Title: | Hierarchical Methods for Differential Equations |
Version: | 1.2.1 |
Description: | Wrapper for Stan that offers a number of in-built models to implement a hierarchical Bayesian longitudinal model for repeat observation data. Model choice selects the differential equation that is fit to the observations. Single and multi-individual models are available. O'Brien et al. (2024) <doi:10.1111/2041-210X.14463>. |
License: | GPL (≥ 3) |
Encoding: | UTF-8 |
RoxygenNote: | 7.3.2 |
Biarch: | true |
Depends: | R (≥ 4.1.0) |
Imports: | methods, dplyr, ggplot2, purrr, Rcpp (≥ 0.12.0), RcppParallel (≥ 5.0.1), rlang, rstan (≥ 2.18.1), rstantools (≥ 2.3.1.1) |
LinkingTo: | BH (≥ 1.66.0), Rcpp (≥ 0.12.0), RcppEigen (≥ 0.3.3.3.0), RcppParallel (≥ 5.0.1), rstan (≥ 2.18.1), StanHeaders (≥ 2.18.0) |
SystemRequirements: | GNU make |
Suggests: | knitr, rmarkdown, testthat (≥ 3.0.0), withr, mnormt, here, patchwork, deSolve, cowplot, mixtools, MASS |
VignetteBuilder: | knitr |
Config/testthat/edition: | 3 |
LazyData: | true |
URL: | https://traitecoevo.github.io/hmde/ |
BugReports: | https://github.com/traitecoevo/hmde/issues |
NeedsCompilation: | yes |
Packaged: | 2025-06-30 03:03:43 UTC; tess |
Author: | Daniel Falster |
Maintainer: | Tess O'Brien <tess_obrien@fastmail.com> |
Repository: | CRAN |
Date/Publication: | 2025-07-04 19:20:06 UTC |
The 'hmde' package.
Description
A package to implement a selection of hierarchical Bayesian longitudinal models for inverse Bayesian problems.
Author(s)
Maintainer: Tess O'Brien tess_obrien@fastmail.com (ORCID) [copyright holder]
Authors:
Daniel Falster daniel.falster@unsw.edu.au (ORCID) [contributor]
David Warton david.warton@unsw.edu.au (ORCID) [contributor]
Other contributors:
Fonti Kar f.kar@unsw.edu.au (ORCID) [contributor]
References
Stan Development Team (NA). RStan: the R interface to Stan. R package version 2.26.23. https://mc-stan.org
See Also
Useful links:
Skink size data - Lampropholis delicata
Description
A subset of data from Kar, Nakagawa, and Noble (2024), used to model growth behaviour in a skink species. Observations are of the length from the tip of the nose to the start of the cloaca. Data was prepared by taking a simple random sample with replacement of 50 individual IDs among individuals with at least 5 observations each. Data was then transformed to conform to the needs of a model data set in the package.
Usage
Lizard_Size_Data
Format
Lizard_Size_Data
A data frame with 336 rows and 4 columns:
- ind_id
ID number for individual
- time
Days since first observation.
- y_obs
Individual size in mm.
- obs_index
Index of observations for individual
Source
Garcinia recondita - Barro Colorado Island data
Description
A subset of data from the Barro Colorado Island long term forest plot managed by the Smithsonian Tropical Research Institute (Condit et al. 2019). Data was prepared by taking a simple random sample without replacement of 30 individual IDs from Garcinia recondita. The sampling frame was restricted to individuals with 6 observations since 1990, and a difference between observed first and last sizes of more than 3cm in order to avoid identifiability issues. Data was then transformed and renamed to match the required structure to act as demonstration for the package.
Usage
Tree_Size_Data
Format
Tree_Size_Data
A data frame with 300 rows and 4 columns:
- ind_id
ID number for individual
- time
Years since first observation.
- y_obs
Individual diameter at breast height (DBH) in centimetres.
- obs_index
Index of observations for individual
Source
References
Garcinia recondita model estimates - Barro Colorado Island data
Description
Estimated sizes, individual growth parameters, and population-level hyper-parameters for Garcinia recondita fit with a Canham growth function hierarchical model. The data used to fit the model is the Tree_Size_Data object.
Usage
Tree_Size_Ests
Format
Tree_Size_Ests
A list with 5 elements:
- model
A character string giving the model name - Canham with multiple individuals.
- measurement_data
A tibble with 5 columns that gives information on size observations and estimates.
- individual_data
A tibble with 13 columns that gives posterior estimates for individual growth parameters.
- error_data
A tibble with 5 columns that gives posterior estimates of the error parameter.
- population_data
A tibble with 5 columns that gives posterior estimates for population-level hyper-parameters.
SUSTAIN Salmo trutta data
Description
A subset of data from the SUSTAIN trout capture-recapture data set from Moe et al. (2020). Observations are of total body length in centimetres. Data prepared by taking a stratified sample of individual IDs based on the number of observations per individual: 25 individuals with 2 observations, 15 with 3, 10 with 4. Within the groups a simple random sample without replacement was used. Data was then transformed and renamed to match the required structure to act as demonstration for the package.
Usage
Trout_Size_Data
Format
Trout_Size_Data
A data frame with 135 rows and 4 columns:
- ind_id
ID number for individual
- time
Years since first capture and tagging of individual.
- y_obs
Individual length in centimetres.
- obs_index
Index of observations for individual
Source
Differential equation for affine growth single individual model
Description
Differential equation for affine growth single individual model
Usage
hmde_affine_de(y = NULL, pars = NULL)
Arguments
y |
input real |
pars |
list of parameters beta_0, beta_1 |
Value
value of differential equation at y
Assign data to template for chosen model
Description
Assign data to template for chosen model
Usage
hmde_assign_data(model_template, data = NULL, ...)
Arguments
model_template |
output from hmde_model |
data |
Input data tibble with columns including time, y_obs, obs_index, and additionally ind_id for multi-individual models |
... |
data-masking name-value pairs allowing specific input of elements |
Value
updated named list with your data assigned to Stan model parameters
Examples
# basic usage of hmde_assign_data
hmde_model("constant_single_ind") |> hmde_assign_data(Trout_Size_Data)
Differential equation for Canham growth single and multi- individual models
Description
Differential equation for Canham growth single and multi- individual models
Usage
hmde_canham_de(y = NULL, pars = NULL)
Arguments
y |
input real |
pars |
list of parameters g_max, S_max, k |
Value
value of differential equation at y
Differential equation for constant growth single and multi- individual models
Description
Differential equation for constant growth single and multi- individual models
Usage
hmde_const_de(y = NULL, pars = NULL)
Arguments
y |
input real |
pars |
list of parameter beta |
Value
value of differential equation at y
Extract samples and return measurement, individual, and population-level estimates
Description
Extract samples and return measurement, individual, and population-level estimates
Usage
hmde_extract_estimates(fit = NULL, input_measurement_data = NULL)
Arguments
fit |
fitted model Stan fit |
input_measurement_data |
data used to fit the model with ind_id, y_obs, time, obs_index tibble |
Value
named list with data frames for measurement, individual, population-level, and error parameter estimates
Examples
# basic usage of hmde_extract_estimates
hmde_model("constant_single_ind") |>
hmde_assign_data(Trout_Size_Data)|>
hmde_run(chains = 1, iter = 1000,
verbose = FALSE, show_messages = FALSE) |>
hmde_extract_estimates(Trout_Size_Data)
Select data configuration template for hmde supported model
Description
Select data configuration template for hmde supported model
Usage
hmde_model(model = NULL)
Arguments
model |
model name character string |
Value
named list that matches Stan model parameters
Examples
# basic usage of hmde_model
hmde_model("constant_single_ind")
Function to select DE given model name
Description
Function to select DE given model name
Usage
hmde_model_des(model = NULL)
Arguments
model |
character string model name |
Value
DE function corresponding to specific model
Examples
# basic usage of hmde_model_des
hmde_model_des("constant_single_ind")
Returns names of available models.
Description
Returns names of available models.
Usage
hmde_model_names()
Value
vector of character strings for model names.
Examples
# basic usage of hmde_model_names
hmde_model_names()
Show parameter list for hmde supported model
Description
Show parameter list for hmde supported model
Usage
hmde_model_pars(model = NULL)
Arguments
model |
model name character string |
Value
named list that matches Stan model parameters
Examples
# basic usage of hmde_model_pars
hmde_model_pars("constant_single_ind")
Plot pieces of chosen differential equation model for each individual. Structured to take the individual data tibble that is built by the hmde_extract_estimates function using the ind_par_name_mean estimates. Function piece will go from the first fitted size to the last. Accepted ggplot arguments will change the axis labels, title, line colour, alpha
Description
Plot pieces of chosen differential equation model for each individual. Structured to take the individual data tibble that is built by the hmde_extract_estimates function using the ind_par_name_mean estimates. Function piece will go from the first fitted size to the last. Accepted ggplot arguments will change the axis labels, title, line colour, alpha
Usage
hmde_plot_de_pieces(
estimate_list = NULL,
xlab = "Y(t)",
ylab = "f",
title = NULL,
colour = "#006600",
alpha = 0.4
)
Arguments
estimate_list |
list output from hmde_extract_estimates |
xlab |
character string for replacement x axis label |
ylab |
character string for replacement y axis label |
title |
character string for replacement plot title |
colour |
character string for replacement line colour |
alpha |
real number for replacement alpha value |
Value
ggplot object
Examples
# basic usage of hmde_plot_de_pieces
hmde_plot_de_pieces(estimate_list = Tree_Size_Ests)
Plot estimated and observed values over time for a chosen number of individuals based on posterior estimates. Structured to take in the measurement_data tibble constructed by the hmde_extract_estimates function.
Description
Plot estimated and observed values over time for a chosen number of individuals based on posterior estimates. Structured to take in the measurement_data tibble constructed by the hmde_extract_estimates function.
Usage
hmde_plot_obs_est_inds(
estimate_list = NULL,
measurement_data = NULL,
ind_id_vec = NULL,
n_ind_to_plot = NULL,
xlab = "Time",
ylab = "Y(t)",
title = NULL
)
Arguments
estimate_list |
list output of hmde_extract_estimates |
measurement_data |
tibble with estimated measurements |
ind_id_vec |
vector with list of ind_id values |
n_ind_to_plot |
integer giving number of individuals to plot if not specified |
xlab |
character string for replacement x axis label |
ylab |
character string for replacement y axis label |
title |
character string for replacement plot title |
Value
ggplot object
Examples
# basic usage of hmde_plot_obs_est_inds
hmde_plot_obs_est_inds(estimate_list = Tree_Size_Ests,
n_ind_to_plot = 5)
Run chosen pre-built model in Stan
Description
Run chosen pre-built model in Stan
Usage
hmde_run(model_template, ...)
Arguments
model_template |
model template generated by hmde_model and updated by hmde_assign_data |
... |
additional arguments passed to rstan::sampling |
Value
Stanfit model output
Examples
# basic usage of hmde_run
hmde_model("constant_single_ind") |>
hmde_assign_data(Trout_Size_Data)|>
hmde_run(chains = 1, iter = 1000,
verbose = FALSE, show_messages = FALSE)
Differential equation for von Bertalanffy growth single and multi- individual models
Description
Differential equation for von Bertalanffy growth single and multi- individual models
Usage
hmde_vb_de(y = NULL, pars = NULL)
Arguments
y |
input real |
pars |
list of parameters Y_max, growth_rate |
Value
value of differential equation at y