Package 'ibd'

July 22, 2025

Version 1.6
Date 2024-01-23
Title Incomplete Block Designs
Author B N Mandal [aut, cre]
Maintainer B N Mandal <pre><mandal.stat@gmail.com< pre=""></mandal.stat@gmail.com<></pre>
Depends R (>= $3.1.1$)
Imports lpSolve, car, emmeans, multcomp
Suggests multcompView

Description A collection of several utility functions related to binary incomplete block designs. Contains function to generate A- and D-efficient binary incomplete block designs with given numbers of treatments, number of blocks and block size. Contains function to generate an incomplete block design with specified concurrence matrix. There are functions to generate balanced treatment incomplete block designs and incomplete block designs for test versus control treatments comparisons with specified concurrence matrix. Allows performing analysis of variance of data and computing estimated marginal means of factors from experiments using a connected incomplete block design. Tests of hypothesis of treatment contrasts in incomplete block design set up is supported.

License GPL (>= 2)
NeedsCompilation no
Repository CRAN
Date/Publication 2024-01-23 09:50:02 UTC

Contents

aov.ibd	2
A_eff	3
bibd	4
btib	6
btib1	7
Cmatrix	8
$design_to_N \ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots$	9
D eff	10

2 aov.ibd

aov.:	ibd	•	-	timated Mar mplete Bloc	ginal Means and k Design	! Contrast Analy	-
Index							19
	randomize		 				18
	N_to_design						
	is.vb						
	is.proper		 				16
	is.orthogonal		 				15
	is.equir		 				14
	is.connected		 				14
	ibdtvc		 				12
	ibddata		 				12
	ibd		 				10

Description

Performs intrablock analysis of variance of data from experiments using a block design. It also computes estimated marginal means of the factor variables (e.g. treatments) and optionally estimates and tests the contrasts of factor variables (e.g treatments).

Usage

```
aov.ibd(formula, specs, data, contrast, joint=FALSE, details=FALSE, sort=TRUE, by=NULL, alpha=0.05, Letters = "ABCDEFGHIJ", ...)
```

Arguments

formula	A formula specifying the model of the form response~treatment+block or response~block+treatment. Make sure the treatment and blocks are factor variables.
specs	A character vector specifying the names of the factors over which estimated marginal means are desired
data	A data frame in which the variables specified in the formula will be found. If missing, the variables are searched for in the standard way.
contrast	A matrix whose rows are contrasts of factors (e.g. treatments)
joint	If contrast argument has more than one row, then whether a joint test of the contrasts will be performed. Default is FALSE. If joint=TRUE, a check is performed whether the contrasts are pairwise orthogonal or not and then if orthoghonal, joint test is performed.
details	Logical, if details=TRUE then all objects including lm object from lm(), emm-Grid object from emmeans() are returned. Default is FALSE.
sort	Logical value determining whether the least square means are sorted before the comparisons are produced. Default is TRUE.

 $A_{_}$ eff 3

by Character value giving the name or names of variables by which separate fami-

lies of comparisons are tested. If NULL, all means are compared.

alpha Numeric value giving the significance level for the comparisons

Letters Characters to be used for compact letter display of groups of factor variables

over which least square means are computed. Default is english alphabet capital

letters "ABCDEFGHIJ"

... Not used

Details

The function makes use of lm() function in R and Anova() function in car package with specification of Type III sum of squares and emmeans(), contrast() functions in emmeans() package, cld() function in multcomp package and combines the results in a single place.

Value

Returns a list with following components

lm.objAn object of class lm if details=TRUEANOVA table from the fitted lm object

EMMEANS Estimated marginal means means with compact letter display

contrast.analysis

Contrast analysis result if contrast matrix was supplied

Author(s)

Baidya Nath Mandal <mandal.stat@gmail.com>

Examples

```
\label{lem:data} $$ \operatorname{data(ibddata)} $$ \operatorname{aov.ibd(y^factor(trt)+factor(blk), data=ibddata)} $$ \operatorname{contrast=matrix(c(1,-1,0,0,0,0,0,0,0,0,1,-1,0,0,0,0,0), nrow=2, byrow=TRUE)} $$ \operatorname{aov.ibd(y^factor(trt)+factor(blk), specs="trt", data=ibddata, contrast=contrast)} $$
```

A eff

A-efficiency of A Binary Incomplete Block Design

Description

Computes lower bound to A-efficiency of a binary incomplete block design. Treatment by block incidence matrix of the design is to be supplied as input to the function.

Usage

A_eff(N)

4 bibd

Arguments

N Treatment by block incidence matrix

Value

Aeff A-efficiency

Author(s)

Baidya Nath Mandal <mandal.stat@gmail.com>

Examples

bibd

Balanced Incomplete Block Design for Given Parameters

Description

Generates a balanced incomplete block design with given number of treaments (v), number of blocks (b), number of replications (r), block size (k) and number of concurrences (lambda).

Usage

```
bibd(v,b,r,k,lambda,ntrial=5,pbar=FALSE)
```

is FALSE

Arguments

V	number of treatments
b	number of blocks
r	number of replications
k	block size
lambda	number of concurrences
ntrial	number of trials. Default value is 5.
pbar	logical value indicating whether progress bar will be displayed or not. Default

bibd 5

Value

v number of treatmentsb number of blocksr number of replications

k block size

lambda number of concurrences

design block contents in a b by k matrix

N treatments by blocks incidence matrix of the generated design

NNP concurrence matrix of the generated design

Aeff Lower bound to the A-efficiency of the generated design

Deff Lower bound to the D-efficiency of the generated design

Note

The function works best for values of number of treatments (v) up to 30 and block size (k) up to 10. However, for block size (k) up to 3, much larger values of number of treatments (v) may be used.

Author(s)

Baidya Nath Mandal <mandal.stat@gmail.com>

References

Mandal, B. N., Gupta, V. K. and Parsad, R. (2013). Application of optimization techniques for construction of incomplete block designs. Project report, IASRI, New Delhi.

Mandal, B. N., Gupta, V. K., & Parsad, R. (2014). Efficient Incomplete Block Designs Through Linear Integer Programming. American Journal of Mathematical and Management Sciences, 33(2), 110-124.

Mandal, B. N. (2015). Linear integer programming approach to construction of balanced incomplete block designs. Communications in Statistics-Simulation and Computation, 44:6, 1405-1411.

```
bibd(7,7,3,3,1)
bibd(9,12,4,3,1)
```

6 btib

btib	Balanced Treatment Incomplete Block Designs

Description

Generates a balanced treatment incomplete block design for specified parameters.

Usage

```
btib(v,b,r,r0,k,lambda,lambda0,ntrial=5,pbar=FALSE)
```

Arguments

V	number of test treatments
b	number of blocks
r	number of replications of test treatments
r0	number of replications of the control treatment
k	block size
lambda	number of concurrences among test treatments
lambda0	number of concurrences between test treatments and the control treatment
ntrial	number of trials. Default is 5.
pbar	logical value indicating whether progress bar will be displayed or not. Default is FALSE.

Value

V	number of test treatments
b	number of blocks
r	number of replications of test treatments
r0	number of replications of the control treatment
k	block size
lambda	number of concurrences among test treatments
lambda0	number of concurrences between test treatments and the control treatment
design	generated block design
N	treatment by block incidence matrix of the generated block design
NNP	concurrence matrix of the generated design
Aeff	A-efficiency of the generated design

Note

The function works best for values of number of treatments (v) up to 30 and block size (k) up to 10. However, for block size (k) up to 3, much larger values of number of treatments (v) may be used.

btib1 7

Author(s)

Baidya Nath Mandal <mandal.stat@gmail.com>

References

Mandal, B. N., Gupta, V. K. and Parsad, R. (2013). Application of optimization techniques for construction of incomplete block designs. Project report, IASRI, New Delhi.

Mandal, B. N., Gupta, V. K., & Parsad, R. (2014). Balanced treatment incomplete block designs through integer programming, Communications in Statistics - Theory and Methods, 46:8, 3728-3737.

Examples

```
btib(4,6,3,6,3,1,3,10)
```

btib1

Balanced Treatment Incomplete Block Designs

Description

Generates a balanced treatment incomplete block design for specified parameters by searching all possible combinations.

Usage

```
btib1(v,b,r,r0,k,lambda,lambda0)
```

Arguments

V	number of test treatments
b	number of blocks
r	number of replications of test treatments
r0	number of replications of the control treatment
k	block size
lambda	number of concurrences among test treatments
lambda0	number of concurrences between test treatments and control treatment

Value

V	number of test treatments
b	number of blocks
r	number of replications of test treatments
r0	number of replications of control treatment
k	block size

8 Cmatrix

lambda number of concurrences among test treatments

lambda0 number of concurrences between test treatments and control treatment

design generated block design

N treatment by block incidence matrix of the generated block design

NNP concurrence matrix of the generated design

Aeff A-efficiency of the generated design

Note

The function works best for values of number of treatments (v) up to 30 and block size (k) up to 10. However, for block size (k) up to 3, much larger values of number of treatments (v) may be used.

Author(s)

Baidya Nath Mandal <mandal.stat@gmail.com>

References

Mandal, B. N., Gupta, V. K. and Parsad, R. (2013). Application of optimization techniques for construction of incomplete block designs. Project report, IASRI, New Delhi.

MANDAL, B. N., GUPTA, V. K. and PARSAD, R. (2012). Generation of Binary Incomplete Block Design with a Specified Concurrence Matrix. Journal of Statistics & Applications, 7.

Examples

btib(4,6,3,6,3,1,3)

Cmatrix

Information Matrix of a Block Design

Description

Gives the information matrix from a given treatment by block incidence matrix of a block design

Usage

Cmatrix(N)

Arguments

N treatment by block incidence matrix

Value

Cmatrix v by v information matrix where v is number of treatments

design_to_N

Author(s)

Baidya Nath Mandal <mandal.stat@gmail.com>

Examples

design_to_N

Block Design to Treatment by Block Incidence Matrix

Description

Generates treatment by block incidence matrix from a given block design

Usage

```
design_to_N(design)
N(design)
```

Arguments

design design

Value

Ν

A treatment by block incidence matrix of order v by b with elements as 0 and 1 where v is the number of treatments and b is the number of blocks

Author(s)

Baidya Nath Mandal <mandal.stat@gmail.com>

```
\label{eq:design} \begin{split} &\text{design} = \text{matrix}(c(1,4,6,5,6,7,3,4,5,2,4,7,1,3,7,2,3,6,1,2,5), \text{nrow=7,byrow=TRUE}) \\ &\text{design\_to\_N(design)} \\ &\text{\# or alternatively} \\ &\text{N(design)} \end{split}
```

10 ibd

D_eff

D-efficiency of a Binary Incomplete Block Design

Description

Computes lower bound to D-efficiency of a binary incomplete block design

Usage

```
D_eff(N)
```

Arguments

N

treatment by block incidence matrix

Value

Deff

lower bound to D-efficiency

Author(s)

Baidya Nath Mandal <mandal.stat@gmail.com>

Examples

ibd

Binary Incomplete Block Design for Given v, b and k and Optionally, with a Specified Concurrence Matrix

Description

Generates an A- and D- efficient binary incomplete block design with given number of treaments(v), number of blocks(b) and block size(k) and optionally with a specified concurrence matrix(NNP).

Usage

```
ibd(v,b,k,NNPo,ntrial=5,pbar=FALSE)
```

ibd 11

Arguments

v number of treatments b number of blocks

k block size

NNPo optionally, desired concurrence matrix. If not specified, a nearly balanced con-

currence matrix is obtained automatically.

ntrial number of trials. Default is 5.
pbar progress bar. Default is FALSE.

Value

v number of treatments b number of blocks

k block size

NNP specified concurrence matrix

N incidence matrix of the generated design

design block contents in a b by k matrix

conc.mat concurrence matrix of the generated design

A. efficiency lower bound to A-efficiency of the generated design

D. efficiency lower bound to D-efficiency of the generated design

time.taken time taken to generate the design

Note

This function works best for values of number of treatments (v) up to 30 and block size (k) up to 10. However, for block size (k) up to 3, much larger values of number of treatments (v) may be used.

Author(s)

Baidya Nath Mandal <mandal.stat@gmail.com>

References

Mandal, B. N., Gupta, V. K. and Parsad, R. (2013). Application of optimization techniques for construction of incomplete block designs. Project report, IASRI, New Delhi.

Mandal, B. N., Gupta, V. K., & Parsad, R. (2014). Efficient Incomplete Block Designs Through Linear Integer Programming. American Journal of Mathematical and Management Sciences, 33(2), 110-124.

```
ibd(v = 7,b = 7,k = 4, pbar=FALSE)
```

12 ibdtvc

ibddata

Data from an Experiment using Incomplete Block Design

Description

Data from an experiment using incomplete block design

Usage

```
data("ibddata")
```

Format

A data frame with 36 observations on the following 3 variables.

trt Treatments

blk Blocks

y The response variable

Details

The experiment used a balanced incomplete block design.

References

Dey, A. (1986). Theory of block designs. Wiley Eastern Limited, New Delhi.

Examples

```
data(ibddata)
```

ibdtvc

Incomplete Block Design for Test vs Control(s) Comparions

Description

Generates an incomplete block design for test vs control(s) comparisons with specified parameters and concurrence matrix.

Usage

```
ibdtvc(v1,v2,b,k,NNPo,ntrial=5,pbar=FALSE)
```

ibdtvc 13

Arguments

v1 number of test treatr	
v2 number of control tr	eatments
b number of blocks	

k block size

NNPo desired concurrence matrix ntrial number of trials, default is 5

pbar logical value indicating whether progress bar will be displayed. Default is

FALSE.

Value

v2

v1=v1,v2=v2,b=b,k=k,design=design,N=N, NNP=NNP,Aeff=Aeff)

number of control treatments

v1 number of test treatments

number of blocks

k block size

design generated block design

N treatment by block incidence matrix of the generated block design

NNP concurrence matrix of the generated design

Author(s)

Baidya Nath Mandal <mandal.stat@gmail.com>

References

Mandal, B. N., Gupta, V.K. and Parsad, R. (2013). Binary Incomplete Block Designs with a Specified Concurrence Matrix through Integer Programming, to be submitted for publication

14 is.equir

is.connected

Connctedness of a Binary Incomplete Block Design

Description

Checks whether an incomplete block design is connected or not. Treatment by block incidence matrix of the design is to be supplied as input to the function. If the design is connected, it returns a value of 1 else it returns 0.

Usage

```
is.connected(N)
```

Arguments

N incidence matrix

Value

connected connctedness

Author(s)

Baidya Nath Mandal <mandal.stat@gmail.com>

Examples

is.equir

Equi-replicateness a Binary Incomplete Block Design

Description

Checks whether an incomplete block design is equi-replicated or not. Treatment by block incidence matrix of the design is to be supplied as input to the function. If the design is equir-eplicated, it returns a value of 1 else it returns 0.

Usage

```
is.equir(N)
```

Arguments

Ν

incidence matrix

is.orthogonal 15

Value

equir

equi-replicated

Author(s)

Baidya Nath Mandal <mandal.stat@gmail.com>

Examples

is.orthogonal

Orthogonality a Block Design

Description

Checks whether an incomplete block design is orthogonal or not. Treatment by block incidence matrix of the design is to be supplied as input to the function. If the design is orthogonal, it returns a value of 1 else it returns 0.

Usage

```
is.orthogonal(N)
```

Arguments

Ν

incidence matrix

Value

orthogonal

orthogonal

Author(s)

Baidya Nath Mandal <mandal.stat@gmail.com>

is.vb

is.proper

Proper Binary Incomplete Block Design

Description

Checks whether an incomplete block design is proper or not. Treatment by block incidence matrix of the design is to be supplied as input to the function. If the design is proper, it returns a value of 1 else it returns 0.

Usage

```
is.proper(N)
```

Arguments

N incidence matrix

Value

proper proper

Author(s)

Baidya Nath Mandal <mandal.stat@gmail.com>

Examples

is.vb

Variance Balancedness of a Binary Incomplete Block Design

Description

Checks whether an incomplete block design is variance balanced or not. Treatment by block incidence matrix of the design is to be supplied as input to the function. If the design is variance balanced, it returns a value of 1 else it returns 0.

Usage

```
is.vb(N)
```

Arguments

Ν

incidence matrix

N_to_design

Value

νb

variance balanced

Author(s)

Baidya Nath Mandal <mandal.stat@gmail.com>

Examples

N_to_design

Block Design from Given Treatment by Block Incidence Matrix

Description

Generates the block contents from a given treatment by block incidence matrix

Usage

```
N_to_design(N)
design(N)
```

Arguments

Ν

treatment by block incidence matrix

Value

design

a matrix with number of rows equal to number of blocks and number of columns equal to block size. Constant block size is assumed. Treatments are labelled as 1, 2, ..., v.

Author(s)

Baidya Nath Mandal <mandal.stat@gmail.com>

18 randomize

randomize

Randomize a block design

Description

Randomize a given block design

Usage

```
randomize(design)
```

Arguments

design

design

Value

design

Block design with a constant block size

Author(s)

Baidya Nath Mandal <mandal.stat@gmail.com>

```
design = matrix(c(1,4,6,5,6,7,3,4,5,2,4,7,1,3,7,2,3,6,1,2,5),nrow=7,byrow=TRUE) randomize(design)
```

Index

* A-efficiency	N_to_design, 17
A_{eff} , $\frac{3}{3}$	randomize, 18
bibd, 4	* incomplete block design
btib, 6	A_{eff} , 3
btib1,7	aov.ibd, 2
ibd, 10	btib,6
* Connectedness	btib1,7
is.connected, 14	Cmatrix, 8
* D-efficiency	D_eff, <u>10</u>
bibd, 4	design_to_N,9
D_eff, 10	ibd, 10
ibd, 10	ibdtvc, 12
* EMMEANS	is.connected, 14
aov.ibd, 2	is.equir,14
* Estimated marginal means	is.proper, 16
aov.ibd, 2	is.vb, 16
* Type III sum of squares	N_to_design, 17
aov.ibd, 2	randomize, 18
* analysis of variance	* information matrix
aov.ibd, 2	Cmatrix, 8
* balanced incomplete block design	* orthogonal
aov.ibd, 2	is.orthogonal, 15
bibd, 4	* proper
* block design	is.proper, 16
is.orthogonal, 15	* test vs control(s) comparison
* concurrence matrix	btib, 6
bibd, 4	btib1,7
ibd, 10	ibdtvc, 12
* contrast analysis	* variance balanced
aov.ibd, 2	is.vb, 16
* datasets	A_eff, 3
ibddata, 12	aov.ibd, 2
* equi-replicated	aov. 160, 2
is.equir, 14	bibd, 4
* incidence matrix	btib, 6
bibd, 4	btib1,7
Cmatrix, 8	
design_to_N, 9	Cmatrix, 8
ibd, 10	D_eff, 10
100, 10	υ_eπ, IU

20 INDEX

```
design (N_to_design), 17
design_to_N, 9

ibd, 10
ibddata, 12
ibdtvc, 12
Information.Matrix (Cmatrix), 8
is.connected, 14
is.equir, 14
is.orthogonal, 15
is.proper, 16
is.vb, 16

N (design_to_N), 9
N_to_design, 17

randomize, 18
```