Package 'ggmix'

July 22, 2025

Type Package

Title Variable Selection in Linear Mixed Models for SNP Data

Version 0.0.2

Description Fit penalized multivariable linear mixed models with a single random effect to control for population structure in genetic association studies. The goal is to simultaneously fit many genetic variants at the same time, in order to select markers that are independently associated with the response. Can also handle prior annotation information, for example, rare variants, in the form of variable weights. For more information, see the website below and the accompanying paper:

Bhatnagar et al., ``Simultaneous SNP selection and adjustment for population structure in high dimensional prediction models", 2020, <DOI:10.1371/journal.pgen.1008766>.

License MIT + file LICENSE

Encoding UTF-8

LazyData true

Depends R (>= 3.4.0)

Imports glmnet, methods, stats, MASS, Matrix

Suggests RSpectra, popkin, bnpsd, testthat, covr, knitr, rmarkdown

BugReports https://github.com/sahirbhatnagar/ggmix/issues

URL https://github.com/sahirbhatnagar/ggmix

RoxygenNote 7.1.1

VignetteBuilder knitr

NeedsCompilation no

Author Sahir Bhatnagar [aut, cre] (https://sahirbhatnagar.com/),

Karim Oualkacha [aut] (http://karimoualkacha.uqam.ca/),

Yi Yang [aut] (http://www.math.mcgill.ca/yyang/),

Celia Greenwood [aut] (http://www.mcgill.ca/statisticalgenetics/)

Maintainer Sahir Bhatnagar < sahir.bhatnagar@gmail.com>

Repository CRAN

Date/Publication 2021-04-13 07:00:02 UTC

2 admixed

Contents

	admixed	2
	gen_structured_model	4
	ggmix	6
	ggmix_data_object	9
	gic	11
	gr_eta_lasso_fullrank	12
	karim	13
	kkt_check	14
	lambdalasso	15
	lmmlasso	16
	logliklasso	18
	plot.ggmix_fit	19
	plot.ggmix_gic	20
	predict.ggmix_fit	22
	predict.ggmix_gic	23
	print.ggmix_fit	25
	ranef	25
	sigma2lasso	27
Index		28

admixed

Simulated Dataset with 1D Geography

Description

A simulated dataset to show the utility of this package

Usage

admixed

Format

An object of class list of length 21.

Details

The code used to simulate the data is available at https://github.com/sahirbhatnagar/ggmix/blob/master/data-raw/bnpsd-data.R. See gen_structured_model for more details on the output and how the function used to simulate the data.

admixed 3

Value

A list with the following elements

ytrain simulated response vector for training set

ytune simulated response vector for tuning parameter selection set

ytest simulated response vector for test set

xtrain simulated design matrix for training set

xtune simulated design matrix for tuning parameter selection set

xtest simulated design matrix for testing set

xtrain_lasso simulated design matrix for training set for lasso model. This is the same as xtrain, but also includes the nPC principal components

xtune_lasso simulated design matrix for tuning parameter selection set for lasso model. This is the same as xtune, but also includes the nPC principal components

xtest simulated design matrix for testing set for lasso model. This is the same as xtest, but also includes the nPC principal components

causal character vector of the names of the causal SNPs

beta the vector of true regression coefficients

kin_train 2 times the estimated kinship for the training set individuals

kin_tune_train The covariance matrix between the tuning set and the training set individuals

kin_test_train The covariance matrix between the test set and training set individuals

Xkinship the matrix of SNPs used to estimate the kinship matrix

not causal character vector of the non-causal SNPs

PC the principal components for population structure adjustment

References

Ochoa, Alejandro, and John D. Storey. 2016a. "FST And Kinship for Arbitrary Population Structures I: Generalized Definitions." bioRxiv doi:10.1101/083915.

Ochoa, Alejandro, and John D. Storey. 2016b. "FST And Kinship for Arbitrary Population Structures II: Method of Moments Estimators." bioRxiv doi:10.1101/083923.

Examples

data(admixed)
str(admixed)

gen_structured_model Simulation Scenario from Bhatnagar et al. (2018+) ggmix paper

Description

Function that generates data of the different simulation studies presented in the accompanying paper. This function requires the popkin and bnpsd package to be installed.

Usage

```
gen_structured_model(
    n,
    p_design,
    p_kinship,
    k,
    s,
    Fst,
    b0,
    nPC = 10,
    eta,
    sigma2,
    geography = c("ind", "1d", "circ"),
    percent_causal,
    percent_overlap,
    train_tune_test = c(0.6, 0.2, 0.2)
)
```

Arguments

n	number of observations to simulate
p_design	number of variables in X_test, i.e., the design matrix
p_kinship	number of variable in X_kinship, i.e., matrix used to calculate kinship
k	number of intermediate subpopulations.
S	the desired bias coefficient, which specifies sigma indirectly. Required if sigma is missing
Fst	The desired final FST of the admixed individuals. Required if sigma is missing
b0	the true intercept parameter
nPC	number of principal components to include in the design matrix used for regression adjustment for population structure via principal components. This matrix is used as the input in a standard lasso regression routine, where there are no random effects.
eta	the true eta parameter, which has to be $0 < eta < 1$
sigma2	the true sigma2 parameter

gen_structured_model 5

geography the type of geography for simulation the kinship matrix. "ind" is independent

populations where every individuals is actually unadmixed, "1d" is a 1D geography and "circ" is circular geography. Default: "ind". See the functions in the

bnpsd for details on how this data is actually generated.

percent_causal percentage of p_design that is causal. must be $0 \leq percent_causal \leq 1$. The

true regression coefficients are generated from a standard normal distribution.

percent_overlap

this represents the percentage of causal SNPs that will also be included in the calculation of the kinship matrix

train tune test

the proportion of sample size used for training tuning parameter selection and testing. default is 60/20/20 split

Details

The kinship is estimated using the popkin function from the popkin package. This function will multiple that kinship matrix by 2 to give the expected covariance matrix which is subsequently used in the linear mixed models

Value

A list with the following elements

ytrain simulated response vector for training set

ytune simulated response vector for tuning parameter selection set

ytest simulated response vector for test set

xtrain simulated design matrix for training set

xtune simulated design matrix for tuning parameter selection set

xtest simulated design matrix for testing set

xtrain_lasso simulated design matrix for training set for lasso model. This is the same as xtrain, but also includes the nPC principal components

xtune_lasso simulated design matrix for tuning parameter selection set for lasso model. This is the same as xtune, but also includes the nPC principal components

xtest simulated design matrix for testing set for lasso model. This is the same as xtest, but also includes the nPC principal components

causal character vector of the names of the causal SNPs

beta the vector of true regression coefficients

kin_train 2 times the estimated kinship for the training set individuals

kin tune train The covariance matrix between the tuning set and the training set individuals

kin_test_train The covariance matrix between the test set and training set individuals

Xkinship the matrix of SNPs used to estimate the kinship matrix

not_causal character vector of the non-causal SNPs

PC the principal components for population structure adjustment

6 ggmix

See Also

```
admix_prop_1d_linear
```

Examples

ggmix

Fit Linear Mixed Model with Lasso or Group Lasso Regularization

Description

Main function to fit the linear mixed model with lasso or group lasso penalty for a sequence of tuning parameters. This is a penalized regression method that accounts for population structure using either the kinship matrix or the factored realized relationship matrix

Usage

```
ggmix(
 х,
 у,
 U,
 D,
  kinship,
  n_nonzero_eigenvalues,
  n_zero_eigenvalues,
  estimation = c("full"),
  penalty = c("lasso"),
  group,
  penalty.factor = rep(1, p_design),
  lambda = NULL,
  lambda_min_ratio = ifelse(n_design < p_design, 0.01, 1e-04),</pre>
  nlambda = 100,
  eta_init = 0.5,
 maxit = 100,
  fdev = 1e-20,
  standardize = FALSE,
```

ggmix 7

```
alpha = 1,
  thresh_glmnet = 1e-08,
  epsilon = 1e-04,
  dfmax = p_design + 2,
  verbose = 0
```

Arguments

D

x input matrix, of dimension n x p; where n is the number of observations and p are the number of predictors.

y response variable. must be a quantitative variable

U left singular vectors corresponding to the non-zero eigenvalues provided in the D argument.

D diguin

non-zero eigenvalues. This option is provided to the user should they decide or need to calculate the eigen decomposition of the kinship matrix or the singular value decomposition of the matrix of SNPs used to calculate the kinship outside of this function. This may occur, if for example, it is easier (e.g. because of memory issues, it's easier to calculate in plink). This should correspond to the non-zero eigenvalues only. Note that if you are doing an svd on the matrix of SNPs used to calculate the kinship matrix, then you must provide the square of the singular values so that they correspond to the eigenvalues of the kinship matrix. If you want to use the low rank estimation algorithm, you must provide the truncated eigenvalues and eigenvectors to the D and U arguments, respectively. If you want ggmix to truncate the eigenvectors and eigenvalues for low rank estimation, then provide either K or kinship instead and specify n_nonzero_eigenvalues.

kinship positive definite kinship matrix

K the matrix of SNPs used to determine the kinship matrix

n_nonzero_eigenvalues

the number of nonzero eigenvalues. This argument is only used when estimation="low" and either kinship or K is provided. This argument will limit the function to finding the n_nonzero_eigenvalues largest eigenvalues. If U and D have been provided, then n_nonzero_eigenvalues defaults to the length of D.

n_zero_eigenvalues

Currently not being used. Represents the number of zero eigenvalues. This argument must be specified when U and D are specified and estimation="low". This is required for low rank estimation because the number of zero eigenvalues and their corresponding eigenvalues appears in the likelihood. In general this would be the rank of the matrix used to calculate the eigen or singular value decomposition. When kinship is provided and estimation="low" the default value will be nrow(kinship) - n_nonzero_eigenvalues. When K is provided and estimation="low", the default value is rank(K) - n_nonzero_eigenvalues

estimation type of estimation. Currently only type="full" has been implemented.

type of regularization penalty. Currently, only penalty="lasso" has been implemented.

. .

penalty

8 ggmix

a vector of consecutive integers describing the grouping of the coefficients. group

Currently not implemented, but will be used when penalty="gglasso" is imple-

mented.

Separate penalty factors can be applied to each coefficient. This is a number that penalty.factor

> multiplies lambda to allow differential shrinkage. Can be 0 for some variables, which implies no shrinkage, and that variable is always included in the model.

Default is 1 for all variables

lambda A user supplied lambda sequence (this is the tuning parameter). Typical usage

is to have the program compute its own lambda sequence based on nlambda and lambda.min.ratio. Supplying a value of lambda overrides this. WARNING: use with care. Do not supply a single value for lambda (for predictions after CV use predict() instead). Supply instead a decreasing sequence of lambda values. glmnet relies on its warms starts for speed, and its often faster to fit a whole path

than compute a single fit.

lambda_min_ratio

Smallest value for lambda, as a fraction of lambda.max, the (data derived) entry value (i.e. the smallest value for which all coefficients are zero). The default depends on the sample size nobs relative to the number of variables nvars. If nobs > nvars, the default is 0.0001, close to zero. If nobs < nvars, the default is 0.01. A very small value of lambda.min.ratio will lead to a saturated fit in the

nobs < nvars case.

nlambda the number of lambda values - default is 100.

eta_init initial value for the eta parameter, with $0 < \eta < 1$ used in determining lambda.max

and starting value for fitting algorithm.

maxit Maximum number of passes over the data for all lambda values; default is 10².

fdev Fractional deviance change threshold. If change in deviance between adjacent

lambdas is less than fdev, the solution path stops early. factory default = 1.0e-5

standardize Logical flag for x variable standardization, prior to fitting the model sequence.

> The coefficients are always returned on the original scale. Default is standardize=FALSE. If variables are in the same units already, you might not wish to

standardize.

alpha The elasticnet mixing parameter, with $0 \le \alpha \le 1$. alpha=1 is the lasso penalty,

and alpha=0 the ridge penalty.

thresh_glmnet Convergence threshold for coordinate descent for updating beta parameters. Each

inner coordinate-descent loop continues until the maximum change in the objective after any coefficient update is less than thresh times the null deviance.

Defaults value is 1E-7

epsilon Convergence threshold for block relaxation of the entire parameter vector $\Theta =$

 (β, η, σ^2) . The algorithm converges when

$$crossprod(\Theta_{j+1} - \Theta_j) < \epsilon$$

Defaults value is 1E-4

limit the maximum number of variables in the model. Useful for very large p

(the total number of predictors in the design matrix), if a partial path is desired. Default is the number of columns in the design matrix + 2 (for the variance

components)

dfmax

ggmix_data_object 9

verbose

display progress. Can be either 0,1 or 2. 0 will not display any progress, 2 will display very detailed progress and 1 is somewhere in between. Default: 0.

Value

list which includes the fitted object, lambda sequence, solution path, variance-covariance parameters, degrees of freedom, and singular values, vectors of kinship matrix

References

Bhatnagar, Sahir R, Yang, Yi, Lu, Tianyuan, Schurr, Erwin, Loredo-Osti, JC, Forest, Marie, Oualkacha, Karim, and Greenwood, Celia MT. (2020) *Simultaneous SNP selection and adjustment for population structure in high dimensional prediction models* doi: 10.1101/408484

Friedman, J., Hastie, T. and Tibshirani, R. (2008) *Regularization Paths for Generalized Linear Models via Coordinate Descent*, https://web.stanford.edu/~hastie/Papers/glmnet.pdf *Journal of Statistical Software*, *Vol. 33(1)*, 1-22 Feb 2010 https://www.jstatsoft.org/v33/i01/

Yang, Y., & Zou, H. (2015). A fast unified algorithm for solving group-lasso penalize learning problems. *Statistics and Computing*, 25(6), 1129-1141. https://www.math.mcgill.ca/yyang/resources/papers/STCO_gglasso.pdf

Examples

ggmix_data_object

Constructor functions for the different ggmix objects

Description

new_fullrank_kinship, new_fullrank_K, new_fullrank_UD, new_lowrank_kinship, new_lowrank_K and new_lowrank_UD create the ggmix objects from the provided data that are necessary to fit the penalized linear mixed model according to the user's parameters.

Usage

```
new_fullrank_kinship(x, y, kinship)
new_fullrank_K(x, y, K)
```

10 ggmix_data_object

```
new_fullrank_UD(x, y, U, D)
new_lowrank_kinship(x, y, kinship, n_nonzero_eigenvalues, n_zero_eigenvalues)
new_lowrank_K(x, y, K, n_nonzero_eigenvalues, n_zero_eigenvalues)
new_lowrank_UD(x, y, U, D, n_nonzero_eigenvalues, n_zero_eigenvalues)
```

Arguments

x input matrix, of dimension n x p; where n is the number of observations and p

are the number of predictors.

y response variable. must be a quantitative variable

kinship positive definite kinship matrix

K the matrix of SNPs used to determine the kinship matrix

U left singular vectors corresponding to the non-zero eigenvalues provided in the

D argument.

D non-zero eigenvalues. This option is provided to the user should they decide or

need to calculate the eigen decomposition of the kinship matrix or the singular value decomposition of the matrix of SNPs used to calculate the kinship outside of this function. This may occur, if for example, it is easier (e.g. because of memory issues, it's easier to calculate in plink). This should correspond to the non-zero eigenvalues only. Note that if you are doing an svd on the matrix of SNPs used to calculate the kinship matrix, then you must provide the square of the singular values so that they correspond to the eigenvalues of the kinship matrix. If you want to use the low rank estimation algorithm, you must provide the truncated eigenvalues and eigenvectors to the D and U arguments, respectively. If you want ggmix to truncate the eigenvectors and eigenvalues for low rank estimation, then provide either K or kinship instead and specify

n_nonzero_eigenvalues.

n_nonzero_eigenvalues

the number of nonzero eigenvalues. This argument is only used when estimation="low" and either kinship or K is provided. This argument will limit the function to finding the n_nonzero_eigenvalues largest eigenvalues. If U and D have been provided, then n_nonzero_eigenvalues defaults to the length of D.

n_zero_eigenvalues

the number of desired or specified zero eigenvalues. This is only needed when estimation="lowrank", and is calculated internally by the ggmix function. It is equal to the number of observations minus n_nonzero_eigenvalues

Value

A ggmix object, of the class that corresponds to the estimation method. These objects are lists that contain the data necessary for computation. These functions are not meant to be called directly by the user

gic 11

See Also

ggmix

gic

Generalised Information Criterion

Description

Calculates the generalised information criterion for each value of the tuning parameter lambda

Usage

```
gic(ggmix_fit, ...)
## Default S3 method:
gic(ggmix_fit, ...)
## S3 method for class 'ggmix_fit'
gic(ggmix_fit, ..., an = log(log(n)) * log(p))
```

Arguments

ggmix_fit An object of class ggmix_fit which is outputted by the ggmix function

other parameters. currently ignored.

numeric, the penalty per parameter to be used; the default is an = log(log(n))*log(p)

where n is the number of subjects and p is the number of parameters

Details

the generalised information criterion used for gaussian response is given by

$$-2 * loglikelihood(\hat{\Theta}) + an * df$$

where df is the number of non-zero estimated parameters, including variance components

Value

an object with S3 class "ggmix_gic", "ggmix_fit", "*" and "**" where "*" is "lasso" or "gglasso" and "**" is fullrank or lowrank. Results are provided for converged values of lambda only.

ggmix_fit the ggmix_fit object

lambda the sequence of converged tuning parameters

nzero the number of non-zero estimated coefficients including the 2 variance parameters which are not penalized and therefore always included

gic gic value. a numeric vector with length equal to length(lambda)

lambda.min.name a character corresponding to the name of the tuning parameter lambda which minimizes the gic

lambda.min the value of lambda which minimizes the gic

12 gr_eta_lasso_fullrank

References

Fan Y, Tang CY. Tuning parameter selection in high dimensional penalized likelihood. Journal of the Royal Statistical Society: Series B (Statistical Methodology). 2013 Jun 1;75(3):531-52.

Nishii R. Asymptotic properties of criteria for selection of variables in multiple regression. The Annals of Statistics. 1984;12(2):758-65.

See Also

ggmix

gr_eta_lasso_fullrank Functions related to eta parameter used in optim and kkt checks

Description

Used for gradient of eta. Currently being passed to optim in lmmlasso and used in kkt_check

Usage

```
gr_eta_lasso_fullrank(eta, sigma2, beta, eigenvalues, x, y, nt)
fn_eta_lasso_fullrank(eta, sigma2, beta, eigenvalues, x, y, nt)
```

Arguments

0.10	assument actionate of the ste monameter
eta	current estimate of the eta parameter
sigma2	current estimate of the sigma2 parameter
beta	current estimate of the beta parameter including the intercept. this should be of length p+1, where p is the number of variables.
eigenvalues	non-zero eigenvalues of the kinship matrix, or the square of the singular values of the matrix used to construct the kinship matrix
X	input matrix, of dimension $n \times p$; where n is the number of observations and p are the number of predictors.
у	response variable. must be a quantitative variable
nt	total number of observations

Value

returns the value of the function and gradient for the eta variance parameter

See Also

```
logliklasso, kkt_check, lmmlasso
```

karim 13

karim

Karim's Simulated Data

Description

A simulated dataset with a kinship matrix

Usage

karim

Format

A list with 6 elements:

b vector of length 1000 representing the true regression coefficients. 10 non-zero coefficients, the rest are 0.

kin1 the true kinship matrix

s.g polygenic variance, set to be 1.26

s.e error variance, set to be 1

h.tot the total trait heritability. Set to be 60 of genotypes of dimension 600 x 1000 SNPs, with approximately 800 common and 200 rare SNPs

Details

If you simulate data using the scenario provided in the example, then the QTL heritability of y will be 8 of the trait's total heritability), and the trait total heritability is set to be 60

Examples

```
data(karim)
# Simulate a response using the genotype matrix and the kinship matrix
Phi <- 2 * karim$kin1
intercept <- 1
P <- MASS::mvrnorm(1, rep(0,600), karim$s.g * Phi)
y <- intercept + karim$G %*% karim$b + P + rnorm(600,0,karim$s.e)</pre>
```

14 kkt_check

kkt_check

Check of KKT Conditions for Linear Mixed Model

Description

This function checks the KKT conditions

Usage

```
kkt_check(eta, sigma2, beta, eigenvalues, x, y, nt, lambda, tol.kkt = 0.001)
grr_sigma2(eta, sigma2, beta, eigenvalues, x, y, nt)
grr_beta0(eta, sigma2, beta, eigenvalues, x, y, nt)
```

Arguments

eta	current estimate of the eta parameter
sigma2	current estimate of the sigma2 parameter
heta	current estimate of the beta parameter including

beta current estimate of the beta parameter including the intercept. this should be of

length p+1, where p is the number of variables.

eigenvalues non-zero eigenvalues of the kinship matrix, or the square of the singular values

of the matrix used to construct the kinship matrix

x rotated x. Should be U^T X, where U is the matrix of eigenvectors and X

contains the first column of ones for the intercept. x should be a mtrix of dimension $n \times (p+1)$. These are outputted by the constructor functions. See

ggmix_data_object for details

y rotated y. Should be U^T Y, where U is the matrix of eigenvectors and Y is the

response.

nt total number of observations

lambda A user supplied lambda sequence (this is the tuning parameter). Typical usage

is to have the program compute its own lambda sequence based on nlambda and lambda.min.ratio. Supplying a value of lambda overrides this. WARNING: use with care. Do not supply a single value for lambda (for predictions after CV use predict() instead). Supply instead a decreasing sequence of lambda values. glmnet relies on its warms starts for speed, and its often faster to fit a whole path

than compute a single fit.

tol.kkt Tolerance for determining if an entry of the subgradient is zero

Value

returns the values of the gradient for each of the parameters

Note

grr_sigma2 and grr_beta0 are functions for the gradient of sigma2 and beta0, respectively

lambdalasso 15

lambdalasso

Estimation of Lambda Sequence for Linear Mixed Model with Lasso Penalty

Description

lambdalasso estimates a decreasing sequence of tuning parameters

Usage

```
lambdalasso(ggmix_object, ...)
## Default S3 method:
lambdalasso(ggmix_object, ...)
## S3 method for class 'fullrank'
lambdalasso(
  ggmix_object,
  . . . ,
  penalty.factor,
  lambda_min_ratio,
  epsilon = 1e-14,
  tol.kkt = 1e-09,
  eta_init = 0.5,
  nlambda = 100,
  scale_x = FALSE,
  center_y = FALSE
)
```

Arguments

ggmix_object A ggmix_object object of class lowrank or fullrank

Extra parameters. Currently ignored.

penalty.factor Separate penalty factors can be applied to each coefficient. This is a number that multiplies lambda to allow differential shrinkage. Can be 0 for some variables, which implies no shrinkage, and that variable is always included in the model.

Default is 1 for all variables

lambda_min_ratio

Smallest value for lambda, as a fraction of lambda.max, the (data derived) entry value (i.e. the smallest value for which all coefficients are zero). The default depends on the sample size nobs relative to the number of variables nvars. If nobs > nvars, the default is 0.0001, close to zero. If nobs < nvars, the default is 0.01. A very small value of lambda.min.ratio will lead to a saturated fit in the nobs < nvars case.

16 Immlasso

epsilon	Convergence threshold for block relaxation of the entire parameter vector $\Theta = (\beta, \eta, \sigma^2)$. The algorithm converges when
	$crossprod(\Theta_{j+1} - \Theta_j) < \epsilon$
	. Defaults value is 1E-4
tol.kkt	KKT tolerance. Currently ignored
eta_ini	initial value for the eta parameter, with $0<\eta<1$ used in determining lambda.max and starting value for fitting algorithm.
nlambda	the number of lambda values - default is 100.
scale_x	should the columns of x be scaled - default is FALSE
center_	should y be mean centered - default is FALSE.

Value

A decreasing sequence of tuning parameters

Note

This function isn't meant to be called directly by the user.

See Also

ggmix

lmmlasso

Estimation of Linear Mixed Model with Lasso Penalty

Description

1mmlasso estimates the linear mixed model with lasso penalty

Usage

```
lmmlasso(ggmix_object, ...)
## Default S3 method:
lmmlasso(ggmix_object, ...)
## S3 method for class 'fullrank'
lmmlasso(
    ggmix_object,
    ...,
    penalty.factor,
    lambda,
    lambda_min_ratio,
```

Immlasso 17

```
nlambda,
n_design,
p_design,
eta_init,
maxit,
fdev,
standardize,
alpha,
thresh_glmnet,
epsilon,
dfmax,
verbose
)
```

Arguments

ggmix_object A ggmix_object object of class lowrank or fullrank

... Extra parameters. Currently ignored.

penalty.factor Separate penalty factors can be applied to each coefficient. This is a number that

multiplies lambda to allow differential shrinkage. Can be 0 for some variables, which implies no shrinkage, and that variable is always included in the model.

Default is 1 for all variables

lambda A user supplied lambda sequence (this is the tuning parameter). Typical usage

is to have the program compute its own lambda sequence based on nlambda and lambda.min.ratio. Supplying a value of lambda overrides this. WARNING: use with care. Do not supply a single value for lambda (for predictions after CV use predict() instead). Supply instead a decreasing sequence of lambda values. glmnet relies on its warms starts for speed, and its often faster to fit a whole path

than compute a single fit.

lambda min ratio

Smallest value for lambda, as a fraction of lambda.max, the (data derived) entry value (i.e. the smallest value for which all coefficients are zero). The default depends on the sample size nobs relative to the number of variables nvars. If nobs > nvars, the default is 0.0001, close to zero. If nobs < nvars, the default is 0.01. A very small value of lambda.min.ratio will lead to a saturated fit in the

nobs < nvars case.

nlambda the number of lambda values - default is 100.

n_design total number of observations

p_design number of variables in the design matrix, excluding the intercept column

eta_init initial value for the eta parameter, with $0<\eta<1$ used in determining lambda.max

and starting value for fitting algorithm.

maxit Maximum number of passes over the data for all lambda values; default is 10².

fdev Fractional deviance change threshold. If change in deviance between adjacent

lambdas is less than fdev, the solution path stops early. factory default = 1.0e-5

18 logliklasso

standardize	Logical flag for x variable standardization, prior to fitting the model sequence.
	The coefficients are always returned on the original scale. Default is standard-
	ize=FALSE. If variables are in the same units already, you might not wish to
	standardize.

alpha The elasticnet mixing parameter, with $0 \le \alpha \le 1$. alpha=1 is the lasso penalty,

and alpha=0 the ridge penalty.

thresh_glmnet Convergence threshold for coordinate descent for updating beta parameters. Each

inner coordinate-descent loop continues until the maximum change in the objective after any coefficient update is less than thresh times the null deviance.

Defaults value is 1E-7

epsilon Convergence threshold for block relaxation of the entire parameter vector $\Theta =$

 (β, η, σ^2) . The algorithm converges when

$$crossprod(\Theta_{j+1} - \Theta_j) < \epsilon$$

. Defaults value is 1E-4

dfmax limit the maximum number of variables in the model. Useful for very large p

(the total number of predictors in the design matrix), if a partial path is desired. Default is the number of columns in the design matrix + 2 (for the variance

components)

verbose display progress. Can be either 0,1 or 2. 0 will not display any progress, 2 will

display very detailed progress and 1 is somewhere in between. Default: 0.

Value

A object of class ggmix

See Also

ggmix

logliklasso	Estimation of	Log-likelihood	for	Linear	Mixed	Model	with	Lasso
	Penalty							

Description

sigma2lasso estimates the value of the sigma2 for the linear mixed model with lasso penalty

Usage

```
logliklasso(ggmix_object, ...)
## Default S3 method:
logliklasso(ggmix_object, ...)
## S3 method for class 'fullrank'
logliklasso(ggmix_object, ..., eta, sigma2, beta, nt, x, y)
```

plot.ggmix_fit

Arguments

ggmix_o	ject A ggmix_object object of class lowrank or fullrank
	Extra parameters. Currently ignored.
eta	current estimate of the eta parameter
sigma2	current estimate of the sigma2 parameter
beta	current estimate of the beta parameter including the intercept. this should be of length p+1, where p is the number of variables.
nt	total number of observations
x	input matrix, of dimension $n \times p$; where n is the number of observations and p are the number of predictors.
У	response variable. must be a quantitative variable

Value

A decreasing sequence of tuning parameters

Note

This function isn't meant to be called directly by the user.

See Also

```
ggmix
ggmix_data_object
```

```
plot.ggmix_fit
```

Plot Method for ggmix_fit object

Description

Produces a coefficient profile plot of the coefficient paths for a fitted ggmix_fit object.

Usage

```
## S3 method for class 'ggmix_fit'
plot(x, ..., xvar = c("norm", "lambda", "dev"), label = FALSE, sign.lambda = 1)

plotCoef(
  beta,
  norm,
  lambda,
  df,
  dev,
  label = FALSE,
  xvar = c("norm", "lambda", "dev"),
```

20 plot.ggmix_gic

```
xlab = iname,
ylab = "Coefficients",
...
)
```

Arguments

x a ggmix_fit object

... other graphical parameters passed to plot

xvar What is on the X-axis. "norm" plots against the L1-norm of the coefficients,

"lambda" against the log-lambda sequence, and "dev" against the percent de-

viance explained.

label If TRUE, label the curves with variable sequence numbers.

sign.lambda Either plot against log(lambda) (default) or its negative if sign.lambda=-1

beta fixed effects estimates

norm 11 norm of fixed effect estimates. if missing, (default) this function will calculate

it

lambda sequence of tuning parameters

df number of non-zero fixed + random effects

dev percent deviance

xlab x-axis label ylab y-axis label

Details

A coefficient profile plot is produced

Value

A plot is produced and nothing is returned

plot.ggmix_gic

Plot the Generalised Information Criteria curve produced by gic

Description

Plots the Generalised Information Criteria curve, as a function of the lambda values used

plot.ggmix_gic 21

Usage

```
## S3 method for class 'ggmix_gic'
plot(
    x,
    ...,
    sign.lambda = 1,
    type = c("gic", "QQranef", "QQresid", "predicted", "Tukey-Anscombe"),
    s = "lambda.min",
    newy,
    newx
)
plotGIC(x, sign.lambda, lambda.min, ...)
```

Arguments

х	fitted linear mixed model object of class ggmix_gic from the gic function
	Other graphical parameters to plot
sign.lambda	Either plot against log(lambda) (default) or its negative if sign.lambda=-1
type	gic returns a plot of the GIC vs. log(lambda). QQranef return a qqplot of the random effects. QQresid returns a qqplot of the residuals which is $y-X\beta-b_i$ where b_i is the subject specific random effect. predicted returns a plot of the predicted response $(X\beta+b_i)$ vs. the observed response, where b_i is the subject specific random effect. Tukey-Anscombe returns a plot of the residuals vs. fitted values $(X\beta)$
S	Value of the penalty parameter lambda at which predictions are required. Default is the value s="lambda.min". If s is numeric, it is taken as the value of lambda to be used. Must be a single value of the penalty parameter lambda at which coefficients will be extracted via the coef method for objects of class ggmix_gic. If more than one is supplied, only the first one will be used.
newy	the response variable that was provided to ggmix. this is only required for type="QQresis", type="Tukey-Anscombe" and type="predicted"
newx	matrix of values for x at which predictions are to be made. Do not include the intercept. this is only required for type="QQresis", type="Tukey-Anscombe" and type="predicted"
lambda.min	the value of lambda which minimizes the gic

Details

A plot is produced, and nothing is returned.

Value

plot depends on the type selected

See Also

gic

22 predict.ggmix_fit

Examples

predict.ggmix_fit

Make predictions from a ggmix_fit object

Description

Similar to other predict methods, this functions predicts fitted values, coefficients and more from a fitted ggmix_fit object.

Usage

```
## S3 method for class 'ggmix_fit'
predict(
   object,
   newx,
   s = NULL,
   type = c("link", "response", "coefficients", "all", "nonzero", "individual"),
   covariance,
   ...
)

## S3 method for class 'ggmix_fit'
coef(object, s = NULL, type, ...)
```

Arguments

object Fitted ggmix_fit model object from the ggmix function

newx matrix of values for x at which predictions are to be made. Do not include the in-

tercept. Must be a matrix. This argument is not used for type = c("coefficients", "nonzero", "all").

This matrix must have the same number of columns originally supplied to the

ggmix fitting function.

s Value(s) of the penalty parameter lambda at which predictions are required. De-

fault is the entire sequence used to create the model.

predict.ggmix_gic 23

Type of prediction required. Type "link" gives the fitted values $X\beta$. Type "response" is equivalent to type "link". Type "coefficients" computes the coefficients at the requested values for s and returns the regression coefficients only, including the intercept. Type "all" returns both the regression coefficients and variance components at the requested value of s. Type "nonzero" returns a 1 column matrix of the the nonzero fixed effects, as well as variance components for each value of s. If more than one s is provided, then "nonzero" will return a list of 1 column matrices. Default: "link"

covariance covariance between test and training individuals. if there are q testing individu-

als and N-q training individuals, then this covariance matrix is q x (N-q)

... additional arguments to pass to predict function

Details

s is the new vector at which predictions are requested. If s is not in the lambda sequence used for fitting the model, the predict function will use linear interpolation to make predictions. The new values are interpolated using a fraction of predicted values from both left and right lambda indices. coef(...) is equivalent to predict(ggmix_fit, type="coefficients",...). To get individual level predictions at each value of lambda, you must provide the lambda sequence to the s argument. You can pass either a ggmix_fit or ggmix_gic object. See examples for more details.

Value

The object returned depends on type.

Examples

24 predict.ggmix_gic

Description

This function makes predictions from a ggmix_gic object, using the stored "ggmix_fit" object, and the optimal value chosen for lambda using the gic.

Usage

```
## S3 method for class 'ggmix_gic'
predict(object, newx, s = c("lambda.min"), ...)
## S3 method for class 'ggmix_gic'
coef(object, s = c("lambda.min"), type, ...)
```

Arguments

object fitted ggmix_gic object

newx matrix of values for x at which predictions are to be made. Do not include the in-

tercept. Must be a matrix. This argument is not used for type = c("coefficients", "nonzero", "all").

This matrix must have the same number of columns originally supplied to the

ggmix fitting function.

s Value(s) of the penalty parameter lambda at which predictions are required. De-

fault is the value s="lambda.min" can be used. If s is numeric, it is taken as the

value(s) of lambda to be used.

.. other arguments passed to predict.ggmix_fit

type Type of prediction required. Type "link" gives the fitted values $X\beta$. Type

"response" is equivalent to type "link". Type "coefficients" computes the coefficients at the requested values for s and returns the regression coefficients only, including the intercept. Type "all" returns both the regression coefficients and variance components at the requested value of s. Type "nonzero" returns a l column matrix of the the nonzero fixed effects, as well as variance components for each value of s. If more than one s is provided, then "nonzero" will return

a list of 1 column matrices. Default: "link"

Details

This function makes it easier to use the results of gic chosen model to make a prediction.

Value

The object returned depends the ... argument which is passed on to the predict method for ggmix_fit objects.

See Also

```
predict.ggmix_fit
```

print.ggmix_fit 25

print.ggmix_fit

Print Method for Objects of Class ggmix_fit

Description

print method for objects of class ggmix_fit

Usage

```
## S3 method for class 'ggmix_fit'
print(x, ..., digits = max(3, getOption("digits") - 3))
## S3 method for class 'ggmix_gic'
print(x, ..., digits = max(3, getOption("digits") - 3))
```

Arguments

```
    an object of class objects of class ggmix_fit
    other arguments passed to print
    significant digits in printout. Default: max(3,getOption("digits") - 3)
```

Value

The call that produced the object x is printed, followed by a three-column matrix with columns Df, %Dev, and and Lambda. The Df columns correspond to the number of nonzero coefficients including variance components. %dev is the percent deviance explained (relative to the null deviance). Lambda is the sequence of converged tuning parameters.

See Also

ggmix

ranef

Extract Random Effects

Description

Generic function for extracting the random effects. This is the same generic (and same name) defined in the nlme and lme4 package.

26 ranef

Usage

```
ranef(object, ...)
random.effects(object, ...)
## Default S3 method:
random.effects(object, ...)
## Default S3 method:
ranef(object, ...)
## S3 method for class 'ggmix_gic'
ranef(object, s = "lambda.min", ...)
```

Arguments

object any fitted model object from which random effects estimates can be extracted. Currently supports "ggmix_gic" objects outputted by the gic function

... other parameters. currently ignored

Solve Value(s) of the penalty parameter lambda at which predictions are required. Default is the value s="lambda.min" can be used. If s is numeric, it is taken as the value(s) of lambda to be used.

Details

For objects of class "ggmix_gic", this function returns the subject-specific random effect value for the model which minimizes the GIC using the maximum a posteriori principle

Value

a numeric vector of length equal to the number of observations of subject-specific random effects

See Also

gic

Examples

sigma2lasso 27

sigma2lasso

Estimation of Sigma2 for Linear Mixed Model with Lasso Penalty

Description

sigma2lasso estimates the value of the sigma2 for the linear mixed model with lasso penalty

Usage

```
sigma2lasso(ggmix_object, ...)
## Default S3 method:
sigma2lasso(ggmix_object, ...)
## S3 method for class 'fullrank'
sigma2lasso(ggmix_object, ..., n, beta, eta)
```

Arguments

ggmix_object A ggmix_object object of class lowrank or fullrank

... Extra parameters. Currently ignored.

n number of observations

beta current estimate of the beta parameter including the intercept. this should be of

length p+1, where p is the number of variables.

eta current estimate of the eta parameter

Value

A decreasing sequence of tuning parameters

Note

There is a closed form solution for sigma^2, given beta and eta. This function isn't meant to be called directly by the user.

See Also

ggmix

Index

```
* datasets
                                                 predict.ggmix_fit, 22, 24
    admixed, 2
                                                 predict.ggmix_gic, 23
    karim, 13
                                                 print.ggmix_fit, 25
                                                 print.ggmix_gic (print.ggmix_fit), 25
admix_prop_1d_linear, 6
admixed, 2
                                                 random.effects(ranef), 25
                                                 ranef, 25
coef.ggmix_fit (predict.ggmix_fit), 22
                                                 sigma2lasso, 27
coef.ggmix_gic(predict.ggmix_gic), 23
fn_eta_lasso_fullrank
        (gr_eta_lasso_fullrank), 12
gen_structured_model, 2, 4
ggmix, 6, 10–12, 16, 18, 19, 22, 24, 25, 27
ggmix_data_object, 9, 14, 19
gic, 11, 21, 26
gr_eta_lasso_fullrank, 12
grr_beta0 (kkt_check), 14
grr_sigma2 (kkt_check), 14
karim, 13
kkt_check, 12, 14
lambdalasso, 15
lmmlasso, 12, 16
logliklasso, 12, 18
new_fullrank_K (ggmix_data_object), 9
new_fullrank_kinship
        (ggmix_data_object), 9
new_fullrank_UD (ggmix_data_object), 9
new_lowrank_K (ggmix_data_object), 9
new_lowrank_kinship
        (ggmix_data_object), 9
new_lowrank_UD (ggmix_data_object), 9
plot.ggmix_fit, 19
plot.ggmix_gic, 20
plotCoef (plot.ggmix_fit), 19
plotGIC (plot.ggmix_gic), 20
```