Type: | Package |
Title: | Implementation of the Harris Corner Detection for Images |
Description: | An implementation of the Harris Corner Detection as described in the paper "An Analysis and Implementation of the Harris Corner Detector" by Sánchez J. et al (2018) available at <doi:10.5201/ipol.2018.229>. The package allows to detect relevant points in images which are characteristic to the digital image. |
Maintainer: | Jan Wijffels <jwijffels@bnosac.be> |
License: | BSD_2_clause + file LICENSE |
Version: | 0.1.2 |
URL: | https://github.com/bnosac/image |
Imports: | Rcpp (≥ 0.12.8) |
LinkingTo: | Rcpp |
Suggests: | magick |
RoxygenNote: | 7.1.2 |
Encoding: | UTF-8 |
NeedsCompilation: | yes |
Packaged: | 2024-01-08 12:55:06 UTC; jwijf |
Author: | Jan Wijffels [aut, cre, cph] (R wrapper), BNOSAC [cph] (R wrapper), Javier Sánchez Pérez [ctb, cph] (Harris Corner Detector C/C++ code), Pascal Getreuer [ctb, cph] (src/gaussian.cpp) |
Repository: | CRAN |
Date/Publication: | 2024-01-08 19:50:02 UTC |
Find Corners using Harris Corner Detection
Description
An implementation of the Harris Corner Detection algorithm explained at doi: 10.5201/ipol.2018.229.
Usage
image_harris(
x,
k = 0.06,
sigma_d = 1,
sigma_i = 2.5,
threshold = 130,
gaussian = c("fast Gaussian", "precise Gaussian", "no Gaussian"),
gradient = c("central differences", "Sobel operator"),
strategy = c("all corners", "sort all corners", "N corners", "distributed N corners"),
Nselect = 1L,
measure = c("Harris", "Shi-Tomasi", "Harmonic Mean"),
Nscales = 1L,
precision = c("quadratic approximation", "quartic interpolation", "no subpixel"),
cells = 10L,
verbose = FALSE
)
Arguments
x |
an object of class magick-image or a greyscale matrix of image pixel values in the 0-255 range where values start at the top left corner. |
k |
Harris' K parameter. Defaults to 0.06. |
sigma_d |
Gaussian standard deviation for derivation. Defaults to 1. |
sigma_i |
Gaussian standard deviation for integration. Defaults to 2.5. |
threshold |
threshold for eliminating low values. Defaults to 130. |
gaussian |
smoothing, either one of 'precise Gaussian', 'fast Gaussian' or 'no Gaussian'. Defaults to 'fast Gaussian'. |
gradient |
calculation of gradient, either one of 'central differences' or 'Sobel operator'. Defaults to 'central differences'. |
strategy |
strategy for selecting the output corners, either one of 'all corners', 'sort all corners', 'N corners', 'distributed N corners'. Defaults to 'all corners'. |
Nselect |
number of output corners. Defaults to 1. |
measure |
either one of 'Harris', 'Shi-Tomasi' or 'Harmonic Mean'. Defaults to 'Harris'. |
Nscales |
number of scales for filtering out corners. Defaults to 1. |
precision |
subpixel accuracy, either one of 'no subpixel', 'quadratic approximation', 'quartic interpolation'. Defaults to 'quadratic approximation' |
cells |
regions for output corners (1x1, 2x2, ..., NxN). Defaults to 10. |
verbose |
logical, indicating to show the trace of different substeps |
Value
as list of the relevant points with the x/y locations as well as the strenght. Note y values start at the top left corner of the image.
Examples
library(magick)
path <- system.file(package = "image.CornerDetectionHarris",
"extdata", "building.png")
x <- image_read(path)
pts <- image_harris(x)
pts
plt <- image_draw(x)
points(pts$x, pts$y, col = "red", pch = 20)
dev.off()
plt <- image_draw(x)
points(pts$x, pts$y,
col = "red", pch = 20, cex = 5 * pts$strength / max(pts$strength))
dev.off()
## Or pass on a greyscale matrix starting at top left
mat <- image_data(x, channels = "gray")
mat <- as.integer(mat, transpose = FALSE)
mat <- drop(mat)
pts <- image_harris(mat)
plt <- image_draw(x)
points(pts$x, pts$y, col = "red", pch = 20)
dev.off()