
Package ‘groupdata2’
July 22, 2025

Title Creating Groups from Data

Version 2.0.5

Description Methods for dividing data into groups.
Create balanced partitions and cross-validation folds.
Perform time series windowing and general grouping and splitting of data.
Balance existing groups with up- and downsampling or collapse them to fewer groups.

Depends R (>= 3.5)

License MIT + file LICENSE

URL https://github.com/ludvigolsen/groupdata2

BugReports https://github.com/ludvigolsen/groupdata2/issues

Encoding UTF-8

Imports checkmate (>= 2.0.0), dplyr (>= 0.8.4), numbers (>= 0.7-5),
lifecycle, plyr (>= 1.8.5), purrr, rearrr (>= 0.3.0), rlang (>=
0.4.4), stats, tibble (>= 2.1.3), tidyr, utils

RoxygenNote 7.3.2

Suggests broom, covr, ggplot2, knitr, lmerTest, rmarkdown, testthat,
xpectr (>= 0.4.1)

RdMacros lifecycle

VignetteBuilder knitr

NeedsCompilation no

Author Ludvig Renbo Olsen [aut, cre] (ORCID:
<https://orcid.org/0009-0006-6798-7454>)

Maintainer Ludvig Renbo Olsen <r-pkgs@ludvigolsen.dk>

Repository CRAN

Date/Publication 2024-12-18 17:10:02 UTC

1

https://github.com/ludvigolsen/groupdata2
https://github.com/ludvigolsen/groupdata2/issues
https://orcid.org/0009-0006-6798-7454

2 groupdata2-package

Contents
groupdata2-package . 2
all_groups_identical . 4
balance . 5
collapse_groups . 8
collapse_groups_by . 18
differs_from_previous . 25
downsample . 27
find_missing_starts . 29
find_starts . 31
fold . 33
group . 40
group_factor . 44
partition . 47
ranked_balances . 51
splt . 52
summarize_balances . 55
summarize_group_cols . 59
upsample . 60
%primes% . 63
%staircase% . 64

Index 66

groupdata2-package groupdata2: A package for creating groups from data

Description

Methods for dividing data into groups. Create balanced partitions and cross-validation folds. Per-
form time series windowing and general grouping and splitting of data. Balance existing groups
with up- and downsampling.

Details

The groupdata2 package provides six main functions: group(), group_factor(), splt(), partition(),
fold(), and balance().

group

Create groups from your data.

Divides data into groups by a wide range of methods. Creates a grouping factor with 1s for group 1,
2s for group 2, etc. Returns a data.frame grouped by the grouping factor for easy use in magrittr
pipelines.

Go to group()

groupdata2-package 3

group_factor

Create grouping factor for subsetting your data.

Divides data into groups by a wide range of methods. Creates and returns a grouping factor with 1s
for group 1, 2s for group 2, etc.

Go to group_factor()

splt

Split data by a wide range of methods.

Divides data into groups by a wide range of methods. Splits data by these groups.

Go to splt()

partition

Create balanced partitions (e.g. training/test sets).

Splits data into partitions. Balances a given categorical variable between partitions and keeps (if
possible) all data points with a shared ID (e.g. participant_id) in the same partition.

Go to partition()

fold

Create balanced folds for cross-validation.

Divides data into groups (folds) by a wide range of methods. Balances a given categorical variable
between folds and keeps (if possible) all data points with the same ID (e.g. participant_id) in the
same fold.

Go to fold()

balance

Balance the sizes of your groups with up- and downsampling.

Uses up- and/or downsampling to fix the group sizes to the min, max, mean, or median group size
or to a specific number of rows. Has a set of methods for balancing on ID level.

Go to balance()

Author(s)

Ludvig Renbo Olsen, <r-pkgs@ludvigolsen.dk>

See Also

Useful links:

• https://github.com/ludvigolsen/groupdata2

• Report bugs at https://github.com/ludvigolsen/groupdata2/issues

https://github.com/ludvigolsen/groupdata2
https://github.com/ludvigolsen/groupdata2/issues

4 all_groups_identical

all_groups_identical Test if two grouping factors contain the same groups

Description

[Maturing]
Checks whether two grouping factors contain the same groups, looking only at the group members,
allowing for different group names / identifiers.

Usage

all_groups_identical(x, y)

Arguments

x, y Two grouping factors (vectors/factors with group identifiers) to compare.
N.B. Both are converted to character vectors.

Details

Both factors are sorted by `x`. A grouping factor is created with new groups starting at the values in
`y` which differ from the previous row (i.e. group() with method = "l_starts" and n = "auto").
A similar grouping factor is created for `x`, to have group identifiers range from 1 to the number
of groups. The two generated grouping factors are tested for equality.

Value

Whether all groups in `x` are the same in `y`, memberwise. (logical)

Author(s)

Ludvig Renbo Olsen, <r-pkgs@ludvigolsen.dk>

See Also

Other grouping functions: collapse_groups(), collapse_groups_by, fold(), group(), group_factor(),
partition(), splt()

Examples

Attach groupdata2
library(groupdata2)

Same groups, different identifiers
x1 <- c(1, 1, 2, 2, 3, 3)
x2 <- c(2, 2, 1, 1, 4, 4)
all_groups_identical(x1, x2) # TRUE

balance 5

Same groups, different identifier types
x1 <- c(1, 1, 2, 2, 3, 3)
x2 <- c("a", "a", "b", "b", "c", "c")
all_groups_identical(x1, x2) # TRUE

Not same groups
Note that all groups must be the same to return TRUE
x1 <- c(1, 1, 2, 2, 3, 3)
x2 <- c(1, 2, 2, 3, 3, 3)
all_groups_identical(x1, x2) # FALSE

Different number of groups
x1 <- c(1, 1, 2, 2, 3, 3)
x2 <- c(1, 1, 1, 2, 2, 2)
all_groups_identical(x1, x2) # FALSE

balance Balance groups by up- and downsampling

Description

[Maturing]
Uses up- and/or downsampling to fix the group sizes to the min, max, mean, or median group size
or to a specific number of rows. Has a range of methods for balancing on ID level.

Usage

balance(
data,
size,
cat_col,
id_col = NULL,
id_method = "n_ids",
mark_new_rows = FALSE,
new_rows_col_name = ".new_row"

)

Arguments

data data.frame. Can be grouped, in which case the function is applied group-wise.

size Size to fix group sizes to. Can be a specific number, given as a whole number,
or one of the following strings: "min", "max", "mean", "median".

number: Fix each group to have the size of the specified number of row. Uses
downsampling for groups with too many rows and upsampling for groups with
too few rows.

min: Fix each group to have the size of smallest group in the dataset. Uses
downsampling on all groups that have too many rows.

6 balance

max: Fix each group to have the size of largest group in the dataset. Uses
upsampling on all groups that have too few rows.
mean: Fix each group to have the mean group size in the dataset. The mean is
rounded. Uses downsampling for groups with too many rows and upsampling
for groups with too few rows.
median: Fix each group to have the median group size in the dataset. The
median is rounded. Uses downsampling for groups with too many rows and
upsampling for groups with too few rows.

cat_col Name of categorical variable to balance by. (Character)
id_col Name of factor with IDs. (Character)

IDs are considered entities, e.g. allowing us to add or remove all rows for an ID.
How this is used is up to the `id_method`.
E.g. If we have measured a participant multiple times and want make sure that
we keep all these measurements. Then we would either remove/add all mea-
surements for the participant or leave in all measurements for the participant.
N.B. When `data` is a grouped data.frame (see dplyr::group_by()), IDs
that appear in multiple groupings are considered separate entities within those
groupings.

id_method Method for balancing the IDs. (Character)
"n_ids", "n_rows_c", "distributed", or "nested".

n_ids (default): Balances on ID level only. It makes sure there are the same
number of IDs for each category. This might lead to a different number of
rows between categories.
n_rows_c: Attempts to level the number of rows per category, while only
removing/adding entire IDs. This is done in 2 steps:
1. If a category needs to add all its rows one or more times, the data is re-

peated.
2. Iteratively, the ID with the number of rows closest to the lacking/excessive

number of rows is added/removed. This happens until adding/removing
the closest ID would lead to a size further from the target size than the
current size. If multiple IDs are closest, one is randomly sampled.

distributed: Distributes the lacking/excess rows equally between the IDs. If
the number to distribute can not be equally divided, some IDs will have 1 row
more/less than the others.
nested: Calls balance() on each category with IDs as cat_col.
I.e. if size is "min", IDs will have the size of the smallest ID in their category.

mark_new_rows Add column with 1s for added rows, and 0s for original rows. (Logical)
new_rows_col_name

Name of column marking new rows. Defaults to ".new_row".

Details

Without ‘id_col‘: Upsampling is done with replacement for added rows, while the original
data remains intact. Downsampling is done without replacement, meaning that rows are not du-
plicated but only removed.

With ‘id_col‘: See `id_method` description.

balance 7

Value

data.frame with added and/or deleted rows. Ordered by potential grouping variables, `cat_col`
and (potentially) `id_col`.

Author(s)

Ludvig Renbo Olsen, <r-pkgs@ludvigolsen.dk>

See Also

Other sampling functions: downsample(), upsample()

Examples

Attach packages
library(groupdata2)

Create data frame
df <- data.frame(

"participant" = factor(c(1, 1, 2, 3, 3, 3, 3, 4, 4, 5, 5, 5, 5)),
"diagnosis" = factor(c(0, 0, 1, 0, 0, 0, 0, 1, 1, 0, 0, 0, 0)),
"trial" = c(1, 2, 1, 1, 2, 3, 4, 1, 2, 1, 2, 3, 4),
"score" = sample(c(1:100), 13)

)

Using balance() with specific number of rows
balance(df, 3, cat_col = "diagnosis")

Using balance() with min
balance(df, "min", cat_col = "diagnosis")

Using balance() with max
balance(df, "max", cat_col = "diagnosis")

Using balance() with id_method "n_ids"
With column specifying added rows
balance(df, "max",

cat_col = "diagnosis",
id_col = "participant",
id_method = "n_ids",
mark_new_rows = TRUE

)

Using balance() with id_method "n_rows_c"
With column specifying added rows
balance(df, "max",

cat_col = "diagnosis",
id_col = "participant",
id_method = "n_rows_c",
mark_new_rows = TRUE

)

8 collapse_groups

Using balance() with id_method "distributed"
With column specifying added rows
balance(df, "max",

cat_col = "diagnosis",
id_col = "participant",
id_method = "distributed",
mark_new_rows = TRUE

)

Using balance() with id_method "nested"
With column specifying added rows
balance(df, "max",

cat_col = "diagnosis",
id_col = "participant",
id_method = "nested",
mark_new_rows = TRUE

)

collapse_groups Collapse groups with categorical, numerical, ID, and size balancing

Description

[Experimental]
Collapses a set of groups into a smaller set of groups.

Attempts to balance the new groups by specified numerical columns, categorical columns, level
counts in ID columns, and/or the number of rows (size).

Note: The more of these you balance at a time, the less balanced each of them may become. While,
on average, the balancing work better than without, this is not guaranteed on every run. Enabling
`auto_tune` can yield a much better overall balance than without in most contexts. This generates
a larger set of group columns using all combinations of the balancing columns and selects the
most balanced group column(s). This is slower and we recommend enabling parallelization (see
`parallel`).

While this balancing algorithm will not be optimal in all cases, it allows balancing a large number
of columns at once. Especially with auto-tuning enabled, this can be very powerful.

Tip: Check the balances of the new groups with summarize_balances() and ranked_balances().

Note: The categorical and ID balancing algorithms are different to those in fold() and partition().

Usage

collapse_groups(
data,
n,
group_cols,
cat_cols = NULL,
cat_levels = NULL,

collapse_groups 9

num_cols = NULL,
id_cols = NULL,
balance_size = TRUE,
auto_tune = FALSE,
weights = NULL,
method = "balance",
group_aggregation_fn = mean,
num_new_group_cols = 1,
unique_new_group_cols_only = TRUE,
max_iters = 5,
extreme_pairing_levels = 1,
combine_method = "avg_standardized",
col_name = ".coll_groups",
parallel = FALSE,
verbose = TRUE

)

Arguments

data data.frame. Can be grouped, in which case the function is applied group-wise.

n Number of new groups.
When `num_new_group_cols` > 1, `n` can also be a vector with one `n` per
new group column. This allows trying multiple `n` settings at a time. Note that
the generated group columns are not guaranteed to be in the order of `n`.

group_cols Names of factors in `data` for identifying the existing groups that should be
collapsed.
Multiple names are treated as in dplyr::group_by() (i.e., a hierarchy of groups),
where each leaf group within each parent group is considered a unique group
to be collapsed. Parent groups are not considered during collapsing, why leaf
groups from different parent groups can be collapsed together.
Note: Do not confuse these group columns with potential columns that `data`
is grouped by. `group_cols` identifies the groups to be collapsed. When
`data` is grouped with dplyr::group_by(), the function is applied separately
to each of those subsets.

cat_cols Names of categorical columns to balance the average frequency of one or more
levels of.

cat_levels Names of the levels in the `cat_cols` columns to balance the average fre-
quencies of. When `NULL` (default), all levels are balanced. Can be weights
indicating the balancing importance of each level (within each column).
The weights are automatically scaled to sum to 1.
Can be ".minority" or ".majority", in which case the minority/majority level
are found and used.

When ‘cat_cols‘ has single column name::
Either a vector with level names or a named numeric vector with weights:
E.g. c("dog", "pidgeon", "mouse") or c("dog" = 5, "pidgeon" = 1, "mouse"
= 3)

10 collapse_groups

When ‘cat_cols‘ has multiple column names::
A named list with vectors for each column name in `cat_cols`. When
not providing a vector for a `cat_cols` column, all levels are balanced in
that column.
E.g. list("col1" = c("dog" = 5, "pidgeon" = 1, "mouse" = 3), "col2" =
c("hydrated", "dehydrated")).

num_cols Names of numerical columns to balance between groups.

id_cols Names of factor columns with IDs to balance the counts of between groups.
E.g. useful to get a similar number of participants in each group.

balance_size Whether to balance the size of the collapsed groups. (logical)

auto_tune Whether to create a larger set of collapsed group columns from all combina-
tions of the balancing dimensions and select the overall most balanced group
column(s).
This tends to create much more balanced collapsed group columns.
Can be slow, why we recommend enabling parallelization (see `parallel`).

weights Named vector with balancing importance weights for each of the balancing
columns. Besides the columns in `cat_cols`, `num_cols`, and `id_cols`,
the size balancing weight can be given as "size".
The weights are automatically scaled to sum to 1.
Dimensions that are not given a weight is automatically given the weight 1.
E.g. c("size" = 1, "cat" = 1, "num1" = 4, "num2" = 7, "id" = 2).

method "balance", "ascending", or "descending":
After calculating a combined balancing column from each of the balancing
columns (see Details >> Balancing columns):

• "balance" balances the combined balancing column between the groups.
• "ascending" orders the combined balancing column and groups from the

lowest to highest value.
• "descending" orders the combined balancing column and groups from the

highest to lowest value.

group_aggregation_fn

Function for aggregating values in the `num_cols` columns for each group in
`group_cols`.
Default is mean(), where the average value(s) are balanced across the new
groups.
When using sum(), the groups will have similar sums across the new groups.
N.B. Only used when `num_cols` is specified.

num_new_group_cols

Number of group columns to create.
When `num_new_group_cols` > 1, columns are named with a combination of
`col_name` and "_1", "_2", etc. E.g. ”.collgroups1”, ”.collgroups2”, ...
N.B. When `unique_new_group_cols_only` is `TRUE`, we may end up with
fewer columns than specified, see `max_iters`.

collapse_groups 11

unique_new_group_cols_only

Whether to only return unique new group columns.
As the number of column comparisons can be quite time consuming, we recom-
mend enabling parallelization. See `parallel`.
N.B. We can end up with fewer columns than specified in `num_new_group_cols`,
see `max_iters`.
N.B. Only used when `num_new_group_cols` > 1.

max_iters Maximum number of attempts at reaching `num_new_group_cols` unique new
group columns.
When only keeping unique new group columns, we risk having fewer columns
than expected. Hence, we repeatedly create the missing columns and remove
those that are not unique. This is done until we have `num_new_group_cols`
unique group columns or we have attempted `max_iters` times.
In some cases, it is not possible to create `num_new_group_cols` unique com-
binations of the dataset. `max_iters` specifies when to stop trying. Note that
we can end up with fewer columns than specified in `num_new_group_cols`.
N.B. Only used when `num_new_group_cols` > 1.

extreme_pairing_levels

How many levels of extreme pairing to do when balancing the groups by the
combined balancing column (see Details).
Extreme pairing: Rows/pairs are ordered as smallest, largest, second smallest,
second largest, etc. If extreme_pairing_levels > 1, this is done "recursively"
on the extreme pairs.
N.B. Larger values work best with large datasets. If set too high, the result might
not be stochastic. Always check if an increase actually makes the groups more
balanced.

combine_method Method to combine the balancing columns by. One of "avg_standardized" or
"avg_min_max_scaled".
For each balancing column (all columns in num_cols, cat_cols, and id_cols,
plus size), we calculate a normalized, numeric group summary column, which
indicates the "size" of each group in that dimension. These are then combined
to a single combined balancing column.
The three steps are:

1. Calculate a numeric representation of the balance for each column. E.g. the
number of unique levels within each group of an ID column (see Details
> Balancing columns for more on this).

2. Normalize each column separately with standardization ("avg_standardized";
Default) or MinMax scaling to the [0, 1] range ("avg_min_max_scaled").

3. Average the columns rowwise to get a single column with one value per
group. The averaging is weighted by `weights`, which is useful when one
of the dimensions is more important to get a good balance of.

`combine_method` chooses whether to use standardization or MinMax scaling
in step 2.

col_name Name of the new group column. When creating multiple new group columns
(`num_new_group_cols`>1), this is the prefix for the names, which will be
suffixed with an underscore and a number (_1, _2, _3, etc.).

12 collapse_groups

parallel Whether to parallelize the group column comparisons when `unique_new_group_cols_only`
is `TRUE`.
Especially highly recommended when `auto_tune` is enabled.
Requires a registered parallel backend. Like doParallel::registerDoParallel.

verbose Whether to print information about the process. May make the function slightly
slower.
N.B. Currently only used during auto-tuning.

Details

The goal of collapse_groups() is to combine existing groups to a lower number of groups while
(optionally) balancing one or more numeric, categorical and/or ID columns, along with the group
size.

For each of these columns (and size), we calculate a normalized, numeric "balancing column" that
when balanced between the groups lead to its original column being balanced as well.

To balance multiple columns at once, we combine their balancing columns with weighted averaging
(see `combine_method` and `weights`) to a single combined balancing column.

Finally, we create groups where this combined balancing column is balanced between the groups,
using the numerical balancing in fold().

Auto-tuning:
This strategy is not guaranteed to produce balanced groups in all contexts, e.g. when the balanc-
ing columns cancel out. To increase the probability of balanced groups, we can produce multiple
group columns with all combinations of the balancing columns and select the overall most bal-
anced group column(s). We refer to this as auto-tuning (see `auto_tune`).
We find the overall most balanced group column by ranking the across-group standard deviations
for each of the balancing columns, as found with summarize_balances().
Example of finding the overall most balanced group column(s):
Given a group column with the following average age per group: `c(16, 18, 25, 21)`, the stan-
dard deviation hereof (3.92) is a measure of how balanced the age column is. Another group
column can thus have a lower/higher standard deviation and be considered more/less balanced.
We find the rankings of these standard deviations for all the balancing columns and average them
(again weighted by `weights`). We select the group column(s) with the, on average, highest rank
(i.e. lowest standard deviations).

Checking balances:
We highly recommend using summarize_balances() and ranked_balances() to check how
balanced the created groups are on the various dimensions. When applying ranked_balances()
to the output of summarize_balances(), we get a data.frame with the standard deviations
for each balancing dimension (lower means more balanced), ordered by the average rank (see
Examples).

Balancing columns:
The following describes the creation of the balancing columns for each of the supported column
types:

cat_cols: For each column in `cat_cols`:

collapse_groups 13

• Count each level within each group. This creates a data.frame with one count column
per level, with one row per group.

• Standardize the count columns.
• Average the standardized counts rowwise to create one combined column representing the

balance of the levels for each group. When cat_levels contains weights for each of the
levels, we apply weighted averaging.

Example: Consider a factor column with the levels c("A", "B", "C"). We count each level per
group, normalize the counts and combine them with weighted averaging:

Group A B C -> nA nB nC -> Combined
1 5 57 1 | 0.24 0.55 -0.77 | 0.007
2 7 69 2 | 0.93 0.64 -0.77 | 0.267
3 2 34 14 | -1.42 0.29 1.34 | 0.07
4 5 0 4 | 0.24 -1.48 0.19 | -0.35
... | | ...

id_cols: For each column in `id_cols`:
• Count the unique IDs (levels) within each group. (Note: The same ID can be counted in

multiple groups.)

num_cols: For each column in `num_cols`:
• Aggregate the numeric columns by group using the `group_aggregation_fn`.

size:
• Count the number of rows per group.

Combining balancing columns:
• Apply standardization or MinMax scaling to each of the balancing columns (see `combine_method`).
• Perform weighted averaging to get a single balancing column (see `weights`).

Example: We apply standardization and perform weighted averaging:

Group Size Num Cat ID -> nSize nNum nCat nID -> Combined
1 34 1.3 0.007 3 | -0.33 -0.82 0.03 -0.46 | -0.395
2 23 4.6 0.267 4 | -1.12 0.34 1.04 0.0 | 0.065
3 56 7.2 0.07 7 | 1.27 1.26 0.28 1.39 | 1.05
4 41 1.4 -0.35 2 | 0.18 -0.79 -1.35 -0.93 | -0.723

... | | ...

Creating the groups:
Finally, we get to the group creation. There are three methods for creating groups based on the
combined balancing column: "balance" (default), "ascending", and "descending".

method is "balance": To create groups that are balanced by the combined balancing column,
we use the numerical balancing in fold().
The following describes the numerical balancing in broad terms:

1. Rows are shuffled. Note that this will only affect rows with the same value in the combined
balancing column.

2. Extreme pairing 1: Rows are ordered as smallest, largest, second smallest, second largest,
etc. Each small+large pair get an extreme-group identifier. (See rearrr::pair_extremes())

14 collapse_groups

3. If `extreme_pairing_levels` > 1: These extreme-group identifiers are reordered as small-
est, largest, second smallest, second largest, etc., by the sum of the combined balancing
column in the represented rows. These pairs (of pairs) get a new set of extreme-group iden-
tifiers, and the process is repeated `extreme_pairing_levels`-2 times. Note that the
extreme-group identifiers at the last level will represent 2^`extreme_pairing_levels`
rows, why you should be careful when choosing a larger setting.

4. The extreme-group identifiers from the last pairing are randomly divided into the final
groups and these final identifiers are transferred to the original rows.

N.B. When doing extreme pairing of an unequal number of rows, the row with the smallest value
is placed in a group by itself, and the order is instead: (smallest), (second smallest, largest),
(third smallest, second largest), etc.
A similar approach with extreme triplets (i.e. smallest, closest to median, largest, second small-
est, second closest to median, second largest, etc.) may also be utilized in some scenarios. (See
rearrr::triplet_extremes())
Example: We order the data.frame by smallest "Num" value, largest "Num" value, sec-
ond smallest, and so on. We could further (when `extreme_pairing_levels` > 1) find the
sum of "Num" for each pair and perform extreme pairing on the pairs. Finally, we group the
data.frame:

Group Num -> Group Num Pair -> New group
1 -0.395 | 5 -1.23 1 | 3
2 0.065 | 3 1.05 1 | 3
3 1.05 | 4 -0.723 2 | 1
4 -0.723 | 2 0.065 2 | 1
5 -1.23 | 1 -0.395 3 | 2
6 -0.15 | 6 -0.15 3 | 2
... ... | | ...

method is "ascending" or "descending": These methods order the data by the combined bal-
ancing column and creates groups such that the sums get increasingly larger (`ascending`) or
smaller (`descending`). This will in turn lead to a pattern of increasing/decreasing sums in the
balancing columns (e.g. increasing/decreasing counts of the categorical levels, counts of IDs,
number of rows and sums of numeric columns).

Value

data.frame with one or more new grouping factors.

Author(s)

Ludvig Renbo Olsen, <r-pkgs@ludvigolsen.dk>

See Also

fold() for creating balanced folds/groups.

partition() for creating balanced partitions.

Other grouping functions: all_groups_identical(), collapse_groups_by, fold(), group(),
group_factor(), partition(), splt()

collapse_groups 15

Examples

Attach packages
library(groupdata2)
library(dplyr)

Set seed
if (requireNamespace("xpectr", quietly = TRUE)){

xpectr::set_test_seed(42)
}

Create data frame
df <- data.frame(

"participant" = factor(rep(1:20, 3)),
"age" = rep(sample(c(1:100), 20), 3),
"answer" = factor(sample(c("a", "b", "c", "d"), 60, replace = TRUE)),
"score" = sample(c(1:100), 20 * 3)

)
df <- df %>% dplyr::arrange(participant)
df$session <- rep(c("1", "2", "3"), 20)

Sample rows to get unequal sizes per participant
df <- dplyr::sample_n(df, size = 53)

Create the initial groups (to be collapsed)
df <- fold(

data = df,
k = 8,
method = "n_dist",
id_col = "participant"

)

Ungroup the data frame
Otherwise `collapse_groups()` would be
applied to each fold separately!
df <- dplyr::ungroup(df)

NOTE: Make sure to check the examples with `auto_tune`
in the end, as this is where the magic lies

Collapse to 3 groups with size balancing
Creates new `.coll_groups` column
df_coll <- collapse_groups(

data = df,
n = 3,
group_cols = ".folds",
balance_size = TRUE # enabled by default

)

Check balances
(coll_summary <- summarize_balances(

data = df_coll,
group_cols = ".coll_groups",

16 collapse_groups

cat_cols = 'answer',
num_cols = c('score', 'age'),
id_cols = 'participant'

))

Get ranked balances
NOTE: When we only have a single new group column
we don't get ranks - but this is good to use
when comparing multiple group columns!
The scores are standard deviations across groups
ranked_balances(coll_summary)

Collapse to 3 groups with size + *categorical* balancing
We create 2 new `.coll_groups_1/2` columns
df_coll <- collapse_groups(

data = df,
n = 3,
group_cols = ".folds",
cat_cols = "answer",
balance_size = TRUE,
num_new_group_cols = 2

)

Check balances
To simplify the output, we only find the
balance of the `answer` column
(coll_summary <- summarize_balances(

data = df_coll,
group_cols = paste0(".coll_groups_", 1:2),
cat_cols = 'answer'

))

Get ranked balances
All scores are standard deviations across groups or (average) ranks
Rows are ranked by most to least balanced
(i.e. lowest average SD rank)
ranked_balances(coll_summary)

Collapse to 3 groups with size + categorical + *numerical* balancing
We create 2 new `.coll_groups_1/2` columns
df_coll <- collapse_groups(

data = df,
n = 3,
group_cols = ".folds",
cat_cols = "answer",
num_cols = "score",
balance_size = TRUE,
num_new_group_cols = 2

)

Check balances
(coll_summary <- summarize_balances(

data = df_coll,

collapse_groups 17

group_cols = paste0(".coll_groups_", 1:2),
cat_cols = 'answer',
num_cols = 'score'

))

Get ranked balances
All scores are standard deviations across groups or (average) ranks
ranked_balances(coll_summary)

Collapse to 3 groups with size and *ID* balancing
We create 2 new `.coll_groups_1/2` columns
df_coll <- collapse_groups(

data = df,
n = 3,
group_cols = ".folds",
id_cols = "participant",
balance_size = TRUE,
num_new_group_cols = 2

)

Check balances
To simplify the output, we only find the
balance of the `participant` column
(coll_summary <- summarize_balances(

data = df_coll,
group_cols = paste0(".coll_groups_", 1:2),
id_cols = 'participant'

))

Get ranked balances
All scores are standard deviations across groups or (average) ranks
ranked_balances(coll_summary)

###################
Auto-tune

As you might have seen, the balancing does not always
perform as optimal as we might want or need
To get a better balance, we can enable `auto_tune`
which will create a larger set of collapsings
and select the most balanced new group columns
While it is not required, we recommend
enabling parallelization

Not run:
Uncomment for parallelization
library(doParallel)
doParallel::registerDoParallel(7) # use 7 cores

Collapse to 3 groups with lots of balancing
We enable `auto_tune` to get a more balanced set of columns
We create 10 new `.coll_groups_1/2/...` columns
df_coll <- collapse_groups(

18 collapse_groups_by

data = df,
n = 3,
group_cols = ".folds",
cat_cols = "answer",
num_cols = "score",
id_cols = "participant",
balance_size = TRUE,
num_new_group_cols = 10,
auto_tune = TRUE,
parallel = FALSE # Set to TRUE for parallelization!

)

Check balances
To simplify the output, we only find the
balance of the `participant` column
(coll_summary <- summarize_balances(

data = df_coll,
group_cols = paste0(".coll_groups_", 1:10),
cat_cols = "answer",
num_cols = "score",
id_cols = 'participant'

))

Get ranked balances
All scores are standard deviations across groups or (average) ranks
ranked_balances(coll_summary)

Now we can choose the .coll_groups_* column(s)
that we favor the balance of
and move on with our lives!

End(Not run)

collapse_groups_by Collapse groups balanced by a single attribute

Description

[Experimental]
Collapses a set of groups into a smaller set of groups.

Balance the new groups by:

• The number of rows with collapse_groups_by_size()

• Numerical columns with collapse_groups_by_numeric()

• One or more levels of categorical columns with collapse_groups_by_levels()

• Level counts in ID columns with collapse_groups_by_ids()

collapse_groups_by 19

• Any combination of these with collapse_groups()

These functions wrap collapse_groups() to provide a simpler interface. To balance more than
one of the attributes at a time and/or create multiple new unique grouping columns at once, use
collapse_groups() directly.

While, on average, the balancing work better than without, this is not guaranteed on every run.
`auto_tune` (enabled by default) can yield a much better overall balance than without in most
contexts. This generates a larger set of group columns using all combinations of the balancing
columns and selects the most balanced group column(s). This is slower and can be speeded up by
enabling parallelization (see `parallel`).

Tip: When speed is more important than balancing, disable `auto_tune`.

Tip: Check the balances of the new groups with summarize_balances() and ranked_balances().

Note: The categorical and ID balancing algorithms are different to those in fold() and partition().

Usage

collapse_groups_by_size(
data,
n,
group_cols,
auto_tune = TRUE,
method = "balance",
col_name = ".coll_groups",
parallel = FALSE,
verbose = FALSE

)

collapse_groups_by_numeric(
data,
n,
group_cols,
num_cols,
balance_size = FALSE,
auto_tune = TRUE,
method = "balance",
group_aggregation_fn = mean,
col_name = ".coll_groups",
parallel = FALSE,
verbose = FALSE

)

collapse_groups_by_levels(
data,
n,
group_cols,
cat_cols,
cat_levels = NULL,
balance_size = FALSE,

20 collapse_groups_by

auto_tune = TRUE,
method = "balance",
col_name = ".coll_groups",
parallel = FALSE,
verbose = FALSE

)

collapse_groups_by_ids(
data,
n,
group_cols,
id_cols,
balance_size = FALSE,
auto_tune = TRUE,
method = "balance",
col_name = ".coll_groups",
parallel = FALSE,
verbose = FALSE

)

Arguments

data data.frame. Can be grouped, in which case the function is applied group-wise.

n Number of new groups.

group_cols Names of factors in `data` for identifying the existing groups that should be
collapsed.
Multiple names are treated as in dplyr::group_by() (i.e., a hierarchy of groups),
where each leaf group within each parent group is considered a unique group
to be collapsed. Parent groups are not considered during collapsing, why leaf
groups from different parent groups can be collapsed together.
Note: Do not confuse these group columns with potential columns that `data`
is grouped by. `group_cols` identifies the groups to be collapsed. When
`data` is grouped with dplyr::group_by(), the function is applied separately
to each of those subsets.

auto_tune Whether to create a larger set of collapsed group columns from all combina-
tions of the balancing dimensions and select the overall most balanced group
column(s).
This tends to create much more balanced collapsed group columns.
Can be slow, why we recommend enabling parallelization (see `parallel`).

method "balance", "ascending", or "descending".

• "balance" balances the attribute between the groups.
• "ascending" orders by the attribute and groups from the lowest to highest

value.
• "descending" orders by the attribute and groups from the highest to lowest

value.

collapse_groups_by 21

col_name Name of the new group column. When creating multiple new group columns
(`num_new_group_cols`>1), this is the prefix for the names, which will be
suffixed with an underscore and a number (_1, _2, _3, etc.).

parallel Whether to parallelize the group column comparisons when `auto_tune` is
enabled.
Requires a registered parallel backend. Like doParallel::registerDoParallel.

verbose Whether to print information about the process. May make the function slightly
slower.
N.B. Currently only used during auto-tuning.

num_cols Names of numerical columns to balance between groups.
balance_size Whether to balance the size of the collapsed groups. (logical)
group_aggregation_fn

Function for aggregating values in the `num_cols` columns for each group in
`group_cols`.
Default is mean(), where the average value(s) are balanced across the new
groups.
When using sum(), the groups will have similar sums across the new groups.
N.B. Only used when `num_cols` is specified.

cat_cols Names of categorical columns to balance the average frequency of one or more
levels of.

cat_levels Names of the levels in the `cat_cols` columns to balance the average fre-
quencies of. When `NULL` (default), all levels are balanced. Can be weights
indicating the balancing importance of each level (within each column).
The weights are automatically scaled to sum to 1.
Can be ".minority" or ".majority", in which case the minority/majority level
are found and used.

When ‘cat_cols‘ has single column name::
Either a vector with level names or a named numeric vector with weights:
E.g. c("dog", "pidgeon", "mouse") or c("dog" = 5, "pidgeon" = 1, "mouse"
= 3)

When ‘cat_cols‘ has multiple column names::
A named list with vectors for each column name in `cat_cols`. When
not providing a vector for a `cat_cols` column, all levels are balanced in
that column.
E.g. list("col1" = c("dog" = 5, "pidgeon" = 1, "mouse" = 3), "col2" =
c("hydrated", "dehydrated")).

id_cols Names of factor columns with IDs to balance the counts of between groups.
E.g. useful to get a similar number of participants in each group.

Details

See details in collapse_groups().

Value

`data` with a new grouping factor column.

22 collapse_groups_by

Author(s)

Ludvig Renbo Olsen, <r-pkgs@ludvigolsen.dk>

See Also

Other grouping functions: all_groups_identical(), collapse_groups(), fold(), group(),
group_factor(), partition(), splt()

Examples

Attach packages
library(groupdata2)
library(dplyr)

Set seed
if (requireNamespace("xpectr", quietly = TRUE)){

xpectr::set_test_seed(42)
}

Create data frame
df <- data.frame(

"participant" = factor(rep(1:20, 3)),
"age" = rep(sample(c(1:100), 20), 3),
"answer" = factor(sample(c("a", "b", "c", "d"), 60, replace = TRUE)),
"score" = sample(c(1:100), 20 * 3)

)
df <- df %>% dplyr::arrange(participant)
df$session <- rep(c("1", "2", "3"), 20)

Sample rows to get unequal sizes per participant
df <- dplyr::sample_n(df, size = 53)

Create the initial groups (to be collapsed)
df <- fold(

data = df,
k = 8,
method = "n_dist",
id_col = "participant"

)

Ungroup the data frame
Otherwise `collapse_groups*()` would be
applied to each fold separately!
df <- dplyr::ungroup(df)

When `auto_tune` is enabled for larger datasets
we recommend enabling parallelization
This can be done with:
library(doParallel)
doParallel::registerDoParallel(7) # use 7 cores

Not run:

collapse_groups_by 23

Collapse to 3 groups with size balancing
Creates new `.coll_groups` column
df_coll <- collapse_groups_by_size(

data = df,
n = 3,
group_cols = ".folds"

)

Check balances
(coll_summary <- summarize_balances(

data = df_coll,
group_cols = ".coll_groups"

))

Get ranked balances
This is most useful when having created multiple
new group columns with `collapse_groups()`
The scores are standard deviations across groups
ranked_balances(coll_summary)

Collapse to 3 groups with *categorical* balancing
df_coll <- collapse_groups_by_levels(

data = df,
n = 3,
group_cols = ".folds",
cat_cols = "answer"

)

Check balances
(coll_summary <- summarize_balances(

data = df_coll,
group_cols = ".coll_groups",
cat_cols = 'answer'

))

Collapse to 3 groups with *numerical* balancing
Also balance size to get similar sums
as well as means
df_coll <- collapse_groups_by_numeric(

data = df,
n = 3,
group_cols = ".folds",
num_cols = "score",
balance_size = TRUE

)

Check balances
(coll_summary <- summarize_balances(

data = df_coll,
group_cols = ".coll_groups",
num_cols = 'score'

))

24 collapse_groups_by

Collapse to 3 groups with *ID* balancing
This should give us a similar number of IDs per group
df_coll <- collapse_groups_by_ids(

data = df,
n = 3,
group_cols = ".folds",
id_cols = "participant"

)

Check balances
(coll_summary <- summarize_balances(

data = df_coll,
group_cols = ".coll_groups",
id_cols = 'participant'

))

Collapse to 3 groups with balancing of ALL attributes
We create 5 new grouping factors and compare them
The latter is in-general a good strategy even if you
only need a single collapsed grouping factor
as you can choose your preferred balances
based on the summary
NOTE: This is slow (up to a few minutes)
consider enabling parallelization
df_coll <- collapse_groups(

data = df,
n = 3,
num_new_group_cols = 5,
group_cols = ".folds",
cat_cols = "answer",
num_cols = 'score',
id_cols = "participant",
auto_tune = TRUE # Disabled by default in `collapse_groups()`
parallel = TRUE # Add comma above and uncomment

)

Check balances
(coll_summary <- summarize_balances(

data = df_coll,
group_cols = paste0(".coll_groups_", 1:5),
cat_cols = "answer",
num_cols = 'score',
id_cols = 'participant'

))

Compare the new grouping columns
The lowest across-group standard deviation
is the most balanced
ranked_balances(coll_summary)

End(Not run)

differs_from_previous 25

differs_from_previous Find values in a vector that differ from the previous value

Description

[Maturing]
Finds values, or indices of values, that differ from the previous value by some threshold(s).

Operates with both a positive and a negative threshold. Depending on `direction`, it checks if
the difference to the previous value is:

• greater than or equal to the positive threshold.

• less than or equal to the negative threshold.

Usage

differs_from_previous(
data,
col = NULL,
threshold = NULL,
direction = "both",
return_index = FALSE,
include_first = FALSE,
handle_na = "ignore",
factor_conversion_warning = TRUE

)

Arguments

data data.frame or vector.
N.B. If checking a factor, it is converted to a character vector. This means
that factors can only be used when `threshold` is NULL. Conversion will gener-
ate a warning, which can be turned off by setting `factor_conversion_warning`
to FALSE.
N.B. If `data` is a grouped data.frame, the function is applied group-wise
and the output is a list of vectors. The names are based on the group indices
(see dplyr::group_indices()).

col Name of column to find values that differ in. Used when `data` is data.frame.
(Character)

threshold Threshold to check difference to previous value to.
NULL, numeric scalar or numeric vector with length 2.

NULL: Checks if the value is different from the previous value.
Ignores `direction`.
N.B. Works for both numeric and character vectors.

26 differs_from_previous

Numeric scalar: Positive number.
Negative threshold is the negated number.
N.B. Only works for numeric vectors.

Numeric vector with length 2: Given as c(negative threshold, positive
threshold).
Negative threshold must be a negative number and positive threshold must be
a positive number.
N.B. Only works for numeric vectors.

direction both, positive or negative. (character)

both: Checks whether the difference to the previous value is
• greater than or equal to the positive threshold.
• less than or equal to the negative threshold.

positive: Checks whether the difference to the previous value is
• greater than or equal to the positive threshold.

negative: Checks whether the difference to the previous value is
• less than or equal to the negative threshold.

return_index Return indices of values that differ. (Logical)

include_first Whether to include the first element of the vector in the output. (Logical)

handle_na How to handle NAs in the column.

"ignore": Removes the NAs before finding the differing values, ensuring that
the first value after an NA will be correctly identified as new, if it differs from
the value before the NA(s).

"as_element": Treats all NAs as the string "NA". This means, that threshold
must be NULL when using this method.

Numeric scalar: A numeric value to replace NAs with.

factor_conversion_warning

Whether to throw a warning when converting a factor to a character. (Logi-
cal)

Value

vector with either the differing values or the indices of the differing values.

N.B. If `data` is a grouped data.frame, the output is a list of vectors with the differing values.
The names are based on the group indices (see dplyr::group_indices()).

Author(s)

Ludvig Renbo Olsen, <r-pkgs@ludvigolsen.dk>

See Also

Other l_starts tools: find_missing_starts(), find_starts(), group(), group_factor()

downsample 27

Examples

Attach packages
library(groupdata2)

Create a data frame
df <- data.frame(

"a" = factor(c("a", "a", "b", "b", "c", "c")),
"n" = c(1, 3, 6, 2, 2, 4)

)

Get differing values in column 'a' with no threshold.
This will simply check, if it is different to the previous value or not.
differs_from_previous(df, col = "a")

Get indices of differing values in column 'a' with no threshold.
differs_from_previous(df, col = "a", return_index = TRUE)

Get values, that are 2 or more greater than the previous value
differs_from_previous(df, col = "n", threshold = 2, direction = "positive")

Get values, that are 4 or more less than the previous value
differs_from_previous(df, col = "n", threshold = 4, direction = "negative")

Get values, that are either 2 or more greater than the previous value
or 4 or more less than the previous value
differs_from_previous(df, col = "n", threshold = c(-4, 2), direction = "both")

downsample Downsampling of rows in a data frame

Description

[Maturing]
Uses random downsampling to fix the group sizes to the smallest group in the data.frame.

Wraps balance().

Usage

downsample(data, cat_col, id_col = NULL, id_method = "n_ids")

Arguments

data data.frame. Can be grouped, in which case the function is applied group-wise.

cat_col Name of categorical variable to balance by. (Character)

id_col Name of factor with IDs. (Character)
IDs are considered entities, e.g. allowing us to add or remove all rows for an ID.
How this is used is up to the `id_method`.

28 downsample

E.g. If we have measured a participant multiple times and want make sure that
we keep all these measurements. Then we would either remove/add all mea-
surements for the participant or leave in all measurements for the participant.
N.B. When `data` is a grouped data.frame (see dplyr::group_by()), IDs
that appear in multiple groupings are considered separate entities within those
groupings.

id_method Method for balancing the IDs. (Character)
"n_ids", "n_rows_c", "distributed", or "nested".

n_ids (default): Balances on ID level only. It makes sure there are the same
number of IDs for each category. This might lead to a different number of
rows between categories.

n_rows_c: Attempts to level the number of rows per category, while only
removing/adding entire IDs. This is done in 2 steps:
1. If a category needs to add all its rows one or more times, the data is re-

peated.
2. Iteratively, the ID with the number of rows closest to the lacking/excessive

number of rows is added/removed. This happens until adding/removing
the closest ID would lead to a size further from the target size than the
current size. If multiple IDs are closest, one is randomly sampled.

distributed: Distributes the lacking/excess rows equally between the IDs. If
the number to distribute can not be equally divided, some IDs will have 1 row
more/less than the others.

nested: Calls balance() on each category with IDs as cat_col.
I.e. if size is "min", IDs will have the size of the smallest ID in their category.

Details

Without ‘id_col‘: Downsampling is done without replacement, meaning that rows are not
duplicated but only removed.

With ‘id_col‘: See `id_method` description.

Value

data.frame with some rows removed. Ordered by potential grouping variables, `cat_col` and
(potentially) `id_col`.

Author(s)

Ludvig Renbo Olsen, <r-pkgs@ludvigolsen.dk>

See Also

Other sampling functions: balance(), upsample()

find_missing_starts 29

Examples

Attach packages
library(groupdata2)

Create data frame
df <- data.frame(

"participant" = factor(c(1, 1, 2, 3, 3, 3, 3, 4, 4, 5, 5, 5, 5)),
"diagnosis" = factor(c(0, 0, 1, 0, 0, 0, 0, 1, 1, 0, 0, 0, 0)),
"trial" = c(1, 2, 1, 1, 2, 3, 4, 1, 2, 1, 2, 3, 4),
"score" = sample(c(1:100), 13)

)

Using downsample()
downsample(df, cat_col = "diagnosis")

Using downsample() with id_method "n_ids"
With column specifying added rows
downsample(df,

cat_col = "diagnosis",
id_col = "participant",
id_method = "n_ids"

)

Using downsample() with id_method "n_rows_c"
With column specifying added rows
downsample(df,

cat_col = "diagnosis",
id_col = "participant",
id_method = "n_rows_c"

)

Using downsample() with id_method "distributed"
downsample(df,

cat_col = "diagnosis",
id_col = "participant",
id_method = "distributed"

)

Using downsample() with id_method "nested"
downsample(df,

cat_col = "diagnosis",
id_col = "participant",
id_method = "nested"

)

find_missing_starts Find start positions that cannot be found in ‘data‘

30 find_missing_starts

Description

[Maturing]
Tells you which values and (optionally) skip-to-numbers that are recursively removed when using
the "l_starts" method with `remove_missing_starts` set to TRUE.

Usage

find_missing_starts(data, n, starts_col = NULL, return_skip_numbers = TRUE)

Arguments

data data.frame or vector.
N.B. If `data` is a grouped data.frame, the function is applied group-wise
and the output is a list of either vectors or lists. The names are based on
the group indices (see dplyr::group_indices()).

n List of starting positions.
Skip values by c(value, skip_to_number) where skip_to_number is the nth
appearance of the value in the vector.
See group_factor() for explanations and examples of using the "l_starts"
method.

starts_col Name of column with values to match when `data` is a data.frame. Pass
'index' to use row names. (Character)

return_skip_numbers

Return skip-to-numbers along with values (Logical).

Value

List of start values and skip-to-numbers or a vector with the start values. Returns NULL if no
values were found.

N.B. If `data` is a grouped data.frame, the function is applied group-wise and the output is a list
of either vectors or lists. The names are based on the group indices (see dplyr::group_indices()).

Author(s)

Ludvig Renbo Olsen, <r-pkgs@ludvigolsen.dk>

See Also

Other l_starts tools: differs_from_previous(), find_starts(), group(), group_factor()

Examples

Attach packages
library(groupdata2)

Create a data frame
df <- data.frame(

"a" = c("a", "a", "b", "b", "c", "c"),

find_starts 31

stringsAsFactors = FALSE
)

Create list of starts
starts <- c("a", "e", "b", "d", "c")

Find missing starts with skip_to numbers
find_missing_starts(df, starts, starts_col = "a")

Find missing starts without skip_to numbers
find_missing_starts(df, starts,

starts_col = "a",
return_skip_numbers = FALSE

)

find_starts Find start positions of groups in data

Description

[Maturing]

Finds values or indices of values that are not the same as the previous value.

E.g. to use with the "l_starts" method.

Wraps differs_from_previous().

Usage

find_starts(
data,
col = NULL,
return_index = FALSE,
handle_na = "ignore",
factor_conversion_warning = TRUE

)

Arguments

data data.frame or vector.
N.B. If checking a factor, it is converted to a character vector. Conversion
will generate a warning, which can be turned off by setting `factor_conversion_warning`
to FALSE.
N.B. If `data` is a grouped data.frame, the function is applied group-wise
and the output is a list of vectors. The names are based on the group indices
(see dplyr::group_indices()).

col Name of column to find starts in. Used when `data` is a data.frame. (Char-
acter)

32 find_starts

return_index Whether to return indices of starts. (Logical)

handle_na How to handle NAs in the column.

"ignore": Removes the NAs before finding the differing values, ensuring that
the first value after an NA will be correctly identified as new, if it differs from
the value before the NA(s).

"as_element": Treats all NAs as the string "NA". This means, that threshold
must be NULL when using this method.

Numeric scalar: A numeric value to replace NAs with.

factor_conversion_warning

Throw warning when converting factor to character. (Logical)

Value

vector with either the start values or the indices of the start values.

N.B. If `data` is a grouped data.frame, the output is a list of vectors. The names are based on
the group indices (see dplyr::group_indices()).

Author(s)

Ludvig Renbo Olsen, <r-pkgs@ludvigolsen.dk>

See Also

Other l_starts tools: differs_from_previous(), find_missing_starts(), group(), group_factor()

Examples

Attach packages
library(groupdata2)

Create a data frame
df <- data.frame(

"a" = c("a", "a", "b", "b", "c", "c"),
stringsAsFactors = FALSE

)

Get start values for new groups in column 'a'
find_starts(df, col = "a")

Get indices of start values for new groups
in column 'a'
find_starts(df,

col = "a",
return_index = TRUE

)

Use found starts with l_starts method
Notice: This is equivalent to n = 'auto'
with l_starts method

fold 33

Get start values for new groups in column 'a'
starts <- find_starts(df, col = "a")

Use starts in group() with 'l_starts' method
group(df,

n = starts, method = "l_starts",
starts_col = "a"

)

Similar but with indices instead of values

Get indices of start values for new groups
in column 'a'
starts_ind <- find_starts(df,

col = "a",
return_index = TRUE

)

Use starts in group() with 'l_starts' method
group(df,

n = starts_ind, method = "l_starts",
starts_col = "index"

)

fold Create balanced folds for cross-validation

Description

[Stable]
Divides data into groups by a wide range of methods. Balances a given categorical variable and/or
numerical variable between folds and keeps (if possible) all data points with a shared ID (e.g. par-
ticipant_id) in the same fold. Can create multiple unique fold columns for repeated cross-validation.

Usage

fold(
data,
k = 5,
cat_col = NULL,
num_col = NULL,
id_col = NULL,
method = "n_dist",
id_aggregation_fn = sum,
extreme_pairing_levels = 1,
num_fold_cols = 1,
unique_fold_cols_only = TRUE,
max_iters = 5,

34 fold

use_of_triplets = "fill",
handle_existing_fold_cols = "keep_warn",
parallel = FALSE

)

Arguments

data data.frame. Can be grouped, in which case the function is applied group-wise.

k Depends on ‘method‘.
Number of folds (default), fold size, with more (see `method`).
When `num_fold_cols` > 1, `k` can also be a vector with one `k` per fold
column. This allows trying multiple `k` settings at a time. Note that the gener-
ated fold columns are not guaranteed to be in the order of `k`.
Given as whole number or percentage (0 < `k` < 1).

cat_col Name of categorical variable to balance between folds.
E.g. when predicting a binary variable (a or b), we usually want both classes
represented in every fold.
N.B. If also passing an `id_col`, `cat_col` should be constant within each
ID.

num_col Name of numerical variable to balance between folds.
N.B. When used with `id_col`, values for each ID are aggregated using `id_aggregation_fn`
before being balanced.
N.B. When passing `num_col`, the `method` parameter is ignored.

id_col Name of factor with IDs. This will be used to keep all rows that share an ID in
the same fold (if possible).
E.g. If we have measured a participant multiple times and want to see the effect
of time, we want to have all observations of this participant in the same fold.
N.B. When `data` is a grouped data.frame (see dplyr::group_by()), IDs
that appear in multiple groupings might end up in different folds in those group-
ings.

method "n_dist", "n_fill", "n_last", "n_rand", "greedy", or "staircase".
Notice: examples are sizes of the generated groups based on a vector with 57
elements.

n_dist (default): Divides the data into a specified number of groups and
distributes excess data points across groups (e.g.11, 11, 12, 11, 12).
`k` is number of groups

n_fill: Divides the data into a specified number of groups and fills up groups
with excess data points from the beginning (e.g.12, 12, 11, 11, 11).
`k` is number of groups

n_last: Divides the data into a specified number of groups. It finds the most
equal group sizes possible, using all data points. Only the last group is able to
differ in size (e.g.11, 11, 11, 11, 13).
`k` is number of groups

fold 35

n_rand: Divides the data into a specified number of groups. Excess data
points are placed randomly in groups (only 1 per group) (e.g.12, 11, 11, 11, 12).
`k` is number of groups

greedy: Divides up the data greedily given a specified group size (e.g.10, 10, 10, 10, 10, 7).
`k` is group size

staircase: Uses step size to divide up the data. Group size increases with 1
step for every group, until there is no more data (e.g.5, 10, 15, 20, 7).
`k` is step size

id_aggregation_fn

Function for aggregating values in `num_col` for each ID, before balancing
`num_col`.
N.B. Only used when `num_col` and `id_col` are both specified.

extreme_pairing_levels

How many levels of extreme pairing to do when balancing folds by a numerical
column (i.e. `num_col` is specified).
Extreme pairing: Rows/pairs are ordered as smallest, largest, second smallest,
second largest, etc. If extreme_pairing_levels > 1, this is done "recursively"
on the extreme pairs. See `Details/num_col` for more.
N.B. Larger values work best with large datasets. If set too high, the result
might not be stochastic. Always check if an increase actually makes the folds
more balanced. See example.

num_fold_cols Number of fold columns to create. Useful for repeated cross-validation.
If num_fold_cols > 1, columns will be named ”.folds1”, ”.folds2”, etc. Oth-
erwise simply ”.folds”.
N.B. If `unique_fold_cols_only` is TRUE, we can end up with fewer columns
than specified, see `max_iters`.
N.B. If `data` has existing fold columns, see `handle_existing_fold_cols`.

unique_fold_cols_only

Check if fold columns are identical and keep only unique columns.
As the number of column comparisons can be time consuming, we can run this
part in parallel. See `parallel`.
N.B. We can end up with fewer columns than specified in `num_fold_cols`,
see `max_iters`.
N.B. Only used when `num_fold_cols` > 1 or `data` has existing fold columns.

max_iters Maximum number of attempts at reaching `num_fold_cols` unique fold columns.
When only keeping unique fold columns, we risk having fewer columns than
expected. Hence, we repeatedly create the missing columns and remove those
that are not unique. This is done until we have `num_fold_cols` unique fold
columns or we have attempted `max_iters` times.
In some cases, it is not possible to create `num_fold_cols` unique combina-
tions of the dataset, e.g. when specifying `cat_col`, `id_col` and `num_col`.
`max_iters` specifies when to stop trying. Note that we can end up with fewer
columns than specified in `num_fold_cols`.
N.B. Only used when `num_fold_cols` > 1.

36 fold

use_of_triplets

"fill", "instead" or "never".
When to use extreme triplet grouping in numerical balancing (when `num_col`
is specified).

fill (default): When extreme pairing cannot create enough unique fold columns,
use extreme triplet grouping to create additional unique fold columns.

instead: Use extreme triplet grouping instead of extreme pairing. For some
datasets, grouping in triplets give better balancing than grouping in pairs. This
can be worth exploring when numerical balancing is important.
Tip: Compare the balances with summarize_balances() and ranked_balances().

never: Never use extreme triplet grouping.

Extreme triplet grouping: Similar to extreme pairing (see Details >>
num_col), extreme triplet grouping orders the rows as smallest, closest to the
median, largest, second smallest, second closest to the median, second largest,
etc. Each triplet gets a group identifier and we either perform recursive ex-
treme triplet grouping on the identifiers or fold the identifiers and transfer the
fold IDs to the original rows.
For some datasets, this can be give more balanced groups than extreme pairing,
but on average, extreme pairing works better. Due to the grouping into triplets
instead of pairs they tend to create different groupings though, so when creat-
ing many fold columns and extreme pairing cannot create enough unique fold
columns, we can create the remaining (or at least some additional number)
with extreme triplet grouping.
Extreme triplet grouping is implemented in rearrr::triplet_extremes().

handle_existing_fold_cols

How to handle existing fold columns. Either "keep_warn", "keep", or "remove".
To add extra fold columns, use "keep" or "keep_warn". Note that existing fold
columns might be renamed.
To replace the existing fold columns, use "remove".

parallel Whether to parallelize the fold column comparisons, when `unique_fold_cols_only`
is TRUE.
Requires a registered parallel backend. Like doParallel::registerDoParallel.

Details

cat_col:
1. `data` is subset by `cat_col`.
2. Subsets are grouped and merged.

id_col:
1. Groups are created from unique IDs.

num_col:
1. Rows are shuffled. Note that this will only affect rows with the same value in `num_col`.
2. Extreme pairing 1: Rows are ordered as smallest, largest, second smallest, second largest,

etc. Each pair get a group identifier. (See rearrr::pair_extremes())

fold 37

3. If `extreme_pairing_levels` > 1: These group identifiers are reordered as smallest, largest,
second smallest, second largest, etc., by the sum of `num_col` in the represented rows.
These pairs (of pairs) get a new set of group identifiers, and the process is repeated `extreme_pairing_levels`-2
times. Note that the group identifiers at the last level will represent 2^`extreme_pairing_levels`
rows, why you should be careful when choosing that setting.

4. The group identifiers from the last pairing are folded (randomly divided into groups), and the
fold identifiers are transferred to the original rows.

N.B. When doing extreme pairing of an unequal number of rows, the row with the smallest value
is placed in a group by itself, and the order is instead: smallest, second smallest, largest, third
smallest, second largest, etc.
N.B. When `num_fold_cols` > 1 and fewer than `num_fold_cols` fold columns have been cre-
ated after `max_iters` attempts, we try with extreme triplets instead (see rearrr::triplet_extremes()).
It groups the elements as smallest, closest to the median, largest, second smallest, second clos-
est to the median, second largest, etc. We can also choose to never/only use extreme triplets via
`use_of_triplets`.

cat_col AND id_col:
1. `data` is subset by `cat_col`.
2. Groups are created from unique IDs in each subset.
3. Subsets are merged.

cat_col AND num_col:
1. `data` is subset by `cat_col`.
2. Subsets are grouped by `num_col`.
3. Subsets are merged such that the largest group (by sum of `num_col`) from the first category

is merged with the smallest group from the second category, etc.

num_col AND id_col:
1. Values in `num_col` are aggregated for each ID, using `id_aggregation_fn`.
2. The IDs are grouped, using the aggregated values as "num_col".
3. The groups of the IDs are transferred to the rows.

cat_col AND num_col AND id_col:
1. Values in `num_col` are aggregated for each ID, using `id_aggregation_fn`.
2. IDs are subset by `cat_col`.
3. The IDs in each subset are grouped, by using the aggregated values as "num_col".
4. The subsets are merged such that the largest group (by sum of the aggregated values) from

the first category is merged with the smallest group from the second category, etc.
5. The groups of the IDs are transferred to the rows.

Value

data.frame with grouping factor for subsetting in cross-validation.

Author(s)

Ludvig Renbo Olsen, <r-pkgs@ludvigolsen.dk>

38 fold

See Also

partition for balanced partitions

Other grouping functions: all_groups_identical(), collapse_groups(), collapse_groups_by,
group(), group_factor(), partition(), splt()

Examples

Attach packages
library(groupdata2)
library(dplyr)

Create data frame
df <- data.frame(

"participant" = factor(rep(c("1", "2", "3", "4", "5", "6"), 3)),
"age" = rep(sample(c(1:100), 6), 3),
"diagnosis" = factor(rep(c("a", "b", "a", "a", "b", "b"), 3)),
"score" = sample(c(1:100), 3 * 6)

)
df <- df %>% arrange(participant)
df$session <- rep(c("1", "2", "3"), 6)

Using fold()

Without balancing
df_folded <- fold(data = df, k = 3, method = "n_dist")

With cat_col
df_folded <- fold(

data = df,
k = 3,
cat_col = "diagnosis",
method = "n_dist"

)

With id_col
df_folded <- fold(

data = df,
k = 3,
id_col = "participant",
method = "n_dist"

)

With num_col
Note: 'method' would not be used in this case
df_folded <- fold(data = df, k = 3, num_col = "score")

With cat_col and id_col
df_folded <- fold(

data = df,
k = 3,
cat_col = "diagnosis",
id_col = "participant", method = "n_dist"

fold 39

)

With cat_col, id_col and num_col
df_folded <- fold(

data = df,
k = 3,
cat_col = "diagnosis",
id_col = "participant", num_col = "score"

)

Order by folds
df_folded <- df_folded %>% arrange(.folds)

Multiple fold columns
Useful for repeated cross-validation
Note: Consider running in parallel
df_folded <- fold(

data = df,
k = 3,
cat_col = "diagnosis",
id_col = "participant",
num_fold_cols = 5,
unique_fold_cols_only = TRUE,
max_iters = 4

)

Different `k` per fold column
Note: `length(k) == num_fold_cols`
df_folded <- fold(

data = df,
k = c(2, 3),
cat_col = "diagnosis",
id_col = "participant",
num_fold_cols = 2,
unique_fold_cols_only = TRUE,
max_iters = 4

)

Check the generated columns
with `summarize_group_cols()`
summarize_group_cols(

data = df_folded,
group_cols = paste0('.folds_', 1:2)

)

Check if additional `extreme_pairing_levels`
improve the numerical balance
set.seed(2) # try with seed 1 as well
df_folded_1 <- fold(

data = df,
k = 3,
num_col = "score",
extreme_pairing_levels = 1

40 group

)
df_folded_1 %>%

dplyr::ungroup() %>%
summarize_balances(group_cols = '.folds', num_cols = 'score')

set.seed(2) # Try with seed 1 as well
df_folded_2 <- fold(

data = df,
k = 3,
num_col = "score",
extreme_pairing_levels = 2

)
df_folded_2 %>%

dplyr::ungroup() %>%
summarize_balances(group_cols = '.folds', num_cols = 'score')

We can directly compare how balanced the 'score' is
in the two fold columns using a combination of
`summarize_balances()` and `ranked_balances()`
We see that the second fold column (made with `extreme_pairing_levels = 2`)
has a lower standard deviation of its mean scores - meaning that they
are more similar and thus more balanced
df_folded_1$.folds_2 <- df_folded_2$.folds
df_folded_1 %>%

dplyr::ungroup() %>%
summarize_balances(group_cols = c('.folds', '.folds_2'), num_cols = 'score') %>%
ranked_balances()

group Create groups from your data

Description

[Stable]
Divides data into groups by a wide range of methods. Creates a grouping factor with 1s for group 1,
2s for group 2, etc. Returns a data.frame grouped by the grouping factor for easy use in magrittr
`%>%` pipelines.

By default*, the data points in a group are connected sequentially (e.g. c(1, 1, 2, 2, 3, 3)) and
splitting is done from top to bottom. *Except in the "every" method.

There are five types of grouping methods:

The "n_*" methods split the data into a given number of groups. They differ in how they handle
excess data points.

The "greedy" method uses a group size to split the data into groups, greedily grabbing `n` data
points from the top. The last group may thus differ in size (e.g. c(1, 1, 2, 2, 3)).

The "l_*" methods use a list of either starting points ("l_starts") or group sizes ("l_sizes").
The "l_starts" method can also auto-detect group starts (when a value differs from the previous
value).

group 41

The "every" method puts every `n`th data point into the same group (e.g. c(1, 2, 3, 1, 2, 3)).

The step methods "staircase" and "primes" increase the group size by a step for each group.

Note: To create groups balanced by a categorical and/or numerical variable, see the fold() and
partition() functions.

Usage

group(
data,
n,
method = "n_dist",
starts_col = NULL,
force_equal = FALSE,
allow_zero = FALSE,
return_factor = FALSE,
descending = FALSE,
randomize = FALSE,
col_name = ".groups",
remove_missing_starts = FALSE

)

Arguments

data data.frame or vector. When a grouped data.frame, the function is applied
group-wise.

n Depends on ‘method‘.
Number of groups (default), group size, list of group sizes, list of group starts,
number of data points between group members, step size or prime number to
start at. See `method`.
Passed as whole number(s) and/or percentage(s) (0 < n < 1) and/or character.
Method "l_starts" allows 'auto'.

method "greedy", "n_dist", "n_fill", "n_last", "n_rand", "l_sizes", "l_starts",
"every", "staircase", or "primes".
Note: examples are sizes of the generated groups based on a vector with 57
elements.

greedy: Divides up the data greedily given a specified group size (e.g.10, 10, 10, 10, 10, 7).
`n` is group size.
n_dist (default): Divides the data into a specified number of groups and
distributes excess data points across groups (e.g.11, 11, 12, 11, 12).
`n` is number of groups.
n_fill: Divides the data into a specified number of groups and fills up groups
with excess data points from the beginning (e.g.12, 12, 11, 11, 11).
`n` is number of groups.
n_last: Divides the data into a specified number of groups. It finds the most
equal group sizes possible, using all data points. Only the last group is able to
differ in size (e.g.11, 11, 11, 11, 13).
`n` is number of groups.

42 group

n_rand: Divides the data into a specified number of groups. Excess data
points are placed randomly in groups (max. 1 per group) (e.g.12, 11, 11, 11, 12).
`n` is number of groups.

l_sizes: Divides up the data by a list of group sizes. Excess data points are
placed in an extra group at the end.
E.g.n = list(0.2, 0.3)outputsgroupswithsizes(11, 17, 29).
`n` is a list of group sizes.

l_starts: Starts new groups at specified values in the `starts_col` vector.
n is a list of starting positions. Skip values by c(value, skip_to_number)
where skip_to_number is the nth appearance of the value in the vector af-
ter the previous group start. The first data point is automatically a starting
position.
E.g.n = c(1, 3, 7, 25, 50)outputsgroupswithsizes(2, 4, 18, 25, 8).
To skip: givenvectorc(”a”, ”e”, ”o”, ”a”, ”e”, ”o”), n = list(”a”, ”e”, c(”o”, 2))outputsgroupswithsizes(1, 4, 1).

If passing n =′ auto′ the starting positions are automatically found such that a
group is started whenever a value differs from the previous value (see find_starts()).
Note that all NAs are first replaced by a single unique value, meaning that they
will also cause group starts. See differs_from_previous() to set a threshold
for what is considered "different".
E.g.n = ”auto”forc(10, 10, 7, 8, 8, 9)wouldstartgroupsatthefirst10, 7, 8and9, andgivec(1, 1, 2, 3, 3, 4).

every: Combines every `n`th data point into a group. (e.g.12, 12, 11, 11, 11withn =
5).
`n` is the number of data points between group members ("every n").

staircase: Uses step size to divide up the data. Group size increases with 1
step for every group, until there is no more data (e.g.5, 10, 15, 20, 7).
`n` is step size.

primes: Uses prime numbers as group sizes. Group size increases to the next
prime number until there is no more data. (e.g.5, 7, 11, 13, 17, 4).
`n` is the prime number to start at.

starts_col Name of column with values to match in method "l_starts" when `data` is
a data.frame. Pass 'index' to use row names. (Character)

force_equal Create equal groups by discarding excess data points. Implementation varies
between methods. (Logical)

allow_zero Whether `n` can be passed as 0. Can be useful when programmatically finding
n. (Logical)

return_factor Only return the grouping factor. (Logical)

descending Change the direction of the method. (Not fully implemented) (Logical)

randomize Randomize the grouping factor. (Logical)

col_name Name of the added grouping factor.
remove_missing_starts

Recursively remove elements from the list of starts that are not found. For
method "l_starts" only. (Logical)

group 43

Value

data.frame grouped by existing grouping variables and the new grouping factor.

Author(s)

Ludvig Renbo Olsen, <r-pkgs@ludvigolsen.dk>

See Also

Other grouping functions: all_groups_identical(), collapse_groups(), collapse_groups_by,
fold(), group_factor(), partition(), splt()

Other staircase tools: %primes%(), %staircase%(), group_factor()

Other l_starts tools: differs_from_previous(), find_missing_starts(), find_starts(), group_factor()

Examples

Attach packages
library(groupdata2)
library(dplyr)

Create data frame
df <- data.frame(

"x" = c(1:12),
"species" = factor(rep(c("cat", "pig", "human"), 4)),
"age" = sample(c(1:100), 12)

)

Using group()
df_grouped <- group(df, n = 5, method = "n_dist")

Using group() in pipeline to get mean age
df_means <- df %>%

group(n = 5, method = "n_dist") %>%
dplyr::summarise(mean_age = mean(age))

Using group() with `l_sizes`
df_grouped <- group(

data = df,
n = list(0.2, 0.3),
method = "l_sizes"

)

Using group_factor() with `l_starts`
`c('pig', 2)` skips to the second appearance of
'pig' after the first appearance of 'cat'
df_grouped <- group(

data = df,
n = list("cat", c("pig", 2), "human"),
method = "l_starts",
starts_col = "species"

)

44 group_factor

group_factor Create grouping factor for subsetting your data

Description

[Stable]

Divides data into groups by a wide range of methods. Creates and returns a grouping factor with 1s
for group 1, 2s for group 2, etc.

By default*, the data points in a group are connected sequentially (e.g. c(1, 1, 2, 2, 3, 3)) and
splitting is done from top to bottom. *Except in the "every" method.

There are five types of grouping methods:

The "n_*" methods split the data into a given number of groups. They differ in how they handle
excess data points.

The "greedy" method uses a group size to split the data into groups, greedily grabbing `n` data
points from the top. The last group may thus differ in size (e.g. c(1, 1, 2, 2, 3)).

The "l_*" methods use a list of either starting points ("l_starts") or group sizes ("l_sizes").
The "l_starts" method can also auto-detect group starts (when a value differs from the previous
value).

The "every" method puts every `n`th data point into the same group (e.g. c(1, 2, 3, 1, 2, 3)).

The step methods "staircase" and "primes" increase the group size by a step for each group.

Note: To create groups balanced by a categorical and/or numerical variable, see the fold() and
partition() functions.

Usage

group_factor(
data,
n,
method = "n_dist",
starts_col = NULL,
force_equal = FALSE,
allow_zero = FALSE,
descending = FALSE,
randomize = FALSE,
remove_missing_starts = FALSE

)

Arguments

data data.frame or vector. When a grouped data.frame, the function is applied
group-wise.

group_factor 45

n Depends on ‘method‘.
Number of groups (default), group size, list of group sizes, list of group starts,
number of data points between group members, step size or prime number to
start at. See `method`.
Passed as whole number(s) and/or percentage(s) (0 < n < 1) and/or character.
Method "l_starts" allows 'auto'.

method "greedy", "n_dist", "n_fill", "n_last", "n_rand", "l_sizes", "l_starts",
"every", "staircase", or "primes".
Note: examples are sizes of the generated groups based on a vector with 57
elements.

greedy: Divides up the data greedily given a specified group size (e.g.10, 10, 10, 10, 10, 7).
`n` is group size.

n_dist (default): Divides the data into a specified number of groups and
distributes excess data points across groups (e.g.11, 11, 12, 11, 12).
`n` is number of groups.

n_fill: Divides the data into a specified number of groups and fills up groups
with excess data points from the beginning (e.g.12, 12, 11, 11, 11).
`n` is number of groups.

n_last: Divides the data into a specified number of groups. It finds the most
equal group sizes possible, using all data points. Only the last group is able to
differ in size (e.g.11, 11, 11, 11, 13).
`n` is number of groups.

n_rand: Divides the data into a specified number of groups. Excess data
points are placed randomly in groups (max. 1 per group) (e.g.12, 11, 11, 11, 12).
`n` is number of groups.

l_sizes: Divides up the data by a list of group sizes. Excess data points are
placed in an extra group at the end.
E.g.n = list(0.2, 0.3)outputsgroupswithsizes(11, 17, 29).
`n` is a list of group sizes.

l_starts: Starts new groups at specified values in the `starts_col` vector.
n is a list of starting positions. Skip values by c(value, skip_to_number)
where skip_to_number is the nth appearance of the value in the vector af-
ter the previous group start. The first data point is automatically a starting
position.
E.g.n = c(1, 3, 7, 25, 50)outputsgroupswithsizes(2, 4, 18, 25, 8).
To skip: givenvectorc(”a”, ”e”, ”o”, ”a”, ”e”, ”o”), n = list(”a”, ”e”, c(”o”, 2))outputsgroupswithsizes(1, 4, 1).

If passing n =′ auto′ the starting positions are automatically found such that a
group is started whenever a value differs from the previous value (see find_starts()).
Note that all NAs are first replaced by a single unique value, meaning that they
will also cause group starts. See differs_from_previous() to set a threshold
for what is considered "different".
E.g.n = ”auto”forc(10, 10, 7, 8, 8, 9)wouldstartgroupsatthefirst10, 7, 8and9, andgivec(1, 1, 2, 3, 3, 4).

every: Combines every `n`th data point into a group. (e.g.12, 12, 11, 11, 11withn =
5).
`n` is the number of data points between group members ("every n").

46 group_factor

staircase: Uses step size to divide up the data. Group size increases with 1
step for every group, until there is no more data (e.g.5, 10, 15, 20, 7).
`n` is step size.

primes: Uses prime numbers as group sizes. Group size increases to the next
prime number until there is no more data. (e.g.5, 7, 11, 13, 17, 4).
`n` is the prime number to start at.

starts_col Name of column with values to match in method "l_starts" when `data` is
a data.frame. Pass 'index' to use row names. (Character)

force_equal Create equal groups by discarding excess data points. Implementation varies
between methods. (Logical)

allow_zero Whether `n` can be passed as 0. Can be useful when programmatically finding
n. (Logical)

descending Change the direction of the method. (Not fully implemented) (Logical)

randomize Randomize the grouping factor. (Logical)
remove_missing_starts

Recursively remove elements from the list of starts that are not found. For
method "l_starts" only. (Logical)

Value

Grouping factor with 1s for group 1, 2s for group 2, etc.

N.B. If `data` is a grouped data.frame, the output is a data.frame with the existing groupings
and the generated grouping factor. The row order from `data` is maintained.

Author(s)

Ludvig Renbo Olsen, <r-pkgs@ludvigolsen.dk>

See Also

Other grouping functions: all_groups_identical(), collapse_groups(), collapse_groups_by,
fold(), group(), partition(), splt()

Other staircase tools: %primes%(), %staircase%(), group()

Other l_starts tools: differs_from_previous(), find_missing_starts(), find_starts(), group()

Examples

Attach packages
library(groupdata2)
library(dplyr)

Create a data frame
df <- data.frame(

"x" = c(1:12),
"species" = factor(rep(c("cat", "pig", "human"), 4)),
"age" = sample(c(1:100), 12)

)

partition 47

Using group_factor() with n_dist
groups <- group_factor(df, 5, method = "n_dist")
df$groups <- groups

Using group_factor() with greedy
groups <- group_factor(df, 5, method = "greedy")
df$groups <- groups

Using group_factor() with l_sizes
groups <- group_factor(df, list(0.2, 0.3), method = "l_sizes")
df$groups <- groups

Using group_factor() with l_starts
groups <- group_factor(df, list("cat", c("pig", 2), "human"),

method = "l_starts", starts_col = "species"
)
df$groups <- groups

partition Create balanced partitions

Description

[Stable]
Splits data into partitions. Balances a given categorical variable and/or numerical variable between
partitions and keeps (if possible) all data points with a shared ID (e.g. participant_id) in the same
partition.

Usage

partition(
data,
p = 0.2,
cat_col = NULL,
num_col = NULL,
id_col = NULL,
id_aggregation_fn = sum,
extreme_pairing_levels = 1,
force_equal = FALSE,
list_out = TRUE

)

Arguments

data data.frame. Can be grouped, in which case the function is applied group-wise.
p List or vector of partition sizes. Given as whole number(s) and/or percentage(s)

(0 < `p` < 1).
E.g. c(0.2, 3, 0.1).

48 partition

cat_col Name of categorical variable to balance between partitions.
E.g. when training and testing a model for predicting a binary variable (a or b),
we usually want both classes represented in both the training set and the test set.
N.B. If also passing an `id_col`, `cat_col` should be constant within each
ID.

num_col Name of numerical variable to balance between partitions.
N.B. When used with `id_col`, values in `num_col` for each ID are aggre-
gated using `id_aggregation_fn` before being balanced.

id_col Name of factor with IDs. Used to keep all rows that share an ID in the same
partition (if possible).
E.g. If we have measured a participant multiple times and want to see the effect
of time, we want to have all observations of this participant in the same partition.
N.B. When `data` is a grouped data.frame (see dplyr::group_by()), IDs
that appear in multiple groupings might end up in different partitions in those
groupings.

id_aggregation_fn

Function for aggregating values in `num_col` for each ID, before balancing
`num_col`.
N.B. Only used when `num_col` and `id_col` are both specified.

extreme_pairing_levels

How many levels of extreme pairing to do when balancing partitions by a nu-
merical column (i.e. `num_col` is specified).
Extreme pairing: Rows/pairs are ordered as smallest, largest, second smallest,
second largest, etc. If `extreme_pairing_levels` > 1, this is done "recur-
sively" on the extreme pairs. See `Details/num_col` for more.
N.B. Larger values work best with large datasets. If set too high, the result might
not be stochastic. Always check if an increase actually makes the partitions more
balanced. See `Examples`.

force_equal Whether to discard excess data. (Logical)

list_out Whether to return partitions in a list. (Logical)
N.B. When `data` is a grouped data.frame, the output is always a data.frame
with partition identifiers.

Details

cat_col:

1. `data` is subset by `cat_col`.
2. Subsets are partitioned and merged.

id_col:

1. Partitions are created from unique IDs.

num_col:

1. Rows are shuffled. Note that this will only affect rows with the same value in `num_col`.

partition 49

2. Extreme pairing 1: Rows are ordered as smallest, largest, second smallest, second largest,
etc. Each pair get a group identifier.

3. If `extreme_pairing_levels` > 1: The group identifiers are reordered as smallest, largest,
second smallest, second largest, etc., by the sum of `num_col` in the represented rows.
These pairs (of pairs) get a new set of group identifiers, and the process is repeated `extreme_pairing_levels`-2
times. Note that the group identifiers at the last level will represent 2^`extreme_pairing_levels`
rows, why you should be careful when choosing that setting.

4. The final group identifiers are shuffled, and their order is applied to the full dataset.
5. The ordered dataset is split by the sizes in `p`.

N.B. When doing extreme pairing of an unequal number of rows, the row with the largest value
is placed in a group by itself, and the order is instead: smallest, second largest, second smallest,
third largest, ... , largest.

cat_col AND id_col:
1. `data` is subset by `cat_col`.
2. Partitions are created from unique IDs in each subset.
3. Subsets are merged.

cat_col AND num_col:
1. `data` is subset by `cat_col`.
2. Subsets are partitioned by `num_col`.
3. Subsets are merged.

num_col AND id_col:
1. Values in `num_col` are aggregated for each ID, using id_aggregation_fn.
2. The IDs are partitioned, using the aggregated values as "num_col".
3. The partition identifiers are transferred to the rows of the IDs.

cat_col AND num_col AND id_col:
1. Values in `num_col` are aggregated for each ID, using id_aggregation_fn.
2. IDs are subset by `cat_col`.
3. The IDs for each subset are partitioned, by using the aggregated values as "num_col".
4. The partition identifiers are transferred to the rows of the IDs.

Value

If `list_out` is TRUE:

A list of partitions where partitions are data.frames.

If `list_out` is FALSE:

A data.frame with grouping factor for subsetting.

N.B. When `data` is a grouped data.frame, the output is always a data.frame with a grouping
factor.

Author(s)

Ludvig Renbo Olsen, <r-pkgs@ludvigolsen.dk>

50 partition

See Also

Other grouping functions: all_groups_identical(), collapse_groups(), collapse_groups_by,
fold(), group(), group_factor(), splt()

Examples

Attach packages
library(groupdata2)
library(dplyr)

Create data frame
df <- data.frame(

"participant" = factor(rep(c("1", "2", "3", "4", "5", "6"), 3)),
"age" = rep(sample(c(1:100), 6), 3),
"diagnosis" = factor(rep(c("a", "b", "a", "a", "b", "b"), 3)),
"score" = sample(c(1:100), 3 * 6)

)
df <- df %>% arrange(participant)
df$session <- rep(c("1", "2", "3"), 6)

Using partition()

Without balancing
partitions <- partition(data = df, p = c(0.2, 0.3))

With cat_col
partitions <- partition(data = df, p = 0.5, cat_col = "diagnosis")

With id_col
partitions <- partition(data = df, p = 0.5, id_col = "participant")

With num_col
partitions <- partition(data = df, p = 0.5, num_col = "score")

With cat_col and id_col
partitions <- partition(

data = df,
p = 0.5,
cat_col = "diagnosis",
id_col = "participant"

)

With cat_col, num_col and id_col
partitions <- partition(

data = df,
p = 0.5,
cat_col = "diagnosis",
num_col = "score",
id_col = "participant"

)

Return data frame with grouping factor

ranked_balances 51

with list_out = FALSE
partitions <- partition(df, c(0.5), list_out = FALSE)

Check if additional extreme_pairing_levels
improve the numerical balance
set.seed(2) # try with seed 1 as well
partitions_1 <- partition(

data = df,
p = 0.5,
num_col = "score",
extreme_pairing_levels = 1,
list_out = FALSE

)
partitions_1 %>%

dplyr::group_by(.partitions) %>%
dplyr::summarise(
sum_score = sum(score),
mean_score = mean(score)

)
set.seed(2) # try with seed 1 as well
partitions_2 <- partition(

data = df,
p = 0.5,
num_col = "score",
extreme_pairing_levels = 2,
list_out = FALSE

)
partitions_2 %>%

dplyr::group_by(.partitions) %>%
dplyr::summarise(

sum_score = sum(score),
mean_score = mean(score)

)

ranked_balances Extract ranked standard deviations from summary

Description

[Experimental]

Extract the standard deviations (default) from the "Summary" data.frame from the output of summarize_balances(),
ordered by the `SD_rank` column.

See examples of usage in summarize_balances().

Usage

ranked_balances(summary, measure = "SD")

52 splt

Arguments

summary "Summary" data.frame from output of summarize_balances().
Can also be the direct output list of summarize_balances(), in which case the
"Summary" element is used.

measure The measure to extract rows for. One of: "mean", "median", "SD", "IQR",
"min", "max".
The most meaningful measures to consider as metrics of balance are `SD` and
`IQR`, as a smaller spread of variables across group summaries means they are
more similar.
NOTE: Ranks are of standard deviations and not affected by this argument.

Value

The rows in `summary` where `measure` == "SD", ordered by the `SD_rank` column.

Author(s)

Ludvig Renbo Olsen, <r-pkgs@ludvigolsen.dk>

See Also

Other summarization functions: summarize_balances(), summarize_group_cols()

splt Split data by a range of methods

Description

[Stable]
Divides data into groups by a wide range of methods. Splits data by these groups.

Wraps group() with split().

Usage

splt(
data,
n,
method = "n_dist",
starts_col = NULL,
force_equal = FALSE,
allow_zero = FALSE,
descending = FALSE,
randomize = FALSE,
remove_missing_starts = FALSE

)

splt 53

Arguments

data data.frame or vector. When a grouped data.frame, the function is applied
group-wise.

n Depends on ‘method‘.
Number of groups (default), group size, list of group sizes, list of group starts,
number of data points between group members, step size or prime number to
start at. See `method`.
Passed as whole number(s) and/or percentage(s) (0 < n < 1) and/or character.
Method "l_starts" allows 'auto'.

method "greedy", "n_dist", "n_fill", "n_last", "n_rand", "l_sizes", "l_starts",
"every", "staircase", or "primes".
Note: examples are sizes of the generated groups based on a vector with 57
elements.

greedy: Divides up the data greedily given a specified group size (e.g.10, 10, 10, 10, 10, 7).
`n` is group size.

n_dist (default): Divides the data into a specified number of groups and
distributes excess data points across groups (e.g.11, 11, 12, 11, 12).
`n` is number of groups.

n_fill: Divides the data into a specified number of groups and fills up groups
with excess data points from the beginning (e.g.12, 12, 11, 11, 11).
`n` is number of groups.

n_last: Divides the data into a specified number of groups. It finds the most
equal group sizes possible, using all data points. Only the last group is able to
differ in size (e.g.11, 11, 11, 11, 13).
`n` is number of groups.

n_rand: Divides the data into a specified number of groups. Excess data
points are placed randomly in groups (max. 1 per group) (e.g.12, 11, 11, 11, 12).
`n` is number of groups.

l_sizes: Divides up the data by a list of group sizes. Excess data points are
placed in an extra group at the end.
E.g.n = list(0.2, 0.3)outputsgroupswithsizes(11, 17, 29).
`n` is a list of group sizes.

l_starts: Starts new groups at specified values in the `starts_col` vector.
n is a list of starting positions. Skip values by c(value, skip_to_number)
where skip_to_number is the nth appearance of the value in the vector af-
ter the previous group start. The first data point is automatically a starting
position.
E.g.n = c(1, 3, 7, 25, 50)outputsgroupswithsizes(2, 4, 18, 25, 8).
To skip: givenvectorc(”a”, ”e”, ”o”, ”a”, ”e”, ”o”), n = list(”a”, ”e”, c(”o”, 2))outputsgroupswithsizes(1, 4, 1).

If passing n =′ auto′ the starting positions are automatically found such that a
group is started whenever a value differs from the previous value (see find_starts()).
Note that all NAs are first replaced by a single unique value, meaning that they
will also cause group starts. See differs_from_previous() to set a threshold
for what is considered "different".
E.g.n = ”auto”forc(10, 10, 7, 8, 8, 9)wouldstartgroupsatthefirst10, 7, 8and9, andgivec(1, 1, 2, 3, 3, 4).

54 splt

every: Combines every `n`th data point into a group. (e.g.12, 12, 11, 11, 11withn =
5).
`n` is the number of data points between group members ("every n").

staircase: Uses step size to divide up the data. Group size increases with 1
step for every group, until there is no more data (e.g.5, 10, 15, 20, 7).
`n` is step size.

primes: Uses prime numbers as group sizes. Group size increases to the next
prime number until there is no more data. (e.g.5, 7, 11, 13, 17, 4).
`n` is the prime number to start at.

starts_col Name of column with values to match in method "l_starts" when `data` is
a data.frame. Pass 'index' to use row names. (Character)

force_equal Create equal groups by discarding excess data points. Implementation varies
between methods. (Logical)

allow_zero Whether `n` can be passed as 0. Can be useful when programmatically finding
n. (Logical)

descending Change the direction of the method. (Not fully implemented) (Logical)

randomize Randomize the grouping factor. (Logical)
remove_missing_starts

Recursively remove elements from the list of starts that are not found. For
method "l_starts" only. (Logical)

Value

list of the split `data`.

N.B. If `data` is a grouped data.frame, there’s an outer list for each group. The names are based
on the group indices (see dplyr::group_indices()).

Author(s)

Ludvig Renbo Olsen, <r-pkgs@ludvigolsen.dk>

See Also

Other grouping functions: all_groups_identical(), collapse_groups(), collapse_groups_by,
fold(), group(), group_factor(), partition()

Examples

Attach packages
library(groupdata2)
library(dplyr)

Create data frame
df <- data.frame(

"x" = c(1:12),
"species" = factor(rep(c("cat", "pig", "human"), 4)),
"age" = sample(c(1:100), 12)

summarize_balances 55

)

Using splt()
df_list <- splt(df, 5, method = "n_dist")

summarize_balances Summarize group balances

Description

[Experimental]

Summarize the balances of numeric, categorical, and ID columns in and between groups in one or
more group columns.

This tool allows you to quickly and thoroughly assess the balance of different columns between
groups. This is for instance useful after creating groups with fold(), partition(), or collapse_groups()
to check how well they did and to compare multiple groupings.

The output contains:

1. `Groups`: a summary per group (per grouping column).

2. `Summary`: statistical descriptors of the group summaries.

3. `Normalized Summary`: statistical descriptors of a set of "normalized" group summaries.
(Disabled by default)

When comparing how balanced the grouping columns are, we can use the standard deviations of
the group summary columns. The lower a standard deviation is, the more similar the groups are
in that column. To quickly extract these standard deviations, ordered by an aggregated rank, use
ranked_balances() on the "Summary" data.frame in the output.

Usage

summarize_balances(
data,
group_cols,
cat_cols = NULL,
num_cols = NULL,
id_cols = NULL,
summarize_size = TRUE,
include_normalized = FALSE,
rank_weights = NULL,
cat_levels_rank_weights = NULL,
num_normalize_fn = function(x) {

rearrr::min_max_scale(x, old_min = quantile(x,
0.025), old_max = quantile(x, 0.975), new_min = 0, new_max = 1)

}
)

56 summarize_balances

Arguments

data data.frame with group columns to summarize by.
Can be grouped (see dplyr::group_by()), in which case the function is applied
group-wise. This is not to be confused with `group_cols`.

group_cols Names of columns with group identifiers to summarize columns in `data` by.

cat_cols Names of categorical columns to summarize.
Each categorical level is counted per group.
To distinguish between levels with the same name from different `cat_col`
columns, we prefix the count column name for each categorical level with parts
of the name of the categorical column. This amount can be controlled with
`max_cat_prefix_chars`.
Normalization when `include_normalized` is enabled: The counts of each
categorical level is normalized with log(1 + count).

num_cols Names of numerical columns to summarize.
For each column, the mean and sum is calculated per group.
Normalization when `include_normalized` is enabled: Each column is nor-
malized with `num_normalize_fn` before calculating the mean and sum per
group.

id_cols Names of factor columns with IDs to summarize.
The number of unique IDs are counted per group.
Normalization when `include_normalized` is enabled: The count of unique
IDs is normalized with log(1 + count).

summarize_size Whether to summarize the number of rows per group.
include_normalized

Whether to calculate and include the normalized summary in the output.

rank_weights A named vector with weights for averaging the rank columns when calculating
the `SD_rank` column. The name is one of the balancing columns and the num-
ber is its weight. Non-specified columns are given the weight 1. The weights
are automatically scaled to sum to 1.
When summarizing size (see `summarize_size`), name its weight "size".
E.g. c("size" = 1, "a_cat_col" = 2, "a_num_col" = 4, "an_id_col" = 2).

cat_levels_rank_weights

Weights for averaging ranks of the categorical levels in `cat_cols`. Given as
a named list with a named vector for each column in `cat_cols`. Non-
specified levels are given the weight 1. The weights are automatically scaled to
sum to 1.
E.g. list("a_cat_col" = c("a" = 3, "b" = 5), "b_cat_col" = c("1" = 3, "2"
= 9))

num_normalize_fn

Function for normalizing the `num_cols` columns before calculating normal-
ized group summaries.
Only used when `include_normalized` is enabled.

summarize_balances 57

Value

list with two/three data.frames:

Groups: A summary per group.
`cat_cols`: Each level has its own column with the count of the level per group.
`num_cols`: The mean and sum per group.
`id_cols`: The count of unique IDs per group.

Summary: Statistical descriptors of the columns in `Groups`.
Contains the mean, median, standard deviation (SD), interquartile range (IQR), min, and max mea-
sures.
Especially the standard deviations and IQR measures can tell us about how balanced the groups
are. When comparing multiple `group_cols`, the group column with the lowest SD and IQR can
be considered the most balanced.

Normalized Summary: (Disabled by default)
Same statistical descriptors as in `Summary` but for a "normalized" version of the group sum-
maries. The motivation is that these normalized measures can more easily be compared or com-
bined to a single "balance score".
First, we normalize each balance column:
`cat_cols`: The level counts in the original group summaries are normalized with with log(1
+ count). This eases comparison of the statistical descriptors (especially standard deviations) of
levels with very different count scales.
`num_cols`: The numeric columns are normalized prior to summarization by group, using the
`num_normalize_fn` function. By default this applies MinMax scaling to columns such that
~95% of the values are expected to be in the [0, 1] range.
`id_cols`: The counts of unique IDs in the original group summaries are normalized with log(1
+ count).
Contains the mean, median, standard deviation (SD), interquartile range (IQR), min, and max mea-
sures.

Author(s)

Ludvig Renbo Olsen, <r-pkgs@ludvigolsen.dk>

See Also

Other summarization functions: ranked_balances(), summarize_group_cols()

Examples

Attach packages
library(groupdata2)
library(dplyr)

set.seed(1)

Create data frame

58 summarize_balances

df <- data.frame(
"participant" = factor(rep(c("1", "2", "3", "4", "5", "6"), 3)),
"age" = rep(sample(c(1:100), 6), 3),
"diagnosis" = factor(rep(c("a", "b", "a", "a", "b", "b"), 3)),
"score" = sample(c(1:100), 3 * 6)

)
df <- df %>% arrange(participant)
df$session <- rep(c("1", "2", "3"), 6)

Using fold()

Without balancing
set.seed(1)
df_folded <- fold(data = df, k = 3)

Check the balances of the various columns
As we have not used balancing in `fold()`
we should not expect it to be amazingly balanced
df_folded %>%

dplyr::ungroup() %>%
summarize_balances(
group_cols = ".folds",
num_cols = c("score", "age"),
cat_cols = "diagnosis",
id_cols = "participant"

)

With balancing
set.seed(1)
df_folded <- fold(

data = df,
k = 3,
cat_col = "diagnosis",
num_col = 'score',
id_col = 'participant'

)

Now the balance should be better
although it may be difficult to get a good balance
the 'score' column when also balancing on 'diagnosis'
and keeping all rows per participant in the same fold
df_folded %>%

dplyr::ungroup() %>%
summarize_balances(

group_cols = ".folds",
num_cols = c("score", "age"),
cat_cols = "diagnosis",
id_cols = "participant"

)

Comparing multiple grouping columns
Create 3 fold column that only balance "score"
set.seed(1)

summarize_group_cols 59

df_folded <- fold(
data = df,
k = 3,
num_fold_cols = 3,
num_col = 'score'

)

Summarize all three grouping cols at once
(summ <- df_folded %>%

dplyr::ungroup() %>%
summarize_balances(
group_cols = paste0(".folds_", 1:3),
num_cols = c("score")

)
)

Extract the across-group standard deviations
The group column with the lowest standard deviation(s)
is the most balanced group column
summ %>% ranked_balances()

summarize_group_cols Summarize group columns

Description

[Experimental]
Get the following summary statistics for each group column:

1. Number of groups

2. Mean, median, std., IQR, min, and max number of rows per group.

The output can be given in either long (default) or wide format.

Usage

summarize_group_cols(data, group_cols, long = TRUE)

Arguments

data data.frame with one or more group columns (factors) to summarize.

group_cols Names of columns to summarize. These columns must be factors in `data`.

long Whether the output should be in long or wide format.

Value

Data frame (tibble) with summary statistics for each column in `group_cols`.

60 upsample

Author(s)

Ludvig Renbo Olsen, <r-pkgs@ludvigolsen.dk>

See Also

Other summarization functions: ranked_balances(), summarize_balances()

Examples

Attach packages
library(groupdata2)

Create data frame
df <- data.frame(

"some_var" = runif(25),
"grp_1" = factor(sample(1:5, size = 25, replace=TRUE)),
"grp_2" = factor(sample(1:8, size = 25, replace=TRUE)),
"grp_3" = factor(sample(LETTERS[1:3], size = 25, replace=TRUE)),
"grp_4" = factor(sample(LETTERS[1:12], size = 25, replace=TRUE))

)

Summarize the group columns (long format)
summarize_group_cols(

data = df,
group_cols = paste0("grp_", 1:4),
long = TRUE
)

Summarize the group columns (wide format)
summarize_group_cols(

data = df,
group_cols = paste0("grp_", 1:4),
long = FALSE
)

upsample Upsampling of rows in a data frame

Description

[Maturing]

Uses random upsampling to fix the group sizes to the largest group in the data frame.

Wraps balance().

upsample 61

Usage

upsample(
data,
cat_col,
id_col = NULL,
id_method = "n_ids",
mark_new_rows = FALSE,
new_rows_col_name = ".new_row"

)

Arguments

data data.frame. Can be grouped, in which case the function is applied group-wise.

cat_col Name of categorical variable to balance by. (Character)

id_col Name of factor with IDs. (Character)
IDs are considered entities, e.g. allowing us to add or remove all rows for an ID.
How this is used is up to the `id_method`.
E.g. If we have measured a participant multiple times and want make sure that
we keep all these measurements. Then we would either remove/add all mea-
surements for the participant or leave in all measurements for the participant.
N.B. When `data` is a grouped data.frame (see dplyr::group_by()), IDs
that appear in multiple groupings are considered separate entities within those
groupings.

id_method Method for balancing the IDs. (Character)
"n_ids", "n_rows_c", "distributed", or "nested".

n_ids (default): Balances on ID level only. It makes sure there are the same
number of IDs for each category. This might lead to a different number of
rows between categories.

n_rows_c: Attempts to level the number of rows per category, while only
removing/adding entire IDs. This is done in 2 steps:
1. If a category needs to add all its rows one or more times, the data is re-

peated.
2. Iteratively, the ID with the number of rows closest to the lacking/excessive

number of rows is added/removed. This happens until adding/removing
the closest ID would lead to a size further from the target size than the
current size. If multiple IDs are closest, one is randomly sampled.

distributed: Distributes the lacking/excess rows equally between the IDs. If
the number to distribute can not be equally divided, some IDs will have 1 row
more/less than the others.

nested: Calls balance() on each category with IDs as cat_col.
I.e. if size is "min", IDs will have the size of the smallest ID in their category.

mark_new_rows Add column with 1s for added rows, and 0s for original rows. (Logical)
new_rows_col_name

Name of column marking new rows. Defaults to ".new_row".

62 upsample

Details

Without ‘id_col‘: Upsampling is done with replacement for added rows, while the original
data remains intact.

With ‘id_col‘: See `id_method` description.

Value

data.frame with added rows. Ordered by potential grouping variables, `cat_col` and (poten-
tially) `id_col`.

Author(s)

Ludvig Renbo Olsen, <r-pkgs@ludvigolsen.dk>

See Also

Other sampling functions: balance(), downsample()

Examples

Attach packages
library(groupdata2)

Create data frame
df <- data.frame(

"participant" = factor(c(1, 1, 2, 3, 3, 3, 3, 4, 4, 5, 5, 5, 5)),
"diagnosis" = factor(c(0, 0, 1, 0, 0, 0, 0, 1, 1, 0, 0, 0, 0)),
"trial" = c(1, 2, 1, 1, 2, 3, 4, 1, 2, 1, 2, 3, 4),
"score" = sample(c(1:100), 13)

)

Using upsample()
upsample(df, cat_col = "diagnosis")

Using upsample() with id_method "n_ids"
With column specifying added rows
upsample(df,

cat_col = "diagnosis",
id_col = "participant",
id_method = "n_ids",
mark_new_rows = TRUE

)

Using upsample() with id_method "n_rows_c"
With column specifying added rows
upsample(df,

cat_col = "diagnosis",
id_col = "participant",
id_method = "n_rows_c",
mark_new_rows = TRUE

)

%primes% 63

Using upsample() with id_method "distributed"
With column specifying added rows
upsample(df,

cat_col = "diagnosis",
id_col = "participant",
id_method = "distributed",
mark_new_rows = TRUE

)

Using upsample() with id_method "nested"
With column specifying added rows
upsample(df,

cat_col = "diagnosis",
id_col = "participant",
id_method = "nested",
mark_new_rows = TRUE

)

%primes% Find remainder from ’primes’ method

Description

[Stable]
When using the "primes" method, the last group might not have the size of the associated prime
number if there are not enough elements left. Use %primes% to find this remainder.

Usage

size %primes% start_at

Arguments

size Size to group (Integer)

start_at Prime to start at (Integer)

Value

Remainder (Integer). Returns 0 if the last group has the size of the associated prime number.

Author(s)

Ludvig Renbo Olsen, <r-pkgs@ludvigolsen.dk>

See Also

Other staircase tools: %staircase%(), group(), group_factor()

Other remainder tools: %staircase%()

64 %staircase%

Examples

Attach packages
library(groupdata2)

100 %primes% 2

%staircase% Find remainder from ’staircase’ method

Description

[Stable]
When using the "staircase" method, the last group might not have the size of the second last
group + step size. Use %staircase% to find this remainder.

Usage

size %staircase% step_size

Arguments

size Size to staircase (Integer)

step_size Step size (Integer)

Value

Remainder (Integer). Returns 0 if the last group has the size of the second last group + step size.

Author(s)

Ludvig Renbo Olsen, <r-pkgs@ludvigolsen.dk>

See Also

Other staircase tools: %primes%(), group(), group_factor()

Other remainder tools: %primes%()

Examples

Attach packages
library(groupdata2)

100 %staircase% 2

Finding remainder with value 0
size = 150
for (step_size in c(1:30)){
if(size %staircase% step_size == 0){

%staircase% 65

print(step_size)
}}

Index

∗ grouping functions
all_groups_identical, 4
collapse_groups, 8
collapse_groups_by, 18
fold, 33
group, 40
group_factor, 44
partition, 47
splt, 52

∗ l_starts tools
differs_from_previous, 25
find_missing_starts, 29
find_starts, 31
group, 40
group_factor, 44

∗ remainder tools
%primes%, 63
%staircase%, 64

∗ sampling functions
balance, 5
downsample, 27
upsample, 60

∗ staircase tools
%primes%, 63
%staircase%, 64
group, 40
group_factor, 44

∗ summarization functions
ranked_balances, 51
summarize_balances, 55
summarize_group_cols, 59

%primes%, 43, 46, 63, 64
%staircase%, 43, 46, 63, 64

all_groups_identical, 4, 14, 22, 38, 43, 46,
50, 54

balance, 3, 5, 27, 28, 60, 62
binning (group), 40

collapse_groups, 4, 8, 22, 38, 43, 46, 50, 54
collapse_groups(), 19, 21, 55
collapse_groups_by, 4, 14, 18, 38, 43, 46,

50, 54
collapse_groups_by_ids

(collapse_groups_by), 18
collapse_groups_by_levels

(collapse_groups_by), 18
collapse_groups_by_numeric

(collapse_groups_by), 18
collapse_groups_by_size

(collapse_groups_by), 18
create_balanced_groups (fold), 33

differs_from_previous, 25, 30–32, 42, 43,
45, 46, 53

downsample, 7, 27, 62
dplyr::group_by(), 6, 9, 20, 28, 34, 48, 56,

61
dplyr::group_indices(), 25, 26, 30–32, 54

find_missing_starts, 26, 29, 32, 43, 46
find_starts, 26, 30, 31, 42, 43, 45, 46, 53
fold, 3, 4, 14, 22, 33, 43, 46, 50, 54
fold(), 8, 12–14, 19, 41, 44, 55

group, 2, 4, 14, 22, 26, 30, 32, 38, 40, 46, 50,
54, 63, 64

group(), 52
group_factor, 3, 4, 14, 22, 26, 30, 32, 38, 43,

44, 50, 54, 63, 64
group_factor(), 30
groupdata2 (groupdata2-package), 2
groupdata2-package, 2

not_previous (differs_from_previous), 25

partition, 3, 4, 14, 22, 38, 43, 46, 47, 54
partition(), 8, 14, 19, 41, 44, 55
primes (%primes%), 63

66

INDEX 67

ranked_balances, 51, 57, 60
ranked_balances(), 8, 12, 19, 36, 55
rearrr::pair_extremes(), 13, 36
rearrr::triplet_extremes(), 14, 36, 37

split (group), 40
split(), 52
splt, 3, 4, 14, 22, 38, 43, 46, 50, 52
staircase (%staircase%), 64
summarize_balances, 52, 55, 60
summarize_balances(), 8, 12, 19, 36, 51, 52
summarize_group_cols, 52, 57, 59

upsample, 7, 28, 60

window (group), 40

	groupdata2-package
	all_groups_identical
	balance
	collapse_groups
	collapse_groups_by
	differs_from_previous
	downsample
	find_missing_starts
	find_starts
	fold
	group
	group_factor
	partition
	ranked_balances
	splt
	summarize_balances
	summarize_group_cols
	upsample
	primes
	staircase
	Index

