Package 'impactr'

July 22, 2025

```
Title Mechanical Loading Prediction Through Accelerometer Data
Version 0.4.2
```

Description Functions to read, process and analyse accelerometer data related to mechanical loading variables. This package is developed and tested for use with raw accelerometer data from triaxial 'ActiGraph' https://theactigraph.com accelerometers.

```
License MIT + file LICENSE
```

```
URL https://lveras.com/impactr/
```

```
BugReports https://github.com/verasls/impactr/issues/
```

Encoding UTF-8

RoxygenNote 7.3.1

Imports glue, lubridate, lvmisc, pillar, pracma, purrr, Rcpp, rlang (>= 0.4.6), signal, stringr, tibble, toOrdinal, utils, vroom

Suggests accdata, covr, knitr, rmarkdown, testthat (>= 3.0.0)

Config/testthat/edition 3

LinkingTo Rcpp

VignetteBuilder knitr

Language en-GB

Depends R (>= 2.10)

Additional_repositories https://lveras.com/drat/

NeedsCompilation yes

Author Lucas Veras [aut, cre] (ORCID: https://orcid.org/0000-0003-0562-5803)

Maintainer Lucas Veras <lucasdsveras@gmail.com>

Repository CRAN

Date/Publication 2024-02-26 23:50:22 UTC

2 define_region

Contents

define_region	 2
filter_acc	 3
find_peaks	 4
impactr_example	 5
import_dataset	 5
install_accdata	 6
$is_impactr \ . \ . \ . \ . \ . \ . \ . \ . \ . \ $	 6
predict_loading	 7
read_acc	 8
remove_nonwear	 8
specify_parameters	 10
summarise_loading	 11
use_resultant	 12
	13

define_region

Define region of interest

Description

Define the region of interest for data analysis based on the accelerometer data timestamp.

Usage

Index

```
define_region(data, start_time, end_time)
```

Arguments

```
data An impactr_data object, as obtained with read_acc(). start_time, end_time
```

A character string with the start and end times of the region of interest in the "YYYY-MM-DD HH:MM:SS" format.

Value

An object of class impactr_data.

```
data <- read_acc(impactr_example("hip-raw.csv"))
define_region(
  data, start_time = "2021-04-06 15:45:00", end_time = "2021-04-06 15:46:00")</pre>
```

filter_acc 3

filter_acc	Filter the acceleration signal	

Description

Filter the acceleration signal using a butterworth digital filter.

Usage

```
filter_acc(data, order = 4, cutoff = 20, type = "lowpass")
```

Arguments

data	An impactr_data object, as obtained with read_acc().
order	The order of the filter. Defaults to 4.
cutoff	The filter cut-off frequency in Hz. Defaults to 20. For low- and high-pass filters, must be a scalar. For band-pass and band- stop, a vector of length two.
type	The type of filter. Defaults to "lowpass". Can be "lowpass", "highpass", "bandpass" or "bandstop".

Details

The default values of the filter parameters are matching the filter used in the paper by Veras et al. that developed the mechanical loading prediction equations (see References).

Value

An object of class impactr_data.

References

• Veras L, Diniz-Sousa F, Boppre G, Devezas V, Santos-Sousa H, Preto J, Machado L, Vilas-Boas JP, Oliveira J, Fonseca H. Accelerometer-based prediction of skeletal mechanical loading during walking in normal weight to severely obese subjects. Osteoporosis International. 2020. 31(7):1239- 1250. doi:10.1007/s00198020052952.

```
data <- read_acc(impactr_example("hip-raw.csv"))
filter_acc(data)</pre>
```

4 find_peaks

-	find_peaks	Find peaks in a signal
---	------------	------------------------

Description

Find peaks in the acceleration signal.

Usage

```
find_peaks(data, vector, min_height = 1.3, min_dist = 0.4)
```

Arguments

data	An impactr_data object, as obtained with read_acc().
vector	A character string indicating in which acceleration vector to find the peaks. Can be "resultant", "vertical" or "all".
min_height	The minimum height of the peaks (in g).
min_dist	The minimum horizontal distance between peaks (in seconds).

Details

The default values of the filter parameters are matching the filter used in the paper by Veras et al. that developed the mechanical loading prediction equations (see References). When the vector parameter is set to "all", there may contain NA values in the resultant_peak_acc and/or vertical_peak_acc at the timestamps in which a peak value for that vector could not be identified.

The default values of min_height and min_dist are matching the criteria used in the paper by Veras et al. that developed the mechanical loading prediction equations (see References)

Value

An object of class impactr_peaks with the peaks magnitude stored in the columns.

References

Veras L, Diniz-Sousa F, Boppre G, Devezas V, Santos-Sousa H, Preto J, Machado L, Vilas-Boas JP, Oliveira J, Fonseca H. Accelerometer-based prediction of skeletal mechanical loading during walking in normal weight to severely obese subjects. Osteoporosis International. 2020. 31(7):1239- 1250. doi:10.1007/s00198020052952.

```
data <- read_acc(impactr_example("hip-raw.csv"))
data <- use_resultant(data)
find_peaks(data, vector = "resultant")</pre>
```

impactr_example 5

impactr_example

Get path to example data

Description

impactr comes with some example ActiGraph accelerometer raw data files in its inst/extdata directory. This function make them easy to access.

Usage

```
impactr_example(file = NULL)
```

Arguments

file

A character string with the file name. If NULL, the example files will be listed.

Value

If file = NULL, it returns the file names of the example data files, else it returns the path to the example data.

Examples

```
impactr_example()
impactr_example("hip-raw.csv")
```

import_dataset

Import datasets from accdata package

Description

A helper function to import datasets from the accdata package.

Usage

```
import_dataset(data)
```

Arguments

data

A character string indicating which data to load. The currently available datasets are "daily_acc_3d" and "daily_acc_7d".

Details

To import these datasets you need to install the accdata package. It can be installed by running install_accdata(). The datasets documentation can be accessed by ?accdata::`dataset_name`(e.g., ?accdata::daily_acc_3d.

is_impactr

Value

An object of class impactr_data.

Examples

```
# Ensure that {accdata} package is available before running the example.
# If it is not, run install_accdata() to install the required package.
if (requireNamespace("accdata", quietly = TRUE)) {
   data <- import_dataset("daily_acc_3d")
   data
}</pre>
```

install_accdata

Install accdata package

Description

A helper function to install the accdata package from a drat repository. The accdata package contains datasets that can be used to test the functionalities from impactr. Note that accdata is a large package (approximately 80 MB) and could take a while to download and install.

Usage

```
install_accdata()
```

is_impactr

Test if the object is from the impactr package

Description

Test if the object is from the impactr package

Usage

```
is_impactr_data(x)
is_impactr_peaks(x)
```

Arguments

Х

An object.

Value

TRUE if the object inherits the class being evaluated.

predict_loading 7

Description

Predict either ground reaction force or loading rate, or both, based on accelerometer data.

Usage

```
predict_loading(data, outcome, vector, model)
```

Arguments

data	An impactr_data object, as obtained with read_acc().
outcome	A character string. Can be either "grf" (for ground reaction force), or "lr" (for loading rate) or "all" (for both mechanical loading variables).
vector	A character string indicating in which acceleration vector to find the peaks. Can be "resultant", "vertical" or "all".
model	A character string indicating which model to use to make the predictions. The values currently supported are "walking", "walking/running" and "jumping".

Value

An object of class impactr_peaks with the ground reaction force and/or loading rate peaks magnitude stored in the columns.

```
data <- read_acc(impactr_example("hip-raw.csv"))
data <- specify_parameters(data, acc_placement = "hip", subj_body_mass = 78)
data <- find_peaks(data, vector = "vertical")
predict_loading(
    data,
    outcome = "grf",
    vector = "vertical",
    model = "walking/running"
)</pre>
```

8 remove_nonwear

read_acc

Read raw accelerometer data

Description

Reads raw accelerometer data files into an impactr_data object.

Usage

```
read_acc(file)
```

Arguments

file

Path to a raw accelerometer data file.

Value

An object of class impactr_data.

Examples

```
read_acc(impactr_example("hip-raw.csv"))
```

remove_nonwear

Detect and remove accelerometer non-wear time

Description

Detects the accelerometer non-wear time based on an algorithm developed by van Hees (see Details) and remove these periods from the raw data. This function can also draw a plot to better visualize the detected non-wear periods and generate a wear time daily summary.

Usage

```
remove_nonwear(
  data,
  window1 = 60,
  window2 = 15,
  threshold = 2,
  min_hour_crit = 0,
  min_day_crit = 0,
  plot = FALSE,
  save_plot = FALSE,
  save_summary = FALSE
)
```

remove_nonwear 9

Arguments

data An impactr_data object, as obtained with read_acc().

window1.window2

Windows size, in minutes, for the non-wear detection algorithm. Defaults to 60 and 15 minutes, respectively. Also, window2 must be smaller than window1, and

window1 must be a multiple of window2.

threshold Number of axes that need to meet the non-wear criteria. Defaults to 2.

min_hour_crit The minimum number of hours marked as wear time in a day for it to be con-

sidered valid (see Data validation). Defaults to 0, meaning that every day is

considered valid.

min_day_crit The minimum number of valid days for the data of a given subject to be consid-

ered valid (see Data validation). Defaults to 0, meaning that all data is valid.

A logical value indicating whether or not to display the plot to visualize the

detected non-wear periods. Defaults to FALSE. Notice that the plot will only be displayed in your R session if you do not provide a path to save the plot (see the

argument save_plot).

save_plot, save_summary

Indicates whether of not to save the plot to visualize the detected non-wear periods to a pdf file and the wear time daily summary to a csv file, respectively. Defaults to FALSE. Provide a valid path to a file, ending with the ".pdf" extension for the plot or with the ".csv" extension to the summary, as a character string if

you want the outputs to be saved.

Value

An object of class impactr_data and a plot if plot = TRUE and save_plot = FALSE.

The non-wear detection algorithm

The current version of this algorithm is described in a paper by van Hees et al (see References) and also in this vignette from package GGIR. Briefly, in a first stage it identifies non-wear time based on threshold values of standard deviation (0.013g) and range (0.050g) of raw acceleration from each axis. The classification is done per blocks of window2 size (default 15 minutes) based on the characteristics of a larger window1 (default 60 minutes) centred at the window2. In the second stage of the algorithm, the plausibility of wear periods in between non-wear periods is tested based on the duration and proportion of the duration relative to the surrounding non-wear periods.

Data validation

After the detection of non-wear periods through the algorithm, a data validation step is applied. For each measurement day to be considered valid, it has to present a minimum number of wear time hours determined by the min_hour_crit argument. If the number of wear time hours of a given day falls below the threshold, the whole day is considered invalid and is then removed from the subsequent analyses. The whole measurement is also classified as valid or invalid based on the number of valid days and a threshold given by min_day_crit. If the number of valid days is less than the value determined by the min_day_crit argument, the whole data is deleted and the remove_nonwear() function signals an error, stopping its execution. Nevertheless, this error does

specify_parameters

not prevent the plot to be displayed or saved, or the wear time daily summary to be saved, if the arguments are set to do so.

References

van Hees VT, Gorzelniak L, Dean León EC, Eder M, Pias M, Taherian S, Ekelund U, Renström F, Franks PW, Horsch A, Brage S. Separating movement and gravity components in an acceleration signal and implications for the assessment of human daily physical activity. PLoS One. 2013. Apr 23. doi:10.1371/journal.pone.0061691.

Examples

```
# Ensure that {accdata} package is available before running the example.
# If it is not, run install_accdata() to install the required package.
if (requireNamespace("accdata", quietly = TRUE)) {
   data <- import_dataset("daily_acc_3d")
   remove_nonwear(data)
}</pre>
```

specify_parameters

Specify prediction model parameters

Description

Specify the accelerometer placement used and the subject body mass. These data is needed in order to use the mechanical loading prediction models.

Usage

```
specify_parameters(data, acc_placement, subj_body_mass)
```

Arguments

```
data An impactr_data object, as obtained with read_acc().

acc_placement A character string indicating the accelerometer placement. Can be either "ankle", "back", or "hip".

subj_body_mass A double scalar indicating the subject body mass in kilograms.
```

Value

An object of class impactr_data with the specified parameters as attributes.

```
data <- read_acc(impactr_example("hip-raw.csv"))
specify_parameters(data, acc_placement = "hip", subj_body_mass = 79.2)</pre>
```

summarise_loading 11

summarise_loading

Summarise mechanical loading variables

Description

Creates a summary table of the selected mechanical loading variables including the number of peaks, the minimum, maximum, mean and standard deviation values of these peaks and also the number of peaks inside a given magnitude range. The summaries can be displayed by day or as a daily average.

Usage

```
summarise_loading(
  data,
  variable,
  vector,
  daily_average = TRUE,
  ranges_acc = NULL,
  ranges_grf = NULL,
  ranges_lr = NULL,
  save_summary = FALSE
)
```

Arguments

data An impactr_peaks object, as obtained with find_peaks() and/or predict_loading().

variable A character vector indicating the variable to summarise. Can be either "acc" (for

the acceleration peaks), "grf" (for the ground reaction force peaks), "lr" (for the

loading rate peaks) or "all" (for all variables).

vector A character string indicating which vector to use to create the summaries. Can

be "resultant", "vertical" or "all".

 ${\tt ranges_acc, ranges_grf, ranges_lr}$

A numeric vector to specify ranges in which to count the peaks. E.g., If ranges_acc = c(1, 2, 3), it will summarise the number of acceleration peaks from 1 to 2g, from 2 to 3g and above 3g. Set to NULL (default) if no summary by range will

be provided.

save_summary Indicates whether or not to save the summary to a csv file(s). Defaults to FALSE.

Provide a valid path to a directory as a character string to save all generated

summaries.

Value

A tibble (or a list of tibbles) with the requested summaries.

12 use_resultant

Examples

```
# Ensure that {accdata} package is available before running the example.
# If it is not, run install_accdata() to install the required package.
if (requireNamespace("accdata", quietly = TRUE)) {
   data <- import_dataset("daily_acc_3d")
   data <- remove_nonwear(data)
   data <- filter_acc(data)
   data <- find_peaks(data, vector = "vertical")
   summarise_loading(
   data,
   variable = "acc", vector = "vertical",
   ranges_acc = 1:5
  )
}</pre>
```

use_resultant

Use resultant vector

Description

Computes the acceleration resultant vector.

Usage

```
use_resultant(data)
```

Arguments

data

An impactr_data object, as obtained with

Value

An object of class impactr_data with the acc_R column containing the acceleration resultant vector.

```
data <- read_acc(impactr_example("hip-raw.csv"))
use_resultant(data)</pre>
```

Index

```
define\_region, 2
filter_acc, 3
\verb|find_peaks|, 4
find_peaks(), 11
impactr_example, 5
import_dataset, 5
install\_accdata, \\ 6
is_impactr, 6
is_impactr_data(is_impactr), 6
is_impactr_peaks (is_impactr), 6
predict_loading, 7
predict_loading(), 11
read_acc, 8
read_acc(), 2-4, 7, 9, 10
remove_nonwear, 8
{\tt specify\_parameters}, 10
summarise_loading, 11
use\_resultant, 12
```