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betweenness Vertex Betweenness centrality measure.

Description

The Betweenness centrality score of a node u is the sum over all pairs s,t of the proportion of
shortest paths between s and t that pass through u. This function allows the use of either the SNAP
betweenness implementation (default), or the igraph betweenness function. The SNAP version
makes use of OpenMP for parallelization, and may be faster in some circumstances.

Usage

betweenness(g, snap = T)

Arguments

g The igraph object to analyze

snap True to use the SNAP betweenness code, False to use igraph::betweenness

Value

A numeric vector with the betweenness centrality score for each vertex

References

https://snap-graph.sourceforge.net/

Examples

ig.ex <- igraph::erdos.renyi.game(100, p.or.m=0.3) # generate an undirected 'igraph' object
betweenness(ig.ex) # betweenness scores for each node in the graph

bridging Valente’s Bridging vertex measure.

Description

Edges that reduces distances in a network are important structural bridges. Here we implement Va-
lente and Fujimoto’s metric, where a node’s bridging score is the average decrease in cohesiveness
if each of its edges were removed from the graph.

Usage

bridging(g)

https://snap-graph.sourceforge.net/
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Arguments

g The igraph object to analyze.

Value

A numeric vector with the bridging score for each vertex

References

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2889704/

Examples

ig.ex <- igraph::erdos.renyi.game(100, p.or.m=0.3) # generate an undirected 'igraph' object
bridging(ig.ex) # bridging scores for each node in the graph

constraint Burt’s Constraint Index.

Description

The igraph package provides an implementation of Constraint; this is an alternate implementation.

Usage

constraint(g, v = igraph::V(g))

Arguments

g The igraph object to analyze.

v vertices over which to compute constraint (default to all)

Value

A numeric vector with the constraint score for each vertex in v

Examples

ig.ex <- igraph::erdos.renyi.game(100, p.or.m=0.3) # generate an undirected 'igraph' object
constraint(ig.ex) # constraint scores for each node in the graph

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2889704/
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csv.to.igraph Convert a CSV file to an igraph graph object.

Description

The first column should be sources, the second should be targets.

Usage

csv.to.igraph(fname)

Arguments

fname A filename

Value

An igraph graph object built from the filename.

Examples

## Not run: ig.csv <- csv.to.igraph("edgelist.csv")

ens Burt’s Effective Network Size and Constraint index. The next two func-
tions below provide ways to measure the actors’ access to structural
holes in a network. Structural holes "provide opportunities to broker
connections between people" (Burt 2008).

Description

Burt’s Effective Network Size and Constraint index. The next two functions below provide ways to
measure the actors’ access to structural holes in a network. Structural holes "provide opportunities
to broker connections between people" (Burt 2008).

Usage

ens(g)

Arguments

g The igraph object to analyze.

Value

A numeric vector with the effective network size for each vertex
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References

https://www.sciencedirect.com/science/article/abs/pii/S0378873397000038

Examples

ig.ex <- igraph::erdos.renyi.game(100, p.or.m=0.3) # generate an undirected 'igraph' object
ens(ig.ex) # Effective Network Size scores for each node in the graph

influenceR influenceR: Software tools to quantify structural importance of nodes
in a network.

Description

The influenceR package includes functions to quantify the structural importance of nodes in a net-
work. Algorithms include Betweenness Centrality, Bridging, Constraint Index, Effective Network
Size, and Key Players. Currently, algorithms are only guaranteed to work on undirected graphs;
work on directed graphs is in progress. These functions run on graph objects from the igraph pack-
age.

Details

In addition to igraph, this package makes use of the SNAP framework for a high-performance
graph data structure and an OpenMP-parallelized implementation of Betweenness Centrality. See
https://snap-graph.sourceforge.net

Funding

Development of this software package was supported by NIH grant R01 DA033875.

References

The website and source code is located at https://github.com/khanna-lab/influenceR.

keyplayer Compute a KPP-Pos set for a given graph.

Description

The "Key Player" family of node importance algorithms (Borgatti 2006) involves the selection of a
metric of node importance and a combinatorial optimization strategy to choose the set S of vertices
of size k that maximize that metric.

Usage

keyplayer(g, k, prob = 0, tol = 1e-04, maxsec = 120, roundsec = 30)

https://www.sciencedirect.com/science/article/abs/pii/S0378873397000038
https://snap-graph.sourceforge.net
https://github.com/khanna-lab/influenceR
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Arguments

g The igraph object to analyze.

k The size of the KP-set

prob probability of accepting a state with a lower value

tol tolerance within which to stop the optimization and accept the current value

maxsec The total computation budget for the optimization, in seconds

roundsec Number of seconds in between synchronizing workers’ answer

Details

This function implements KPP-Pos, a metric intended to identify k nodes which optimize resource
diffusion through the network. We sum over all vertices not in S the reciprocal of the shortest
distance to a vertex in S.

According to Borgatti, a number of off-the-shelf optimization algorithms may be suitable to find S,
such as tabu-search, K-L, simulated annealing, or genetic algorithms. He presents a simple greedy
algorithm, which we excerpt here:

1. Select k nodes at random to populate set S

2. Set F = fit using appropriate key player metric.

3. For each node u in S and each node v not in S:

• DELTAF = improvement in fit if u and v were swapped

4. Select pair with largest DELTAF

• If DELTAF <= [tolerance] then terminate
• Else, swap pair with greatest improvement in fit and set F = F + DELTAF

5. Go to step 3.

Our implementation uses a different optimization method which we call stochastic gradient descent.
In tests on real world data, we found that our method discovered sets S with larger fits in less
computation time. The algorithm is as follows:

1. Select k nodes at random to populate set S

2. Set F = fit using appropriate key player metric (KPP-Pos in our case)

3. Get a new state:

• Pick a random u in S and v not in S.
• F’ = fit if u and v were swapped
• If F’ > F, swap u and v in S. Else, repeat step 3. (Alternatively, if a positive value is given

for the ‘prob’ parameter, a swap will be accepted with a small probability regardless of
whether it improves the fit).

4. If F’ - F < tolerance or our maximum computation time is exceeded, return S. Else, go to step
3.

This implementation uses OpenMP (if available on the host system) so that multiple workers can
explore the solution space in parallel. After a given of time, the workers synchronize their sets S to
the one which maximizes the metric.
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Value

a vector with the vertex number of each vertex in the selected set S.

References

https://link.springer.com/article/10.1007/s10588-006-7084-x

Examples

ig.ex <- igraph::erdos.renyi.game(100, p.or.m=0.3) # generate an undirected 'igraph' object
keyplayer(ig.ex, k=10) # key-player set consisting of 10 actors

https://link.springer.com/article/10.1007/s10588-006-7084-x
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