## ---- include = FALSE--------------------------------------------------------- knitr::opts_chunk$set( collapse = TRUE, comment = "#>" ) ## ---- message = FALSE--------------------------------------------------------- library(hlaR) library(tidyverse) library(dplyr) ## ---- message = FALSE--------------------------------------------------------- # use the testing data in the library dat_mhc1 <- read.csv(system.file("extdata/example", "MHC_I_test.csv", package = "hlaR"), sep = ",", header = TRUE) re_mhc1 <- CalEpletMHCI(dat_mhc1) re_mhc1_single <- re_mhc1$single_detail re_mhc1_overall <- re_mhc1$overall_count ## ---- message = FALSE--------------------------------------------------------- # use the testing data in the library dat_mhc2 <- read.csv(system.file("extdata/example", "MHC_II_test.csv", package = "hlaR"), sep = ",", header = TRUE) re_mhc2 <- CalEpletMHCII(dat_mhc2) re_mhc2_single <- re_mhc2$single_detail re_mhc2_overall <- re_mhc2$overall_count re_mhc2_drdq_risk <- re_mhc2$dqdr_risk ## ----visualize mm------------------------------------------------------------- hist(re_mhc1_overall$mm_cnt_tt) hist(re_mhc2_overall$mm_cnt_tt) mm_eplets <- strsplit(re_mhc1_single$mm_eplets, split = ",") mm_eplets <- as.data.frame(matrix(as.factor(unlist(mm_eplets)))) colnames(mm_eplets) <- c("eplets") count<- mm_eplets %>% group_by(eplets) %>% summarize(count=n()) count %>% arrange(desc(count)) %>% top_n(10) %>% ggplot(aes(eplets, count)) + geom_col()