), Matrix, bigmemory, methods
Depends dplyr, R (>= 3.5)
Suggests glmnet, testthat, knitr, rmarkdown, ggplot2
LinkingTo Rcpp, RcppEigen, RcppThread, BH, bigmemory
VignetteBuilder knitr
NeedsCompilation yes
Repository CRAN
Date/Publication 2021-11-30 07:30:02 UTC
Contents
gesso-package data.gen gesso.coef gesso.coefnum gesso.cv gesso.fit gesso.predict selection.metrics
Index 12

2 data.gen

gesso-package

Hierarchical GxE Interactions in a Regularized Regression Model

Description

The method focuses on a single environmental exposure and induces a main-effect-before-interaction hierarchical structure for the joint selection of interaction terms in a regularized regression model. For details see Zemlianskaia et al. (2021) <arxiv:2103.13510>.

Author(s)

Natalia Zemlianskaia

Maintainer: Natalia Zemlianskaia <natasha.zemlianskaia@gmail.com>

References

"A Scalable Hierarchical Lasso for Gene-Environment Interactions", Natalia Zemlianskaia, W.James Gauderman, Juan Pablo Lewinger https://arxiv.org/abs/2103.13510

data.gen

Data Generation

Description

Generates genotypes data matrix G (sample_size by p), vector of environmental measurments E, and an outcome vector Y of size sample_size. Simulates training, validation, and test datasets.

Usage

```
data.gen(sample_size = 100, p = 20, n_g_non_zero = 15, n_gxe_non_zero = 10,
    family = "gaussian", mode = "strong_hierarchical",
    normalize = FALSE, normalize_response = FALSE,
    seed = 1, pG = 0.2, pE = 0.3,
    n_confounders = NULL)
```

Arguments

```
sample_size sample size of the data

p total number of main effects

n_g_non_zero number of non-zero main effects to generate

n_gxe_non_zero number of non-zero interaction effects to generate

family "gaussian" for continous outcome Y and "binomial" for binary 0/1 outcome
```

data.gen 3

mode either "strong_hierarchical", "hierarchical", or "anti_hierarchical". In the strong

hierarchical mode the hierarchical structure is maintained (beta_g = 0 then beta_gxe = 0) and also |beta_g| >= |beta_gxe|. In the hierarchical mode the hierarchical structure is maintained, but |beta_G| < |beta_gxe|. In the anti_hierarchical mode the hierarchical structure is violated (beta_g = 0 then beta_gxe != 0).

normalize TRUE to normalize matrix G and vector E

normalize_response

TRUE to normalize vector Y

pG genotypes prevalence, value from 0 to 1 pE environment prevalence, value from 0 to 1

seed random seed

Value

A list of simulated datasets and generating coefficients

G_train, G_valid, G_test

generated genotypes matrices

E_train, E_valid, E_test

generated vectors of environmental values

Y_train, Y_valid, Y_test

generated outcome vectors

C_train, C_valid, C_test

generated confounders matrices

GxE_train, GxE_valid, GxE_test

generated GxE matrix

Beta_G main effect coefficients vector
Beta_GxE interaction coefficients vector
beta_0 intercept coefficient value
beta_E environment coefficient value
Beta_C confounders coefficient values

index_beta_non_zero, index_beta_gxe_non_zero, index_beta_zero,

index_beta_gxe_zero

inner data generation variables

n_g_non_zero number of non-zero main effects generated n_gxe_non_zero number of non-zero interactions generated

n_total_non_zero

total number of non-zero variables

SNR_g signal-to-noise ratio for the main effects SNR_gxe signal-to-noise ratio for the interactions

family, p, sample_size, mode, seed

input simulation parameters

4 gesso.coef

Examples

```
data = data.gen(sample_size=100, p=100)
G = data$G_train; GxE = data$GxE_train
E = data$E_train; Y = data$Y_train
```

gesso.coef

Get model coefficients

Description

A function to obtain coefficients from the model fit object corresponding to the desired pair of tuning parameters lambda = (lambda_1, lambda_2).

Usage

```
gesso.coef(fit, lambda)
```

Arguments

fit model fit object obtained either by using function gesso.fit or gesso.cv

lambda a pair of tuning parameters organized in a tibble (ex: lambda = tibble(lambda_1=grid[1], lambda_2=grid[1]))

Value

A list of model coefficients corresponding to lambda values of tuning parameters

beta_0	estimated intercept value
beta_e	estimated environmental coefficient value
beta_g	a vector of estimated main effect coefficients
beta_c	a vector of estimated confounders coefficients
beta_gxe	a vector of estimated interaction coefficients

Examples

gesso.coefnum 5

gesso.coetnum Get model coefficients with specified number of non-zero interactions	gesso.coefnum	Get model coefficients with specified number of non-zero interactions
---	---------------	---

Description

A function to obtain coefficients with target_b_gxe_non_zero specified to control the desired sparsity of interactions in the model.

Usage

```
gesso.coefnum(cv_model, target_b_gxe_non_zero, less_than = TRUE)
```

Arguments

cv_model cross-validated model fit object obtained by using function gesso.cv
target_b_gxe_non_zero
number of non-zero interactions we want to inlcude in the model

1 TRUE if we want to control a number of *at most* non-zero interactions, FALSE if

we want to control a number of at least non-zero interactions

Value

A list of model coefficients corresponding to the best model that contains at most or at least target_b_gxe_non_zero non-zero interaction terms.

The target model is selected based on the averaged cross-validation (cv) results: for each pair of parameters lambda=(lambda_1, lambda_2) in the grid and each cv fold we obtain a number of non-zero estimated interaction terms, then average cv results by lambda and choose the tuning parameters corresponding to the minimum average cv loss that have *at most* or *at least* target_b_gxe_non_zero non-zero interaction terms. Returned coefficients are obtained by fitting the model on the full data with the selected tuning parameters.

Note that the number of estimated non-zero interactions will only approximately reflect the numbers obtained on cv datasets.

beta_0 estimated intercept value

beta_e estimated environmental coefficient value

beta_g a vector of estimated main effect coefficients

beta_gxe a vector of estimated interaction coefficients

beta_c a vector of estimated confounders coefficients

Examples

```
data = data.gen()
model = gesso.cv(data$G_train, data$E_train, data$Y_train)
model_coefficients = gesso.coefnum(model, 5)
gxe_coefficients = model_coefficients$beta_gxe; sum(gxe_coefficients!=0)
```

6 gesso.cv

gesso.cv	Cross-Validation
----------	------------------

Description

Performs nfolds-fold cross-validation to tune hyperparmeters lambda_1 and lambda_2 for the gesso model.

Usage

Arguments

G	matrix of main effects of size n x p, variables organized by columns
E	vector of environmental measurments
Υ	outcome vector. Set family="gaussian" for the continuous outcome and family="binomial" for the binary outcome with $0/1$ levels
С	matrix of confounders of size n x m, variables organized by columns
normalize normalize_respo	TRUE to normalize matrix G and vector E
	TRUE to normalize vector Y (for family="gaussian")
grid	grid sequence for tuning hyperparameters, we use the same grid for lambda_1 and lambda_2
grid_size	specify grid_size to generate grid automatically. Grid is generated by calculating max_lambda from the data (smallest lambda such that all the coefficients are zero). min_lambda is calculated as a product of max_lambda and grid_min_ratio. The program then generates grid_size values equidistant on the log10 scale from min_lambda to max_lambda
<pre>grid_min_ratio</pre>	parameter to determine min_lambda (smallest value for the grid of lambdas), default is 0.1 for $p > n$, 0.01 otherwise
alpha	if NULL independent 2D grid is used for (lambda_1, lambda_2), else 1D grid is used where lambda_2 = alpha * lambda_1, i.e. (lambda_1, alpha * lambda_1)
family	"gaussian" for continuous outcome and "binomial" for binary
type_measure	loss to use for cross-validation. Specity type_measure="loss" for neative log likelihood or type_measure="auc" for AUC (for family="binomial" only)
fold_ids	option to input custom folds assignments
tolerance	tolerance for the dual gap convergence criterion
max_iterations	maximum number of iterations

gesso.fit 7

min_working_set_size

minimum size of the working set

nfolds number of cross-validation splits

parallel TRUE to enable parallel cross-validation

seed set random seed to control random folds assignments

verbose TRUE to print messages

Value

A list of objects

cv_result

a tibble with cross-validation results: averaged across folds loss and the number of non-zero coefficients for each value of (lambda_1, lambda_2) path. Could be used for custom parameters tuning (ex: select (lambda_1, lambda_2) with a sertain number of non-zero main effects and/or a sertain number of interactions).

- mean_loss averaged across folds loss value, vector of size lambda_1*lambda_2
- mean_beta_g_nonzero averaged across folds number of non-zero main effects, vector of size lambda_1*lambda_2
- mean_beta_gxe_nonzero averaged across folds number of non-zero interactions, vector of size lambda_1*lambda_2
- lambda_1 lambda_1 pass, decreasing
- lambda_2 lambda_2 pass, oscillating

lambda_min

a tibble of optimal (lambda $_1$, lambda $_2$) values, tuning parameter values that

give minimum cross-validation loss (mean_loss)

fit list, return of the function gesso.fit on the full data grid vector of values used for hyperparameters tuning

full_cv_result inner variables

Examples

gesso.fit

gesso fit

Description

Fits gesso model over the two dimentional grid of hyperparameters lambda_1 and lambda_2, returns estimated coefficients for each pair of hyperparameters.

8 gesso.fit

Usage

Arguments

G matrix of main effects of size n x p, variables organized by columns

E vector of environmental measurments

Y outcome vector. Set family="gaussian" for the continuous outcome and family="binomial"

for the binary outcome with 0/1 levels

C matrix of confounders of size n x m, variables organized by columns

normalize TRUE to normalize matrix G and vector E

normalize_response

TRUE to normalize vector Y

grid grid sequence for tuning hyperparameters, we use the same grid for lambda_1

and lambda_2

grid_size specify grid_size to generate grid automatically. Grid is generated by cal-

culating max_lambda from the data (smallest lambda such that all the coefficients are zero). min_lambda is calculated as a product of max_lambda and grid_min_ratio. The program then generates grid_size values equidistant

on the log10 scale from min_lambda to max_lambda

grid_min_ratio parameter to determine min_lambda (smallest value for the grid of lambdas),

default is 0.1 for p > n, 0.01 otherwise

alpha if NULL independent 2D grid is used for (lambda_1, lambda_2), else 1D grid is

used where lambda_2 = alpha * lambda_1, i.e. (lambda_1, alpha * lambda_1)

family "gaussian" for continuous outcome and "binomial" for binary

tolerance tolerance for the dual gap convergence criterion

max_iterations maximum number of iterations

min_working_set_size

minimum size of the working set

weights inner fitting parameter verbose TRUE to print messages

Value

A list of estimated coefficients and other model fit metrics for each pair of hyperparameters (lambda_1, lambda_2)

beta_0 vector of estimated intercept values of size lambda_1*lambda_2

beta_e vector of estimated environment coefficients of size lambda_1*lambda_2

gesso.predict 9

beta_g	matrix of estimated main effects coefficients organized by rows, size (lambda_1*lambda_2) by p
beta_gxe	matrix of estimated interactions coefficients organized by rows, size (lambda_1*lambda_2) by p
beta_c	matrix of estimated confounders coefficients organized by rows, size (lambda $_1*lambda_2$) by m, where m is the number of confounders
num_iterations	number of iterations until convergence for each fit
working_set_size	
	maximum number of variables in the working set for each fit
has_converged	1 if the model converged within given max_iterations, 0 otherwise
objective_value	
	objective function (loss) value for each fit
beta_g_nonzero	number of estimated non-zero main effects for each fit
beta_gxe_nonzero	
	number of estimated non-zero interactions for each fit
lambda_1	lambda_1 path values, decreasing
lambda_2	lambda_2 path values, oscillating
grid	vector of values used for hyperparameters tuning

Examples

gesso.predict

Predict new outcome vector

Description

Predict new outcome vector based on the new data and estimated model coefficients.

Usage

10 selection.metrics

Arguments

beta_0	estimated intercept value
beta_e	estimated environmental coefficient value
beta_g	a vector of estimated main effect coefficients
beta_gxe	a vector of estimated interaction coefficients
new_G	matrix of main effects, variables organized by columns
new_E	vector of environmental measurments
beta_c	a vector of estimated confounders coefficients
new_C	matrix of confounders, variables organized by columns
family	set family="gaussian" for the continuous outcome and family="binomial" for the binary outcome with 0/1 levels

Value

Returns a vector of predicted values

Examples

```
data = data.gen()
tune_model = gesso.cv(data$G_train, data$E_train, data$Y_train)
coefficients = gesso.coef(tune_model$fit, tune_model$lambda_min)
beta_0 = coefficients$beta_0; beta_e = coefficients$beta_e
beta_g = coefficients$beta_g; beta_gxe = coefficients$beta_gxe

new_G = data$G_test; new_E = data$E_test
new_Y = gesso.predict(beta_0, beta_e, beta_g, beta_gxe, new_G, new_E)
cor(new_Y, data$Y_test)^2
```

selection.metrics

Selection metrics

Description

Calculates principal selection metrics for the binary zero/non-zero classification problem (sensitivity, specificity, precision, auc).

Usage

```
selection.metrics(true_b_g, true_b_gxe, estimated_b_g, estimated_b_gxe)
```

Arguments

```
true_b_g vector of true main effect coefficients
true_b_gxe vector of true interaction coefficients
estimated_b_g vector of estimated main effect coefficients
estimated_b_gxe
vector of estimated interaction coefficients
```

selection.metrics 11

Value

A list of principal selection metrics

tions

number of non-zero main effects b_g_non_zero b_gxe_non_zero number of non-zero interactions mean squared error for estimation of main effects effect sizes mse_b_g mse_b_gxe mean squared error for estimation of interactions effect sizes sensitivity_g recall of the non-zero main effects specificity_g recall of the zero main effects precision_g precision with respect to non-zero main effects sensitivity_gxe recall of the non-zero interactions specificity_gxe recall of the zero interactions precision_gxe precision with respect to non-zero interactions area under the curve for zero/non-zero binary classification problem for main auc_g auc_gxe area under the curve for zero/non-zero binary classification problem for interac-

Examples

```
data = data.gen()
model = gesso.cv(data$G_train, data$E_train, data$Y_train)
gxe_coefficients = gesso.coef(model$fit, model$lambda_min)$beta_gxe
g_coefficients = gesso.coef(model$fit, model$lambda_min)$beta_g
selection.metrics(data$Beta_G, data$Beta_GxE, g_coefficients, gxe_coefficients)
```

Index

```
* package
    gesso-package, 2

data.gen, 2

gesso (gesso-package), 2
gesso-package, 2
gesso.coef, 4
gesso.coefnum, 5
gesso.cv, 6
gesso.fit, 7
gesso.predict, 9

selection.metrics, 10
```