Type: | Package |
Version: | 0.6.7 |
Title: | Tools and Statistical Procedures in Plant Science |
Description: | The 'inti' package is part of the 'inkaverse' project for developing different procedures and tools used in plant science and experimental designs. The mean aim of the package is to support researchers during the planning of experiments and data collection (tarpuy()), data analysis and graphics (yupana()) , and technical writing. Learn more about the 'inkaverse' project at https://inkaverse.com/. |
Date: | 2025-02-26 |
URL: | https://inkaverse.com/, https://github.com/flavjack/inti |
BugReports: | https://github.com/flavjack/inti/issues/ |
Depends: | shiny, ggplot2, dplyr, tidyr, tibble, R (≥ 4.1.0) |
Imports: | lme4, agricolae, FactoMineR, emmeans, purrr, stringr, googlesheets4, DT |
Suggests: | gsheet, cowplot, knitr, rmarkdown, bookdown |
VignetteBuilder: | knitr |
License: | GPL-3 | file LICENSE |
LazyData: | true |
Encoding: | UTF-8 |
RoxygenNote: | 7.3.2 |
NeedsCompilation: | no |
Packaged: | 2025-02-26 11:15:53 UTC; floza |
Author: | Flavio Lozano-Isla
|
Maintainer: | Flavio Lozano-Isla <flozanoisla@gmail.com> |
Repository: | CRAN |
Date/Publication: | 2025-02-26 11:30:06 UTC |
Broad-sense heritability in plant breeding
Description
Heritability in plant breeding on a genotype difference basis
Usage
H2cal(
data,
trait,
gen.name,
rep.n,
env.n = 1,
year.n = 1,
env.name = NULL,
year.name = NULL,
fixed.model,
random.model,
summary = FALSE,
emmeans = FALSE,
weights = NULL,
plot_diag = FALSE,
outliers.rm = FALSE,
trial = NULL
)
Arguments
data |
Experimental design data frame with the factors and traits. |
trait |
Name of the trait. |
gen.name |
Name of the genotypes. |
rep.n |
Number of replications in the experiment. |
env.n |
Number of environments (default = 1). See details. |
year.n |
Number of years (default = 1). See details. |
env.name |
Name of the environments (default = NULL). See details. |
year.name |
Name of the years (default = NULL). See details. |
fixed.model |
The fixed effects in the model (BLUEs). See examples. |
random.model |
The random effects in the model (BLUPs). See examples. |
summary |
Print summary from random model (default = FALSE). |
emmeans |
Use emmeans for calculate the BLUEs (default = FALSE). |
weights |
an optional vector of ‘prior weights’ to be used in the fitting process (default = NULL). |
plot_diag |
Show diagnostic plots for fixed and random effects (default = FALSE). Options: "base", "ggplot". . |
outliers.rm |
Remove outliers (default = FALSE). See references. |
trial |
Column with the name of the trial in the results (default = NULL). |
Details
The function allows to made the calculation for individual or multi-environmental trials (MET) using fixed and random model.
1. The variance components based in the random model and the population summary information based in the fixed model (BLUEs).
2. Heritability under three approaches: Standard (ANOVA), Cullis (BLUPs) and Piepho (BLUEs).
3. Best Linear Unbiased Estimators (BLUEs), fixed effect.
4. Best Linear Unbiased Predictors (BLUPs), random effect.
5. Table with the outliers removed for each model.
For individual experiments is necessary provide the trait
,
gen.name
, rep.n
.
For MET experiments you should env.n
and env.name
and/or
year.n
and year.name
according your experiment.
The BLUEs calculation based in the pairwise comparison could be time
consuming with the increase of the number of the genotypes. You can specify
emmeans = FALSE
and the calculate of the BLUEs will be faster.
If emmeans = FALSE
you should change 1 by 0 in the fixed model for
exclude the intersect in the analysis and get all the genotypes BLUEs.
For more information review the references.
Value
list
Author(s)
Maria Belen Kistner
Flavio Lozano Isla
References
Bernal Vasquez, Angela Maria, et al. “Outlier Detection Methods for Generalized Lattices: A Case Study on the Transition from ANOVA to REML.” Theoretical and Applied Genetics, vol. 129, no. 4, Apr. 2016.
Buntaran, H., Piepho, H., Schmidt, P., Ryden, J., Halling, M., and Forkman, J. (2020). Cross validation of stagewise mixed model analysis of Swedish variety trials with winter wheat and spring barley. Crop Science, 60(5).
Schmidt, P., J. Hartung, J. Bennewitz, and H.P. Piepho. 2019. Heritability in Plant Breeding on a Genotype Difference Basis. Genetics 212(4).
Schmidt, P., J. Hartung, J. Rath, and H.P. Piepho. 2019. Estimating Broad Sense Heritability with Unbalanced Data from Agricultural Cultivar Trials. Crop Science 59(2).
Tanaka, E., and Hui, F. K. C. (2019). Symbolic Formulae for Linear Mixed Models. In H. Nguyen (Ed.), Statistics and Data Science. Springer.
Zystro, J., Colley, M., and Dawson, J. (2018). Alternative Experimental Designs for Plant Breeding. In Plant Breeding Reviews. John Wiley and Sons, Ltd.
Examples
library(inti)
dt <- potato
hr <- H2cal(data = dt
, trait = "stemdw"
, gen.name = "geno"
, rep.n = 5
, fixed.model = "0 + (1|bloque) + geno"
, random.model = "1 + (1|bloque) + (1|geno)"
, emmeans = TRUE
, plot_diag = FALSE
, outliers.rm = TRUE
)
hr$tabsmr
hr$blues
hr$blups
hr$outliers
Colourise text for display in the terminal
Description
If R is not currently running in a system that supports terminal colours the text will be returned unchanged.
Usage
colortext(text, fg = "red", bg = NULL)
Arguments
text |
character vector |
fg |
foreground colour, defaults to white |
bg |
background colour, defaults to transparent |
Details
Allowed colours are: black, blue, brown, cyan, dark gray, green, light blue, light cyan, light gray, light green, light purple, light red, purple, red, white, yellow
Author(s)
testthat package
Examples
print(colortext("Red", "red"))
cat(colortext("Red", "red"), "\n")
cat(colortext("White on red", "white", "red"), "\n")
Experimental design without replications
Description
Function to deploy field-book experiment without replications
Usage
design_noreps(
factors,
type = "sorted",
zigzag = FALSE,
nrows = NA,
serie = 100,
seed = NULL,
fbname = "inkaverse",
qrcode = "{fbname}{plots}{factors}"
)
Arguments
factors |
Lists with names and factor vector [list]. |
type |
Randomization in the list [string: sorted, unsorted] |
zigzag |
Experiment layout in zigzag [logic: FALSE]. |
nrows |
Experimental design dimension by rows [numeric: value] |
serie |
Number to start the plot id [numeric: 1000]. |
seed |
Replicability from randomization [numeric: NULL]. |
fbname |
Bar code prefix for data collection [string: "inkaverse"]. |
qrcode |
[string: "{fbname}{plots}{factors}"] String to concatenate the qr code. |
Value
A list with the field-book design and parameters
Examples
## Not run:
library(inti)
factores <- list("geno" = c(1:99))
fb <- design_noreps(factors = factores
, type = "sorted"
, zigzag = F
, nrows = 10
)
dsg <- fb$fieldbook
fb %>%
tarpuy_plotdesign(fill = "plots")
fb$parameters
## End(Not run)
Experimental design in CRD and RCBD
Description
Function to deploy field-book experiment for CRD and RCBD
Usage
design_repblock(
nfactors = 1,
factors,
type = "crd",
rep = 3,
zigzag = FALSE,
nrows = NA,
serie = 100,
seed = NULL,
fbname = "inkaverse",
qrcode = "{fbname}{plots}{factors}"
)
Arguments
nfactors |
Number of factor in the experiment [numeric: 1]. |
factors |
Lists with names and factor vector [list]. |
type |
Type of experimental arrange [string: "crd" "rcbd" "lsd"] |
rep |
Number of replications in the experiment [numeric: 3]. |
zigzag |
Experiment layout in zigzag [logic: F]. |
nrows |
Experimental design dimension by rows [numeric: value] |
serie |
Number to start the plot id [numeric: 100]. |
seed |
Replicability from randomization [numeric: NULL]. |
fbname |
Bar code prefix for data collection [string: "inkaverse"]. |
qrcode |
[string: "{fbname}{plots}{factors}"] String to concatenate the qr code. |
Value
A list with the field-book design and parameters
Examples
## Not run:
library(inti)
factores <- list("geno" = c("A", "B", "C", "D", "D", 1, NA, NA, NULL, "NA")
, "salt stress" = c(0, 50, 200, 200, "T0", NA, NULL, "NULL")
, time = c(30, 60, 90)
)
fb <-design_repblock(nfactors = 2
, factors = factores
, type = "rcbd"
, rep = 5
, zigzag = T
, seed = 0
, nrows = 20
, qrcode = "{fbname}{plots}{factors}"
)
dsg <- fb$fieldbook
fb %>%
tarpuy_plotdesign(fill = "plots")
fb$parameters
## End(Not run)
Figure to Quarto format
Description
Use Articul8 Add-ons from Google docs to build Rticles
Usage
figure2qmd(text, path = ".", opts = NA)
Arguments
text |
Markdown text with figure information [string] |
path |
Image path for figures [path: "." (base directory)] |
opts |
chunk options in brackets [string: NA] |
Details
Quarto option can be included in the title using "{{}}" separated by commas
Value
string mutated
Figure to Rmarkdown format
Description
Use Articul8 Add-ons from Google docs to build Rticles
Usage
figure2rmd(text, path = ".", opts = NA)
Arguments
text |
String with the table information |
path |
Path of the image for the figure |
opts |
chunk options in brackets. |
Value
Mutated string
Footnotes in tables
Description
Include tables footnotes and symbols for kables in pandoc format
Usage
footnotes(table, notes = NULL, label = "Note:", notation = "alphabet")
Arguments
table |
Kable output in pandoc format. |
notes |
Footnotes for the table. |
label |
Label for start the footnote. |
notation |
Notation for the footnotes (default = "alphabet"). See details. |
Details
You should use the pandoc format kable(format = "pipe")
. You can add
the footnote symbol using {hypen}
in your table. notation
could
be use: "alphabet", "number", "symbol", "none".
Value
Table with footnotes for word and html documents
Google docs to Rmarkdown
Description
Use Articul8 Add-ons from Google docs to build Rticles
Usage
gdoc2qmd(file, export = NA, format = "qmd", type = "asis")
Arguments
file |
Zip file path from Articul8 exported in md format [path] |
export |
Path to export the files [path: NA (file directory)] |
format |
Output format [string: "qmd" "rmd"] |
type |
output file type [strig: "asis" "list", "listfull", "full"] |
Details
Document rendering until certain point: "#| end" Include for next page: "#| newpage" You can include the cover page params using "#|" in a Google docs table
Value
path
Include PDF in markdown documents
Description
Insert PDF files in markdown documents
Usage
include_pdf(file, width = "100%", height = "600")
Arguments
file |
file path from pdf file. |
width |
width preview file. |
height |
height preview file. |
Value
html code for markdown
Table with footnotes
Description
Include tables with title and footnotes for word and html documents
Usage
include_table(table, caption = NA, notes = NA, label = NA, notation = "none")
Arguments
table |
Data frame. |
caption |
Table caption (default = NULL). See details. |
notes |
Footnotes for the table (default = NA). See details. |
label |
Label for start the footnote (default = NA). |
notation |
Notation for the symbols and footnotes (default = "none") Others: "alphabet", "number", "symbol". |
Value
Table with caption and footnotes
Examples
library(inti)
table <- data.frame(
x = rep_len(1, 5)
, y = rep_len(3, 5)
, z = rep_len("c", 5)
)
table %>% inti::include_table(
caption = "Title caption b) line 0
a) line 1
b) line 2"
, notes = "Footnote"
, label = "Where:"
)
Journal Club Tombola
Description
Function for arrange journal club schedule
Usage
jc_tombola(
data,
members,
papers = 1,
group = NA,
gr_lvl = NA,
status = NA,
st_lvl = "active",
frq = 7,
date = NA,
seed = NA
)
Arguments
data |
Data frame withe members and their information. |
members |
Columns with the members names. |
papers |
Number of paper by meeting |
group |
Column for arrange the group. |
gr_lvl |
Levels in the groups for the arrange. See details. |
status |
Column with the status of the members. |
st_lvl |
Level to confirm the assistance in the JC. See details. |
frq |
Number of the day for each session. |
date |
Date when start the first session of JC. |
seed |
Number for replicate the results (default = date). |
Details
The function could consider n levels for gr_lvl
. In the case of more
levels using "both" or "all" will be the combination. The suggested levels
for st_lvl
are: active or spectator. Only the "active" members will
enter in the schedule.
Value
data frame with the schedule for the JC
Mean comparison test
Description
Function to compare treatment from lm or aov using data frames
Usage
mean_comparison(
data,
response,
model_factors,
comparison,
test_comp = "SNK",
sig_level = 0.05
)
Arguments
data |
Fieldbook data. |
response |
Model used for the experimental design. |
model_factors |
Factor in the model. |
comparison |
Significance level for the analysis (default = 0.05). |
test_comp |
Comparison test (default = "SNK"). Others: "TUKEY", "DUNCAN". |
sig_level |
Significance level for the analysis (default = 0.05). |
Value
list
Examples
## Not run:
library(inti)
library(gsheet)
url <- paste0("https://docs.google.com/spreadsheets/d/"
, "15r7ZwcZZHbEgltlF6gSFvCTFA-CFzVBWwg3mFlRyKPs/"
, "edit#gid=172957346")
# browseURL(url)
fb <- gsheet2tbl(url)
mc <- mean_comparison(data = fb
, response = "spad_29"
, model_factors = "bloque* geno*treat"
, comparison = c("geno", "treat")
, test_comp = "SNK"
)
mc$comparison
mc$stat
## End(Not run)
Swedish cultivar trial data
Description
The datasets were obtained from official Swedish cultivar tests. Dry matter yield was analyzed. All trials were laid out as alpha-designs with two replicates. Within each replicate, there were five to seven incomplete blocks.
Usage
met
Format
A data frame with 1069 rows and 8 variables:
- zone
Sweden is divided into three different agricultural zones: South, Middle, and North
- location
Locations: 18 location in the Zones
- rep
Replications (4): number of replication in the experiment
- alpha
Incomplete blocks (8) in the alpha-designs
- cultivar
Cultivars (30): genotypes evaluated
- yield
Yield in kg/ha
- year
Year (1): 2016
- env
enviroment (18): combination zone + location + year
Source
Transform fieldbooks based in a dictionary
Description
Transform entire fieldbook according to data a dictionary
Usage
metamorphosis(fieldbook, dictionary, from, to, index, colnames)
Arguments
fieldbook |
Data frame with the original information. |
dictionary |
Data frame with new names and categories. See details. |
from |
Column of the dictionary with the original names. |
to |
Column of the dictionary with the new names. |
index |
Column of the dictionary with the type and level of the variables. |
colnames |
Character vector with the name of the columns. |
Details
The function require at least three columns.
1. Original names (from
).
2. New names (to
).
3. Variable type (index
).
Value
List with two objects. 1. New data frame. 2. Dictionary.
Remove outliers
Description
Use the method M4 in Bernal Vasquez (2016). Bonferroni Holm test to judge residuals standardized by the re scaled MAD (BH MADR).
Usage
outliers_remove(data, trait, model, drop_na = TRUE)
Arguments
data |
Experimental design data frame with the factors and traits. |
trait |
Name of the trait. |
model |
The fixed or random effects in the model. |
drop_na |
drop NA values from the data.frame |
Details
Function to remove outliers in MET experiments
Value
list. 1. Table with date without outliers. 2. The outliers in the dataset.
References
Bernal Vasquez, Angela Maria, et al. “Outlier Detection Methods for Generalized Lattices: A Case Study on the Transition from ANOVA to REML.” Theoretical and Applied Genetics, vol. 129, no. 4, Apr. 2016.
Examples
library(inti)
rmout <- potato %>% outliers_remove(
data = .
, trait ="stemdw"
, model = "0 + treat*geno + (1|bloque)"
, drop_na = FALSE
)
rmout
Diagnostic plots
Description
Function to plot the diagnostic of models
Usage
plot_diag(model, title = NA)
Arguments
model |
Statistical model |
title |
Plot title |
Value
plots
Examples
## Not run:
library(inti)
lm <- aov(stemdw ~ bloque + geno*treat, data = potato)
# lm <- potato %>% lme4::lmer(stemdw ~ (1|bloque) + geno*treat, data = .)
plot(lm, which = 1)
plot_diag(lm)[3]
plot(lm, which = 2)
plot_diag(lm)[2]
plot(lm, which = 3)
plot_diag(lm)[4]
plot(lm, which = 4)
plot_diag(lm)[1]
## End(Not run)
Diagnostic plots
Description
Function to plot the diagnostic of models
Usage
plot_diagnostic(data, formula, title = NA)
Arguments
data |
Experimental design data frame with the factors and traits. |
formula |
Mixed model formula |
title |
Plot title |
Value
plots
Examples
## Not run:
library(inti)
plot_diagnostic(data = potato
, formula = stemdw ~ (1|bloque) + geno*treat)
## End(Not run)
Plot raw data
Description
Function use the raw data for made a boxplot graphic
Usage
plot_raw(
data,
type = "boxplot",
x,
y,
group = NULL,
xlab = NULL,
ylab = NULL,
glab = NULL,
ylimits = NULL,
xlimits = NULL,
xrotation = NULL,
legend = "top",
xtext = NULL,
gtext = NULL,
color = TRUE,
linetype = 1,
opt = NULL
)
Arguments
data |
raw data |
type |
Type of graphic. "boxplot" or "scatterplot" |
x |
Axis x variable |
y |
Axis y variable |
group |
Group variable |
xlab |
Title for the axis x |
ylab |
Title for the axis y |
glab |
Title for the legend |
ylimits |
Limits and break of the y axis c(initial, end, brakes) |
xlimits |
For scatter plot. Limits and break of the x axis c(initial, end, brakes) |
xrotation |
Rotation in x axis c(angle, h, v) |
legend |
the position of legends ("none", "left", "right", "bottom", "top", or two-element numeric vector) |
xtext |
Text labels in x axis using a vector |
gtext |
Text labels in groups using a vector |
color |
Colored figure (TRUE), black & white (FALSE) or color vector |
linetype |
Line type for regression. Default = 0 |
opt |
Add new layers to the plot |
Details
You could add additional layer to the plot using "+" with ggplot2 options
Value
plot
Examples
## Not run:
library(inti)
fb <- potato
fb %>%
plot_raw(type = "box"
, x = "geno"
, y = "twue"
, group = NULL
, ylab = NULL
, xlab = NULL
, glab = ""
)
fb %>%
plot_raw(type = "sca"
, x = "geno"
, y = "twue"
, group = "treat"
, color = c("red", "blue")
)
## End(Not run)
Plot summary data
Description
Graph summary data into bar o line plot
Usage
plot_smr(
data,
type = NULL,
x = NULL,
y = NULL,
group = NULL,
xlab = NULL,
ylab = NULL,
glab = NULL,
ylimits = NULL,
xrotation = c(0, 0.5, 0.5),
xtext = NULL,
gtext = NULL,
legend = "top",
sig = NULL,
sigsize = 3,
error = NULL,
color = TRUE,
opt = NULL
)
Arguments
data |
Output from summary data |
type |
Type of graphic. "bar" or "line" |
x |
Axis x variable |
y |
Axis y variable |
group |
Group variable |
xlab |
Title for the axis x |
ylab |
Title for the axis y |
glab |
Title for the legend |
ylimits |
limits of the y axis c(initial, end, brakes) |
xrotation |
Rotation in x axis c(angle, h, v) |
xtext |
Text labels in x axis using a vector |
gtext |
Text labels in group using a vector |
legend |
the position of legends ("none", "left", "right", "bottom", "top", or two-element numeric vector) |
sig |
Column with the significance |
sigsize |
Font size in significance letters |
error |
Show the error bar ("ste" or "std") |
color |
colored figure (TRUE), black & white (FALSE) or color vector |
opt |
Add news layer to the plot |
Details
If the table is a out put of mean_comparison(graph_opts = TRUE)
function. Its contain all the parameter for the plot.
You could add additional layer to the plot using "+" with ggplot2 options
Value
plot
Examples
## Not run:
library(inti)
fb <- potato
yrs <- yupana_analysis(data = fb
, response = "lfa"
, model_factors = "geno*treat"
, comparison = c("geno", "treat")
)
yrs$meancomp %>%
plot_smr(type = "bar"
, x = "geno"
, y = "lfa"
, xlab = ""
, group = "treat"
, glab = "Tratamientos"
, error = "ste"
, sig = "sig"
#, ylimits = c(0, 1, 0.2)
, color = c("red", "black")
, gtext = c("Irrigado", "Sequia")
)
## End(Not run)
Water use efficiency in 15 potato genotypes
Description
Experiment to evaluate the physiological response from 15 potatos genotypes under water deficit condition. The experiment had a randomized complete block design with five replications. The stress started at 30 day after planting.
Usage
potato
Format
A data frame with 150 rows and 17 variables:
- treat
Water deficit treatments: sequia, irrigado
- geno
15 potato genotypes
- bloque
blocks for the experimentl design
- spad_29
Relative chlorophyll content (SPAD) at 29 day after planting
- spad_83
Relative chlorophyll content (SPAD) at 84 day after planting
- rwc_84
Relative water content (percentage) at 84 day after planting
- op_84
Osmotic potential (Mpa) at 84 day after planting
- leafdw
leaf dry weight (g)
- stemdw
stem dry weight (g)
- rootdw
root dry weight (g)
- tubdw
tuber dry weight (g)
- biomdw
total biomass dry weight (g)
- hi
harvest index
- ttrans
total transpiration (l)
- wue
water use effiency (g/l)
- twue
tuber water use effiency (g/l)
- lfa
leaf area (cm2)
Objects exported from other packages
Description
These objects are imported from other packages. Follow the links below to see their documentation.
- dplyr
Remove outliers using mixed models
Description
Use the method M4 in Bernal Vasquez (2016). Bonferroni Holm test to judge residuals standardized by the re scaled MAD (BH MADR).
Usage
remove_outliers(data, formula, drop_na = FALSE, plot_diag = FALSE)
Arguments
data |
Experimental design data frame with the factors and traits. |
formula |
mixed model formula. |
drop_na |
drop NA values from the data.frame |
plot_diag |
Diagnostic plot based in the raw and clean data |
Details
Function to remove outliers in MET experiments
Value
list. 1. Table with date without outliers. 2. The outliers in the dataset.
References
Bernal Vasquez, Angela Maria, et al. “Outlier Detection Methods for Generalized Lattices: A Case Study on the Transition from ANOVA to REML.” Theoretical and Applied Genetics, vol. 129, no. 4, Apr. 2016.
Examples
library(inti)
rmout <- potato %>%
remove_outliers(data = .
, formula = stemdw ~ 0 + (1|bloque) + treat*geno
, plot_diag = FALSE
, drop_na = FALSE
)
rmout
Split folder
Description
Function to split folder by size or number of elements
Usage
split_folder(
folder,
export,
units = "megas",
size = 500,
zip = TRUE,
remove = FALSE
)
Arguments
folder |
Path of folder to split (path). |
export |
Path to export the split folders (path). |
units |
Units to split folder (string: "megas", "number"). |
size |
Folder size by the units selected (numeric). |
zip |
Zip split folders (logical). |
remove |
Remove the split folder after zip (logical). |
Value
zip files
Examples
## Not run:
split_folder("pictures/QUINOA 2018-2019 SC SEEDS EDWIN - CAMACANI/"
, "pictures/split_num", remove = T, size = 400, units = "number")
## End(Not run)
Table to Quarto format
Description
Use Articul8 Add-ons from Google docs to build Rticles
Usage
table2qmd(text, type = "asis")
Arguments
text |
Markdown text with table information (string) |
type |
output file type [strig: "asis" "list", "listfull", "full"] |
Value
string mutated
Table to Rmarkdown format
Description
Use Articul8 Add-ons from Google docs to build Rticles
Usage
table2rmd(text, opts = NA)
Arguments
text |
String with the table information |
opts |
chunk options in brackets. |
Value
Mutated string
Interactive fieldbook designs
Description
Invoke RStudio addin to create fieldbook designs
Usage
tarpuy(dependencies = FALSE)
Arguments
dependencies |
Install package dependencies for run the app |
Details
Tarpuy allow to create experimental designs under an interactive app.
Value
Shiny app
Examples
if(interactive()){
inti::tarpuy()
}
Fieldbook experimental designs
Description
Function to deploy experimental designs
Usage
tarpuy_design(
data,
nfactors = 1,
type = "crd",
rep = 2,
zigzag = FALSE,
nrows = NA,
serie = 100,
seed = NULL,
fbname = NA,
qrcode = "{fbname}{plots}{factors}"
)
Arguments
data |
Experimental design data frame with the factors and level. See examples. |
nfactors |
Number of factor in the experiment(default = 1). See details. |
type |
Type of experimental arrange (default = "crd"). See details. |
rep |
Number of replications in the experiment (default = 3). |
zigzag |
Experiment layout in zigzag [logic: FALSE]. |
nrows |
Experimental design dimension by rows [numeric: value] |
serie |
Number to start the plot id [numeric: 100]. |
seed |
Replicability of draw results (default = 0) always random. See details. |
fbname |
Barcode prefix for data collection. |
qrcode |
[string: "{fbname}{plots}{factors}"] String to concatenate the qr code. |
Details
The function allows to include the arguments in the sheet that have
the information of the design. You should include 2 columns in the sheet:
{arguments}
and {values}
. See examples. The information will
be extracted automatically and deploy the design. nfactors
= 1:
crd, rcbd, lsd, lattice. nfactors
= 2 (factorial): split-crd,
split-rcbd split-lsd nfactors
>= 2 (factorial): crd, rcbd, lsd.
Value
A list with the fieldbook design
Examples
## Not run:
library(inti)
library(gsheet)
url <- paste0("https://docs.google.com/spreadsheets/d/"
, "1510fOKj0g4CDEAFkrpFbr-zNMnle_Hou9O_wuf7Vdo4/edit?gid=1479851579#gid=1479851579")
# browseURL(url)
fb <- gsheet2tbl(url)
dsg <- fb %>% tarpuy_design()
dsg %>%
tarpuy_plotdesign()
## End(Not run)
Fieldbook plan information
Description
Information for build a plan for an experiment (PLEX)
Usage
tarpuy_plex(
data = NULL,
title = NULL,
objectives = NULL,
hypothesis = NULL,
rationale = NULL,
references = NULL,
plan = NULL,
institutions = NULL,
researchers = NULL,
manager = NULL,
location = NULL,
altitude = NULL,
georeferencing = NULL,
environment = NULL,
start = NA,
end = NA,
about = NULL,
fieldbook = NULL,
project = NULL,
repository = NULL,
manuscript = NULL,
album = NULL,
nfactor = 2,
design = "rcbd",
rep = 3,
zigzag = FALSE,
nrows = NA,
serie = 100,
seed = 0,
qrcode = "{fbname}{plots}{factors}"
)
Arguments
data |
Data with the fieldbook information. |
title |
Project title. |
objectives |
The objectives of the project. |
hypothesis |
What are the expected results. |
rationale |
Based in which evidence is planned the experiment. |
references |
References. |
plan |
General description of the project (M & M). |
institutions |
Institutions involved in the project. |
researchers |
Persons involved in the project. |
manager |
Persons responsible of the collection of the data. |
location |
Location of the project. |
altitude |
Altitude of the experiment (m.a.s.l). |
georeferencing |
Georeferencing information. |
environment |
Environment of the experiment (greenhouse, lab, etc). |
start |
The date of the start of the experiments. |
end |
The date of the end of the experiments. |
about |
Short description of the project. |
fieldbook |
Name or ID for the fieldbook/project. |
project |
link for project. |
repository |
link to the repository. |
manuscript |
link for manuscript. |
album |
link with the photos of the project. |
nfactor |
Number of factors for the design. |
design |
Type of design. |
rep |
Number of replication. |
zigzag |
Experiment layout in zigzag [logic: F] |
nrows |
Experimental design dimension by rows [numeric: value] |
serie |
Number of digits in the plots. |
seed |
Seed for the randomization. |
qrcode |
[string: "{fbname}{plots}{factors}"] String to concatenate the qr code. |
Details
Provide the information available.
Value
data frame or list of arguments:
info
variables
design
logbook
-
timetable
budget
Fieldbook plot experimental designs
Description
Plot fieldbook sketch designs based in experimental design
Usage
tarpuy_plotdesign(
data,
factor = NA,
fill = "plots",
xlab = NULL,
ylab = NULL,
glab = NULL
)
Arguments
data |
Experimental design data frame with the factors and level. See examples. |
factor |
Vector with the name of the columns with the factors. |
fill |
Value for fill the experimental units (default = "plots"). |
xlab |
Title for x axis. |
ylab |
Title for y axis. |
glab |
Title for group axis. |
Details
The function allows to plot the experimental design according the field experiment design.
Value
plot
Examples
## Not run:
library(inti)
library(gsheet)
url <- paste0("https://docs.google.com/spreadsheets/d/"
, "1_BVzChX_-lzXhB7HAm6FeSrwq9iKfZ39_Sl8NFC6k7U/edit#gid=1834109539")
# browseURL(url)
fb <- gsheet2tbl(url)
dsg <- fb %>% tarpuy_design()
dsg
dsg %>% str()
dsg %>%
tarpuy_plotdesign()
## End(Not run)
Field book traits
Description
Function to export field book and traits for be used in field book app.
Usage
tarpuy_traits(fieldbook = NULL, last_factor = NULL, traits = NULL)
Arguments
fieldbook |
Experiment field book [dataframe]. |
last_factor |
Last factor in the field book [string: colnames] |
traits |
Traits information [dataframe or list]. |
Details
For the traits parameters you can used shown in the Field Book app
Value
list
Examples
library(inti)
fieldbook <- inti::potato
traits <- list(
list(variable = "altura de planta"
, trait = "altp"
, format = "numeric"
, when = "30, 40, 50"
, samples = 3
, units = "cm"
, details = NA
, minimum = 0
, maximum = 100
)
, list(variable = "severidad"
, trait = "svr"
, format = "scategorical"
, when = "30, 40, 50"
, samples = 1
, units = "scale"
, details = NA
, categories = "1, 3, 5, 7, 9"
)
, list(variable = "foto"
, trait = "foto"
, format = "photo"
, when = "hrv, pshrv"
, samples = 1
, units = "image"
, details = NA
)
, list(variable = "germinacion"
, trait = "ger"
, format = "boolean"
, when = "30, 40, 50"
, samples = 1
, units = "logical"
, details = NA
)
)
fbapp <- tarpuy_traits(fieldbook, last_factor = "bloque", traits)
## Not run:
library(inti)
library(gsheet)
url_fb <- paste0("https://docs.google.com/spreadsheets/d/"
, "1510fOKj0g4CDEAFkrpFbr-zNMnle_Hou9O_wuf7Vdo4/edit?gid=1607116093#gid=1607116093")
fb <- gsheet2tbl(url_fb)
url_ds <- paste0("https://docs.google.com/spreadsheets/d/"
, "1510fOKj0g4CDEAFkrpFbr-zNMnle_Hou9O_wuf7Vdo4/edit?gid=1278145622#gid=1278145622")
ds <- gsheet2tbl(url_ds)
fb <- ds %>% tarpuy_design()
url_trt <- paste0("https://docs.google.com/spreadsheets/d/"
, "1510fOKj0g4CDEAFkrpFbr-zNMnle_Hou9O_wuf7Vdo4/edit?gid=1665653985#gid=1665653985")
traits <- gsheet2tbl(url_trt)
fbapp <- tarpuy_traits(fb, last_factor = "cols", traits)
dsg <- fbapp[[1]]
## End(Not run)
HTML tables for markdown documents
Description
Export tables with download, pasta and copy buttons
Usage
web_table(
data,
caption = NULL,
digits = 2,
rnames = FALSE,
buttons = NULL,
file_name = "file",
scrolly = NULL,
columnwidth = "200px",
width = "100%"
)
Arguments
data |
Dataset. |
caption |
Title for the table. |
digits |
Digits number in the table exported. |
rnames |
Row names. |
buttons |
Buttons: "excel", "copy" or "none". Default c("excel", "copy") |
file_name |
Excel file name |
scrolly |
Windows height to show the table. Default "45vh" |
columnwidth |
Column width. Default '200px' |
width |
Width in pixels or percentage (Defaults to automatic sizing) |
Value
table in markdown format for html documents
Examples
## Not run:
library(inti)
met %>%
web_table(caption = "Web table")
## End(Not run)
Interactive data analysis
Description
Invoke RStudio addin to analyze and graph experimental design data
Usage
yupana(dependencies = FALSE)
Arguments
dependencies |
Install package dependencies for run the app |
Details
Yupana: data analysis and graphics for experimental designs.
Value
Shiny app
Examples
if(interactive()){
inti::yupana()
}
Fieldbook analysis report
Description
Function to create a complete report of the fieldbook
Usage
yupana_analysis(
data,
last_factor = NULL,
response,
model_factors,
comparison,
test_comp = "SNK",
sig_level = 0.05,
plot_dist = "boxplot",
plot_diag = FALSE,
digits = 2
)
Arguments
data |
Field book data. |
last_factor |
The last factor in your fieldbook. |
response |
Response variable. |
model_factors |
Model used for the experimental design. |
comparison |
Factors to compare |
test_comp |
Comprasison test c("SNK", "TUKEY", "DUNCAN") |
sig_level |
Significal test (default: p = 0.005) |
plot_dist |
Plot data distribution (default = "boxplot") |
plot_diag |
Diagnostic plots for model (default = FALSE). |
digits |
Digits number in the table exported. |
Value
list
Examples
## Not run:
library(inti)
fb <- potato
rsl <- yupana_analysis(data = fb
, last_factor = "bloque"
, response = "spad_83"
, model_factors = "geno * treat"
, comparison = c("geno", "treat")
)
## End(Not run)
Graph options to export
Description
Function to export the graph options and model parameters
Usage
yupana_export(
data,
type = NA,
xlab = NA,
ylab = NA,
glab = NA,
ylimits = NA,
xrotation = c(0, 0.5, 0.5),
xtext = NA,
gtext = NA,
legend = "top",
sig = NA,
error = NA,
color = TRUE,
opt = NA,
dimension = c(20, 10, 100)
)
Arguments
data |
Result from yupana_analysis or yupana_import. |
type |
Plot type |
xlab |
Title for the axis x |
ylab |
Title for the axis y |
glab |
Title for the legend |
ylimits |
limits of the y axis |
xrotation |
Rotation in x axis c(angle, h, v) |
xtext |
Text labels in x axis |
gtext |
Text labels in group |
legend |
the position of legends ("none", "left", "right", "bottom", "top", or two-element numeric vector) |
sig |
Column with the significance |
error |
Show the error bar ("ste" or "std"). |
color |
colored figure (TRUE), otherwise black & white (FALSE) |
opt |
Add news layer to the plot |
dimension |
Dimension of graphs |
Value
data frame
Examples
## Not run:
library(inti)
library(gsheet)
url <- paste0("https://docs.google.com/spreadsheets/d/"
, "15r7ZwcZZHbEgltlF6gSFvCTFA-CFzVBWwg3mFlRyKPs/edit#gid=172957346")
# browseURL(url)
fb <- gsheet2tbl(url)
smr <- yupana_analysis(data = fb
, last_factor = "bloque"
, response = "spad_83"
, model_factors = "block + geno*riego"
, comparison = c("geno", "riego")
)
gtab <- yupana_export(smr, type = "line", ylimits = c(0, 100, 2))
#> import
url <- paste0("https://docs.google.com/spreadsheets/d/"
, "15r7ZwcZZHbEgltlF6gSFvCTFA-CFzVBWwg3mFlRyKPs/edit#gid=1202800640")
# browseURL(url)
fb <- gsheet2tbl(url)
info <- yupana_import(fb)
etab <- yupana_export(info)
info2 <- yupana_import(etab)
etab2 <- yupana_export(info2)
## End(Not run)
Import information from data summary
Description
Graph summary data
Usage
yupana_import(data)
Arguments
data |
Summary information with options |
Value
list
Examples
## Not run:
library(inti)
library(gsheet)
url <- paste0("https://docs.google.com/spreadsheets/d/"
, "15r7ZwcZZHbEgltlF6gSFvCTFA-CFzVBWwg3mFlRyKPs/edit?gid=2137596914#gid=2137596914")
# browseURL(url)
fb <- gsheet2tbl(url)
info <- yupana_import(fb)
## End(Not run)
Multivariate Analysis
Description
Multivariate analysis for PCA and HCPC
Usage
yupana_mvr(
data,
last_factor = NULL,
summary_by = NULL,
groups = NULL,
variables = NULL
)
Arguments
data |
Field book data. |
last_factor |
The last factor in your fieldbook [string: NULL]. |
summary_by |
Variables for group the analysis. |
groups |
Groups for color in PCA. |
variables |
Variables to be use in the analysis [string: NULL]. |
Details
Compute and plot information for multivariate analysis (PCA, HCPC and correlation).
Value
result and plots
Examples
## Not run:
library(inti)
fb <- inti::potato
mv <- yupana_mvr(data = fb
, last_factor = "geno"
, summary_by = c("geno", "treat")
, groups = "treat"
, variables = c("all")
#, variables = c("wue", "twue")
)
mv$plot[1]
mv$data
## End(Not run)
Fieldbook reshape
Description
Function to reshape fieldbook according a separation character
Usage
yupana_reshape(
data,
last_factor,
sep,
new_colname,
from_var = NULL,
to_var = NULL,
exc_factors = NULL
)
Arguments
data |
Field book raw data. |
last_factor |
The last factor in your field book. |
sep |
Character that separates the last value. |
new_colname |
The new name for the column created. |
from_var |
The first variable in case you want to exclude several. variables. |
to_var |
The last variable in case you want to exclude several variables. |
exc_factors |
Factor to exclude during the reshape. |
Details
If you variable name is variable_evaluation_rep
. The reshape function
will help to create the column rep
and the new variable name will be
variable_evaluation
.
Value
data frame