
Package ‘grapherator’
July 22, 2025

Title A Modular Multi-Step Graph Generator

Description Set of functions for step-wise generation of (weighted) graphs. Aimed for re-
search in the field of single- and multi-objective combinatorial optimization. Graphs are gener-
ated adding nodes, edges and weights. Each step may be repeated multiple times with differ-
ent predefined and custom generators resulting in high flexibility regarding the graph topol-
ogy and structure of edge weights.

Version 1.0.0

Encoding UTF-8

Date 2017-12-20

Maintainer Jakob Bossek <j.bossek@gmail.com>

License BSD_2_clause + file LICENSE

URL https://github.com/jakobbossek/grapherator

BugReports https://github.com/jakobbossek/grapherator/issues

Imports BBmisc (>= 1.6), checkmate (>= 1.1), reshape2 (>= 1.4.1),
vegan, ggplot2 (>= 1.0.0), lhs, deldir, grDevices

Suggests testthat (>= 0.9.1), knitr, rmarkdown, gridExtra, magrittr

ByteCompile yes

LazyData yes

RoxygenNote 6.0.1

VignetteBuilder knitr

NeedsCompilation no

Author Jakob Bossek [aut, cre]

Repository CRAN

Date/Publication 2017-12-21 13:19:38 UTC

Contents
grapherator-package . 2
addEdges . 2

1

https://github.com/jakobbossek/grapherator
https://github.com/jakobbossek/grapherator/issues

2 addEdges

addEdgesToPlot . 4
addNodes . 5
addWeights . 6
addWeightsConcave . 8
as.character.grapherator . 9
edgeGenerators . 10
getter . 12
graph . 13
grapherator . 14
nodeGenerators . 15
plot.grapherator . 16
writeGP . 18

Index 20

grapherator-package grapherator: A modular multi-step graph generator

Description

Due to lack of real world graphs, e.g., the optimization community often relies on artificial graphs
to benchmark algorithms. The grapherator package implements a multi-step approach for the
generation of weighted graphs. A set of predefined node, edge and weight generators allows for
fast and convenient graph generation. Furthermore, the modular structure of the package enables
writing user-defined generators and use them within the framework in a plug-and-play style.

Generation philosophy

The graph generation follows a three step procedure. A bare graph (see graph), i.e., an empty graph
object, the following three serves as a staring point for several iterations of the following steps. Note
that once edges have been added, no furhter nodes may be added. Likewise, after weights have
been attached to edges, no further edges may be added. 1) Node generation via addNodes: nodes
are generated by placing node coordinates in the two-dimensional Euclidean plane using different
node generators. 2) Edge generation via addEdges: links between nodes are established via one or
multiple edge generators. 3) Weight generation via addWeights: One or more weights are attached
to each edge by different weight generators.

addEdges Add edges to graph.

Description

This method allows to add edges to a grapherator graph. The method can be applied multiple
times with different parameterizations. E.g., add edges in clusters first and add edges between
clusters in a second step.

addEdges 3

Usage

addEdges(graph, generator, type = "all", k = NULL, cluster.ids = NULL,
...)

Arguments

graph [grapherator]
Graph.

generator [function(graph, ...)]
Method applied to graph in order to determine which edges to add.

type [character(1)]
Value “all” applies generator to all nodes. Value “intracluster” instead ap-
plies the method for each cluster seperately. Value “intercluster” selects each
k nodes from each cluster and applies generator to the union. Lastly, value
“intercenter” selects the cluster centers exclusively. Default is “all”.

k [integer | NULL]
Integer vector specifying the number of nodes selected randomly from each
cluster to be selected for edge construction. May be a scalar value or a vec-
tor of length graph$n.clusters. NAs are allowed and indicate clusters to be
ignored.

cluster.ids [integer | NULL]
Ignored unless type is not set to “intracluster”. Integer vector of cluster IDs. If
NULL the generator is applied within each cluster.

... [any]
Further arguments passed down to edge generator generator.

Value

[grapherator] Graph.

References

Erdos, P., and A. Renyi. 1959. "On random graphs, I." Publicationes Mathematicae (Debrecen) 6:
290-97.

Waxman, B. M. 1988. "Routing of Multipoint Connections."" IEEE Journal on Selected Areas in
Communications 6 (9): 1617-22. doi:10.1109/49.12889.

Knowles, J. D., and D. W. Corne. 2001. "Benchmark Problem Generators and Results for the Multi-
objective Degree-Constrained Minimum Spanning Tree Problem." In Proceedings of the 3rd Annual
Conference on Genetic and Evolutionary Computation, 424-31. GECCO’01. San Francisco, CA,
USA: Morgan Kaufmann Publishers Inc.

See Also

Other graph generators: addNodes, addWeights, graph

4 addEdgesToPlot

Examples

g = graph(0, 1000)
g = addNodes(g, n = 5, generator = addNodesLHS)
g = addNodes(g, n = c(3, 10, 20, 10, 40), by.centers = TRUE, generator = addNodesUniform,

lower = c(0, 0), upper = c(30, 30))
user different edge generators for clusters
g = addEdges(g, generator = addEdgesDelauney, type = "intracluster", cluster.ids = 1:3)
g = addEdges(g, generator = addEdgesSpanningTree, type = "intracluster", cluster.ids = 4:5)
link cluster centers
g = addEdges(g, generator = addEdgesSpanningTree, runs = 2, type = "intercenter")
additional random links between each 2 nodes from each cluster
g = addEdges(g, generator = addEdgesGilbert, p = 0.4, type = "intercluster", k = 2)

addEdgesToPlot Highlight edges in graph.

Description

Highlights edges in coordinate plot.

Usage

addEdgesToPlot(x, g, edge.list, ...)

Arguments

x [ggplot]
Coordinate plot generated via plot.grapherator.

g [grapherator]
Graph.

edge.list [matrix]
Matrix of edges (each column is one edge).

... [any]
Arguments passed down to geom_segment.

Value

[ggplot] Modified x.

Examples

Not run:
g = graph(0, 100)
g = addNodes(g, n = 10, generator = addNodesUniform)
g = addEdges(g, generator = addEdgesComplete)
pl = plot(g)$pl.coords
el = matrix(c(1, 2, 1, 3, 4, 5, 3, 4), nrow = 2L)
pl = addEdgesToPlot(pl, g, el)

addNodes 5

print(pl)

End(Not run)

addNodes Add nodes to graph.

Description

Places node coordinates in the two-dimensional Euclidean plane.

Usage

addNodes(graph, n, generator, coordinates = NULL, by.centers = FALSE,
skip.centers = integer(0L), par.fun = NULL, ...)

Arguments

graph [grapherator]
Graph.

n [integer]
Number of nodes to place. If by.centers is FALSE a single integer value is
expected. Otherwise, a vector v may be passed. In this case v[i] coordinates are
generated for each cluster. However, if a single value is passed and by.center
== TRUE, each cluster is assigned the same number of nodes.

generator [function(graph, ...)]
Function used to generate nodes. The functions needs to expect the number
of points to generate as the first argument n. Additional control argument are
possible.

coordinates [matrix(n, 2)]
Matrix of coordinates (each row is one node/point). Default is NULL. If this is set,
setting of generator, by.centers, and par.fun are ignored. This parameter is
handy, if one wants to add coordinates by hand. Default is NULL.

by.centers [logical(1)]
Should coordinates be placed for each cluster center seperately? This enables
generation of clustered graphs. Default is FALSE.

skip.centers [integer]
Optional IDs of cluster centers not to consider in clustered node generation, i.e.,
if by.centers = TRUE. Default is not to skip any cluster.

par.fun [function(cc) | NULL]
Optional function which is applied to each cluster center before the generation of
coordinates in case by.centers is TRUE. This enables to specifically determine
additional parameters for the generator for each cluster.

... [any]
Further arguments passed down to generator.

6 addWeights

Value

[grapherator] Graph.

See Also

Other graph generators: addEdges, addWeights, graph

Examples

Clustered graph
g = graph(0, 1000)
g = addNodes(g, n = 5, generator = addNodesLHS)
g = addNodes(g, n = c(3, 10, 20, 10, 40), by.centers = TRUE, generator = addNodesUniform,
lower = c(0, 0), upper = c(30, 30))

Not run:
plot(g, show.edges = FALSE)$pl.coords

End(Not run)

Mixed graph
g = graph(0, 100)
g = addNodes(g, n = 100, generator = addNodesLHS)
g = addNodes(g, n = 100, generator = addNodesGrid)

Not run:
plot(g, show.edges = FALSE)$pl.coords

End(Not run)

addWeights Add weights to graph.

Description

addWeights allows to add edge weights to a graph. This is the last step of the graph generation
process. Note that adding edges is not possible once addWeights was called once.

Usage

addWeights(graph, generator = NULL, weights = NULL, symmetric = TRUE,
to.int = FALSE, ...)

Arguments

graph [grapherator]
Graph.

generator [function(graph, ...)]
Function used to generate weights. The functions needs to expect the graph as
the first argument graph. Additional control argument are possible.

addWeights 7

weights [matrix]
Square matrix of weights. If some weights are already assigned, pay attention to
the correct dimensions. If this is passed all other arguments are ignored. Default
is NULL.

symmetric [logical(1)]
Should the weights be symmetric, i.e., w(i, j) = w(j, i) for each pair i, j of
nodes? Default is TRUE.

to.int [logical(1)]
Should weights be rounded to integer? Default is FALSE.

... [any]
Additional arguments passed down to generator.

Value

[grapherator] Graph.

See Also

Other graph generators: addEdges, addNodes, graph

Examples

first we define a simple graph
g = graph(0, 100)
g = addNodes(g, n = 5, generator = addNodesLHS)
g = addNodes(g, n = c(3, 10, 20, 10, 40), by.centers = TRUE, generator = addNodesUniform,

lower = c(0, 0), upper = c(15, 15))
g = addEdges(g, generator = addEdgesDelauney)

first graph contains two integer random weights per edge
g1 = addWeights(g, generator = addWeightsRandom, method = runif, min = 10, max = 20, to.int = TRUE)
g1 = addWeights(g, generator = addWeightsRandom, method = runif, min = 10, max = 30, to.int = TRUE)
Not run:
plot(g1)$pl.weights

End(Not run)

next one contains correlated weights. The first weight corresponds to the
Euclidean distance of the points, the second is generated in a way, that
a given correlation rho is achieved.
g2 = addWeights(g, generator = addWeightsCorrelated, rho = -0.7)
Not run:
plot(g2)$pl.weights

End(Not run)

Last example contains two weights per edge: the first one is the Manhattan
block distance between the nodes in the plane. The second one is the Euclidean
distance plus a normally distributed jitter. Here we write a custom weight
generator which returns two weight matrizes.
myWeightGenerator = function(graph, ...) {

8 addWeightsConcave

n = getNumberOfNodes(graph)
adj.mat = getAdjacencyMatrix(graph)
coords = getNodeCoordinates(graph)

man.dist = as.matrix(dist(coords), method = "manhattan")
euc.dist = as.matrix(dist(coords)) + abs(rnorm(n * n, ...))

keep in mind non-existent edges
euc.dist[!adj.mat] = man.dist[!adj.mat] = Inf

return the necessary format
return(list(weights = list(man.dist, euc.dist), generator = "MyWG"))

}

g3 = addWeights(g, generator = myWeightGenerator, mean = 30, sd = 5)
Not run:
plot(g3)$pl.weights

End(Not run)

addWeightsConcave @title Weight generators.

Description

Function for adding weight(s) to edges. The following functions are implemented and may be
passed as argument generator to addWeights:

addWeightsRandom Add purely random weights. Calls the passed method, e.g., method = runif
to generate weights.

addWeightsDistance Weights correspond to a distance metric based on the node coordinates in
the Euclidean plane. Internally function dist is called.

addWeightsCorrelated This method generates two weight matrices with correlated weights. The
correlation may be adjusted by the rho argument. Here, the first weight of an edge is the
Euclidean distance between the nodes in the plane and the second one is generated in a way,
that the correlation is close to rho.

addWeightsCocave This method is interesting for generating bi-objective graphs to benchmark
algorithms for the multi-criteria spanning tree problem. Graphs generated this way expose a
concave Pareto-front.

Usage

addWeightsConcave(graph, xhi = 10, nu = 20, M = 100, ...)

addWeightsCorrelated(graph, rho, ...)

addWeightsDistance(graph, method, ...)

addWeightsRandom(graph, method, ...)

as.character.grapherator 9

Arguments

graph [grapherator]
Graph.

xhi [integer(1)]
Positive integer for addWeightsConcave. Default is 10.

nu [integer(1)]
Positive integer for addWeightsConcave. Default is 20.

M [integer(1)]
Maximum weight for weights generated via addWeightsConcave. Note that M
minus xhi needs to be much bigger than nu. Default is 100.

... [any] Further arguments. Not used at the moment. This may be useful for user-
written weight generators.

rho [numeric(1)]
Desired correlation, i.e., value between -1 and 1, of edge weights for addWeightsCorrelated.

method [character(1) | function(n, ...)]
String representing the distance measure to use for addWeightsDistance (see
method argument of dist) or function(n, ...) used to generate random weights
in case of addWeightsRandom.

Value

[list] A list with components

weights [list] List of weight matrices. Even in the case of one weight matrix it is wrapped in a
list of length one.

generator [character(1)] String description of the generator used.

Note

These functions are not meant to be called directly. Instead, they need to be assigned to the
generator argument of addWeights.

as.character.grapherator

Graph string representation.

Description

Given a grapherator object the function returns a string representation. Basically this is a concate-
nation of meta data, node, edge and weight generator types of the following format: N<n.nodes>-
E<n.edges>-C<n.clusters>-W<n.weights>—<node-types>—<edge-types>—<weight-types> where
n.x is the number of x of the graph.

10 edgeGenerators

Usage

S3 method for class 'grapherator'
as.character(x, ...)

Arguments

x [grapherator]
Graph.

... [any]
Not used at the moment.

Value

[character(1)]

Examples

g = graph(lower = c(0, 0), upper = c(100, 100))
g = addNodes(g, n = 3, generator = addNodesUniform)
g = addNodes(g, n = 14, by.centers = TRUE, generator = addNodesUniform,

lower = c(0, 0), upper = c(10, 10))
g = addEdges(g, generator = addEdgesWaxman, alpha = 0.2,

beta = 0.2, type = "intracluster")
g = addEdges(g, generator = addEdgesDelauney, type = "intercenter")
g = addWeights(g, generator = addWeightsCorrelated, rho = -0.9)
g = addWeights(g, generator = addWeightsDistance, method = "euclidean")
as.character(g)

edgeGenerators Edge generators.

Description

Function to add edges into a graph. The following methods are implemented so far:

addEdgesComplete Generates a simple complete graph. I.e., an edge exists between each two
nodes. However, no self-loops or multi-edges are included.

addEdgesGrid Only usefull if nodes are generated via addNodesGrid. This method generates a
Manhattan-like street network.

addEdgesOnion This method determines the nodes on the convex hull of the node cloud in the
euclidean plane and adds edges between neighbour nodes. Ignoring all nodes on the hull, this
process is repeated iteratively resulting in an onion like peeling topololgy. Note that the graph
is not connected! In order to ensure connectivity, another edge generator must be applied in
addition, e.g., addEdgesSpanningTree.

addEdgesDelauney Edges are determined by means of a Delauney triangulation of the node coor-
dinates in the Euclidean plane.

edgeGenerators 11

addEdgesWaxman Edges are generated using the Waxman-model, i.e., the probability pij for the
edge (i, j) is given by

pij = αe−βdij

, where α, β ≥ 0 are control parameters and dij is the Euclidean distance of the nodes i and j.

addEdgesSpanningTree A minimum spanning tree is computed based on a complete random
weight matrix. All edges of the spanning tree are added. If runs is greater 1, the process
is repeated for runs. However, already added edges are ignored in subsequent runs. This
method is particularly useful to assist probablistic methods, e.g., Waxman model, in order to
generate connected graphs.

addEdgesGilbert Use Gilbert-model to generate edges. I.e., each edge is added with probability
p ∈ [0, 1].

addEdgesErdosRenyi In total m ≤ n(n− 1)/2 edges are added at random.

Usage

addEdgesComplete(graph, ...)

addEdgesGrid(graph, ...)

addEdgesOnion(graph, ...)

addEdgesDelauney(graph, ...)

addEdgesWaxman(graph, alpha = 0.5, beta = 0.5, ...)

addEdgesGilbert(graph, p, ...)

addEdgesErdosRenyi(graph, m, ...)

addEdgesSpanningTree(graph, runs = 1L, ...)

Arguments

graph [grapherator]
Graph.

... [any]
Not used at the moment.

alpha [numeric(1)]
Positive number indicating the average degree of nodes in the Waxman model.
Default is 0.5.

beta [numeric(1)]
Positive number indicating the scale between short and long edges in the Wax-
man model. Default is 0.5.

p [numeric(1)]
Probability for each edge (vi, vj), i, j = 1, . . . , n to be added for Gilbert graphs.

12 getter

m [integer(1)]
Number of edges to sample for Erdos-Renyi graphs. Must be at most n(n−1)/2
where n is the number of nodes of graph.

runs [integer(1)]
Number of runs to perform by addEdgesSpanningTree. Default is 1.

Details

Currently all edge generators create symmetric edges only.

Value

[list] List with components:

adj.mat matrix Adjacency matrix.

generator [character(1)] String description of the generator used.

Note

These functions are not meant to be called directly. Instead, they need to be assigned to the
generator argument of addEdges.

getter Getter functions.

Description

Functions to extract meta information of grapherator object.

Usage

getNumberOfNodes(graph)

getNumberOfEdges(graph)

getNumberOfClusters(graph)

getNumberOfWeights(graph)

getNodeCoordinates(graph, cluster.centers = FALSE)

getWeightMatrix(graph, objective)

getAdjacencyMatrix(graph)

getNodeDegrees(graph)

graph 13

Arguments

graph [grapherator]
Graph.

cluster.centers

[logical(1)]
Return coordinates of cluster centers only? Default is FALSE.

objective [integer(1)]
Number of weight matrix to return.

Examples

g = graph(0, 100)
g = addNodes(g, n = 25, generator = addNodesGrid)
g = addEdges(g, generator = addEdgesGrid)
g = addWeights(g, generator = addWeightsRandom, method = runif, min = 5, max = 100, to.int = TRUE)
g = addWeights(g, generator = addWeightsDistance, method = "euclidean")

getNumberOfNodes(g)
getNumberOfEdges(g)
getNumberOfClusters(g)
getNumberOfWeights(g)
getNodeCoordinates(g)
getWeightMatrix(g, 2)
getAdjacencyMatrix(g)
getNodeDegrees(g)

graph Generate a bare graph.

Description

This function generates a bare graph object of type grapherator. The generated object does not
contain nodes, edges or edge weights. It serves as a starting point for a three step approach of
grapherator graph construction: 1) Add nodes respectively coordinates via addNodes, 2) add edges
via addEdges and finally 3) add edge weights with the function addWeights.

Usage

graph(lower, upper)

Arguments

lower [integer(1)]
Lower bounds for node coordinates in the Euclidean plane.

upper [integer(1)]
Upper bounds for node coordinates in the Euclidean plane.

14 grapherator

Value

[grapherator] Graph.

See Also

Other graph generators: addEdges, addNodes, addWeights

Examples

complete graph with one U(10, 20) sampled weight per edge
g = graph(0, 10)
g = addNodes(g, n = 10, generator = addNodesUniform)
g = addEdges(g, generator = addEdgesComplete)
g = addWeights(g, generator = addWeightsRandom, method = runif, min = 10, max = 20)
Not run:
do.call(gridExtra::grid.arrange, plot(g, show.edges = FALSE))

End(Not run)

we extend the graph by adding another weight which is based
on the Euclidean distance between the node coordinates
g = addWeights(g, generator = addWeightsDistance, method = "euclidean")
Not run:
do.call(gridExtra::grid.arrange, plot(g, show.edges = FALSE))

End(Not run)

next we generate a graph with each two weights per edge which resembles
a street network. The edge weights have a positive correlation.
g = graph(0, 100)
g = addNodes(g, n = 5, generator = addNodesLHS)
g = addNodes(g, n = c(10, 10, 15, 20, 50), by.centers = TRUE,

generator = addNodesUniform, lower = c(0, 0), upper = c(10, 10))
g = addEdges(g, generator = addEdgesDelauney, type = "intracluster")
g = addEdges(g, generator = addEdgesDelauney, type = "intercluster", k = 4L)
g = addWeights(g, generator = addWeightsCorrelated, rho = 0.6)
Not run:
print(g)
do.call(gridExtra::grid.arrange, plot(g, show.edges = FALSE))

End(Not run)

grapherator Graph object.

Description

S3 object describing a graph with the following fields:

lower [numeric(2)] Lower bounds for node coordinates in the Euclidean plane.

nodeGenerators 15

upper [numeric(2)] Upper bounds for node coordinates in the Euclidean plane.

n.clusters [integer(1)] Number of clusters.

n.nodes [integer(1)] Number of nodes.

n.edges [integer(1)] Number of edges.

n.weights [integer(1)] Number of weights associated with each edge.

node.types [character] Character vector describing the node generators used to create nodes.

edge.types [character] Character vector describing the node generators used to create edges.

weight.types [character] Character vector describing the node generators used to create weights.

weights [list of matrix] List of weight/distance/cost matrizes.

degree [integer] Integer vector of node degrees.

membership [integer | NULL] Integer vector which stores the cluster membership of each node.
Not NULL only if graph is clustered.

coordinates [matrix(n.nodes, 2)] Matrix of node coordinates. Each row contains the node co-
ordinates of one node.

nodeGenerators Node generators.

Description

Functions for the placement of nodes / node coordinates in the Euclidean plane. Function addNodesLHS
generates a space-filling Latin-Hypercube-Sample (LHS), function addNodesUniform samples points
from a bivariate uniform distribution, addNodesGrid generates a regular grid/lattice of points,
addNodesTriangular generates a regular triangular grid/lattice and addNodesNormal generates
nodes on basis of a normal distribution.

Usage

addNodesLHS(n, lower = 0, upper = 1, method = NULL)

addNodesUniform(n, lower, upper)

addNodesTriangular(n, lower, upper)

addNodesGrid(n, lower, upper)

addNodesNormal(n, lower, upper, x.mean, x.sd, y.mean, y.sd)

16 plot.grapherator

Arguments

n [integer(1)]
Number of nodes to generate.

lower [numeric(2)]
Minimal values for the first and second node coordinates respectively. Default
is 0 for both dimensions.

upper [numeric(2)]
Maximal values for the first and second node coordinates respectively. Default
is 1 for both dimensions.

method [function]
Function from package lhs. Default is maximinLHS. Only relevant for addNodesLHS.

x.mean [numeric]
Mean value of normal distribution for x-value generation. Only relevant for
addNodesNormal.

x.sd [numeric]
Standard deviation of normal distribution for x-value generation. Only relevant
for addNodesNormal.

y.mean [numeric]
Mean value of normal distribution for y-value generation. Only relevant for
addNodesNormal.

y.sd [numeric]
Standard deviation of normal distribution for y-value generation. Only relevant
for addNodesNormal.

Value

[list] List with components:

coords [matrix(n, 2)] Matrix of node coordinates.

generator [character(1)] String description of the generator used.

Note

These functions are not meant to be called directly. Instead, they need to be assigned to the
generator argument of addNodes.

plot.grapherator Visualize graph.

Description

plot.grapherator generates a scatterplot of the nodes in the Euclidean plane. Additionally, the
edge weights are visualized. In case of one weight per edge either a histogram or an empirical
distribution function is drawn. For graphs with two weights per edge a scatterplot is used.

plot.grapherator 17

Usage

S3 method for class 'grapherator'
plot(x, y = NULL, show.cluster.centers = TRUE,
highlight.clusters = FALSE, show.edges = TRUE,
weight.plot.type = "histogram", ...)

Arguments

x [grapherator]
Graph.

y Not used at the moment.
show.cluster.centers

[logical(1)]
Display cluster centers? Default is TRUE. This option is ignored silently if the
instance is not clustered.

highlight.clusters

[logical(1)]
Shall nodes be coloured by cluster membership? Default is FALSE.

show.edges [logical(1)]
Display edges? Keep in mind, that the number of edges is O(n2) where n is the
number of nodes. Default is TRUE.

weight.plot.type

[character(1)]
Type of visualization which should be used for weights in case x has only as
single weight attached to each edge. Either “histogram” or “ecdf” (empirical
distribution function) are possible choices. Default is histogram.

... [any]
Not used at the moment.

Value

[list] A list of ggplot objects with components pl.weights (scatterplot of edge weights) and
eventually pl.coords (scatterplot of nodes). The latter is NULL, if graph has no associated coordi-
nates.

Examples

g = graph(0, 100)
g = addNodes(g, n = 25, generator = addNodesGrid)
g = addEdges(g, generator = addEdgesDelauney)
g = addWeights(g, generator = addWeightsDistance, method = "manhattan")
Not run:
pls = plot(g, weight.plot.type = "ecdf")

End(Not run)

g = addWeights(g, generator = addWeightsRandom,
method = rpois, lambda = 0.1)

18 writeGP

Not run:
pls = plot(g, show.edges = FALSE)

End(Not run)

g = graph(0, 100)
g = addNodes(g, n = 25, generator = addNodesGrid)
g = addNodes(g, n = 9, by.centers = TRUE, generator = addNodesGrid,

lower = c(0, 0), upper = c(7, 7))
g = addEdges(g, generator = addEdgesDelauney)
g = addWeights(g, generator = addWeightsCorrelated, rho = -0.8)
Not run:
do.call(gridExtra::grid.arrange, plot(g, show.edges = FALSE))
do.call(gridExtra::grid.arrange, plot(g, show.edges = TRUE,

show.cluster.centers = FALSE))

End(Not run)

writeGP Export/import graph.

Description

Given a grapherator graph function writeGP saves the graph to a file. Function readGP imports a
graph given a filename.

Usage

writeGP(graph, file)

readGP(file)

Arguments

graph [grapherator]
Graph.

file [character(1)]
Path to file where the graph shall be stored (for writeGP) or which contains the
graph to be imported (for link{readGP}).

Details

Instances are stored in a format similar to the one used by Cardoso et al. in their MOST project.
Note that all values in each line are separated by comma. First line contains four integer values:
number of nodes n, number of edges m, number of clusters cl and number of weights p per edge.
The second line contains the weight types. The third line contains the node types. The next n lines
contain the node coordinates. In case of a clustered instance the next line contains the node to cluster
membership mapping. The last m lines contain the following information each: i,j,w1(i,j),...,wp(i,j)
I.e., each two node numbers i and j followed by the p weights of the edge (i, j).

writeGP 19

Value

Function writeGP silently returns the passed filename file whereas writeGP returns a grapherator
object.

Examples

g = graph(0, 100)
g = addNodes(g, n = 25, generator = addNodesGrid)
g = addEdges(g, generator = addEdgesGrid)
g = addWeights(g, generator = addWeightsRandom, method = runif, min = 5, max = 100, to.int = TRUE)
g = addWeights(g, generator = addWeightsRandom, method = runif, min = 10, max = 100, to.int = TRUE)
Not run:
filename = tempfile()
writeGP(g, file = filename)
g2 = readGP(file = filename)
unlink(filename)
do.call(gridExtra::grid.arrange, c(plot(g), plot(g2), list(nrow = 2)))

End(Not run)

Index

addEdges, 2, 2, 6, 7, 12–14
addEdgesComplete (edgeGenerators), 10
addEdgesDelauney (edgeGenerators), 10
addEdgesErdosRenyi (edgeGenerators), 10
addEdgesGilbert (edgeGenerators), 10
addEdgesGrid (edgeGenerators), 10
addEdgesOnion (edgeGenerators), 10
addEdgesSpanningTree, 12
addEdgesSpanningTree (edgeGenerators),

10
addEdgesToPlot, 4
addEdgesWaxman (edgeGenerators), 10
addNodes, 2, 3, 5, 7, 13, 14, 16
addNodesGrid, 10
addNodesGrid (nodeGenerators), 15
addNodesLHS, 16
addNodesLHS (nodeGenerators), 15
addNodesNormal, 16
addNodesNormal (nodeGenerators), 15
addNodesTriangular (nodeGenerators), 15
addNodesUniform (nodeGenerators), 15
addWeights, 2, 3, 6, 6, 8, 9, 13, 14
addWeightsConcave, 8
addWeightsCorrelated

(addWeightsConcave), 8
addWeightsDistance (addWeightsConcave),

8
addWeightsRandom (addWeightsConcave), 8
as.character.grapherator, 9

dist, 8, 9

edgeGenerators, 10

geom_segment, 4
getAdjacencyMatrix (getter), 12
getNodeCoordinates (getter), 12
getNodeDegrees (getter), 12
getNumberOfClusters (getter), 12
getNumberOfEdges (getter), 12

getNumberOfNodes (getter), 12
getNumberOfWeights (getter), 12
getter, 12
getWeightMatrix (getter), 12
ggplot, 4, 17
graph, 2, 3, 6, 7, 13
grapherator, 3–7, 9–11, 13, 14, 14, 18
grapherator-package, 2

maximinLHS, 16

nodeGenerators, 15

plot.grapherator, 4, 16

readGP, 18
readGP (writeGP), 18

writeGP, 18, 18, 19

20

	grapherator-package
	addEdges
	addEdgesToPlot
	addNodes
	addWeights
	addWeightsConcave
	as.character.grapherator
	edgeGenerators
	getter
	graph
	grapherator
	nodeGenerators
	plot.grapherator
	writeGP
	Index

