Package 'ggmcmc'

July 22, 2025

Title Tools for Analyzing MCMC Simulations from Bayesian Inference

Description Tools for assessing and diagnosing convergence of Markov Chain Monte Carlo simulations, as well as for graphically display results from full MCMC analysis. The package also facilitates the graphical interpretation of models by providing flexible functions to plot the results against observed variables, and functions to work with hierarchical/multilevel batches of parameters (Fernández-i-Marín, 2016 <doi:10.18637/jss.v070.i09>).

Version 1.5.1.1

Depends R (>= 3.5), dplyr (>= 1.0.0), tidyr (>= 1.1.0), ggplot2

Imports GGally (>= 1.1.0)

Suggests coda, knitr, rmarkdown, ggthemes, gridExtra, Cairo, extrafont

License GPL-2

URL http://xavier-fim.net/packages/ggmcmc/,
 https://github.com/xfim/ggmcmc/

BugReports https://github.com/xfim/ggmcmc/issues/

Encoding UTF-8

Collate 'data.R' 'functions.R' 'ggmcmc.R' 'ggs.R' 'ggs_Rhat.R'
 'ggs_autocorrelation.R' 'ggs_caterpillar.R'
 'ggs_compare_partial.R' 'ggs_crosscorrelation.R'
 'ggs_density.R' 'ggs_effective.R' 'ggs_geweke.R'
 'ggs_diagnostics.R' 'ggs_grb.R' 'ggs_histogram.R' 'ggs_pairs.R'
 'ggs_pcp.R' 'ggs_ppmean.R' 'ggs_ppsd.R' 'ggs_rocplot.R'
 'ggs_running.R' 'ggs_separation.R' 'ggs_traceplot.R'
 'globals.R' 'help.R'

RoxygenNote 7.1.1

VignetteBuilder knitr

NeedsCompilation no

Author Xavier Fernández i Marín [aut, cre] (ORCID: https://orcid.org/0000-0002-9522-8870)

2 Contents

 $\textbf{Maintainer} \ \ Xavier \ Fern\'andez \ i \ Mar\'an < \texttt{xavier.fim@gmail.com} >$

Repository CRAN

Date/Publication 2021-02-10 10:50:10 UTC

Contents

Index

ac	3
binary	3
calc_bin	4
ci	5
custom.sort	5
get_family	ϵ
ggmcmc	ϵ
ggs	8
ggs_autocorrelation	10
ggs_caterpillar	11
ggs_chain	12
ggs_compare_partial	13
ggs_crosscorrelation	14
ggs_density	15
ggs_diagnostics	16
ggs_effective	17
ggs_geweke	19
ggs_grb	20
ggs_histogram	21
ggs_pairs	
ggs_pcp	
ggs_ppmean	
ggs_ppsd	25
ggs_Rhat	
ggs_rocplot	
ggs_running	28
ggs_separation	29
ggs_traceplot	
gl_unq	
linear	
plab	
radon	
roc_calc	
S	35
s.binary	
s.y.rep	
sde0f	
у	37
y.binary	38

39

ac 3

Description

Calculate the autocorrelation of a single chain, for a specified amount of lags.

Usage

```
ac(x, nLags)
```

Arguments

x Vector with a chain of simulated values.

nLags Numerical value with the maximum number of lags to take into account.

Value

A matrix with the autocorrelations of every chain.

References

Fernández-i-Marín, Xavier (2016) ggmcmc: Analysis of MCMC Samples and Bayesian Inference. Journal of Statistical Software, 70(9), 1-20. doi:10.18637/jss.v070.i09 Internal function used by ggs_autocorrelation.

Examples

```
# Calculate the autocorrelation of a simple vector
ac(cumsum(rnorm(10))/10, nLags=4)
```

binary

Simulated data for a binary logistic regression and its MCMC samples

Description

Simulate a dataset with one explanatory variable and one binary outcome variable using ($y \sim dbern(mu)$; logit(mu) = theta[1] + theta[2] * X). The data loads two objects: the observed y values and the coda object containing simulated values from the posterior distribution of the intercept and slope of a logistic regression. The purpose of the dataset is only to show the possibilities of the ggmcmc package.

Usage

```
data(binary)
```

4 calc_bin

Format

Two objects, namely:

s.binary A coda object containing posterior distributions of the intercept (theta[1]) and slope (theta[2]) of a logistic regression with simulated data.

y.binary A numeric vector containing the observed values of the outcome in the binary regression with simulated data.

Source

Simulated data for ggmcmc

Examples

```
data(binary)
str(s.binary)
str(y.binary)
table(y.binary)
```

calc_bin

Calculate binwidths by parameter, based on the total number of bins.

Description

Compute the minimal elements to recreate a histogram manually by defining the total number of bins.

Usage

```
calc_bin(x, bins = bins)
```

Arguments

x any vector or variable

bins the number of requested bins

Details

Internal function to compute the minimal elements to recreate a histogram manually by defining the total number of bins, used by ggs_histogram ggs_ppmean and ggs_ppsd.

Value

A data frame with the x location, the width of the bars and the number of observations at each x location.

ci 5

ci

Calculate Credible Intervals (wide and narrow).

Description

Generate a data frame with the limits of two credible intervals. Function used by ggs_caterpillar. "low" and "high" refer to the wide interval, whereas "Low" and "High" refer to the narrow interval. "median" is self-explanatory and is used to draw a dot in caterpillar plots. The data frame generated is of wide format, suitable for ggplot2::geom_segment().

Usage

```
ci(D, thick_ci = c(0.05, 0.95), thin_ci = c(0.025, 0.975))
```

Arguments

D	Data	frame	whith	the	simulations.

thick_ci Vector of length 2 with the quantiles of the thick band for the credible interval thin_ci Vector of length 2 with the quantiles of the thin band for the credible interval

Value

A data frame tibble with the Parameter names and 5 variables with the limits of the credibal intervals (thin and thick), ready to be used to produce caterpillar plots.

Examples

```
data(linear)
ci(ggs(s))
```

custom.sort

Auxiliary function that sorts Parameter names taking into account numeric values

Description

Auxiliary function that sorts Parameter names taking into account numeric values

Usage

```
custom.sort(x)
```

Arguments

Χ

a character vector to which we want to sort elements

6 ggmcmc

Value

X a character vector sorted with family parametrs first and then numeric values

get_family	Subset a ggs object to get only the parameters with a given regular expression.

Description

Internal function used by the graphical functions to get only some of the parameters that follow a given regular expression.

Usage

```
get_family(D, family = NA)
```

Arguments

D Data frame with the data arranged and ready to be used by the rest of the ggm-

cmc functions. The dataframe has four columns, namely: Iteration, Parameter, value and Chain, and six attributes: nChains, nParameters, nIterations, nBurnin,

nThin and description.

family Name of the family of parameters to plot, as given by a character vector or a

regular expression. A family of parameters is considered to be any group of parameters with the same name but different numerical value between square

brackets (as beta[1], beta[2], etc).

Value

D Data frame that is a subset of the given D dataset.

ggmcmc	Wrapper function that creates a single pdf file with all plots that ggm-cmc can produce.

Description

ggmcmc() is simply a wrapper function that generates a pdf file with all the potential plots that the package can produce.

ggmcmc is a tool for assessing and diagnosing convergence of Markov Chain Monte Carlo simulations, as well as for graphically display results from full MCMC analysis. The package also facilitates the graphical interpretation of models by providing flexible functions to plot the results against observed variables.

ggmcmc 7

Usage

```
ggmcmc(
   D,
   file = "ggmcmc-output.pdf",
   family = NA,
   plot = NULL,
   param_page = 5,
   width = 7,
   height = 10,
   simplify_traceplot = NULL,
   dev_type_html = "png",
   ...
)
```

Arguments

D	Data frame v	whith the s	simulations,	previously	arranged using	ggs

file Character vector with the name of the file to create. Defaults to "ggmcmcoutput.pdf". When NULL, no pdf device is opened or closed. This allows the user to work with an opened pdf (or other) device. When the file has an html file extension the output is an Rmarkdown report with the figures embedded in the

html file.

family Name of the family of parameters to plot, as given by a character vector or a

regular expression. A family of parameters is considered to be any group of parameters with the same name but different numerical value between square

brackets (as beta[1], beta[2], etc).

plot character vector containing the names of the desired plots. By default (NULL),

ggmcmc() plots ggs_histogram(), ggs_density(), ggs_traceplot(), ggs_running(),
ggs_compare_partial(), ggs_autocorrelation(), ggs_crosscorrelation(),

ggs_Rhat(), ggs_grb(), ggs_effective(), ggs_geweke() and ggs_caterpillar().

param_page Numerical, number of parameters to plot for each page. Defaults to 5.

width Width of the pdf display, in inches. Defaults to 7. height Height of the pdf display, in inches. Defaults to 10.

simplify_traceplot

Numerical. A percentage of iterations to keep in the time series. It is an option intended only for the purpose of saving time and resources when doing traceplots. It is not a thin operation, because it is not regular. It must be used with

care.

dev_type_html Character. Character vector indicating the type of graphical device for the html

output. By default, png. See RMarkdown.

. . . Other options passed to the pdf device.

Details

Notice that caterpillar plots are only created when there are multiple parameters within the same family. A family of parameters is considered to be all parameters that have the same name (usually the same greek letter) but different number within square brackets (such as alpha[1], alpha[2], ...).

8 ggs

References

```
http://xavier-fim.net/packages/ggmcmc/.
```

Examples

```
## Not run:
data(linear)
ggmcmc(ggs(s)) # Directly from a coda object
## End(Not run)
```

ggs

Import MCMC samples into a ggs object than can be used by all ggs_* graphical functions.

Description

This function manages MCMC samples from different sources (JAGS, MCMCpack, STAN -both via rstan and via csv files-) and converts them into a data frame tibble. The resulting data frame has four columns (Iteration, Chain, Parameter, value) and six attributes (nChains, nParameters, nIterations, nBurnin, nThin and description). The ggs object returned is then used as the input of the ggs_* functions to actually plot the different convergence diagnostics.

Usage

```
ggs(
   S,
   family = NA,
   description = NA,
   burnin = TRUE,
   par_labels = NA,
   sort = TRUE,
   keep_original_order = FALSE,
   splitting = FALSE,
   inc_warmup = FALSE,
   stan_include_auxiliar = FALSE)
```

Arguments

S

Either a mcmc.list object with samples from JAGS, a mcmc object with samples from MCMCpack, a stanreg object with samples from rstanarm, a brmsfit object with samples from brms, a stanfit object with samples from rstan, or a list with the filenames of csv files generated by stan outside rstan (where the order of the files is assumed to be the order of the chains). ggmcmc guesses what is the original object and tries to import it accordingly. rstan is not expected to be in CRAN soon, and so coda::mcmc is used to extract stan samples instead of the more canonical rstan::extract.

9 ggs

family Name of the family of parameters to process, as given by a character vector or

> a regular expression. A family of parameters is considered to be any group of parameters with the same name but different numerical value between square

brackets (as beta[1], beta[2], etc).

description Character vector giving a short descriptive text that identifies the model.

burnin Logical or numerical value. When logical and TRUE (the default), the number

of samples in the burnin period will be taken into account, if it can be guessed by the extracting process. Otherwise, iterations will start counting from 1. If a numerical vector is given, the user then supplies the length of the burnin period.

data frame with two colums. One named "Parameter" with the same names of the parameters of the model. Another named "Label" with the label of the parameter. When missing, the names passed to the model are used for representation. When there is no correspondence between a Parameter and a Label, the original name of the parameter is used. The order of the levels of the original

Parameter does not change.

sort Logical. When TRUE (the default), parameters are sorted first by family name

and then by numerical value.

keep_original_order

par_labels

Logical. When TRUE, parameters are sorted using the original order provided

by the source software. Defaults to FALSE.

splitting Logical. When TRUE, use the approach suggested by Gelman, Carlin, Stern,

Dunson, Vehtari and Rubin (2014) Bayesian Data Analysis. 3rd edition. This implies splitting the sequences (original chains) in half, and treat each half as a different Chain, therefore effectively doubling the number of chains. In this case, the first half of Chain 1 is still Chain 1, but the second half is turned into Chain 2, and the first half of Chain 2 into Chain 3, and so on. Defaults to

FALSE.

Logical. When dealing with stanfit objects from rstan, logical value whether the inc_warmup

warmup samples are included. Defaults to FALSE.

stan_include_auxiliar

Logical value to include "lp__" parameter in rstan, and "lp__", "treedepth__" and "stepsize__" in stan running without rstan. Defaults to FALSE.

Value

D A data frame tibble with the data arranged and ready to be used by the rest of the ggmcmc functions. The data frame has four columns, namely: Iteration, Chain, Parameter and value, and six attributes: nChains, nParameters, nIterations, nBurnin, nThin and description. A data frame tibble is a wrapper to a local data frame, behaves like a data frame and its advantage is related to printing, which is compact. For more details, see as_tibble() in package dplyr.

References

Fernández-i-Marín, Xavier (2016) ggmcmc: Analysis of MCMC Samples and Bayesian Inference. Journal of Statistical Software, 70(9), 1-20. doi:10.18637/jss.v070.i09

Gelman, Carlin, Stern, Dunson, Vehtari and Rubin (2014) Bayesian Data Analysis. 3rd edition. Chapman & Hall/CRC, Boca Raton.

10 ggs_autocorrelation

Examples

```
\# Assign 'S' to be a data frame suitable for \code{ggmcmc} functions from
\# a coda object called s
data(linear)
S \leftarrow ggs(s)
                    # s is a coda object
# Get samples from 'beta' parameters only
S <- ggs(s, family = "beta")</pre>
```

Description

Plot an autocorrelation matrix.

Usage

```
ggs_autocorrelation(D, family = NA, nLags = 50, greek = FALSE)
```

Arguments

D	Data frame whith the simulations.
family	Name of the family of parameters to plot, as given by a character vector or a regular expression. A family of parameters is considered to be any group of parameters with the same name but different numerical value between square brackets (as beta[1], beta[2], etc).
nLags	Integer indicating the number of lags of the autocorrelation plot.
greek	Logical value indicating whether parameter labels have to be parsed to get Greek letters. Defaults to false.

Value

A ggplot object.

```
data(linear)
ggs_autocorrelation(ggs(s))
```

11 ggs_caterpillar

ggs_caterpillar

Caterpillar plot with thick and thin CI

Description

Caterpillar plots are plotted combining all chains for each parameter.

Usage

```
ggs_caterpillar(
 D,
  family = NA,
  X = NA,
  thick_ci = c(0.05, 0.95),
  thin_ci = c(0.025, 0.975),
  line = NA,
  horizontal = TRUE,
 model_labels = NULL,
  label = NULL,
  comparison = NULL,
  comparison_separation = 0.2,
  greek = FALSE,
  sort = TRUE
)
```

Arguments

line

D	Data frame whith the simulations or list of data frame with simulations. If a
	list of data frames with simulations is passed, the names of the models are the

names of the objects in the list.

family Name of the family of parameters to plot, as given by a character vector or a regular expression. A family of parameters is considered to be any group of

parameters with the same name but different numerical value between square

brackets (as beta[1], beta[2], etc).

Χ data frame with two columns, Parameter and the value for the x location. Parameter must be a character vector with the same names that the parameters in

the D object.

thick_ci Vector of length 2 with the quantiles of the thick band for the credible interval

Vector of length 2 with the quantiles of the thin band for the credible interval thin_ci

Numerical value indicating a concrete position, usually used to mark where zero

is. By default do not plot any line.

horizontal Logical. When TRUE (the default), the plot has horizontal lines. When FALSE, the plot is reversed to show vertical lines. Horizontal lines are more appropriate for categorical caterpillar plots, because the x-axis is the only dimension that matters. But for caterpillar plots against another variable, the vertical position is

more appropriate.

12 ggs_chain

model_labels Vector of strings that matches the number of models in the list. It is only used in

case of multiple models and when the list of ggs objects given at D is not named.

Otherwise, the names in the list are used.

label Character value with the name of the variable that contains the labels displayed

in the plot. Defaults to NULL, which corresponds to using the Parameter name

or the Label in case par_labels is used in the ggs() object.

comparison Character value with the name of the variable that contains the focus of the

comparison. Defaults to NULL, which corresponds to no comparison. It is not

expected to be used together with X.

comparison_separation

Numerical value with the separation between the dodged parameters. Defaults

to 0.2.

greek Logical value indicating whether parameter labels have to be parsed to get Greek

letters. Defaults to false.

sort Logical value indicating whether, in a horizontal display, y-axis labels must be

sorted (the default) or not.

Value

A ggplot object.

References

Fernández-i-Marín, Xavier (2016) ggmcmc: Analysis of MCMC Samples and Bayesian Inference. Journal of Statistical Software, 70(9), 1-20. doi:10.18637/jss.v070.i09

Examples

```
data(linear)
ggs_caterpillar(ggs(s))
ggs_caterpillar(list(A=ggs(s), B=ggs(s))) # silly example duplicating the same model
```

ggs_chain

Auxiliary function that extracts information from a single chain.

Description

Auxiliary function that extracts information from a single chain.

Usage

```
ggs_chain(s)
```

Arguments

s a single chain to convert into a data frame

ggs_compare_partial 13

Value

D data frame with the chain arranged

ggs_compare_partial Density its last p	plots comparing the distribution of the whole chain with only art.
--	--

Description

Density plots comparing the distribution of the whole chain with only its last part.

Usage

```
ggs_compare_partial(D, family = NA, partial = 0.1, rug = FALSE, greek = FALSE)
```

Arguments

D	Data frame whith the simulations
family	Name of the family of parameters to plot, as given by a character vector or a regular expression. A family of parameters is considered to be any group of parameters with the same name but different numerical value between square brackets (as beta[1], beta[2], etc).
partial	Percentage of the chain to compare to. Defaults to the last 10 percent.
rug	Logical indicating whether a rug must be added to the plot. It is FALSE by default, since in large chains it may use lot of resources and it is not central to the plot.
greek	Logical value indicating whether parameter labels have to be parsed to get Greek letters. Defaults to false.

Value

A ggplot object.

References

Fernández-i-Marín, Xavier (2016) ggmcmc: Analysis of MCMC Samples and Bayesian Inference. Journal of Statistical Software, 70(9), 1-20. doi:10.18637/jss.v070.i09

```
data(linear)
ggs_compare_partial(ggs(s))
```

14 ggs_crosscorrelation

ggs_crosscorrelation Plot the Cross-correlation between-chains

Description

Plot the Cross-correlation between-chains.

Usage

```
ggs_crosscorrelation(D, family = NA, absolute_scale = TRUE, greek = FALSE)
```

Arguments

D	Data	frame	whith	the	simulations.
U	Data	manne	WIIIUI	uic	simulations.

family Name of the family of parameters to plot, as given by a character vector or a

regular expression. A family of parameters is considered to be any group of parameters with the same name but different numerical value between square

brackets (as beta[1], beta[2], etc).

absolute_scale Logical. When TRUE (the default), the scale of the colour diverges between

perfect inverse correlation (-1) to perfect correlation (1), whereas when FALSE, the scale is relative to the minimum and maximum cross-correlations observed.

greek Logical value indicating whether parameter labels have to be parsed to get Greek

letters. Defaults to false.

Value

a ggplot object.

References

Fernández-i-Marín, Xavier (2016) ggmcmc: Analysis of MCMC Samples and Bayesian Inference. Journal of Statistical Software, 70(9), 1-20. doi:10.18637/jss.v070.i09

```
data(linear)
ggs_crosscorrelation(ggs(s))
```

ggs_density 15

Description

Density plots with the parameter distribution. For multiple chains, use colours to differentiate the distributions.

Usage

```
ggs_density(D, family = NA, rug = FALSE, hpd = FALSE, greek = FALSE)
```

Arguments

D	Data frame whith the simulations.
family	Name of the family of parameters to plot, as given by a character vector or a regular expression. A family of parameters is considered to be any group of parameters with the same name but different numerical value between square brackets (as beta[1], beta[2], etc).
rug	Logical indicating whether a rug must be added to the plot. It is FALSE by default, since in large chains it may use lot of resources and it is not central to the plot.
hpd	Logical indicating whether HPD intervals (using the defaults from ci()) must be added to the plot. It is FALSE by default.
greek	Logical value indicating whether parameter labels have to be parsed to get Greek letters. Defaults to false.

Value

A ggplot object.

References

Fernández-i-Marín, Xavier (2016) ggmcmc: Analysis of MCMC Samples and Bayesian Inference. Journal of Statistical Software, 70(9), 1-20. doi:10.18637/jss.v070.i09

```
data(linear)
ggs_density(ggs(s))
```

16 ggs_diagnostics

ggs_diagnostics

Formal diagnostics of convergence and sampling quality

Description

Get in a single tidy dataframe the results of the formal (non-visual) convergence analysis. Namely, the Geweke diagnostic (z, from ggs_geweke()), the Potential Scale Reduction Factor Rhat (Rhat, from ggs_Rhat()) and the number of effective independent draws (Effective, from ggs_effective()).

Usage

```
ggs_diagnostics(
  D,
  family = NA,
  version_rhat = "BDA2",
  version_effective = "spectral",
  proportion = TRUE
)
```

Arguments

D Data frame whith the simulations

family

Name of the family of parameters to return, as given by a character vector or a regular expression. A family of parameters is considered to be any group of parameters with the same name but different numerical value between square brackets (as beta[1], beta[2], etc).

version_rhat

Character variable with the name of the version of the potential scale reduction factor to use. Defaults to "BDA2", which refers to the second version of _Bayesian Data Analysis_ (Gelman, Carlin, Stern and Rubin). The other available version is "BG98", which refers to Brooks & Gelman (1998) and is the one used in the "coda" package.

version_effective

Character variable with the name of the version of the calculation to use. Defaults to "spectral", which refers to the simple version estimating the spectral density at frequency zero used in the "coda" package. An alternative version "BDA3" is provided, which refers to the third edition of Bayesian Data Analysis (Gelman, Carlin, Stern, Dunson, Vehtari and Rubin).

proportion

Logical value whether to return the proportion of effective independent draws over the total (the default) or the number.

Details

Notice that at least two chains are required. Otherwise, only the Geweke diagnostic makes sense, and can be returned with its own function.

ggs_effective 17

Value

A tidy dataframe.

References

Fernández-i-Marín, Xavier (2016) ggmcmc: Analysis of MCMC Samples and Bayesian Inference. Journal of Statistical Software, 70(9), 1-20. doi:10.18637/jss.v070.i09

Geweke, J. Evaluating the accuracy of sampling-based approaches to calculating posterior moments. In _Bayesian Statistics 4_ (ed JM Bernardo, JO Berger, AP Dawid and AFM Smith). Clarendon Press, Oxford, UK.

Gelman, Carlin, Stern and Rubin (2003) Bayesian Data Analysis. 2nd edition. Chapman & Hall/CRC, Boca Raton.

Gelman, A and Rubin, DB (1992) Inference from iterative simulation using multiple sequences, _Statistical Science_, *7*, 457-511.

Brooks, S. P., and Gelman, A. (1998). General methods for monitoring convergence of iterative simulations. _Journal of computational and graphical statistics_, 7(4), 434-455.

Gelman, Carlin, Stern, Dunson, Vehtari and Rubin (2014) Bayesian Data Analysis. 3rd edition. Chapman & Hall/CRC, Boca Raton.

See Also

ggs_geweke, ggs_Rhat and ggs_effective for their respective options.

Examples

```
data(linear)
ggs_diagnostics(ggs(s))
```

ggs_effective

Dotplot of the effective number of independent draws

Description

Dotplot of the effective number of independent draws. The default version is the sample size adjusted for autocorrelation. An alternative from the third edition of Bayesian Data Analysis (Gelman, Carlin, Stern, Dunson, Vehtari and Rubin) is provided.

Usage

```
ggs_effective(
  D,
  family = NA,
  greek = FALSE,
  version_effective = "spectral",
  proportion = TRUE,
  plot = TRUE
)
```

18 ggs_effective

Arguments

Data frame whith the simulations

family Name of the family of parameters to plot, as given by a character vector or a

regular expression. A family of parameters is considered to be any group of parameters with the same name but different numerical value between square

brackets (as beta[1], beta[2], etc).

greek Logical value indicating whether parameter labels have to be parsed to get Greek

letters. Defaults to false.

version_effective

Character variable with the name of the version of the calculation to use. Defaults to "spectral", which refers to the simple version estimating the spectral density at frequency zero used in the "coda" package. An alternative version "BDA3" is provided, which refers to the third edition of Bayesian Data Analysis

(Gelman, Carlin, Stern, Dunson, Vehtari and Rubin).

proportion Logical value whether to return the proportion of effective independent draws

over the total (the default) or the number.

plot Logical value indicating whether the plot must be returned (the default) or a tidy

dataframe with the effective number of samples per Parameter.

Details

Notice that at least two chains are required.

Value

A ggplot object, or a tidy data frame.

References

Fernández-i-Marín, Xavier (2016) ggmcmc: Analysis of MCMC Samples and Bayesian Inference. Journal of Statistical Software, 70(9), 1-20. doi:10.18637/jss.v070.i09

Gelman, Carlin, Stern, Dunson, Vehtari and Rubin (2014) Bayesian Data Analysis. 3rd edition. Chapman & Hall/CRC, Boca Raton.

```
data(linear)
ggs_effective(ggs(s))
```

ggs_geweke 19

aac	geweke	

Dotplot of the Geweke diagnostic, the standard Z-score

Description

Dotplot of Geweke diagnostic.

Usage

```
ggs_geweke(
   D,
   family = NA,
   frac1 = 0.1,
   frac2 = 0.5,
   shadow_limit = TRUE,
   greek = FALSE,
   plot = TRUE
)
```

Arguments

D	data frame whith the simulations.
family	Name of the family of parameters to plot, as given by a character vector or a regular expression. A family of parameters is considered to be any group of parameters with the same name but different numerical value between square brackets (as beta[1], beta[2], etc).
frac1	Numeric, proportion of the first part of the chains selected. Defaults to 0.1.
frac2	Numeric, proportion of the last part of the chains selected. Defaults to 0.5.
shadow_limit	logical. When TRUE (the default), a shadowed area between -2 and +2 is drawn.
greek	Logical value indicating whether parameter labels have to be parsed to get Greek letters. Defaults to false.
plot	Logical value indicating whether the plot must be returned (the default) or a tidy dataframe with the results of the Geweke diagnostics per Parameter and Chain.

Value

A ggplot object, or a tidy data frame.

References

Fernández-i-Marín, Xavier (2016) ggmcmc: Analysis of MCMC Samples and Bayesian Inference. Journal of Statistical Software, 70(9), 1-20. doi:10.18637/jss.v070.i09

Geweke, J. Evaluating the accuracy of sampling-based approaches to calculating posterior moments. In _Bayesian Statistics 4_ (ed JM Bernardo, JO Berger, AP Dawid and AFM Smith). Clarendon Press, Oxford, UK.

20 ggs_grb

Examples

```
data(linear)
ggs_geweke(ggs(s))
```

ggs_grb

Gelman-Rubin-Brooks plot (Rhat shrinkage)

Description

Generate a Figure with the Rhat shrinkage evolution over bins of simulations, known as the Gelman-Rubin-Brooks plot, or the Gelman plot. For the Potential Scale Reduction Factor (Rhat), proposed by Gelman and Rubin (1992), the version from the second edition of Bayesian Data Analysis (Gelman, Carlin, Stern and Rubin) is used, but the version used in the package "coda" can also be used (Brooks & Gelman 1998).

Usage

```
ggs_grb(
  D,
  family = NA,
  scaling = 1.5,
  greek = FALSE,
  version_rhat = "BDA2",
  bins = 50,
  plot = TRUE
)
```

Arguments

D	Data frame whith the simulations
family	Name of the family of parameters to plot, as given by a character vector or a regular expression. A family of parameters is considered to be any group of parameters with the same name but different numerical value between square brackets (as beta[1], beta[2], etc).
scaling	Value of the upper limit for the x-axis. By default, it is 1.5, to help contextualization of the convergence. When 0 or NA, the axis are not scaled.
greek	Logical value indicating whether parameter labels have to be parsed to get Greek letters. Defaults to false.
version_rhat	Character variable with the name of the version of the potential scale reduction factor to use. Defaults to "BDA2", which refers to the second version of _Bayesian Data Analysis_ (Gelman, Carlin, Stern and Rubin). The other available version is "BG98", which refers to Brooks & Gelman (1998) and is the one used in the "coda" package.
bins	Numerical value with the number of bins requested. Defaults to 50.
plot	Logical value indicating whether the plot must be returned (the default) or a tidy dataframe with the results of the Rhat diagnostics per Parameter.

ggs_histogram 21

Details

Notice that at least two chains are required.

Value

A ggplot object, or a tidy data frame.

References

Fernández-i-Marín, Xavier (2016) ggmcmc: Analysis of MCMC Samples and Bayesian Inference. Journal of Statistical Software, 70(9), 1-20. doi:10.18637/jss.v070.i09

Gelman, Carlin, Stern and Rubin (2003) Bayesian Data Analysis. 2nd edition. Chapman & Hall/CRC, Boca Raton.

Gelman, A and Rubin, DB (1992) Inference from iterative simulation using multiple sequences, _Statistical Science_, *7*, 457-511.

Brooks, S. P., and Gelman, A. (1998). General methods for monitoring convergence of iterative simulations. _Journal of computational and graphical statistics_, 7(4), 434-455.

Examples

```
data(linear)
ggs_grb(ggs(s))
```

ggs_histogram

Histograms of the paramters.

Description

Plot a histogram of each of the parameters. Histograms are plotted combining all chains for each parameter.

Usage

```
ggs_histogram(D, family = NA, bins = 30, greek = FALSE)
```

Arguments

D	Data frame whith the simulations.
family	Name of the family of parameters to plot, as given by a character vector or a regular expression. A family of parameters is considered to be any group of parameters with the same name but different numerical value between square brackets (as beta[1], beta[2], etc).
bins	integer indicating the total number of bins in which to divide the histogram. Defaults to 30, which is the same as geom_histogram()
greek	Logical value indicating whether parameter labels have to be parsed to get Greek letters. Defaults to false.

22 ggs_pairs

Value

```
A ggplot object.
```

References

Fernández-i-Marín, Xavier (2016) ggmcmc: Analysis of MCMC Samples and Bayesian Inference. Journal of Statistical Software, 70(9), 1-20. doi:10.18637/jss.v070.i09

Examples

```
data(linear)
ggs_histogram(ggs(s))
```

ggs_pairs

Create a plot matrix of posterior simulations

Description

Pairs style plots to evaluate posterior correlations among parameters.

Usage

```
ggs_pairs(D, family = NA, greek = FALSE, ...)
```

Arguments

D	Data frame with the simulations.
family	Name of the family of parameters to plot, as given by a character vector or a regular expression. A family of parameters is considered to be any group of parameters with the same name but different numerical value between square brackets (as beta[1], beta[2], etc).
greek	Logical value indicating whether parameter labels have to be parsed to get Greek letters. Defaults to false.
	Arguments to be passed to ggpairs, including geom's aes (see examples)

Value

A ggpairs object that creates a plot matrix consisting of univariate density plots on the diagonal, correlation estimates in upper triangular elements, and scatterplots in lower triangular elements.

References

Fernández-i-Marín, Xavier (2016) ggmcmc: Analysis of MCMC Samples and Bayesian Inference. Journal of Statistical Software, 70(9), 1-20. doi:10.18637/jss.v070.i09

ggs_pcp 23

Examples

```
## Not run:
library(GGally)
data(linear)
# default ggpairs plot
ggs_pairs(ggs(s))
# change alpha transparency of points
ggs_pairs(ggs(s), lower=list(continuous = wrap("points", alpha = 0.2)))
# with too many points, try contours instead
ggs_pairs(ggs(s), lower=list(continuous="density"))
# histograms instead of univariate densities on diagonal
ggs_pairs(ggs(s), diag=list(continuous="barDiag"))
# coloring results according to chains
ggs_pairs(ggs(s), mapping = aes(color = Chain))
# custom points on lower panels, black contours on upper panels
ggs_pairs(ggs(s),
 upper=list(continuous = wrap("density", color = "black")),
 lower=list(continuous = wrap("points", alpha = 0.2, shape = 1)))
## End(Not run)
```

ggs_pcp

Plot for model fit of binary response variables: percent correctly predicted

Description

Plot a histogram with the distribution of correctly predicted cases in a model against a binary response variable.

Usage

```
ggs_pcp(D, outcome, threshold = "observed", bins = 30)
```

Arguments

D

Data frame whith the simulations. Notice that only the fitted / expected posterior outcomes are needed, and so either the previous call to ggs() should have limited the family of parameters to only pass the fitted / expected values. See the example below.

outcome

vector (or matrix or array) containing the observed outcome variable. Currently only a vector is supported.

24 ggs_ppmean

threshold numerical bounded between 0 and 1 or "observed", the default. If "observed",

the threshold of expected values to be considered a realization of the event (1, succes) is computed using the observed value in the data. Otherwise, a numerical

value showing which threshold to use (typically, 0.5) can be given.

bins integer indicating the total number of bins in which to divide the histogram.

Defaults to 30, which is the same as geom_histogram()

Value

A ggplot object

Examples

```
data(binary)
ggs_pcp(ggs(s.binary, family="mu"), outcome=y.binary)
```

ggs_ppmean

Posterior predictive plot comparing the outcome mean vs the distribution of the predicted posterior means.

Description

Histogram with the distribution of the predicted posterior means, compared with the mean of the observed outcome.

Usage

```
ggs_ppmean(D, outcome, family = NA, bins = 30)
```

Arguments

Data frame whith the simulations. Notice that only the posterior outcomes are

needed, and so either the ggs() call limits the parameters to the outcomes or the

user provides a family of parameters to limit it.

outcome vector (or matrix or array) containing the observed outcome variable. Currently

only a vector is supported.

family Name of the family of parameters to plot, as given by a character vector or a

regular expression. A family of parameters is considered to be any group of parameters with the same name but different numerical value between square

brackets (as beta[1], beta[2], etc).

bins integer indicating the total number of bins in which to divide the histogram.

Defaults to 30, which is the same as geom_histogram()

Value

A ggplot object.

ggs_ppsd 25

References

Fernández-i-Marín, Xavier (2016) ggmcmc: Analysis of MCMC Samples and Bayesian Inference. Journal of Statistical Software, 70(9), 1-20. doi:10.18637/jss.v070.i09

Examples

```
data(linear)
ggs_ppmean(ggs(s.y.rep), outcome=y)
```

ggs_ppsd

Posterior predictive plot comparing the outcome standard deviation vs the distribution of the predicted posterior standard deviations.

Description

Histogram with the distribution of the predicted posterior standard deviations, compared with the standard deviations of the observed outcome.

Usage

```
ggs_ppsd(D, outcome, family = NA, bins = 30)
```

Arguments

D	Data frame whith the simulations. Notice that only the posterior outcomes are needed, and so either the ggs() call limits the parameters to the outcomes or the user provides a family of parameters to limit it.
outcome	vector (or matrix or array) containing the observed outcome variable. Currently only a vector is supported.
family	Name of the family of parameters to plot, as given by a character vector or a regular expression. A family of parameters is considered to be any group of parameters with the same name but different numerical value between square brackets (as beta[1], beta[2], etc).
bins	integer indicating the total number of bins in which to divide the histogram. Defaults to 30, which is the same as geom_histogram()

Value

A ggplot object.

References

Fernández-i-Marín, Xavier (2016) ggmcmc: Analysis of MCMC Samples and Bayesian Inference. Journal of Statistical Software, 70(9), 1-20. doi:10.18637/jss.v070.i09

26 ggs_Rhat

Examples

```
data(linear)
ggs_ppsd(ggs(s.y.rep), outcome=y)
```

ggs_Rhat

Dotplot of Potential Scale Reduction Factor (Rhat)

Description

Plot a dotplot of Potential Scale Reduction Factor (Rhat), proposed by Gelman and Rubin (1992). The version from the second edition of Bayesian Data Analysis (Gelman, Carlin, Stern and Rubin) is used, but the version used in the package "coda" can also be used (Brooks & Gelman 1998).

Usage

```
ggs_Rhat(
  D,
  family = NA,
  scaling = 1.5,
  greek = FALSE,
  version_rhat = "BDA2",
  plot = TRUE
)
```

Arguments

D	Data frame whith the simulations
family	Name of the family of parameters to plot, as given by a character vector or a regular expression. A family of parameters is considered to be any group of parameters with the same name but different numerical value between square brackets (as beta[1], beta[2], etc).
scaling	Value of the upper limit for the x-axis. By default, it is 1.5, to help contextualization of the convergence. When 0 or NA, the axis are not scaled.
greek	Logical value indicating whether parameter labels have to be parsed to get Greek letters. Defaults to false.
version_rhat	Character variable with the name of the version of the potential scale reduction factor to use. Defaults to "BDA2", which refers to the second version of _Bayesian Data Analysis_ (Gelman, Carlin, Stern and Rubin). The other available version is "BG98", which refers to Brooks & Gelman (1998) and is the one used in the "coda" package.
plot	Logical value indicating whether the plot must be returned (the default) or a tidy dataframe with the results of the Rhat diagnostics per Parameter.

Details

Notice that at least two chains are required.

ggs_rocplot 27

Value

A ggplot object, or a tidy data frame.

References

Fernández-i-Marín, Xavier (2016) ggmcmc: Analysis of MCMC Samples and Bayesian Inference. Journal of Statistical Software, 70(9), 1-20. doi:10.18637/jss.v070.i09

Gelman, Carlin, Stern and Rubin (2003) Bayesian Data Analysis. 2nd edition. Chapman & Hall/CRC, Boca Raton.

Gelman, A and Rubin, DB (1992) Inference from iterative simulation using multiple sequences, _Statistical Science_, *7*, 457-511.

Brooks, S. P., and Gelman, A. (1998). General methods for monitoring convergence of iterative simulations. _Journal of computational and graphical statistics_, 7(4), 434-455.

Examples

```
data(linear)
ggs_Rhat(ggs(s))
```

ggs_rocplot

Receiver-Operator Characteristic (ROC) plot for models with binary outcomes

Description

Receiver-Operator Characteristic (ROC) plot for models with binary outcomes

Usage

```
ggs_rocplot(D, outcome, fully_bayesian = FALSE)
```

Arguments

D Data frame whith the simulations. Notice that only the posterior outcomes are

needed, and so either the previous call to ggs() should have limited the family of

parameters to pass to the predicted outcomes.

outcome vector (or matrix or array) containing the observed outcome variable. Currently

only a vector is supported.

fully_bayesian logical, false by default. When not fully Bayesian, it uses the median of the

predictions for each observation by iteration. When TRUE the function plots as many ROC curves as iterations. It uses a a lot of CPU and needs more memory.

Use it with caution.

Value

A ggplot object

28 ggs_running

Examples

```
data(binary)
ggs_rocplot(ggs(s.binary, family="mu"), outcome=y.binary)
```

ggs_running

Running means of the chains

Description

Running means of the chains.

Usage

```
ggs_running(
  D,
  family = NA,
  original_burnin = TRUE,
  original_thin = TRUE,
  greek = FALSE
)
```

Arguments

D Data frame whith the simulations.

family Name of the family of parameters to plot, as given by a character vector or a

regular expression. A family of parameters is considered to be any group of parameters with the same name but different numerical value between square

brackets (as beta[1], beta[2], etc).

original_burnin

Logical. When TRUE (the default), start the iteration counter in the x-axis at the

end of the burnin period.

original_thin Logical. When TRUE (the default), take into account the thinning interval in the

x-axis

greek Logical value indicating whether parameter labels have to be parsed to get Greek

letters. Defaults to false.

Value

A ggplot object.

References

Fernández-i-Marín, Xavier (2016) ggmcmc: Analysis of MCMC Samples and Bayesian Inference. Journal of Statistical Software, 70(9), 1-20. doi:10.18637/jss.v070.i09

ggs_separation 29

Examples

```
data(linear)
ggs_running(ggs(s))
```

ggs_separation

Separation plot for models with binary response variables

Description

Plot a separation plot with the results of the model against a binary response variable.

Usage

```
ggs_separation(
  D,
  outcome,
  minimalist = FALSE,
  show_labels = FALSE,
  uncertainty_band = TRUE
)
```

Arguments

D Data frame whith the simulations. Notice that only the fitted / expected poste-

rior outcomes are needed, and so either the previous call to ggs() should have limited the family of parameters to only pass the fitted / expected values. See

the example below.

outcome vector (or matrix or array) containing the observed outcome variable. Currently

only a vector is supported.

minimalist logical, FALSE by default. It returns a minimalistic version of the figure with the

bare minimum elements, suitable for being used inline as suggested by Green-

hill, Ward and Sacks citing Tufte.

show_labels logical, FALSE by default. If TRUE it adds the Parameter as the label of the

case in the x-axis.

uncertainty_band

logical, TRUE by default. If FALSE it removes the uncertainty band on the

predicted values.

Value

A ggplot object

30 ggs_traceplot

References

Fernández-i-Marín, Xavier (2016) ggmcmc: Analysis of MCMC Samples and Bayesian Inference. Journal of Statistical Software, 70(9), 1-20. doi:10.18637/jss.v070.i09

Greenhill B, Ward MD and Sacks A (2011). The separation plot: A New Visual Method for Evaluating the Fit of Binary Models. _American Journal of Political Science_, 55(4), 991-1002, doi:10.1111/j.1540-5907.2011.00525.x.

Greenhill, Ward and Sacks (2011): The separation plot: a new visual method for evaluating the fit of binary models. American Journal of Political Science, vol 55, number 4, pg 991-1002.

Examples

```
data(binary)
ggs_separation(ggs(s.binary, family="mu"), outcome=y.binary)
```

ggs_traceplot

Traceplot of the chains

Description

Traceplot with the time series of the chains.

Usage

```
ggs_traceplot(
  D,
  family = NA,
  original_burnin = TRUE,
  original_thin = TRUE,
  simplify = NULL,
  hpd = FALSE,
  greek = FALSE
)
```

Arguments

Data frame with the simulations.

family Name of the family of parameters to plot, as given by a character vector or a

regular expression. A family of parameters is considered to be any group of parameters with the same name but different numerical value between square

brackets (as beta[1], beta[2], etc).

original_burnin

Logical. When TRUE (the default) start the Iteration counter in the x-axis at the

end of the burnin period.

x-axis.

gl_unq 31

simplify Numerical. A percentage of iterations to keep in the time series. It is an option

intended only for the purpose of saving time and resources when doing traceplots. It is not a thin operation, because it is not regular. It must be used with

care.

hpd Logical indicating whether HPD intervals (using the defaults from ci()) must be

added to the plot. It is FALSE by default.

greek Logical value indicating whether parameter labels have to be parsed to get Greek

letters. Defaults to false.

Value

A ggplot object.

References

Fernández-i-Marín, Xavier (2016) ggmcmc: Analysis of MCMC Samples and Bayesian Inference. Journal of Statistical Software, 70(9), 1-20. doi:10.18637/jss.v070.i09

Examples

```
data(linear)
ggs_traceplot(ggs(s))
```

gl_unq

Generate a factor with unequal number of repetitions.

Description

Generate a factor with levels of unequal length.

Usage

```
gl_unq(n, k, labels = 1:n)
```

Arguments

n number of levelsk number of repetitionslabels optional vector of labels

Details

Internal function to generate a factor with levels of unequal length, used by ggs_histogram.

Value

A factor

32 linear

linear Simulated data for a continuous linear regression and its MCMC samples

Description

Simulate a dataset with one explanatory variable and one continuous outcome variable using (y \sim dnorm(mu, sigma); mu = beta[1] + beta[2] * X). The data loads three objects: the observed y values, a coda object containing simulated values from the posterior distribution of the intercept and slope of a linear regression, and a coda object containing simulated values from the posterior predictive distribution. The purpose of the dataset is only to show the possibilities of the ggmcmc package.

Usage

```
data(linear)
```

Format

Three objects, namely:

- **s** A coda object containing posterior distributions of the intercept (beta[1]) and slope (beta[2]) of a linear regression with simulated data.
- **s.y.rep** A coda object containing simulated values from the posterior predictive distribution of the outcome of a linear regression with simulated data ($y \sim N(mu, sigma)$; mu = beta[1] + beta[2] * X; y.rep ~ N(mu, sigma); where y.rep is a replicated outcome, originally missing data).
- **y** A numeric vector containing the observed values of the outcome in the linear regression with simulated data.

Source

Simulated data for ggmcmc

```
data(linear)
str(s)
str(s.y.rep)
str(y)
```

plab 33

plab Generate a data frame suitable for matching parameter names with their labels	plab	Generate a data frame suitable for matching parameter names with their labels
--	------	---

Description

Generate a data frame with at least columns for Parameter and Labels. This function is intended to work as a shortcut for the matching data frame necessary to pass the argument "par_labels" to ggs() calls for transforming the parameter names.

Usage

```
plab(parameter.name, match, subscripts = NULL)
```

Arguments

parameter.name	A character vector of length one with the name of the variable (family) without
	subscripts. Usually, it refers to a Greek letter.

match A named list with the variable labels and the values of the factor corresponding

to the dimension they map to. The order of the list matters, as ggmcmc assumes that the first dimension corresponds to the first element in the list, and so on.

subscripts An optional character with the letters that correspond to each of the dimen-

sions of the family of parameters. By default it uses not very informative names "dim.1", "dim.2", etc... It usually corresponds to the "i", "j", ... subscripts in classical textbooks, but is recommended to be closer to the subscripts given in

the sampling software.

Value

A data frame tibble with the Parameter names and its match with meaningful variable Labels. Also the intermediate variables are passed to make it easier to work with the samples using meaningful variable names.

```
data(radon)
L.radon <- plab("alpha", match = list(County = radon$counties$County))
# Generates a data frame suitable for matching with the generated samples
# through the "par_labels" function:
ggs_caterpillar(ggs(radon$s.radon, par_labels = L.radon, family = "^alpha"))</pre>
```

34 radon

radon

Simulations of the parameters of a hierarchical model

Description

Using the radon example in Gelman & Hill (2007), the list contains several elements to show the possibilities of ggmcmc for applied Bayesian Hierarchical/multilevel analysis.

Usage

```
data(radon)
```

Format

A list containing several elements (data and outputs of the analysis):

counties A data frame with the country label, ids and radon level.

id.county A vector identifying counties in the data.

y The outcome variable.

s.radon A coda object with simulated values from the posterior distribution of all parameters, with few iterations for each one.

s.radon.yhat A coda object containing simulated values from the posterior predictive distribution.

s.radon.short A coda object with simulated values from the posterior distribution of few parameters, with reasonable chain length.

Source

```
http://www.stat.columbia.edu/~gelman/arm/examples/radon/
```

```
data(radon)
names(radon)
# Generate a data frame suitable for matching with the generated samples
# through the "par_labels" function:
L.radon <- plab("alpha", match = list(County = radon$counties$County))</pre>
```

roc_calc 35

roc_calc	Calculate the ROC curve for a set of observed outcomes and predicted probabilities

Description

Internal function used by ggs_autocorrelation.

Usage

```
roc_calc(R)
```

Arguments

R

data frame with the 'value' (predicted probability) and the observed 'Outcome'.

Value

A data frame with the Sensitivity and the Specificity.

References

Fernández-i-Marín, Xavier (2016) ggmcmc: Analysis of MCMC Samples and Bayesian Inference. Journal of Statistical Software, 70(9), 1-20. doi:10.18637/jss.v070.i09

s

Simulations of the parameters of a simple linear regression with fake data.

Description

A coda object containing simulated values from the posterior distribution of the intercept, slope and residual of a linear regression with fake data (y = beta[1] + beta[2] * X + sigma). The purpose of the dataset is only to show the possibilities of the ggmcmc package.

Usage

data(s)

Format

A coda object containing posterior distributions of the intercept, slope and residual of a linear regression with fake data.

36 s.y.rep

data.	s.binary	Simulations of the parameters of a simple linear regression with fake data.
-------	----------	---

Description

A coda object containing simulated values from the posterior distribution of the intercept and slope of a logistic regression with fake data ($y \sim dbern(mu)$; logit(mu) = theta[1] + theta[2] * X), and the fitted / expected values (mu). The purpose of the dataset is only to show the possibilities of the ggmcmc package.

Usage

```
data(s.binary)
```

Format

A coda object containing posterior distributions of the intercept (theta[1]) and slope (theta[2]) of a logistic regression with fake data, and of the fitted / expected values (mu).

regression with fake data.	s.y.rep	Simulations of the posterior predictive distribution of a simple linear regression with fake data.
----------------------------	---------	--

Description

A coda object containing simulated values from the posterior predictive distribution of the outcome of a linear regression with fake data ($y \sim N(mu, sigma)$; mu = beta[1] + beta[2] * X; $y.rep \sim N(mu, sigma)$; where y.rep is a replicated outcome, originally missing data). The purpose of the dataset is only to show the possibilities of the ggmcmc package.

Usage

```
data(s.y.rep)
```

Format

A coda object containing posterior distributions of the posterior predictive distribution of a linear regression with fake data.

sde0f 37

sde0f

Spectral Density Estimate at Zero Frequency.

Description

Compute the Spectral Density Estimate at Zero Frequency for a given chain.

Usage

sde0f(x)

Arguments

Х

A time series

Details

Internal function to compute the Spectral Density Estimate at Zero Frequency for a given chain used by ggs_geweke.

Value

A vector with the spectral density estimate at zero frequency

У

Values for the observed outcome of a simple linear regression with fake data.

Description

A numeric vector containing the observed values of the outcome of a linear regression with fake data (y = beta[1] + beta[2] + X + sigma). The purpose of the dataset is only to show the possibilities of the ggmcmc package.

Usage

data(y)

Format

A numeric vector containing the observed values of the outcome in the linear regression with fake data.

38 y.binary

јаке аата.	y.binary	Values for the observed outcome of a binary logistic regression with fake data.
------------	----------	---

Description

A numeric vector containing the observed values (y) of the outcome of a logistic regression with fake data ($y \sim dbern(mu)$; logit(mu) = theta[1] + theta[2] * X). The purpose of the dataset is only to show the possibilities of the ggmcmc package.

Usage

```
data(y.binary)
```

Format

A numeric vector containing the observed values of the outcome in the linear regression with fake data.

Index

* datasets binary, 3 linear, 32 radon, 34 s, 35 s.binary, 36 s.y.rep, 36 y, 37	ggs_separation, 29 ggs_traceplot, 30 gl_unq, 31 linear, 32 plab, 33 radon, 34
y.binary, 38	roc_calc, 35
ac, 3	s, 35 s.binary, 36
binary, 3 calc_bin, 4	s.y.rep, 36 sde0f, 37
ci, 5	
custom.sort, 5	y, 37 y.binary, 38
<pre>get_family, 6</pre>	
ggmcmc, 6	
ggmcmc-package (ggmcmc), 6 ggs, 7, 8	
$ggs_autocorrelation, 3, 10, 35$	
ggs_caterpillar, 5, 11	
ggs_chain, 12	
ggs_compare_partial, 13	
ggs_crosscorrelation, 14	
ggs_density, 15	
ggs_diagnostics, 16	
ggs_effective, 17, 17	
ggs_geweke, 17, 19, 37	
ggs_grb, 20	
ggs_histogram, <i>4</i> , 21, <i>31</i>	
ggs_pairs, 22	
ggs_pcp, 23	
ggs_ppmean, 4, 24	
ggs_ppsd, 4, 25	
ggs_Rhat, 17, 26	
ggs_rocplot, 27	
ggs_running, 28	