## ---- include = FALSE--------------------------------------------------------- knitr::opts_chunk$set( collapse = TRUE, comment = "#>" ) library(dplyr) ## ----------------------------------------------------------------------------- library(imprinting) ## Start with subtype-specific fractions for H1N1, H2N2, H3N2 US_frequencies = get_country_cocirculation_data(country = 'United States', max_year = 2022) %>% select(1:4) head(US_frequencies) ## ----------------------------------------------------------------------------- ## Add a vaccination column US_frequencies <- US_frequencies %>% mutate(vaccination = c(rep(0, 77), seq(.5, .75, length = 26), .75, .75), # Add a vaccination column `A/H1N1` = `A/H1N1`*(1-vaccination), # Assume only non-vaccinated children have primary `A/H2N2` = `A/H2N2`*(1-vaccination), # infections; multiply the subtype-specific circulation `A/H3N2` = `A/H3N2`*(1-vaccination)) # fractions by one minus the year's vaccination probability. tail(US_frequencies, n = 30) ## ----------------------------------------------------------------------------- Germany_frequencies <- get_country_cocirculation_data(country = 'Germany', max_year = 2022) %>% select(1:4) %>% mutate(vaccination = c(rep(0, 87), seq(.05, .75, length = 16), .75, .75), `A/H1N1` = `A/H1N1`*(1-vaccination), # Assume only non-vaccinated children have primary `A/H2N2` = `A/H2N2`*(1-vaccination), # infections; multiply the subtype-specific circulation `A/H3N2` = `A/H3N2`*(1-vaccination)) tail(Germany_frequencies, 20) ## ----------------------------------------------------------------------------- ## Check that all frequencies sum to 1 rowSums(US_frequencies[,2:5]) rowSums(Germany_frequencies[,2:5]) ## ----------------------------------------------------------------------------- # Wrap the country-specific frequencies into a named list input_list = list("United States" = US_frequencies, "Germany" = Germany_frequencies) ## Calculate probabilities get_imprinting_probabilities(observation_years = 2022, countries = c("United States", "Germany"), annual_frequencies = input_list, df_format = "wide")