
Package ‘hdbinseg’
July 22, 2025

Type Package

Title Change-Point Analysis of High-Dimensional Time Series via Binary
Segmentation

Version 1.0.2

Date 2023-07-27

Description Binary segmentation methods for detecting and estimating multiple change-
points in the mean or second-order structure of high-dimensional time series as de-
scribed in Cho and Fry-
zlewicz (2014) <doi:10.1111/rssb.12079> and Cho (2016) <doi:10.1214/16-EJS1155>.

Depends R (>= 4.2.0)

License GPL (>= 3)

Suggests RcppArmadillo

Imports Rcpp (>= 0.12.10), foreach, iterators, doParallel

LinkingTo Rcpp, RcppArmadillo

RoxygenNote 7.2.3

NeedsCompilation yes

Author Haeran Cho [aut, cre],
Piotr Fryzlewicz [aut]

Maintainer Haeran Cho <haeran.cho@bristol.ac.uk>

Repository CRAN

Date/Publication 2023-08-17 13:02:33 UTC

Contents
dcbs.alg . 2
dcbs.thr . 3
sbs.alg . 4
sbs.thr . 6

Index 8

1

https://doi.org/10.1111/rssb.12079
https://doi.org/10.1214/16-EJS1155

2 dcbs.alg

dcbs.alg Double CUSUM Binary Segmentation

Description

Perform the Double CUSUM Binary Segmentation algorithm detecting change points in the mean
or second-order structure of the data.

Usage

dcbs.alg(
x,
cp.type = c(1, 2)[1],
phi = 0.5,
thr = NULL,
trim = NULL,
height = NULL,
tau = NULL,
temporal = TRUE,
scales = NULL,
diag = FALSE,
B = 1000,
q = 0.01,
do.parallel = 4

)

Arguments

x input data matrix, with each row representing the component time series

cp.type cp.type = 1 specifies change points in the mean, cp.type = 2 specifies change
points in the second-order structure

phi choice of parameter for weights in Double CUSUM statistic; 0 <= phi <= 1 or
phi = -1 allowed with the latter leading to the DC statistic combining phi = 0
and phi = 1/2, see Section 4.1 of Cho (2016) for further details

thr pre-defined threshold values; when thr = NULL, bootstrap procedure is employed
for the threshold selection; when thr != NULL and cp.type = 1, length(thr)
should be one, if cp.type = 2, length(thr) should match length(scales)

trim length of the intervals trimmed off around the change point candidates; trim =
NULL activates the default choice (trim = round(log(dim(x)[2])))

height maximum height of the binary tree; height = NULL activates the default choice
(height = floor(log(dim(x)[2], 2)/2))

tau a vector containing the scaling constant for each row of x; if tau = NULL, a data-
driven choice is made which takes into account the presence of possibly multiple
mean shifts and temporal dependence when temporal = TRUE

dcbs.thr 3

temporal used when cp.type = 1; if temporal = FALSE, rows of x are scaled by mad
estimates, if temporal = TRUE, their long-run variance estimates are used

scales used when cp.type = 2; negative integers representing Haar wavelet scales to
be used for computing nrow(x)*(nrow(x) + 1)/2 dimensional wavelet trans-
formation of x; a small negative integer represents a fine scale

diag used when cp.type = 2; if diag = TRUE, only changes in the diagonal elements
of the autocovariance matrices are searched for

B used when is.null(thr); number of bootstrap samples for threshold selection

q used when is.null(thr); indicates the quantile of bootstrap test statistics to be
used for threshold selection

do.parallel used when is.null(thr); number of copies of R running in parallel, if do.parallel
= 0, %do% operator is used, see also foreach

Value

S3 bin.tree object, which contains the following fields:

tree a list object containing information about the nodes at which change points are
detected

mat matrix concatenation of the nodes of tree

ecp estimated change points

thr threshold used to construct the tree

References

H. Cho (2016) change point detection in panel data via double CUSUM statistic. Electronic Journal
of Statistics, vol. 10, pp. 2000–2038.

Examples

x <- matrix(rnorm(10*100), nrow = 10)
dcbs.alg(x, cp.type = 1, phi=.5, temporal = FALSE, do.parallel = 0)$ecp

x <- matrix(rnorm(100*300), nrow = 100)
x[1:10, 151:300] <- x[1:10, 151:300] + 1
dcbs.alg(x, cp.type = 1, phi=-1, temporal = FALSE, do.parallel = 0)$ecp

dcbs.thr Bootstrapping for threshold selection in DCBS algorithm

Description

Generate thresholds for DCBS algorithm via bootstrapping

4 sbs.alg

Usage

dcbs.thr(
z,
interval = c(1, dim(z)[2]),
phi = 0.5,
cp.type = 1,
do.clean.cp = FALSE,
temporal = TRUE,
scales = NULL,
diag = FALSE,
sgn = NULL,
B = 1000,
q = 0.01,
do.parallel = 4

)

Arguments

z input data matrix, with each row representing the component time series

interval a vector of two containing the start and the end points of the interval from which
the bootstrap test statistics are to be calculated

phi, cp.type, temporal, scales, diag, B, q, do.parallel
see dcbs.alg

do.clean.cp if do.clean.cp = TRUE pre-change point cleaning is performed

sgn if diag = FALSE, wavelet transformations of the cross-covariances are computed
with the matching signs

Value

a numeric value for the threshold

sbs.alg Sparsified Binary Segmentation

Description

Perform the Sparsified Binary Segmentation algorithm detecting change-points in the mean or
second-order structure of the data.

Usage

sbs.alg(
x,
cp.type = c(1, 2)[1],
thr = NULL,
trim = NULL,

sbs.alg 5

height = NULL,
tau = NULL,
temporal = TRUE,
scales = NULL,
diag = FALSE,
B = 1000,
q = 0.01,
do.parallel = 4

)

Arguments

x input data matrix, with each row representing the component time series
cp.type cp.type = 1 specifies change-points in the mean, cp.type = 2 specifies change-

points in the second-order structure
thr pre-defined threshold values; when thr = NULL, bootstrap procedure is employed

for the threshold selection; when thr != NULL and cp.type = 1, length(thr)
should match nrow(x), if cp.type = 2, length(thr) should match nrow(x)*(nrow(x)+1)/2*length(scales)

trim length of the intervals trimmed off around the change-point candidates; trim =
NULL activates the default choice (trim = round(log(dim(x)[2])))

height maximum height of the binary tree; height = NULL activates the default choice
(height = floor(log(dim(x)[2], 2)/2))

tau a vector containing the scaling constant for each row of x; if tau = NULL, a data-
driven choice is made which takes into account the presence of possibly multiple
mean shifts and temporal dependence when temporal = TRUE

temporal used when cp.type = 1; if temporal = FALSE, rows of x are scaled by mad
estimates, if temporal = TRUE, their long-run variance estimates are used

scales used when cp.type = 2; negative integers representing Haar wavelet scales to
be used for computing nrow(x)*(nrow(x)+1)/2 dimensional wavelet transfor-
mation of x; a small negative integer represents a fine scale

diag used when cp.type = 2; if diag = TRUE, only changes in the diagonal elements
of the autocovariance matrices are searched for

B used when is.null(thr); number of bootstrap samples for threshold selection
q used when is.null(thr); quantile of bootstrap test statistics to be used for

threshold selection
do.parallel used when is.null(thr); number of copies of R running in parallel, if do.parallel

= 0, %do% operator is used, see also foreach

Value

S3 bin.tree object, which contains the following fields:

tree a list object containing information about the nodes at which change-points are
detected

mat matrix concatenation of the nodes of tree
ecp estimated change-points
thr threshold used to construct the tree

6 sbs.thr

References

H. Cho and P. Fryzlewicz (2014) Multiple-change-point detection for high dimensional time series
via sparsified binary segmentation. JRSSB, vol. 77, pp. 475–507.

Examples

x <- matrix(rnorm(20*300), nrow = 20)
sbs.alg(x, cp.type = 2, scales = -1, diag = TRUE, do.parallel = 0)$ecp

x <- matrix(rnorm(100*300), nrow = 100)
x[1:10, 151:300] <- x[1:10, 151:300]*sqrt(2)
sbs.alg(x, cp.type = 2, scales = -1, diag = TRUE, do.parallel = 0)$ecp

sbs.thr Bootstrapping for threshold selection in SBS algorithm

Description

Generate thresholds for SBS algorithm via bootstrapping

Usage

sbs.thr(
z,
interval = c(1, dim(z)[2]),
cp.type = 1,
do.clean.cp = TRUE,
scales = NULL,
diag = FALSE,
sgn = NULL,
B = 1000,
q = 0.01,
do.parallel = 4

)

Arguments

z input data matrix, with each row representing the component time series

interval a vector of two containing the start and the end points of the interval from which
the bootstrap test statistics are to be calculated

cp.type, scales, diag, B, q, do.parallel
see sbs.alg

do.clean.cp if do.clean.cp = TRUE pre-change-point cleaning is performed

sgn if diag = FALSE, wavelet transformations of the cross-covariances are computed
with the matching signs

sbs.thr 7

Value

if cp.type = 1, a vector of length nrow(z), each containing the threshold applied to the CUSUM
statistics from the corresponding coordinate of z if cp.type = 2, a vector of length length(scales)*nrow(z)
(when diag = TRUE) or length(scales)*nrow(z)*(nrow(z)+1)/2 (when diag = FALSE), each
containing the threshold applied to the CUSUM statistics of the corresponding wavelet transfor-
mation of z

Index

dcbs.alg, 2, 4
dcbs.thr, 3

foreach, 3, 5

list, 3, 5

mad, 3, 5

sbs.alg, 4, 6
sbs.thr, 6

8

	dcbs.alg
	dcbs.thr
	sbs.alg
	sbs.thr
	Index

