
Package ‘htmlTable’
July 22, 2025

Version 2.4.3

Title Advanced Tables for Markdown/HTML

Maintainer Max Gordon <max@gforge.se>

Description Tables with state-of-the-art layout elements such as row spanners,
column spanners, table spanners, zebra striping, and more. While allowing
advanced layout, the underlying css-structure is simple in order to maximize
compatibility with common word processors. The package also contains a few
text formatting functions that help outputting text compatible with HTML/LaTeX.

License GPL (>= 3)

URL https://gforge.se/packages/

BugReports https://github.com/gforge/htmlTable/issues

Biarch yes

Depends R (>= 4.1)

Imports stringr, knitr (>= 1.6), magrittr (>= 1.5), methods,
checkmate, htmlwidgets, htmltools, rstudioapi (>= 0.6)

Suggests testthat, XML, xml2, Hmisc, rmarkdown, chron, lubridate,
tibble, purrr, tidyselect, glue, rlang, tidyr (>= 0.7.2), dplyr
(>= 0.7.4)

Encoding UTF-8

NeedsCompilation no

VignetteBuilder knitr

RoxygenNote 7.2.2

Author Max Gordon [aut, cre],
Stephen Gragg [aut],
Peter Konings [aut]

Repository CRAN

Date/Publication 2024-07-21 00:30:08 UTC

1

https://gforge.se/packages/
https://github.com/gforge/htmlTable/issues

2 addHtmlTableStyle

Contents
addHtmlTableStyle . 2
concatHtmlTables . 6
getHtmlTableStyle . 7
getHtmlTableTheme . 8
hasHtmlTableStyle . 8
htmlTable . 9
htmlTableWidget . 16
htmlTableWidget-shiny . 17
innerJoinByCommonCols . 18
interactiveTable . 18
prBindDataListIntoColumns . 20
prConvertDfFactors . 21
prepGroupCounts . 21
prEscapeHtml . 22
prExtractElementsAndConvertToTbl . 22
SCB . 23
setHtmlTableTheme . 24
tblNoLast . 27
tblNoNext . 27
tidyHtmlTable . 28
txtInt . 31
txtMergeLines . 32
txtPval . 33
txtRound . 34
vector2string . 36

Index 38

addHtmlTableStyle Add/set css and other style options

Description

This function is a preprocessing step before applying the htmlTable() function. You use this to
style your tables with HTML cascading style sheet features.

Usage

addHtmlTableStyle(
x,
align = NULL,
align.header = NULL,
align.cgroup = NULL,
css.rgroup = NULL,
css.rgroup.sep = NULL,
css.tspanner = NULL,

addHtmlTableStyle 3

css.tspanner.sep = NULL,
css.total = NULL,
css.cell = NULL,
css.cgroup = NULL,
css.header = NULL,
css.header.border_bottom = NULL,
css.class = NULL,
css.table = NULL,
pos.rowlabel = NULL,
pos.caption = NULL,
col.rgroup = NULL,
col.columns = NULL,
padding.rgroup = NULL,
padding.tspanner = NULL,
spacer.celltype = NULL,
spacer.css.cgroup.bottom.border = NULL,
spacer.css = NULL,
spacer.content = NULL

)

appendHtmlTableStyle(
x,
align = NULL,
align.header = NULL,
align.cgroup = NULL,
css.rgroup = NULL,
css.rgroup.sep = NULL,
css.tspanner = NULL,
css.tspanner.sep = NULL,
css.total = NULL,
css.cell = NULL,
css.cgroup = NULL,
css.header = NULL,
css.header.border_bottom = NULL,
css.class = NULL,
css.table = NULL,
pos.rowlabel = NULL,
pos.caption = NULL,
col.rgroup = NULL,
col.columns = NULL,
padding.rgroup = NULL,
padding.tspanner = NULL,
spacer.celltype = NULL,
spacer.css.cgroup.bottom.border = NULL,
spacer.css = NULL,
spacer.content = NULL

)

4 addHtmlTableStyle

Arguments

x The object that you later want to pass into htmlTable().

align A character strings specifying column alignments, defaulting to 'c' to center.
Valid chars for alignments are l = left, c = center and r = right. You can also
specify align='c|c' and other LaTeX tabular formatting. If you want to set
the alignment of the rownames this string needst to be ncol(x) + 1, otherwise
it automatically pads the string with a left alignment for the rownames.

align.header A character strings specifying alignment for column header, defaulting to cen-
tered, i.e. [paste][base::paste](rep('c',ncol(x)),collapse='').

align.cgroup The justification of the cgroups

css.rgroup CSS style for the rgroup, if different styles are wanted for each of the rgroups
you can just specify a vector with the number of elements.

css.rgroup.sep The line between different rgroups. The line is set to the TR element of the
lower rgroup, i.e. you have to set the border-top/padding-top etc to a line with
the expected function. This is only used for rgroups that are printed. You can
specify different separators if you give a vector of rgroup - 1 length (this is since
the first rgroup doesn’t have a separator).

css.tspanner The CSS style for the table spanner.
css.tspanner.sep

The line between different spanners.

css.total The css of the total row if such is activated.

css.cell The css.cell element allows you to add any possible CSS style to your table cells.
See section below for details.

css.cgroup The same as css.class but for cgroup formatting.

css.header The header style, not including the cgroup style
css.header.border_bottom

The header bottom-border style, e.g. border-bottom: 1px solid grey

css.class The html CSS class for the table. This allows directing html formatting through
CSS directly at all instances of that class. Note: unfortunately the CSS is fre-
quently ignored by word processors. This option is mostly inteded for web-
presentations.

css.table You can specify the the style of the table-element using this parameter

pos.rowlabel Where the rowlabel should be positioned. This value can be "top", "bottom",
"header", or a integer between 1 and nrow(cgroup) + 1. The options "bottom"
and "header" are the same, where the row label is presented at the same level
as the header.

pos.caption Set to "bottom" to position a caption below the table instead of the default of
"top".

col.rgroup Alternating colors (zebra striping/banded rows) for each rgroup; one or two
colors is recommended and will be recycled.

col.columns Alternating colors for each column.

padding.rgroup Generally two non-breakings spaces, i.e. , but some journals only
have a bold face for the rgroup and leaves the subelements unindented.

https://www.w3schools.com/Css/

addHtmlTableStyle 5

padding.tspanner

The table spanner is usually without padding but you may specify padding simi-
lar to padding.rgroup and it will be added to all elements, including the rgroup
elements. This allows for a 3-level hierarchy if needed.

spacer.celltype

When using cgroup the table headers are separated through a empty HTML
cell that is by default filled with (no-breaking-space) that prevents the
cell from collapsing. The purpose of this is to prevent the headers underline to
bleed into one as the underline is for the entire cell. You can alter this behavior
by changing this option, valid options are single_empty, skip, double_cell.
The single_empty is the default, the skip lets the header bleed into one and
skips entirely, double_cell is for having two cells so that a vertical border ends
up centered (specified using the align option). The arguments are matched
internally using base::match.arg so you can specify only a part of the name, e.g.
"sk" will match "skip".

spacer.css.cgroup.bottom.border

Defaults to none and used for separating cgroup headers. Due to a browser bug
this is sometimes ignored and you may therefore need to set this to 1px solid white
to enforce a white border.

spacer.css If you want the spacer cells to share settings you can set it here
spacer.content Defaults to as this guarantees that the cell is not collapsed and is highly

compatible when copy-pasting to word processors.

Details

The function stores the current theme (see setHtmlTableTheme()) + custom styles to the provided
object as an base::attributes(). It is stored under the element htmlTable.style in the form of
a list object.

Value

x with the style added as an attribute that the htmlTable then can use for formatting.

The css.cell argument

The css.cell parameter allows you to add any possible CSS style to your table cells. css.cell
can be either a vector or a matrix.

If css.cell is a vector, it’s assumed that the styles should be repeated throughout the rows (that is,
each element in css.cell specifies the style for a whole column of ’x’).

In the case of css.cell being a matrix of the same size of the x argument, each element of x gets
the style from the corresponding element in css.cell. Additionally, the number of rows of css.cell
can be nrow(x) + 1 so the first row of of css.cell specifies the style for the header of x; also the
number of columns of css.cell can be ncol(x) + 1 to include the specification of style for row
names of x.

Note that the text-align CSS field in the css.cell argument will be overriden by the align
argument.

Excel has a specific css-style, mso-number-format that can be used for improving the copy-paste
functionality. E.g. the style could be written as: css_matrix <- matrix(data = "mso-number-format:\"\\@\"", nrow = nrow(df), ncol = ncol(df))

6 concatHtmlTables

See Also

Other htmlTableStyle: hasHtmlTableStyle()

Examples

library(magrittr)
matrix(1:4, ncol = 2) %>%

addHtmlTableStyle(align = "c", css.cell = "background-color: orange;") %>%
htmlTable(caption = "A simple style example")

concatHtmlTables Function for concatenating htmlTable()s

Description

Function for concatenating htmlTable()s

Usage

concatHtmlTables(tables, headers = NULL)

Arguments

tables A list of htmlTable()s to be concatenated

headers Either a string or a vector of strings that function as a header for each table. If
none is provided it will use the names of the table list or a numeric number.

Value

htmlTable() class object

Examples

library(magrittr)

Basic example
tables <- list()
output <- matrix(1:4,

ncol = 2,
dimnames = list(list("Row 1", "Row 2"),

list("Column 1", "Column 2")))
tables[["Simple table"]] <- htmlTable(output)

An advanced output
output <- matrix(ncol = 6, nrow = 8)

for (nr in 1:nrow(output)) {
for (nc in 1:ncol(output)) {

getHtmlTableStyle 7

output[nr, nc] <-
paste0(nr, ":", nc)

}
}

tables[["Fancy table"]] <- output %>%
addHtmlTableStyle(align = "r",

col.columns = c(rep("none", 2),
rep("#F5FBFF", 4)),

col.rgroup = c("none", "#F7F7F7"),
css.cell = "padding-left: .5em; padding-right: .2em;") %>%

htmlTable(header = paste(c("1st", "2nd",
"3rd", "4th",
"5th", "6th"),

"hdr"),
rnames = paste(c("1st", "2nd",

"3rd",
paste0(4:8, "th")),

"row"),
rgroup = paste("Group", LETTERS[1:3]),
n.rgroup = c(2,4,nrow(output) - 6),
cgroup = rbind(c("", "Column spanners", NA),

c("", "Cgroup 1", "Cgroup 2†")),
n.cgroup = rbind(c(1,2,NA),

c(2,2,2)),
caption = "Basic table with both column spanners (groups) and row groups",
tfoot = "† A table footer commment",
cspan.rgroup = 2)

concatHtmlTables(tables)

getHtmlTableStyle Get style options for object

Description

A wrap around the base::attr() that retrieves the style attribute used by htmlTable() (htmlTable.style).

Usage

getHtmlTableStyle(x)

Arguments

x The object intended for htmlTable().

Value

A list if the attribute exists, otherwise NULL

8 hasHtmlTableStyle

Examples

library(magrittr)

mx <- matrix(1:4, ncol = 2)
colnames(mx) <- LETTERS[1:2]
mx %>%

addHtmlTableStyle(align = "l|r") %>%
getHtmlTableStyle()

getHtmlTableTheme Retrieve the htmlTable() theme list

Description

A wrapper for a getOption("htmlTable.theme")() call that returns the standard theme unless
one is set.

Usage

getHtmlTableTheme()

Value

list with the styles to be applied to the table

Examples

getHtmlTableTheme()

hasHtmlTableStyle Check if object has a style set to it

Description

If the attribute htmlTable.style is set it will check if the style_name exists and return a logical.

Usage

hasHtmlTableStyle(x, style_name)

Arguments

x The object intended for htmlTable().

style_name A string that contains the style name.

htmlTable 9

Value

logical TRUE if the attribute and style is not NULL

See Also

Other htmlTableStyle: addHtmlTableStyle()

Examples

library(magrittr)

mx <- matrix(1:4, ncol = 2)
colnames(mx) <- LETTERS[1:2]
mx %>%

addHtmlTableStyle(align = "l|r") %>%
hasHtmlTableStyle("align")

htmlTable Output an HTML table

Description

Generates advanced HTML tables with column and row groups for a dense representation of com-
plex data. Designed for maximum compatibility with copy-paste into word processors. For styling,
see addHtmlTableStyle() and setHtmlTableTheme(). Note: If you are using tidyverse and
dplyr you may want to check out tidyHtmlTable() that automates many of the arguments that
htmlTable requires.

Usage

htmlTable(
x,
header = NULL,
rnames = NULL,
rowlabel = NULL,
caption = NULL,
tfoot = NULL,
label = NULL,
rgroup = NULL,
n.rgroup = NULL,
cgroup = NULL,
n.cgroup = NULL,
tspanner = NULL,
n.tspanner = NULL,
total = NULL,
ctable = TRUE,
compatibility = getOption("htmlTableCompat", "LibreOffice"),

10 htmlTable

cspan.rgroup = "all",
escape.html = FALSE,
...

)

Default S3 method:
htmlTable(
x,
header = NULL,
rnames = NULL,
rowlabel = NULL,
caption = NULL,
tfoot = NULL,
label = NULL,
rgroup = NULL,
n.rgroup = NULL,
cgroup = NULL,
n.cgroup = NULL,
tspanner = NULL,
n.tspanner = NULL,
total = NULL,
ctable = TRUE,
compatibility = getOption("htmlTableCompat", "LibreOffice"),
cspan.rgroup = "all",
escape.html = FALSE,
...

)

S3 method for class 'htmlTable'
knit_print(x, ...)

S3 method for class 'htmlTable'
print(x, useViewer, ...)

Arguments

x The matrix/data.frame with the data. For the print and knit_print it takes a
string of the class htmlTable as x argument.

header A vector of character strings specifying column header, defaulting to colnames(x)

rnames Default row names are generated from rownames(x). If you provide FALSE then
it will skip the row names. Note: For data.frames if you do rownames(my_dataframe)
<- NULL it still has row names. Thus you need to use FALSE if you want to su-
press row names for data.frames.

rowlabel If the table has row names or rnames, rowlabel is a character string containing
the column heading for the rnames.

caption Adds a table caption.
tfoot Adds a table footer (uses the <tfoot> HTML element). The output is run

through txtMergeLines() simplifying the generation of multiple lines.

htmlTable 11

label A text string representing a symbolic label for the table for referencing as an an-
chor. All you need to do is to reference the table, for instance see table 2.
This is known as the element’s id attribute, i.e. table id, in HTML linguo, and
should be unique id for an HTML element in contrast to the css.class element
attribute.

rgroup A vector of character strings containing headings for row groups. n.rgroup
must be present when rgroup is given. See detailed description in section below.

n.rgroup An integer vector giving the number of rows in each grouping. If rgroup is not
specified, n.rgroup is just used to divide off blocks of rows by horizontal lines.
If rgroup is given but n.rgroup is omitted, n.rgroup will default so that each
row group contains the same number of rows. If you want additional rgroup
column elements to the cells you can sett the "add" attribute to rgroup through
attr(rgroup, "add"), see below explaining section.

cgroup A vector, matrix or list of character strings defining major column header. The
default is to have none. These elements are also known as column spanners. If
you want a column not to have a spanner then put that column as "". If you pass
cgroup and n.crgroup as matrices you can have column spanners for several
rows. See cgroup section below for details.

n.cgroup An integer vector, matrix or list containing the number of columns for which
each element in cgroup is a heading. For example, specify cgroup=c("Major_1","Major_2"),
n.cgroup=c(3,3) if "Major_1" is to span columns 1-3 and "Major_2" is to
span columns 4-6. rowlabel does not count in the column numbers. You can
omit n.cgroup if all groups have the same number of columns. If the n.cgroup
is one less than the number of columns in the matrix/data.frame then it automat-
ically adds those.

tspanner The table spanner is somewhat of a table header that you can use when you want
to join different tables with the same columns.

n.tspanner An integer vector with the number of rows or rgroups in the original matrix
that the table spanner should span. If you have provided one fewer n.tspanner
elements the last will be imputed from the number of rgroups (if you have
provided rgroup and sum(n.tspanner) < length(rgroup)) or the number of
rows in the table.

total The last row is sometimes a row total with a border on top and bold fonts. Set
this to TRUE if you are interested in such a row. If you want a total row at the
end of each table spanner you can set this to "tspanner".

ctable If the table should have a double top border or a single a’ la LaTeX ctable style

compatibility Is default set to LibreOffice as some settings need to be in old HTML format
as Libre Office can’t handle some commands such as the css caption-alignment.
Note: this option is not yet fully implemented for all details, in the future I
aim to generate a HTML-correct table and one that is aimed at Libre Office
compatibility. Word-compatibility is difficult as Word ignores most settings and
destroys all layout attempts (at least that is how my 2010 version behaves). You
can additinally use the options(htmlTableCompat = "html") if you want a
change to apply to the entire document. MS Excel sometimes misinterprets
certain cell data when opening HTML-tables (eg. 1/2 becomes 1. February).
To avoid this please specify the correct Microsoft Office format for each cell in

12 htmlTable

the table using the css.cell-argument. To make MS Excel interpret everything as
text use "mso-number-format:\"\@\"".

cspan.rgroup The number of columns that an rgroup should span. It spans by default all
columns but you may want to limit this if you have column colors that you want
to retain.

escape.html logical: should HTML characters be escaped? Defaults to FALSE.
... Passed on to print.htmlTable function and any argument except the useViewer

will be passed on to the base::cat() functions arguments. Note: as of version
2.0.0 styling options are still allowed but it is recommended to instead prepro-
cess your object with addHtmlTableStyle().

useViewer If you are using RStudio there is a viewer thar can render the table within that is
envoced if in base::interactive() mode. Set this to FALSE if you want to re-
move that functionality. You can also force the function to call a specific viewer
by setting this to a viewer function, e.g. useViewer = utils::browseURL if you
want to override the default RStudio viewer. Another option that does the same
is to set the options(viewer=utils::browseURL) and it will default to that
particular viewer (this is how RStudio decides on a viewer). Note: If you want to
force all output to go through the base::cat() the set [options][base::options](htmlTable.cat = TRUE).

Value

Returns a formatted string representing an HTML table of class htmlTable.

Multiple rows of column spanners cgroup

If you want to have a column spanner in multiple levels (rows) you can set the cgroup and n.cgroup
arguments to a matrix or list.

For different level elements, set absent ones to NA in a matrix. For example, cgroup = rbind(c("first",
"second", NA), c("a", "b", "c")). And the corresponding n.cgroup would be n.cgroup =
rbind(c(1, 2, NA), c(2, 1, 2)). for a table consisting of 5 columns. The "first" spans the first
two columns, the "second" spans the last three columns, "a" spans the first two, "b" the middle
column, and "c" the last two columns.

Using a list is recommended to avoid handling NAs.

For an empty cgroup, use "".

The rgroup argument

The rgroup groups rows seamlessly. Each row in a group is indented by two spaces (unless the
rgroup is "") and grouped by its rgroup element. The sum(n.rgroup) should be zr3ywKOjLZACY4j7TuGXu4v6I8wVWuKy-
≤ matrix rows. If fewer, remaining rows are padded with an empty rgroup (""). If rgroup has one
more element than n.rgroup, the last n.rgroup is computed as nrow(x) - sum(n.rgroup) for a
smoother table generation.

The add attribute to rgroup

To add an extra element at the rgroup level/row, use attr(rgroup, 'add'). The value can ei-
ther be a vector, a list, or a matrix. See vignette("general", package = "htmlTable") for
examples.

htmlTable 13

• A vector of either equal number of rgroups to the number of rgroups that aren’t empty,
i.e. rgroup[rgroup != ""]. Or a named vector where the name must correspond to either an
rgroup or to an rgroup number.

• A list that has exactly the same requirements as the vector. In addition to the previous we
can also have a list with column numbers within as names within the list.

• A matrix with the dimension nrow(x) x ncol(x) or nrow(x) x 1 where the latter is
equivalent to a named vector. If you have rownames these will resolve similarly to the names
to the list/vector arguments. The same thing applies to colnames.

Important knitr-note

This function will only work with knitr outputting HTML, i.e. markdown mode. As the function
returns raw HTML-code the compatibility with non-HTML formatting is limited, even with pandoc.

Thanks to the the knitr::knit_print() and the knitr::asis_output() the results='asis'
is no longer needed except within for-loops. If you have a knitr-chunk with a for loop and use
print() to produce raw HTML you must set the chunk option results='asis'. Note: the print-
function relies on the base::interactive() function for determining if the output should be sent
to a browser or to the terminal. In vignettes and other directly knitted documents you may need to
either set useViewer = FALSE alternatively set options(htmlTable.cat = TRUE).

RStudio’s notebook

RStudio has an interactive notebook that allows output directly into the document. In order for the
output to be properly formatted it needs to have the class of html. The htmlTable tries to identify
if the environment is a notebook document (uses the rstudioapi and identifies if its a file with and
Rmd file ending or if there is an element with html_notebook). If you don’t want this behavior you
can remove it using the options(htmlTable.skip_notebook = TRUE).

Table counter

If you set the option table_counter you will get a Table 1,2,3 etc before each table, just set options(table_counter=TRUE).
If you set it to a number then that number will correspond to the start of the table_counter. The
table_counter option will also contain the number of the last table, this can be useful when ref-
erencing it in text. By setting the option options(table_counter_str = "Table %s: ")
you can manipulate the counter table text that is added prior to the actual caption. Note, you should
use the sprintf() %s instead of %d as the software converts all numbers to characters for compati-
bility reasons. If you set options(table_counter_roman = TRUE) then the table counter will use
Roman numerals instead of Arabic.

Empty data frames

An empty data frame will result in a warning and output an empty table, provided that rgroup and
n.rgroup are not specified. All other row layout options will be ignored.

Options

There are multiple options that can be set, here is a set of the perhaps most used

• table_counter - logical - activates a counter for each table

https://pandoc.org/

14 htmlTable

• table_counter_roman - logical - if true the counter is in Roman numbers, i.e. I, II, III, IV...

• table_counter_str - string - the string used for generating the table counter text

• useViewer - logical - if viewer should be used fro printing the table

• htmlTable.cat - logical - if the output should be directly sent to cat()

• htmlTable.skip_notebook - logical - skips the logic for detecting notebook

• htmlTable.pretty_indentation - logical - there was some issues in previous Pandoc ver-
sions where HTML indentation caused everything to be interpreted as code. This seems to be
fixed and if you want to look at the raw HTML code it is nice to have this set to TRUE so that
the tags and elements are properly indented.

• htmlTableCompat - string - see parameter description

Other

Copy-pasting: As you copy-paste results into Word you need to keep the original formatting. Either
right click and choose that paste option or click on the icon appearing after a paste. Currently the
following compatibilities have been tested with MS Word 2016:

• Internet Explorer (v. 11.20.10586.0) Works perfectly when copy-pasting into Word

• RStudio (v. 0.99.448) Works perfectly when copy-pasting into Word. Note: can have issues
with multi-line cgroups - see bug

• Chrome (v. 47.0.2526.106) Works perfectly when copy-pasting into Word. Note: can have
issues with multi-line cgroups - see bug

• Firefox (v. 43.0.3) Works poorly - looses font-styling, lines and general feel

• Edge (v. 25.10586.0.0) Works poorly - looses lines and general feel

Direct word processor opening: Opening directly in Libre Office or Word is no longer recom-
mended. You get much prettier results using the cut-and-paste option.

Google docs: Copy-paste directly into a Google docs document is handled rather well. This seems
to work especially well when the paste comes directly from a Chrome browser.

Note that when using complex cgroup alignments with multiple levels not every browser is able to
handle this. For instance the RStudio webkit browser seems to have issues with this and a bug has
been filed.

As the table uses HTML for rendering you need to be aware of that headers, row names, and cell
values should try respect this for optimal display. Browsers try to compensate and frequently the
tables still turn out fine but it is not advised. Most importantly you should try to use < instead
of < and > instead of >. You can find a complete list of HTML characters here.

Lastly, I want to mention that function was inspired by the Hmisc::latex() that can be an excellent
alternative if you wish to switch to PDF-output. For the sibling function tidyHtmlTable() you can
directly switch between the two using the table_fn argument.

See Also

addHtmlTableStyle(), setHtmlTableTheme(), tidyHtmlTable(). txtMergeLines(), Hmisc::latex()

Other table functions: tblNoLast(), tblNoNext()

https://bugs.chromium.org/p/chromium/issues/detail?id=305130
https://bugs.chromium.org/p/chromium/issues/detail?id=305130
https://bugs.chromium.org/p/chromium/issues/detail?id=305130
https://bugs.chromium.org/p/chromium/issues/detail?id=305130
https://ascii.cl/htmlcodes.htm

htmlTable 15

Examples

library(magrittr)

Basic example
output <- matrix(1:4,

ncol = 2,
dimnames = list(list("Row 1", "Row 2"),

list("Column 1", "Column 2")))
htmlTable(output)
invisible(readline(prompt = "Press [enter] to continue"))

An advanced output
output <- matrix(ncol = 6, nrow = 8)

for (nr in 1:nrow(output)) {
for (nc in 1:ncol(output)) {
output[nr, nc] <-

paste0(nr, ":", nc)
}

}

output %>% addHtmlTableStyle(align = "r",
col.columns = c(rep("none", 2),

rep("#F5FBFF", 4)),
col.rgroup = c("none", "#F7F7F7"),
css.cell = "padding-left: .5em; padding-right: .2em;") %>%

htmlTable(header = paste(c("1st", "2nd",
"3rd", "4th",
"5th", "6th"),

"hdr"),
rnames = paste(c("1st", "2nd",

"3rd",
paste0(4:8, "th")),

"row"),
rgroup = paste("Group", LETTERS[1:3]),
n.rgroup = c(2,4,nrow(output) - 6),
cgroup = rbind(c("", "Column spanners", NA),

c("", "Cgroup 1", "Cgroup 2†")),
n.cgroup = rbind(c(1,2,NA),

c(2,2,2)),
caption = "Basic table with both column spanners (groups) and row groups",
tfoot = "† A table footer commment",
cspan.rgroup = 2)

invisible(readline(prompt = "Press [enter] to continue"))

An advanced empty table
suppressWarnings({

matrix(ncol = 6,
nrow = 0) %>%

addHtmlTableStyle(col.columns = c(rep("none", 2),
rep("#F5FBFF", 4)),

col.rgroup = c("none", "#F7F7F7"),

16 htmlTableWidget

css.cell = "padding-left: .5em; padding-right: .2em;") %>%
htmlTable(align = "r",

header = paste(c("1st", "2nd",
"3rd", "4th",
"5th", "6th"),

"hdr"),
cgroup = rbind(c("", "Column spanners", NA),

c("", "Cgroup 1", "Cgroup 2†")),
n.cgroup = rbind(c(1,2,NA),

c(2,2,2)),
caption = "Basic empty table with column spanners (groups) and ignored row colors",

tfoot = "† A table footer commment",
cspan.rgroup = 2)

})
invisible(readline(prompt = "Press [enter] to continue"))

An example of how to use the css.cell for header styling
simple_output <- matrix(1:4, ncol = 2)

simple_output %>%
addHtmlTableStyle(css.cell = rbind(rep("background: lightgrey; font-size: 2em;",

times = ncol(simple_output)),
matrix("",

ncol = ncol(simple_output),
nrow = nrow(simple_output)))) %>%

htmlTable(header = LETTERS[1:2])
invisible(readline(prompt = "Press [enter] to continue"))

See vignette("tables", package = "htmlTable")
for more examples, also check out tidyHtmlTable() that manages
the group arguments for you through tidy-select syntax

htmlTableWidget htmlTable with pagination widget

Description

This widget renders a table with pagination into an htmlwidget

Usage

htmlTableWidget(
x,
number_of_entries = c(10, 25, 100),
width = NULL,
height = NULL,
elementId = NULL,
...

)

htmlTableWidget-shiny 17

Arguments

x A data frame to be rendered
number_of_entries

a numeric vector with the number of entries per page to show. If there is more
than one number given, the user will be able to show the number of rows per
page in the table.

width Fixed width for widget (in css units). The default is NULL, which results in
intelligent automatic sizing based on the widget’s container.

height Fixed height for widget (in css units). The default is NULL, which results in
intelligent automatic sizing based on the widget’s container.

elementId Use an explicit element ID for the widget (rather than an automatically generated
one). Useful if you have other JavaScript that needs to explicitly discover and
interact with a specific widget instance.

... Additional parameters passed to htmlTable

Value

an htmlwidget showing the paginated table

htmlTableWidget-shiny Shiny bindings for htmlTableWidget

Description

Output and render functions for using htmlTableWidget within Shiny applications and interactive
Rmd documents.

Usage

htmlTableWidgetOutput(outputId, width = "100%", height = "400px")

renderHtmlTableWidget(expr, env = parent.frame(), quoted = FALSE)

Arguments

outputId output variable to read from

width, height Must be a valid CSS unit (like '100%', '400px', 'auto') or a number, which
will be coerced to a string and have 'px' appended.

expr An expression that generates a htmlTableWidget()

env The environment in which to evaluate expr.

quoted Is expr a quoted expression (with quote())? This is useful if you want to save
an expression in a variable.

18 interactiveTable

Examples

Not run:
In the UI:
htmlTableWidgetOutput("mywidget")
In the server:
renderHtmlTableWidget({

htmlTableWidget(iris)
})

End(Not run)

innerJoinByCommonCols A simple function for joining two tables by their intersected columns

Description

A simple function for joining two tables by their intersected columns

Usage

innerJoinByCommonCols(x, y)

Arguments

x data.frame

y data.frame

Value

data.frame

interactiveTable An interactive table that allows you to limit the size of boxes

Description

This function wraps the htmlTable and adds JavaScript code for toggling the amount of text shown
in any particular cell.

interactiveTable 19

Usage

interactiveTable(
x,
...,
txt.maxlen = 20,
button = getOption("htmlTable.interactiveTable.button", default = FALSE),
minimized.columns = NULL,
js.scripts = c()

)

S3 method for class 'htmlTable'
interactiveTable(
x,
...,
txt.maxlen = 20,
button = getOption("htmlTable.interactiveTable.button", default = FALSE),
minimized.columns = NULL,
js.scripts = c()

)

S3 method for class 'interactiveTable'
knit_print(x, ...)

S3 method for class 'interactiveTable'
print(x, useViewer, ...)

Arguments

x The table to be printed

... The exact same parameters as htmlTable() uses

txt.maxlen The maximum length of a text

button Indicator if the cell should be clickable or if a button should appear with a
plus/minus

minimized.columns

Notifies if any particular columns should be collapsed from start

js.scripts If you want to add your own JavaScript code you can just add it here. All code is
merged into one string where each section is wrapped in it’s own <scrip></script>
element.

useViewer If you are using RStudio there is a viewer thar can render the table within that is
envoced if in base::interactive() mode. Set this to FALSE if you want to re-
move that functionality. You can also force the function to call a specific viewer
by setting this to a viewer function, e.g. useViewer = utils::browseURL if you
want to override the default RStudio viewer. Another option that does the same
is to set the options(viewer=utils::browseURL) and it will default to that
particular viewer (this is how RStudio decides on a viewer). Note: If you want to
force all output to go through the base::cat() the set [options][base::options](htmlTable.cat = TRUE).

20 prBindDataListIntoColumns

Value

An htmlTable with a javascript attribute containing the code that is then printed

Examples

library(magrittr)
A simple output
long_txt <- "Lorem ipsum dolor sit amet, consectetur adipiscing elit,
sed do eiusmod tempor incididunt ut labore et dolore magna aliqua.
Ut enim ad minim veniam, quis nostrud exercitation ullamco laboris nisi
ut aliquip ex ea commodo consequat. Duis aute irure dolor in reprehenderit
in voluptate velit esse cillum dolore eu fugiat nulla pariatur. Excepteur
sint occaecat cupidatat non proident, sunt in culpa qui officia deserunt
mollit anim id est laborum"
short_txt <- gsub("(^[^.]+).*", "\\1", long_txt)

cbind(rep(short_txt, 2),
rep(long_txt, 2)) %>%

addHtmlTableStyle(col.rgroup = c("#FFF", "#EEF")) %>%
interactiveTable(minimized.columns = ncol(.),

header = c("Short", "Long"),
rnames = c("First", "Second"))

prBindDataListIntoColumns

Merge columns into a tibble

Description

Almost the same as tibble::tibble() but it solves the issue with some of the arguments being
columns and some just being vectors.

Usage

prBindDataListIntoColumns(dataList)

Arguments

dataList list with the columns/data.frames

Value

data.frame object

prConvertDfFactors 21

prConvertDfFactors Convert all factors to characters to print them as they expected

Description

Convert all factors to characters to print them as they expected

Usage

prConvertDfFactors(x)

Arguments

x The matrix/data.frame with the data. For the print and knit_print it takes a
string of the class htmlTable as x argument.

Value

The data frame with factors as characters

prepGroupCounts Retrieves counts for rgroup, cgroup, & tspanner arguments

Description

This function is a wrapper to base::rle() that does exactly this but is a little too picky about input
values.

Usage

prepGroupCounts(x)

Arguments

x The vector to process

Value

list(n = rle$lengths, names = rle$values)

Examples

prepGroupCounts(c(1:3, 3:1))

22 prExtractElementsAndConvertToTbl

prEscapeHtml Remove html entities from table

Description

Removes the htmlEntities from table input data. Note that this also replaces $ signs in order to
remove the MathJax issue.

Usage

prEscapeHtml(x)

Arguments

x The matrix/data.frame with the data. For the print and knit_print it takes a
string of the class htmlTable as x argument.

Value

x without the html entities

See Also

Other hidden helper functions for htmlTable: prAddCells(), prAddEmptySpacerCell(), prAddSemicolon2StrEnd(),
prGetCgroupHeader(), prGetRowlabelPos(), prGetStyle(), prPrepInputMatrixDimensions(),
prPrepareAlign(), prPrepareCgroup(), prTblNo()

prExtractElementsAndConvertToTbl

Extract the elements and generate a table with unique elements

Description

Extract the elements and generate a table with unique elements

Usage

prExtractElementsAndConvertToTbl(x, elements)

Arguments

x list with columns to be joined

elements char vector with the elements to select

SCB 23

SCB Average age in Sweden

Description

For the vignettes there is a dataset downloaded by using the get_pxweb_data() call. The data is
from SCB (Statistics Sweden) and downloaded using the pxweb package:

Author(s)

Max Gordon <max@gforge.se>

References

https://www.scb.se/

Examples

Not run:
The data was generated through downloading via the API
library(pxweb)

Get the last 15 years of data (the data always lags 1 year)
current_year <- as.integer(format(Sys.Date(), "%Y")) -1
SCB <- get_pxweb_data(
url = "http://api.scb.se/OV0104/v1/doris/en/ssd/BE/BE0101/BE0101B/BefolkningMedelAlder",
dims = list(Region = c('00', '01', '03', '25'),

Kon = c('1', '2'),
ContentsCode = c('BE0101G9'),
Tid = (current_year-14):current_year),

clean = TRUE)

Some cleaning was needed before use
SCB$region <- factor(substring(as.character(SCB$region), 4))
Swe_ltrs <- c("å" = "å",

"Å" = "Å",
"ä" = "ä",
"Ä" = "Ä",
"ö" = "ö",
"Ö" = "Ö")

for (i in 1:length(Swe_ltrs)){
levels(SCB$region) <- gsub(names(Swe_ltrs)[i],

Swe_ltrs[i],
levels(SCB$region))

}

save(SCB, file = "data/SCB.rda")

End(Not run)

https://www.scb.se//
https://github.com/rOpenGov/pxweb
https://www.scb.se/

24 setHtmlTableTheme

setHtmlTableTheme Set or update theme for htmlTable()

Description

The theme guides many of the non-data objects visual appearance. The theme can be over-ridden by
settings for each table. Too get a more complete understanding of the options, see addHtmlTableStyle().

Usage

setHtmlTableTheme(
theme = NULL,
align = NULL,
align.header = NULL,
align.cgroup = NULL,
css.rgroup = NULL,
css.rgroup.sep = NULL,
css.tspanner = NULL,
css.tspanner.sep = NULL,
css.total = NULL,
css.cell = NULL,
css.cgroup = NULL,
css.header = NULL,
css.header.border_bottom = NULL,
css.class = NULL,
css.table = NULL,
pos.rowlabel = NULL,
pos.caption = NULL,
col.rgroup = NULL,
col.columns = NULL,
padding.rgroup = NULL,
padding.tspanner = NULL,
spacer.celltype = NULL,
spacer.css.cgroup.bottom.border = NULL,
spacer.css = NULL,
spacer.content = NULL

)

Arguments

theme A list containing all the styles or a string that is matched to some of the preset
style (See details below in the Theme options section). Note: the full name of
the theme is not required as they are matched using base::match.arg().

align A character strings specifying column alignments, defaulting to 'c' to center.
Valid chars for alignments are l = left, c = center and r = right. You can also
specify align='c|c' and other LaTeX tabular formatting. If you want to set

setHtmlTableTheme 25

the alignment of the rownames this string needst to be ncol(x) + 1, otherwise
it automatically pads the string with a left alignment for the rownames.

align.header A character strings specifying alignment for column header, defaulting to cen-
tered, i.e. [paste][base::paste](rep('c',ncol(x)),collapse='').

align.cgroup The justification of the cgroups

css.rgroup CSS style for the rgroup, if different styles are wanted for each of the rgroups
you can just specify a vector with the number of elements.

css.rgroup.sep The line between different rgroups. The line is set to the TR element of the
lower rgroup, i.e. you have to set the border-top/padding-top etc to a line with
the expected function. This is only used for rgroups that are printed. You can
specify different separators if you give a vector of rgroup - 1 length (this is since
the first rgroup doesn’t have a separator).

css.tspanner The CSS style for the table spanner.
css.tspanner.sep

The line between different spanners.

css.total The css of the total row if such is activated.

css.cell The css.cell element allows you to add any possible CSS style to your table cells.
See section below for details.

css.cgroup The same as css.class but for cgroup formatting.

css.header The header style, not including the cgroup style
css.header.border_bottom

The header bottom-border style, e.g. border-bottom: 1px solid grey

css.class The html CSS class for the table. This allows directing html formatting through
CSS directly at all instances of that class. Note: unfortunately the CSS is fre-
quently ignored by word processors. This option is mostly inteded for web-
presentations.

css.table You can specify the the style of the table-element using this parameter

pos.rowlabel Where the rowlabel should be positioned. This value can be "top", "bottom",
"header", or a integer between 1 and nrow(cgroup) + 1. The options "bottom"
and "header" are the same, where the row label is presented at the same level
as the header.

pos.caption Set to "bottom" to position a caption below the table instead of the default of
"top".

col.rgroup Alternating colors (zebra striping/banded rows) for each rgroup; one or two
colors is recommended and will be recycled.

col.columns Alternating colors for each column.

padding.rgroup Generally two non-breakings spaces, i.e. , but some journals only
have a bold face for the rgroup and leaves the subelements unindented.

padding.tspanner

The table spanner is usually without padding but you may specify padding simi-
lar to padding.rgroup and it will be added to all elements, including the rgroup
elements. This allows for a 3-level hierarchy if needed.

https://www.w3schools.com/Css/

26 setHtmlTableTheme

spacer.celltype

When using cgroup the table headers are separated through a empty HTML
cell that is by default filled with (no-breaking-space) that prevents the
cell from collapsing. The purpose of this is to prevent the headers underline to
bleed into one as the underline is for the entire cell. You can alter this behavior
by changing this option, valid options are single_empty, skip, double_cell.
The single_empty is the default, the skip lets the header bleed into one and
skips entirely, double_cell is for having two cells so that a vertical border ends
up centered (specified using the align option). The arguments are matched
internally using base::match.arg so you can specify only a part of the name, e.g.
"sk" will match "skip".

spacer.css.cgroup.bottom.border

Defaults to none and used for separating cgroup headers. Due to a browser bug
this is sometimes ignored and you may therefore need to set this to 1px solid white
to enforce a white border.

spacer.css If you want the spacer cells to share settings you can set it here

spacer.content Defaults to as this guarantees that the cell is not collapsed and is highly
compatible when copy-pasting to word processors.

Value

An invisible list with the new theme

Theme options

The styles available are:

• standard: The traditional standard style used in htmlTable() since the early days

• Google docs: A style that is optimized for copy-pasting into documents on Google drive.
This is geared towards minimal padding and margins so that the table is as dense as possible.

• blank: Just as the name suggests the style is completly empty in terms of CSS. Positions for
rowlabel and caption are set to bottom as these cannot be blank.

You can also provide your own style. Each style should be a names vector, e.g. c(width = "100px",
color = "red") or just a real css string, width: 100px; color: red;.

Examples

Not run:
setHtmlTableTheme("Google", align = "r")

End(Not run)

tblNoLast 27

tblNoLast Gets the last table number

Description

The function relies on options("table_counter") in order to keep track of the last number.

Usage

tblNoLast(roman = getOption("table_counter_roman", FALSE))

Arguments

roman Whether or not to use roman numbers instead of arabic. Can also be set through
options(table_caption_no_roman = TRUE)

See Also

Other table functions: htmlTable, tblNoNext()

Examples

org_opts <- options(table_counter=1)
tblNoLast()
options(org_opts)

tblNoNext Gets the next table number

Description

The function relies on options("table_counter") in order to keep track of the last number.

Usage

tblNoNext(roman = getOption("table_counter_roman", FALSE))

Arguments

roman Whether or not to use roman numbers instead of arabic. Can also be set through
options(table_caption_no_roman = TRUE)

See Also

Other table functions: htmlTable, tblNoLast()

28 tidyHtmlTable

Examples

org_opts <- options(table_counter=1)
tblNoNext()
options(org_opts)

tidyHtmlTable Generate an htmlTable using tidy data as input

Description

This function maps columns from the input data, x, to htmlTable() parameters. It’s designed to
provide a fluent interface for those familiar with the tidyverse ecosystem.

Usage

tidyHtmlTable(
x,
value,
header,
rnames,
rgroup,
hidden_rgroup,
cgroup,
tspanner,
hidden_tspanner,
skip_removal_warning = getOption("htmlTable.skip_removal_warning", FALSE),
rnames_unique,
table_fn = htmlTable,
...

)

Arguments

x Tidy data used to build the htmlTable

value Column containing values for individual table cells. Defaults to "value" (same
as tidyr::pivot_wider).

header Column in x specifying column headings

rnames Column in x specifying row names. Defaults to "name" (same as tidyr::pivot_wider()).

rgroup Column in x specifying row groups.

hidden_rgroup Strings indicating rgroup values to be hidden.

cgroup Columns in x specifying the column groups.

tspanner Column in x specifying tspanner groups.
hidden_tspanner

Strings indicating tspanner values to be hidden.

tidyHtmlTable 29

skip_removal_warning

Boolean to suppress warnings when removing NA columns.

rnames_unique Designates unique row names when regular names lack uniqueness.

table_fn Function to format the table, defaults to htmlTable().

... Additional arguments passed to htmlTable().

Value

Returns the HTML code that, when rendered, displays a formatted table.

Column-mapping

Columns from x are mapped (transformed) to specific parameters of the htmlTable() The follow-
ing columns are converted to match the intended input structure:

• value

• header

• rnames

• rgroup

• cgroup

• tspanner

Each combination of the variables in x should be unique to map correctly to the output table.

Row uniqueness

Usually each row should have a unique combination of the mappers. Sometimes though rows come
in a distinct order and the order identifies the row more than the name. E.g. if we are identifying
bone fractures using the AO-classification we will have classes ranging in the form of:

• A

• A1

• A1.1

• A2

• A2.1

• A2.2

• B

• ...

we can simplify the names while retaining the key knowledge to:

• A

• .1

• ...1

• .2

30 tidyHtmlTable

• ...1

• ...2

• B

• ...

This will though result in non-unique rows and thus we need to provide the original names in
addition to the rnames argument. To do this we have rnames_unique as a parameter, without this
tidyHtmlTable we risk unintended merging of cells, generating > 1 value per cell.

Note it is recommended that you verify with the full names just to make sure that any unexpected
row order change has happened in the underlying pivot functions.

Sorting

Rows can be pre-sorted using dplyr::arrange() before passing to tidyHtmlTable. Column sort-
ing is based on arrange(cgroup, header). If you want to sort in non-alphabetic order you can
provide a factor variable and that information will be retained.

Hidden values

htmlTable Allows for some values within rgroup, cgroup, etc. to be specified as "". The following
parameters allow for specific values to be treated as if they were a string of length zero in the
htmlTable function.

• hidden_rgroup

• hidden_tspanner

Simple tibble output

The tibble discourages the use of row names. There is therefore a convenience option for tidyHtmlTable
where you can use the function just as you would with htmlTable() where rnames is populated
with the rnames argument provided using tidyselect syntax (defaults to the "names" column if
present int the input data).

Additional dependencies

In order to run this function you also must have dplyr, tidyr, tidyselect and purrr packages in-
stalled. These have been removed due to the additional 20 Mb that these dependencies added (issue
#47). Note: if you use tidyverse it will already have all of these and you do not need to worry.

See Also

htmlTable()

Examples

library(tibble)
library(dplyr)
library(tidyr)

txtInt 31

Prep and select basic data
data("mtcars")
base_data <- mtcars %>%

rownames_to_column() %>%
mutate(gear = paste(gear, "Gears"),

cyl = paste(cyl, "Cylinders")) %>%
select(rowname, cyl, gear, wt, mpg, qsec)

base_data %>%
pivot_longer(names_to = "per_metric",

cols = c(wt, mpg, qsec)) %>%
group_by(cyl, gear, per_metric) %>%
summarise(value_Mean = round(mean(value), 1),

value_Min = round(min(value), 1),
value_Max = round(max(value), 1),
.groups = "drop") %>%

pivot_wider(names_from = per_metric,
values_from = starts_with("value_")) %>%

Round the values into a nicer format where we want the weights to have two decimals
txtRound(ends_with("_wt"), digits = 2) %>%
txtRound(starts_with("value") & !ends_with("_wt"), digits = 1) %>%
Convert into long format
pivot_longer(cols = starts_with("value_"), names_prefix = "value_") %>%
separate(name, into = c("summary_stat", "per_metric")) %>%
Without sorting the row groups wont appear right
If the columns end up in the wrong order you may want to change the columns
into factors
arrange(per_metric) %>%
addHtmlTableStyle(align = "r") %>%
tidyHtmlTable(

header = gear,
cgroup = cyl,
rnames = summary_stat,
rgroup = per_metric,
skip_removal_warning = TRUE)

txtInt SI or English formatting of an integer

Description

English uses ’,’ between every 3 numbers while the SI format recommends a ’ ’ if x > 10^4. The
scientific form 10e+? is furthermore avoided.

Usage

txtInt(
x,
language = getOption("htmlTable.language", default = "en"),
html = getOption("htmlTable.html", default = TRUE),

32 txtMergeLines

...
)

Arguments

x The integer variable

language The ISO-639-1 two-letter code for the language of interest. Currently only En-
glish is distinguished from the ISO format using a ’,’ as the separator.

html If the format is used in HTML context then the space should be a non-breaking
space,

... Passed to base::format()

Value

string

See Also

Other text formatters: txtMergeLines(), txtPval(), txtRound()

Examples

txtInt(123)

Supplying a matrix
txtInt(matrix(c(1234, 12345, 123456, 1234567), ncol = 2))

Missing are returned as empty strings, i.e. ""
txtInt(c(NA, 1e7))

txtMergeLines A merges lines while preserving the line break for HTML/LaTeX

Description

This function helps you to do a table header with multiple lines in both HTML and in LaTeX. In
HTML this isn’t that tricky, you just use the
 command but in LaTeX I often find myself
writing vbox/hbox stuff and therefore I’ve created this simple helper function

Usage

txtMergeLines(..., html = 5)

txtPval 33

Arguments

... The lines that you want to be joined
html If HTML compatible output should be used. If FALSE it outputs LaTeX format-

ting. Note if you set this to 5 then the HTML5 version of br will be used:

otherwise it uses the
 that is compatible with the XHTML-formatting.

Value

string with asis_output wrapping if html output is activated

See Also

Other text formatters: txtInt(), txtPval(), txtRound()

Examples

txtMergeLines("hello", "world")
txtMergeLines("hello", "world", html=FALSE)
txtMergeLines("hello", "world", list("A list", "is OK"))

txtPval Formats the p-values

Description

Gets formatted p-values. For instance you often want 0.1234 to be 0.12 while also having two
values up until a limit, i.e. 0.01234 should be 0.012 while 0.001234 should be 0.001. Furthermore
you want to have < 0.001 as it becomes ridiculous to report anything below that value.

Usage

txtPval(pvalues, lim.2dec = 10^-2, lim.sig = 10^-4, html = TRUE, ...)

Arguments

pvalues The p-values
lim.2dec The limit for showing two decimals. E.g. the p-value may be 0.056 and we

may want to keep the two decimals in order to emphasize the proximity to the
all-mighty 0.05 p-value and set this to 10−2. This allows that a value of 0.0056
is rounded to 0.006 and this makes intuitive sense as the 0.0056 level as this is
well below the 0.05 value and thus not as interesting to know the exact proxim-
ity to 0.05. Disclaimer: The 0.05-limit is really silly and debated, unfortunately
it remains a standard and this package tries to adapt to the current standards in
order to limit publication associated issues.

lim.sig The significance limit for the less than sign, i.e. the ’<’
html If the less than sign should be < or < as needed for HTML output.
... Currently only used for generating warnings of deprecated call parameters.

34 txtRound

Value

vector

See Also

Other text formatters: txtInt(), txtMergeLines(), txtRound()

Examples

txtPval(c(0.10234,0.010234, 0.0010234, 0.000010234))

txtRound A convenient rounding function

Description

Regular round often looses trailing 0:s as these are truncated, this function converts everything
to strings with all 0:s intact so that tables have the correct representation, e.g. txtRound(1.01,
digits = 1) turns into 1.0.

Usage

txtRound(x, ...)

Default S3 method:
txtRound(

x,
digits = 0,
digits.nonzero = NA,
txt.NA = "",
dec = getOption("htmlTable.decimal_marker", default = "."),
scientific = NULL,
txtInt_args = getOption("htmlTable.round_int", default = NULL),
...

)

S3 method for class 'table'
txtRound(x, ...)

S3 method for class 'matrix'
txtRound(x, digits = 0, excl.cols = NULL, excl.rows = NULL, ...)

S3 method for class 'data.frame'
txtRound(x, ..., digits = 0L)

txtRound 35

Arguments

x The value/vector/data.frame/matrix to be rounded

... Passed to next method

digits The number of digits to round each element to. For matrix or data.frame
input you can provide a vector/list. An unnamed vector/list must equal
the length of the columns to round. If you provide a named vector you can
provide specify per column the number of digits, and then use .default for
those columns that we don’t need to have separate values for.

digits.nonzero The number of digits to keep if the result is close to zero. Sometimes we have
an entire table with large numbers only to have a few but interesting observation
that are really interesting

txt.NA The string to exchange NA with

dec The decimal marker. If the text is in non-English decimal and string formatted
you need to change this to the appropriate decimal indicator. The option for this
is htmlTable.decimal_marker.

scientific If the value should be in scientific format.

txtInt_args A list of arguments to pass to txtInt() if that is to be used for large values that
may require a thousands separator. The option for this is htmlTable.round_int.
If TRUE it will activate the txtInt functionality.

excl.cols Columns to exclude from the rounding procedure when provided a matrix. This
can be either a number or regular expression. Skipped if x is a vector.

excl.rows Rows to exclude from the rounding procedure when provided a matrix. This can
be either a number or regular expression.

Value

matrix/data.frame

Tidy-select with data.frame

The txtRound can use data.frame for input. This allows us to use tidyselect patterns as popular-
ized by dplyr.

See Also

Other text formatters: txtInt(), txtMergeLines(), txtPval()

Examples

Basic usage
txtRound(1.023, digits = 1)
> "1.0"

txtRound(pi, digits = 2)
> "3.14"

txtRound(12344, digits = 1, txtInt_args = TRUE)

https://tidyselect.r-lib.org/articles/tidyselect.html

36 vector2string

> "12,344.0"

Using matrix
mx <- matrix(c(1, 1.11, 1.25,

2.50, 2.55, 2.45,
3.2313, 3, pi),

ncol = 3, byrow=TRUE)
txtRound(mx, digits = 1)
#> [,1] [,2] [,3]
#> [1,] "1.0" "1.1" "1.2"
#> [2,] "2.5" "2.5" "2.5"
#> [3,] "3.2" "3.0" "3.1"

Using a data.frame directly
library(magrittr)
data("mtcars")
If we want to round all the numerical values
mtcars %>%

txtRound(digits = 1)

If we want only want to round some columns
mtcars %>%

txtRound(wt, qsec_txt = qsec, digits = 1)

vector2string Collapse vector to string

Description

Merges all the values and outputs a string formatted as ’1st element’, ’2nd element’, ...

Usage

vector2string(
x,
quotation_mark = "'",
collapse = sprintf("%s, %s", quotation_mark, quotation_mark)

)

Arguments

x The vector to collapse

quotation_mark The type of quote to use

collapse The string that separates each element

Value

A string with ', ' separation

vector2string 37

Examples

vector2string(1:4)
vector2string(c("a", "b'b", "c"))
vector2string(c("a", "b'b", "c"), quotation_mark = '"')

Index

∗ data
SCB, 23

∗ hidden helper functions for htmlTable
prEscapeHtml, 22

∗ htmlTableStyle
addHtmlTableStyle, 2
hasHtmlTableStyle, 8

∗ table functions
htmlTable, 9
tblNoLast, 27
tblNoNext, 27

∗ text formatters
txtInt, 31
txtMergeLines, 32
txtPval, 33
txtRound, 34

addHtmlTableStyle, 2, 9
addHtmlTableStyle(), 9, 12, 14, 24
appendHtmlTableStyle

(addHtmlTableStyle), 2

base::attr(), 7
base::attributes(), 5
base::cat(), 12, 19
base::format(), 32
base::interactive(), 12, 13, 19
base::match.arg, 5, 26
base::match.arg(), 24
base::rle(), 21

colnames(x), 10
concatHtmlTables, 6

dplyr::arrange(), 30

getHtmlTableStyle, 7
getHtmlTableTheme, 8
getOption(htmlTable.theme)(), 8

hasHtmlTableStyle, 6, 8

Hmisc::latex(), 14
htmlTable, 9, 27
htmlTable(), 2, 4, 6–8, 19, 24, 26, 28–30
htmlTableWidget, 16
htmlTableWidget(), 17
htmlTableWidget-shiny, 17
htmlTableWidgetOutput

(htmlTableWidget-shiny), 17

innerJoinByCommonCols, 18
interactiveTable, 18

knit_print.htmlTable (htmlTable), 9
knit_print.interactiveTable

(interactiveTable), 18
knitr::asis_output(), 13
knitr::knit_print(), 13

prAddCells, 22
prAddEmptySpacerCell, 22
prAddSemicolon2StrEnd, 22
prBindDataListIntoColumns, 20
prConvertDfFactors, 21
prepGroupCounts, 21
prEscapeHtml, 22
prExtractElementsAndConvertToTbl, 22
prGetCgroupHeader, 22
prGetRowlabelPos, 22
prGetStyle, 22
print.htmlTable (htmlTable), 9
print.interactiveTable

(interactiveTable), 18
prPrepareAlign, 22
prPrepareCgroup, 22
prPrepInputMatrixDimensions, 22
prTblNo, 22

renderHtmlTableWidget
(htmlTableWidget-shiny), 17

rownames(x), 10

38

INDEX 39

SCB, 23
setHtmlTableTheme, 24
setHtmlTableTheme(), 5, 9, 14
sprintf(), 13

tblNoLast, 14, 27, 27
tblNoNext, 14, 27, 27
tibble::tibble(), 20
tidyHtmlTable, 28
tidyHtmlTable(), 9, 14
tidyr::pivot_wider, 28
tidyr::pivot_wider(), 28
txtInt, 31, 33–35
txtInt(), 35
txtMergeLines, 32, 32, 34, 35
txtMergeLines(), 10, 14
txtPval, 32, 33, 33, 35
txtRound, 32–34, 34

vector2string, 36

	addHtmlTableStyle
	concatHtmlTables
	getHtmlTableStyle
	getHtmlTableTheme
	hasHtmlTableStyle
	htmlTable
	htmlTableWidget
	htmlTableWidget-shiny
	innerJoinByCommonCols
	interactiveTable
	prBindDataListIntoColumns
	prConvertDfFactors
	prepGroupCounts
	prEscapeHtml
	prExtractElementsAndConvertToTbl
	SCB
	setHtmlTableTheme
	tblNoLast
	tblNoNext
	tidyHtmlTable
	txtInt
	txtMergeLines
	txtPval
	txtRound
	vector2string
	Index

