Type: | Package |
Title: | Intuitionistic, Pythagorean, and Spherical Fuzzy Similarity Measure |
Version: | 1.0.0 |
Date: | 2022-06-16 |
Author: | Rama Ranjan Panda and Naresh Kumar Nagwani |
Maintainer: | Rama Ranjan Panda<rrpanda.phd2018.cs@nitrr.ac.in> |
Description: | Advanced fuzzy logic based techniques are implemented to compute the similarity among different objects or items. Typically, application areas consist of transforming raw data into the corresponding advanced fuzzy logic representation and determining the similarity between two objects using advanced fuzzy similarity techniques in various fields of research, such as text classification, pattern recognition, software projects, decision-making, medical diagnosis, and market prediction. Functions are designed to compute the membership, non-membership, hesitant-membership, indeterminacy-membership, and refusal-membership for the input matrices. Furthermore, it also includes a large number of advanced fuzzy logic based similarity measure functions to compute the Intuitionistic fuzzy similarity (IFS), Pythagorean fuzzy similarity (PFS), and Spherical fuzzy similarity (SFS) between two objects or items based on their fuzzy relationships. It also includes working examples for each function with sample data sets. |
License: | GPL-2 |
Encoding: | UTF-8 |
RoxygenNote: | 7.1.2 |
NeedsCompilation: | no |
Packaged: | 2022-06-18 05:42:14 UTC; user |
Repository: | CRAN |
Date/Publication: | 2022-06-21 10:10:02 UTC |
Intuitionistic hesitancy membership function
Description
Intuitionistic hesitancy membership values with membership and non-membership values as input
Usage
hmemIFS(m, nm)
Arguments
m |
IFS membership values computed using either triangular or trapezoidal or guassian membership function |
nm |
IFS non-membership values computed using either Sugeno and Terano's or Yager's non-membership function |
Value
IFS hesistancy values
Examples
x<-matrix(c(12,9,14,11,21,16,15,24,20,17,14,11),nrow=4)
a<-mn(x)
b<-std(x)
m<-memG(a,b,x)
lam<-0.5
nm<-nonmemS(m,lam)
hmemIFS(m,nm)
# [,1] [,2] [,3]
#[1,]0.09921264 0.05810582 0.03270001
#[2,]0.09915966 0.03100937 0.05966479
#[3,]0.04565299 0.09939456 0.04565299
#[4,]0.04565299 0.09939456 0.04565299
Pythagorean hesitancy membership function
Description
Pythagorean hesitancy membership values with membership and non-membership values as input
Usage
hmemPFS(m, nm)
Arguments
m |
PFS membership values computed using either triangular or trapezoidal or guassian membership function |
nm |
PFS non-membership values computed using either Sugeno and Terano's or Yager's non-membership function |
Value
PFS hesistancy values
Examples
x<-matrix(c(12,9,14,11,21,16,15,24,20,17,14,11),nrow=4)
a<-mn(x)
b<-std(x)
m<-memG(a,b,x)
lam<-0.5
nm<-nonmemS(m,lam)
hmemPFS(m,nm)
# [,1] [,2] [,3]
#[1,] 0.7651357 0.5875871 0.4417361
#[2,] 0.7649349 0.4302263 0.5953393
#[3,] 0.5213768 0.7658251 0.5213768
#[4,] 0.5213768 0.7658251 0.5213768
Spherical indeterminacy membership function
Description
Spherical indeterminacy membership values with membership and non-membership values as input
Usage
imemSFS(m, nm)
Arguments
m |
SFS membership values computed using either triangular or trapezoidal or guassian membership function |
nm |
SFS non-membership values computed using either Sugeno and Terano's or Yager's non-membership function |
Value
SFS indeterminacy membership values
Examples
x<-matrix(c(12,9,14,11,21,16,15,24,20,17,14,11),nrow=4)
a<-mn(x)
b<-std(x)
m<-memG(a,b,x)
lam<-0.5
nm<-nonmemS(m,lam)
imemSFS(m,nm)
# [,1] [,2] [,3]
#[1,] 0.09921264 0.05810582 0.03270001
#[2,] 0.09915966 0.03100937 0.05966479
#[3,] 0.04565299 0.09939456 0.04565299
#[4,] 0.04565299 0.09939456 0.04565299
Left foot values
Description
Left foot value for triangular or trapezoidal membership function
Usage
leftfootfinding(x, n)
Arguments
x |
A data set in the form of document-term matrix |
n |
A constant value to fix the left foot value |
Value
Left foot values for the input data set x.
Examples
x<-matrix(c(12,9,14,11,21,16,15,24,20,17,14,11),nrow=4)
leftfootfinding(x,5)
#[1] 10 5 10 10
Left shoulder values
Description
Left shoulder value for trapezoidal membership function
Usage
leftshoulderfinding(a, b)
Arguments
a |
A constant value for fixing the left shoulder |
b |
Middle values for the data set x |
Value
Left shoulder values for the input data set x.
Examples
x<-matrix(c(12,9,14,11,21,16,15,24,20,17,14,11),nrow=4)
mid<-midvalue(x)
leftshoulderfinding(2.5,mid)
#[1] 14.0 10.5 12.0 15.0
Gaussian membership function
Description
Gaussian membership function with mean, standard deviation, and data set
Usage
memG(a, b, x)
Arguments
a |
Mean values of individual rows of the data set x |
b |
Standard deviation values of individual rows of the data set x |
x |
A data set in the form of document-term matrix |
Value
Gaussian membership values for the input data set x.
Examples
x<-matrix(c(12,9,14,11,21,16,15,24,20,17,14,11),nrow=4)
a<-mn(x)
b<-std(x)
memG(a,b,x)
# [,1] [,2] [,3]
#[1,] 0.5169457 0.7958771 0.8941586
#[2,] 0.5179406 0.9000876 0.7891159
#[3,] 0.8464817 0.5134171 0.8464817
#[4,] 0.8464817 0.5134171 0.8464817
Triangular membership function
Description
Triangular membership function with leftfooting, midvalue, rightfooting, and data set
Usage
memT(a, b, c, x)
Arguments
a |
Leftfooting value of the data set x |
b |
Middle value of the data set x |
c |
Rightfooting value of the data set x |
x |
A data set in the form of document-term matrix |
Value
Triangular membership values for the input data set x.
Examples
x<-matrix(c(12,9,14,11,21,16,15,24,20,17,14,11),nrow=4)
a<-leftfootfinding(x,5)
b<-midvalue(x)
c<-rightfootfinding(x,5)
memT(a,b,c,x)
# [,1] [,2] [,3]
#[1,] 0.3076923 0.4705882 0.5882353
#[2,] 0.5000000 0.5714286 0.4285714
#[3,] 0.8888889 0.9090909 0.8888889
#[4,] 0.1333333 0.1333333 0.1333333
Trapezoidal membership function
Description
Trapezoidal membership function with leftfooting, leftshoulder, rightshoulder, rightfooting, and data set
Usage
memTP(a, b, c, d, x)
Arguments
a |
Leftfooting value of the data set x |
b |
Leftshoulder value of the data set x |
c |
Rightshoulder value of the data set x |
d |
Rightfooting value of the data set x |
x |
A data set in the form of document-term matrix |
Value
Trapezoidal membership values for the input data set x.
Examples
x<-matrix(c(12,9,14,11,21,16,15,24,20,17,14,11),nrow=4)
a<-leftfootfinding(x,5)
mid<-midvalue(x)
b<-leftshoulderfinding(2.5,mid)
c<-rightshoulderfinding(mid,2.5)
d<-rightfootfinding(x,5)
memTP(a,b,c,d,x)
# [,1] [,2] [,3]
#[1,] 0.5000000 0.6666667 0.8333333
#[2,] 0.7272727 0.8888889 0.6666667
#[3,] 1.0000000 1.0000000 1.0000000
#[4,] 0.2000000 0.2000000 0.2000000
Middle values
Description
Middle value for triangular or trapezoidal membership function
Usage
midvalue(x)
Arguments
x |
A data set in the form of document-term matrix |
Value
Middle values for the input data set x.
Examples
x<-matrix(c(12,9,14,11,21,16,15,24,20,17,14,11),nrow=4)
midvalue(x)
#[1] 16.5 13.0 14.5 17.5
Mean values
Description
Mean values of the data set for gaussian membership function
Usage
mn(x)
Arguments
x |
A data set in the form of document-term matrix |
Value
Mean values for individual row of the input data set X.
Examples
x<-matrix(c(12,9,14,11,21,16,15,24,20,17,14,11),nrow=4)
mn(x)
#[1] 17.66667 14.00000 14.33333 15.33333
Sugeno and Terano's non membership function
Description
Sugeno and Terano's non membership function with membership values and lambda value
Usage
nonmemS(m, lam)
Arguments
m |
Membership values for the data set x |
lam |
Control parameter to establish relationship between membership and non-membership values, values range from 0.1 to 1.0 |
Value
Sugeno and Terano's non membership for the data set x.
References
M. Sugeno and T. Terano. A model of learning based on fuzzy information. Kybernetes, 1977.
Examples
x<-matrix(c(12,9,14,11,21,16,15,24,20,17,14,11),nrow=4)
a<-mn(x)
b<-std(x)
m<-memG(a,b,x)
lam<-0.5
nonmemS(m,lam)
# [,1] [,2] [,3]
#[1,] 0.3838416 0.1460171 0.07314142
#[2,] 0.3828998 0.0689030 0.15121934
#[3,] 0.1078653 0.3871883 0.10786528
#[4,] 0.1078653 0.3871883 0.10786528
Yager's non membership function
Description
Yager's non membership function with membership values and lambda value
Usage
nonmemY(m, lam)
Arguments
m |
Membership values for the data set x |
lam |
Control parameter to establish relationship between membership and non-membership values, values range from 0.1 to 1.0 |
Value
Yager's non membership for the data set x.
References
R. R. Yager. On the measure of fuzziness and negation part i: membership in the unit interval. 1979.
Examples
x<-matrix(c(12,9,14,11,21,16,15,24,20,17,14,11),nrow=4)
a<-mn(x)
b<-std(x)
m<-memG(a,b,x)
lam<-0.5
nonmemY(m,lam)
# [,1] [,2] [,3]
#[1,] 0.078966962 0.011638215 0.002959405
#[2,] 0.078578801 0.002628666 0.012471988
#[3,] 0.006392896 0.080354498 0.006392896
#[4,] 0.006392896 0.080354498 0.006392896
Right foot values
Description
Right foot value for triangular or trapezoidal membership function
Usage
rightfootfinding(x, n)
Arguments
x |
A data set in the form of document-term matrix |
n |
A constant value to fix the right foot value |
Value
Right foot values for the input data set x.
Examples
x<-matrix(c(12,9,14,11,21,16,15,24,20,17,14,11),nrow=4)
rightfootfinding(x,5)
#[1] 25 20 20 25
Right shoulder values
Description
right shoulder value for trapezoidal membership function
Usage
rightshoulderfinding(b, c)
Arguments
b |
Middle values for the data set x |
c |
A constant value for fixing the right shoulder |
Value
Right shoulder values for the input data set x.
Examples
x<-matrix(c(12,9,14,11,21,16,15,24,20,17,14,11),nrow=4)
mid<-midvalue(x)
rightshoulderfinding(mid,2.5)
#[1] 19.0 15.5 17.0 20.0
Spherical refusal membership function
Description
Spherical refusal membership values with membership,non-membership and indeterminacy values as input
Usage
rmemSFS(m, nm, im)
Arguments
m |
SFS membership values computed using either triangular or trapezoidal or guassian membership function |
nm |
SFS non-membership values computed using either Sugeno and Terano's or Yager's non-membership function |
im |
SFS indetermincay values |
Value
SFS refusal membership values
Examples
x<-matrix(c(12,9,14,11,21,16,15,24,20,17,14,11),nrow=4)
a<-mn(x)
b<-std(x)
m<-memG(a,b,x)
lam<-0.5
nm<-nonmemS(m,lam)
im<-imemSFS(m,nm)
rmemSFS(m,nm,im)
# [,1] [,2] [,3]
#[1,] 0.7586762 0.5847071 0.4405241
#[2,] 0.7584805 0.4291073 0.5923419
#[3,] 0.5193742 0.7593476 0.5193742
#[4,] 0.5193742 0.7593476 0.5193742
IFS similarity measure simBA
Description
IFS similarity measure values using simBA computation technique with membership, and non-membership of two objects or set of objects.
Usage
simBA(ma, na, mb, nb, p, t, k)
Arguments
ma |
IFS membership values for the data set x computed using either triangular or trapezoidal or guassian membership function |
na |
IFS non-membership values for the data set x computed using either Sugeno and Terano's or Yager's non-membership function |
mb |
IFS membership values for the data set y computed using either triangular or trapezoidal or guassian membership function |
nb |
IFS non-membership values for the data set y computed using either Sugeno and Terano's or Yager's non-membership function |
p |
Lp norm values for measuring the p-norm distance between x and y, values range from 1 to 5 |
t |
Level of uncertainty values, values range from 1 to 10 |
k |
A constant value depends upon the number of rows in the y data set. |
Value
The IFS similarity values of data set y with data set x
References
F. E. Boran and D. Akay. A biparametric similarity measure on intuitionistic fuzzy sets with applications to pattern recognition. Information sciences, 255:45 - 57, 2014.
Examples
#When data set y consist of only one row use k=1
x<-matrix(c(12,9,14,11,21,16,15,24,20,17,14,11),nrow=4)
y<-matrix(c(11,21,6),nrow=1)
a<-mn(x)
b<-std(x)
a1<-mn(y)
b1<-std(y)
lam<-0.5
ma<-memG(a,b,x)
na<-nonmemS(ma,lam)
mb<-memG(a1,b1,y)
nb<-nonmemS(mb,lam)
p<-2
t<-2
k<-1
simBA(ma,na,mb,nb,p,t,k)
#0.7072291 0.6947466 0.8919850 0.8919850
#When data set y having more than one rows
#use k = the number of rows of data set y
x<-matrix(c(12,9,14,11,21,16,15,24,20,17,14,11),nrow=4)
y<-matrix(c(11,24,21,12,6,11),nrow=2)
a<-mn(x)
b<-std(x)
a1<-mn(y)
b1<-std(y)
lam<-0.5
ma<-memG(a,b,x)
na<-nonmemS(ma,lam)
mb<-memG(a1,b1,y)
nb<-nonmemS(mb,lam)
p<-2
t<-2
sim<-c()
for(k in 1:nrow(y)){sim<-rbind(sim,simBA(ma,na,mb,nb,p,t,k))}
sim
# [,1] [,2] [,3] [,4]
#[1,] 0.7072291 0.6947466 0.8919850 0.8919850
#[2,] 0.9410582 0.9843247 0.7380007 0.7380007
IFS similarity measure simC
Description
IFS similarity measure values using simC computation technique with membership, and non-membership values of two objects or set of objects.
Usage
simC(ma, na, mb, nb, k)
Arguments
ma |
IFS membership values for the data set x computed using either triangular or trapezoidal or guassian membership function |
na |
IFS non-membership values for the data set x computed using either Sugeno and Terano's or Yager's non-membership function |
mb |
IFS membership values for the data set y computed using either triangular or trapezoidal or guassian membership function |
nb |
IFS non-membership values for the data set y computed using either Sugeno and Terano's or Yager's non-membership function |
k |
A constant value, considered as 1 |
Value
The IFS similarity values of data set y with data set x
References
S.-M. Chen. Measures of similarity between vague sets. Fuzzy sets and Systems, 74(2):217 - 223, 1995.
Examples
x<-matrix(c(12,9,14,11,21,16,15,24,20,17,14,11),nrow=4)
y<-matrix(c(11,21,6),nrow=1)
a<-mn(x)
b<-std(x)
a1<-mn(y)
b1<-std(y)
lam<-0.5
ma<-memG(a,b,x)
na<-nonmemS(ma,lam)
mb<-memG(a1,b1,y)
nb<-nonmemS(mb,lam)
k<-1
simC(ma,na,mb,nb,k)
#[1] 0.7005061 0.7011282 0.8783314 0.8783314
IFS similarity measure simDC
Description
IFS similarity measure values using simDC computation technique with membership,non-membership, and hesitancy values of two objects or set of objects.
Usage
simDC(ma, na, mb, nb, ha, hb, p, k)
Arguments
ma |
IFS membership values for the data set x computed using either triangular or trapezoidal or guassian membership function |
na |
IFS non-membership values for the data set x computed using either Sugeno and Terano's or Yager's non-membership function |
mb |
IFS membership values for the data set y computed using either triangular or trapezoidal or guassian membership function |
nb |
IFS non-membership values for the data set y computed using either Sugeno and Terano's or Yager's non-membership function |
ha |
IFS hesitancy values for the data set x |
hb |
IFS hesitancy values for the data set y |
p |
Lp norm values for measuring the p-norm distance between x and y, values range from 1 to 5 |
k |
A constant value, considered as 1 |
Value
The IFS similarity values of data set y with data set x
References
L. Dengfeng and C. Chuntian. New similarity measures of intuitionistic fuzzy sets and application to pattern recognitions. Pattern recognition letters, 23(1-3):221 - 225, 2002.
Examples
x<-matrix(c(12,9,14,11,21,16,15,24,20,17,14,11),nrow=4)
y<-matrix(c(11,21,6),nrow=1)
a<-mn(x)
b<-std(x)
a1<-mn(y)
b1<-std(y)
lam<-0.5
ma<-memG(a,b,x)
na<-nonmemS(ma,lam)
ha<-hmemIFS(ma,na)
mb<-memG(a1,b1,y)
nb<-nonmemS(mb,lam)
hb<-hmemIFS(mb,nb)
p<-2
k<-1
simDC(ma,na,mb,nb,ha,hb,p,k)
#[1] 0.3553975 0.3558802 0.5378438 0.5378438
IFS similarity measure simGK
Description
IFS similarity measure values using simGK computation technique with membership, and non-membership values of two objects or set of objects.
Usage
simGK(ma, na, mb, nb, k)
Arguments
ma |
IFS membership values for the data set x computed using either triangular or trapezoidal or guassian membership function |
na |
IFS non-membership values for the data set x computed using either Sugeno and Terano's or Yager's non-membership function |
mb |
IFS membership values for the data set y computed using either triangular or trapezoidal or guassian membership function |
nb |
IFS non-membership values for the data set y computed using either Sugeno and Terano's or Yager's non-membership function |
k |
A constant value, considered as 1 |
Value
The IFS similarity values of data set y with data set x
References
H. Garg and K. Kumar. Distance measures for connection number sets based on set pair analysis and its applications to decision-making process. Applied Intelligence, 48(10):3346 - 3359, 2018.
Examples
x<-matrix(c(12,9,14,11,21,16,15,24,20,17,14,11),nrow=4)
y<-matrix(c(11,21,6),nrow=1)
a<-mn(x)
b<-std(x)
a1<-mn(y)
b1<-std(y)
lam<-0.5
ma<-memG(a,b,x)
na<-nonmemS(ma,lam)
mb<-memG(a1,b1,y)
nb<-nonmemS(mb,lam)
k<-1
simGK(ma,na,mb,nb,k)
#[1] 0.1523230 0.1534360 0.6786289 0.6786289
IFS similarity measure simHK
Description
IFS similarity measure values using simHK computation technique with membership, and non-membership values of two objects or set of objects.
Usage
simHK(ma, na, mb, nb, k)
Arguments
ma |
IFS membership values for the data set x computed using either triangular or trapezoidal or guassian membership function |
na |
IFS non-membership values for the data set x computed using either Sugeno and Terano's or Yager's non-membership function |
mb |
IFS membership values for the data set y computed using either triangular or trapezoidal or guassian membership function |
nb |
IFS non-membership values for the data set y computed using either Sugeno and Terano's or Yager's non-membership function |
k |
A constant value, considered as 1 |
Value
The IFS similarity values of data set y with data set x
References
D. H. Hong and C. Kim. A note on similarity measures between vague sets and between elements. Information sciences, 115(1-4):83 - 96, 1999.
Examples
x<-matrix(c(12,9,14,11,21,16,15,24,20,17,14,11),nrow=4)
y<-matrix(c(11,21,6),nrow=1)
a<-mn(x)
b<-std(x)
a1<-mn(y)
b1<-std(y)
lam<-0.5
ma<-memG(a,b,x)
na<-nonmemS(ma,lam)
mb<-memG(a1,b1,y)
nb<-nonmemS(mb,lam)
k<-1
simHK(ma,na,mb,nb,k)
#[1] 0.9702837 0.9702706 0.9874349 0.9874349
IFS similarity measure simHY1
Description
IFS similarity measure values using simHY1 computation technique with membership, and non-membership values of two objects or set of objects.
Usage
simHY1(ma, na, mb, nb, k)
Arguments
ma |
IFS membership values for the data set x computed using either triangular or trapezoidal or guassian membership function |
na |
IFS non-membership values for the data set x computed using either Sugeno and Terano's or Yager's non-membership function |
mb |
IFS membership values for the data set y computed using either triangular or trapezoidal or guassian membership function |
nb |
IFS non-membership values for the data set y computed using either Sugeno and Terano's or Yager's non-membership function |
k |
A constant value, considered as 1 |
Value
The IFS similarity values of data set y with data set x
References
W.-L. Hung and M.-S. Yang. On similarity measures between intuitionistic fuzzy sets. International journal of intelligent systems, 23(3):364 - 383, 2008.
Examples
x<-matrix(c(12,9,14,11,21,16,15,24,20,17,14,11),nrow=4)
y<-matrix(c(11,21,6),nrow=1)
a<-mn(x)
b<-std(x)
a1<-mn(y)
b1<-std(y)
lam<-0.5
ma<-memG(a,b,x)
na<-nonmemS(ma,lam)
mb<-memG(a1,b1,y)
nb<-nonmemS(mb,lam)
k<-1
simHY1(ma,na,mb,nb,k)
#[1] 0.5562031 0.5673731 0.8158479 0.8158479
IFS similarity measure simHY2
Description
IFS similarity measure values using simHY2 computation technique with membership, and non-membership values of two objects or set of objects.
Usage
simHY2(ma, na, mb, nb, k)
Arguments
ma |
IFS membership values for the data set x computed using either triangular or trapezoidal or guassian membership function |
na |
IFS non-membership values for the data set x computed using either Sugeno and Terano's or Yager's non-membership function |
mb |
IFS membership values for the data set y computed using either triangular or trapezoidal or guassian membership function |
nb |
IFS non-membership values for the data set y computed using either Sugeno and Terano's or Yager's non-membership function |
k |
A constant value, considered as 1 |
Value
The IFS similarity values of data set y with data set x
References
W.-L. Hung and M.-S. Yang. On similarity measures between intuitionistic fuzzy sets. International journal of intelligent systems, 23(3):364 - 383, 2008.
Examples
x<-matrix(c(12,9,14,11,21,16,15,24,20,17,14,11),nrow=4)
y<-matrix(c(11,21,6),nrow=1)
a<-mn(x)
b<-std(x)
a1<-mn(y)
b1<-std(y)
lam<-0.5
ma<-memG(a,b,x)
na<-nonmemS(ma,lam)
mb<-memG(a1,b1,y)
nb<-nonmemS(mb,lam)
k<-1
simHY2(ma,na,mb,nb,k)
#[1] 0.7247430 0.7253651 0.9021400 0.9021400
IFS similarity measure simHY3
Description
IFS similarity measure values using simHY3 computation technique with membership, and non-membership values of two objects or set of objects.
Usage
simHY3(ma, na, mb, nb, k)
Arguments
ma |
IFS membership values for the data set x computed using either triangular or trapezoidal or guassian membership function |
na |
IFS non-membership values for the data set x computed using either Sugeno and Terano's or Yager's non-membership function |
mb |
IFS membership values for the data set y computed using either triangular or trapezoidal or guassian membership function |
nb |
IFS non-membership values for the data set y computed using either Sugeno and Terano's or Yager's non-membership function |
k |
A constant value, considered as 1 |
Value
The IFS similarity values of data set y with data set x
References
W.-L. Hung and M.-S. Yang. On similarity measures between intuitionistic fuzzy sets. International journal of intelligent systems, 23(3):364 - 383, 2008.
Examples
x<-matrix(c(12,9,14,11,21,16,15,24,20,17,14,11),nrow=4)
y<-matrix(c(11,21,6),nrow=1)
a<-mn(x)
b<-std(x)
a1<-mn(y)
b1<-std(y)
lam<-0.5
ma<-memG(a,b,x)
na<-nonmemS(ma,lam)
mb<-memG(a1,b1,y)
nb<-nonmemS(mb,lam)
k<-1
simHY3(ma,na,mb,nb,k)
#[1] 0.5460424 0.5468474 0.8109329 0.8109329
IFS similarity measure simHY4
Description
IFS similarity measure values using simHY4 computation technique with membership, and non-membership values of two objects or set of objects.
Usage
simHY4(ma, na, mb, nb, k)
Arguments
ma |
IFS membership values for the data set x computed using either triangular or trapezoidal or guassian membership function |
na |
IFS non-membership values for the data set x computed using either Sugeno and Terano's or Yager's non-membership function |
mb |
IFS membership values for the data set y computed using either triangular or trapezoidal or guassian membership function |
nb |
IFS non-membership values for the data set y computed using either Sugeno and Terano's or Yager's non-membership function |
k |
A constant value, considered as 1 |
Value
The IFS similarity values of data set y with data set x
References
W.-L. Hung and M.-S. Yang. On similarity measures between intuitionistic fuzzy sets. International journal of intelligent systems, 23(3):364 - 383, 2008.
Examples
x<-matrix(c(12,9,14,11,21,16,15,24,20,17,14,11),nrow=4)
y<-matrix(c(11,21,6),nrow=1)
a<-mn(x)
b<-std(x)
a1<-mn(y)
b1<-std(y)
lam<-0.5
ma<-memG(a,b,x)
na<-nonmemS(ma,lam)
mb<-memG(a1,b1,y)
nb<-nonmemS(mb,lam)
k<-1
simHY4(ma,na,mb,nb,k)
#[1] 0.7063744 0.7070477 0.8955969 0.8955969
IFS similarity measure simJJLY
Description
IFS similarity measure values using simJJLY computation technique with membership,non-membership, and hesitancy values of two objects or set of objects.
Usage
simJJLY(ma, na, mb, nb, ha, hb, k)
Arguments
ma |
IFS membership values for the data set x computed using either triangular or trapezoidal or guassian membership function |
na |
IFS non-membership values for the data set x computed using either Sugeno and Terano's or Yager's non-membership function |
mb |
IFS membership values for the data set y computed using either triangular or trapezoidal or guassian membership function |
nb |
IFS non-membership values for the data set y computed using either Sugeno and Terano's or Yager's non-membership function |
ha |
IFS hesitancy values for the data set x |
hb |
IFS hesitancy values for the data set y |
k |
A constant value, considered as 1 |
Value
The IFS similarity values of data set y with data set x
References
Q. Jiang, X. Jin, S.-J. Lee, and S. Yao. A new similarity/distance measure between intuitionistic fuzzy sets based on the transformed isosceles triangles and its applications to pattern recognition. Expert Systems with Applications, 116:439–453, 2019.
Examples
x<-matrix(c(12,9,14,11,21,16,15,24,20,17,14,11),nrow=4)
y<-matrix(c(11,21,6),nrow=1)
a<-mn(x)
b<-std(x)
a1<-mn(y)
b1<-std(y)
lam<-0.5
ma<-memG(a,b,x)
na<-nonmemS(ma,lam)
ha<-hmemIFS(ma,na)
mb<-memG(a1,b1,y)
nb<-nonmemS(mb,lam)
hb<-hmemIFS(mb,nb)
k<-1
simJJLY(ma,na,mb,nb,ha,hb,k)
#[1] 0.7239098 0.7245767 0.8981760 0.8981760
SFS similarity measure simKKDKS
Description
SFS similarity measure values using simKKDKS computation technique with membership,non-membership, and indeterminacy membership values of two objects or set of objects.
Usage
simKKDKS(ma, na, mb, nb, ia, ib, k)
Arguments
ma |
SFS membership values for the data set x computed using either triangular or trapezoidal or guassian membership function |
na |
SFS non-membership values for the data set x computed using either Sugeno and Terano's or Yager's non-membership function |
mb |
SFS membership values for the data set y computed using either triangular or trapezoidal or guassian membership function |
nb |
SFS non-membership values for the data set y computed using either Sugeno and Terano's or Yager's non-membership function |
ia |
SFS indeterminacy membership values for the data set x |
ib |
SFS indeterminacy membership values for the data set y |
k |
A constant value, considered as 1 |
Value
The SFS similarity values of data set y with data set x
References
M. J. Khan, P. Kumam, W. Deebani,W. Kumam, and Z. Shah. Distance and similarity measures for spherical fuzzy sets and their applications in selecting mega projects. Mathematics, 8(4):519, 2020.
Examples
x<-matrix(c(12,9,14,11,21,16,15,24,20,17,14,11),nrow=4)
y<-matrix(c(11,21,6),nrow=1)
a<-mn(x)
b<-std(x)
a1<-mn(y)
b1<-std(y)
lam<-0.5
ma<-memG(a,b,x)
na<-nonmemS(ma,lam)
ia<-imemSFS(ma,na)
mb<-memG(a1,b1,y)
nb<-nonmemS(mb,lam)
ib<-imemSFS(mb,nb)
k<-1
simKKDKS(ma,na,mb,nb,ia,ib,k)
#[1] 0.5726216 0.3223250 0.2791418 0.2791418
IFS similarity measure simL
Description
IFS similarity measure values using simL computation technique with membership,non-membership, and hesitancy values of two objects or set of objects.
Usage
simL(ma, na, mb, nb, ha, hb, p, k)
Arguments
ma |
IFS membership values for the data set x computed using either triangular or trapezoidal or guassian membership function |
na |
IFS non-membership values for the data set x computed using either Sugeno and Terano's or Yager's non-membership function |
mb |
IFS membership values for the data set y computed using either triangular or trapezoidal or guassian membership function |
nb |
IFS non-membership values for the data set y computed using either Sugeno and Terano's or Yager's non-membership function |
ha |
IFS hesitancy values for the data set x |
hb |
IFS hesitancy values for the data set y |
p |
Lp norm values for measuring the p-norm distance between x and y, values range from 1 to 5 |
k |
A constant value, considered as 1 |
Value
The IFS similarity values of data set y with data set x
References
H.-W. Liu. New similarity measures between intuitionistic fuzzy sets and between elements. Mathematical and Computer Modelling, 42(1-2):61 - 70, 2005.
Examples
x<-matrix(c(12,9,14,11,21,16,15,24,20,17,14,11),nrow=4)
y<-matrix(c(11,21,6),nrow=1)
a<-mn(x)
b<-std(x)
a1<-mn(y)
b1<-std(y)
lam<-0.5
ma<-memG(a,b,x)
na<-nonmemS(ma,lam)
ha<-hmemIFS(ma,na)
mb<-memG(a1,b1,y)
nb<-nonmemS(mb,lam)
hb<-hmemIFS(mb,nb)
k<-1
p<-2
simL(ma,na,mb,nb,ha,hb,p,k)
#[1] 0.7022635 0.6896045 0.8890488 0.8890488
IFS similarity measure simM
Description
IFS similarity measure values using simM computation technique with membership,non-membership, and hesitancy values of two objects or set of objects.
Usage
simM(ma, na, mb, nb, p, k)
Arguments
ma |
IFS membership values for the data set x computed using either triangular or trapezoidal or guassian membership function |
na |
IFS non-membership values for the data set x computed using either Sugeno and Terano's or Yager's non-membership function |
mb |
IFS membership values for the data set y computed using either triangular or trapezoidal or guassian membership function |
nb |
IFS non-membership values for the data set y computed using either Sugeno and Terano's or Yager's non-membership function |
p |
Lp norm values for measuring the p-norm distance between x and y, values range from 1 to 5 |
k |
A constant value, considered as 1 |
Value
The IFS similarity values of data set y with data set x
References
H. B. Mitchell. On the dengfeng–chuntian similarity measure and its application to pattern recognition. Pattern Recognition Letters, 24(16):3101 - 3104, 2003.
Examples
x<-matrix(c(12,9,14,11,21,16,15,24,20,17,14,11),nrow=4)
y<-matrix(c(11,21,6),nrow=1)
a<-mn(x)
b<-std(x)
a1<-mn(y)
b1<-std(y)
lam<-0.5
ma<-memG(a,b,x)
na<-nonmemS(ma,lam)
ha<-hmemIFS(ma,na)
mb<-memG(a1,b1,y)
nb<-nonmemS(mb,lam)
hb<-hmemIFS(mb,nb)
p<-2
k<-1
simM(ma,na,mb,nb,p,k)
#[1] 0.3840287 0.3837673 0.3849959 0.3849959
PFS similarity measure simNNNG1
Description
PFS similarity measure values using simNNNG1 computation technique with membership, and non-membership values of two objects or set of objects.
Usage
simNNNG1(ma, na, mb, nb, k)
Arguments
ma |
PFS membership values for the data set x computed using either triangular or trapezoidal or guassian membership function |
na |
PFS non-membership values for the data set x computed using either Sugeno and Terano's or Yager's non-membership function |
mb |
PFS membership values for the data set y computed using either triangular or trapezoidal or guassian membership function |
nb |
PFS non-membership values for the data set y computed using either Sugeno and Terano's or Yager's non-membership function |
k |
A constant value, considered as 1 |
Value
The PFS similarity values of data set y with data set x
References
X. T. Nguyen, V. D. Nguyen, V. H. Nguyen, and H. Garg. Exponential similarity measures for pythagorean fuzzy sets and their applications to pattern recognition and decision-making process. Complex & Intelligent Systems, 5(2):217 - 228, 2019.
Examples
x<-matrix(c(12,9,14,11,21,16,15,24,20,17,14,11),nrow=4)
y<-matrix(c(11,21,6),nrow=1)
a<-mn(x)
b<-std(x)
a1<-mn(y)
b1<-std(y)
lam<-0.5
ma<-memG(a,b,x)
na<-nonmemS(ma,lam)
mb<-memG(a1,b1,y)
nb<-nonmemS(mb,lam)
k<-1
simNNNG1(ma,na,mb,nb,k)
#[1] 0.5885775 0.5995230 0.8202927 0.8202927
PFS similarity measure simNNNG2
Description
PFS similarity measure values using simNNNG2 computation technique with membership, and non-membership values of two objects or set of objects.
Usage
simNNNG2(ma, na, mb, nb, k)
Arguments
ma |
PFS membership values for the data set x computed using either triangular or trapezoidal or guassian membership function |
na |
PFS non-membership values for the data set x computed using either Sugeno and Terano's or Yager's non-membership function |
mb |
PFS membership values for the data set y computed using either triangular or trapezoidal or guassian membership function |
nb |
PFS non-membership values for the data set y computed using either Sugeno and Terano's or Yager's non-membership function |
k |
A constant value, considered as 1 |
Value
The PFS similarity values of data set y with data set x
References
X. T. Nguyen, V. D. Nguyen, V. H. Nguyen, and H. Garg. Exponential similarity measures for pythagorean fuzzy sets and their applications to pattern recognition and decision-making process. Complex & Intelligent Systems, 5(2):217 - 228, 2019.
Examples
x<-matrix(c(12,9,14,11,21,16,15,24,20,17,14,11),nrow=4)
y<-matrix(c(11,21,6),nrow=1)
a<-mn(x)
b<-std(x)
a1<-mn(y)
b1<-std(y)
lam<-0.5
ma<-memG(a,b,x)
na<-nonmemS(ma,lam)
mb<-memG(a1,b1,y)
nb<-nonmemS(mb,lam)
k<-1
simNNNG2(ma,na,mb,nb,k)
#[1] 0.7761019 0.7803072 0.9079870 0.9079870
IFS similarity measure simNSCA
Description
IFS similarity measure values using simNSCA computation technique with membership, and non-membership values of two objects or set of objects.
Usage
simNSCA(ma, na, mb, nb, k)
Arguments
ma |
IFS membership values for the data set x computed using either triangular or trapezoidal or guassian membership function |
na |
IFS non-membership values for the data set x computed using either Sugeno and Terano's or Yager's non-membership function |
mb |
IFS membership values for the data set y computed using either triangular or trapezoidal or guassian membership function |
nb |
IFS non-membership values for the data set y computed using either Sugeno and Terano's or Yager's non-membership function |
k |
A constant value, considered as 1 |
Value
The IFS similarity values of data set y with data set x
References
R. T. Ngan, B. C. Cuong, M. Ali, et al. H-max distance measure of intuitionistic fuzzy sets in decision making. Applied Soft Computing, 69:393 - 425, 2018.
Examples
x<-matrix(c(12,9,14,11,21,16,15,24,20,17,14,11),nrow=4)
y<-matrix(c(11,21,6),nrow=1)
a<-mn(x)
b<-std(x)
y<-matrix(c(11,24,21,12,6,11,15,21),nrow=1)
a1<-mn(y)
b1<-std(y)
lam<-0.5
ma<-memG(a,b,x)
na<-nonmemS(ma,lam)
mb<-memG(a1,b1,y)
nb<-nonmemS(mb,lam)
k<-1
simNSCA(ma,na,mb,nb,k)
#[1] 0.6928792 0.6934970 0.8754130 0.8754130
PFS similarity measure simP
Description
PFS similarity measure values using simP computation technique with membership, and non-membership values of two objects or set of objects.
Usage
simP(ma, na, mb, nb, a, b, p, t, k)
Arguments
ma |
PFS membership values for the data set x computed using either triangular or trapezoidal or guassian membership function |
na |
PFS non-membership values for the data set x computed using either Sugeno and Terano's or Yager's non-membership function |
mb |
PFS membership values for the data set y computed using either triangular or trapezoidal or guassian membership function |
nb |
PFS non-membership values for the data set y computed using either Sugeno and Terano's or Yager's non-membership function |
a |
Level of uncertainty values, values range from 1 to 10 |
b |
Level of uncertainty values, values range from 1 to 10 |
p |
Lp norm values for measuring the p-norm distance between x and y, values range from 1 to 5 |
t |
Level of uncertainty values, values range from 1 to 10 |
k |
A constant value, considered as 1 |
Value
The PFS similarity values of data set y with data set x
References
X. Peng. New similarity measure and distance measure for pythagorean fuzzy set. Complex & Intelligent Systems, 5(2):101 - 111, 2019.
Examples
x<-matrix(c(12,9,14,11,21,16,15,24,20,17,14,11),nrow=4)
y<-matrix(c(11,21,6),nrow=1)
a<-mn(x)
b<-std(x)
a1<-mn(y)
b1<-std(y)
lam<-0.5
ma<-memG(a,b,x)
na<-nonmemS(ma,lam)
mb<-memG(a1,b1,y)
nb<-nonmemS(mb,lam)
a<-2
b<-2
p<-2
t<-2
k<-1
simP(ma,na,mb,nb,a,b,p,t,k)
#[1] 0.7007663 0.6879639 0.8834981 0.8834981
PFS similarity measure simPG1
Description
PFS similarity measure values using simPG1 computation technique with membership, and non-membership values of two objects or set of objects.
Usage
simPG1(ma, na, mb, nb, p, l, t, k)
Arguments
ma |
PFS membership values for the data set x computed using either triangular or trapezoidal or guassian membership function |
na |
PFS non-membership values for the data set x computed using either Sugeno and Terano's or Yager's non-membership function |
mb |
PFS membership values for the data set y computed using either triangular or trapezoidal or guassian membership function |
nb |
PFS non-membership values for the data set y computed using either Sugeno and Terano's or Yager's non-membership function |
p |
Lp norm values for measuring the p-norm distance between x and y, values range from 1 to 5 |
l |
Level of uncertainty values, values range from 1 to 10 |
t |
Level of uncertainty values, values range from 1 to 10 |
k |
A constant value, considered as 1 |
Value
The PFS similarity values of data set y with data set x
References
X. Peng and H. Garg. Multiparametric similarity measures on pythagorean fuzzy sets with applications to pattern recognition. Applied Intelligence, 49(12):4058 - 4096, 2019.
Examples
x<-matrix(c(12,9,14,11,21,16,15,24,20,17,14,11),nrow=4)
y<-matrix(c(11,21,6),nrow=1)
a<-mn(x)
b<-std(x)
a1<-mn(y)
b1<-std(y)
lam<-0.5
ma<-memG(a,b,x)
na<-nonmemS(ma,lam)
mb<-memG(a1,b1,y)
nb<-nonmemS(mb,lam)
p<-2
l<-2
t<-2
k<-1
simPG1(ma,na,mb,nb,p,l,t,k)
#[1] 0.6027082 0.5857886 0.8375740 0.8375740
PFS similarity measure simPG2
Description
PFS similarity measure values using simPG2 computation technique with membership, and non-membership values of two objects or set of objects.
Usage
simPG2(ma, na, mb, nb, p, l, t, k)
Arguments
ma |
PFS membership values for the data set x computed using either triangular or trapezoidal or guassian membership function |
na |
PFS non-membership values for the data set x computed using either Sugeno and Terano's or Yager's non-membership function |
mb |
PFS membership values for the data set y computed using either triangular or trapezoidal or guassian membership function |
nb |
PFS non-membership values for the data set y computed using either Sugeno and Terano's or Yager's non-membership function |
p |
Lp norm values for measuring the p-norm distance between x and y, values range from 1 to 5 |
l |
Level of uncertainty values, values range from 1 to 10 |
t |
Level of uncertainty values, values range from 1 to 10 |
k |
A constant value, considered as 1 |
Value
The PFS similarity values of data set y with data set x
References
X. Peng and H. Garg. Multiparametric similarity measures on pythagorean fuzzy sets with applications to pattern recognition. Applied Intelligence, 49(12):4058 - 4096, 2019.
Examples
x<-matrix(c(12,9,14,11,21,16,15,24,20,17,14,11),nrow=4)
y<-matrix(c(11,21,6),nrow=1)
a<-mn(x)
b<-std(x)
a1<-mn(y)
b1<-std(y)
lam<-0.5
ma<-memG(a,b,x)
na<-nonmemS(ma,lam)
mb<-memG(a1,b1,y)
nb<-nonmemS(mb,lam)
p<-2
l<-2
t<-2
k<-1
simPG2(ma,na,mb,nb,p,l,t,k)
#[1] 0.5203669 0.5000073 0.7998594 0.7998594
PFS similarity measure simPYY1
Description
PFS similarity measure values using simPYY1 computation technique with membership, and non-membership values of two objects or set of objects.
Usage
simPYY1(ma, na, mb, nb, k)
Arguments
ma |
PFS membership values for the data set x computed using either triangular or trapezoidal or guassian membership function |
na |
PFS non-membership values for the data set x computed using either Sugeno and Terano's or Yager's non-membership function |
mb |
PFS membership values for the data set y computed using either triangular or trapezoidal or guassian membership function |
nb |
PFS non-membership values for the data set y computed using either Sugeno and Terano's or Yager's non-membership function |
k |
A constant value, considered as 1 |
Value
The PFS similarity values of data set y with data set x
References
X. Peng, H. Yuan, and Y. Yang. Pythagorean fuzzy information measures and their applications. International Journal of Intelligent Systems, 32(10):991 - 1029, 2017.
Examples
x<-matrix(c(12,9,14,11,21,16,15,24,20,17,14,11),nrow=4)
y<-matrix(c(11,21,6),nrow=1)
a<-mn(x)
b<-std(x)
a1<-mn(y)
b1<-std(y)
lam<-0.5
ma<-memG(a,b,x)
na<-nonmemS(ma,lam)
mb<-memG(a1,b1,y)
nb<-nonmemS(mb,lam)
k<-1
simPYY1(ma,na,mb,nb,k)
#[1] 0.7253069 0.7257693 0.8985028 0.8985028
PFS similarity measure simPYY2
Description
PFS similarity measure values using simPYY2 computation technique with membership, and non-membership values of two objects or set of objects.
Usage
simPYY2(ma, na, mb, nb, k)
Arguments
ma |
PFS membership values for the data set x computed using either triangular or trapezoidal or guassian membership function |
na |
PFS non-membership values for the data set x computed using either Sugeno and Terano's or Yager's non-membership function |
mb |
PFS membership values for the data set y computed using either triangular or trapezoidal or guassian membership function |
nb |
PFS non-membership values for the data set y computed using either Sugeno and Terano's or Yager's non-membership function |
k |
A constant value, considered as 1 |
Value
The PFS similarity values of data set y with data set x
References
X. Peng, H. Yuan, and Y. Yang. Pythagorean fuzzy information measures and their applications. International Journal of Intelligent Systems, 32(10):991 - 1029, 2017.
Examples
x<-matrix(c(12,9,14,11,21,16,15,24,20,17,14,11),nrow=4)
y<-matrix(c(11,21,6),nrow=1)
a<-mn(x)
b<-std(x)
a1<-mn(y)
b1<-std(y)
lam<-0.5
ma<-memG(a,b,x)
na<-nonmemS(ma,lam)
mb<-memG(a1,b1,y)
nb<-nonmemS(mb,lam)
k<-1
simPYY2(ma,na,mb,nb,k)
#[1] 0.4082725 0.4321653 0.7383688 0.7383688
PFS similarity measure simPYY3
Description
PFS similarity measure values using simPYY3 computation technique with membership, and non-membership values of two objects or set of objects.
Usage
simPYY3(ma, na, mb, nb, k)
Arguments
ma |
PFS membership values for the data set x computed using either triangular or trapezoidal or guassian membership function |
na |
PFS non-membership values for the data set x computed using either Sugeno and Terano's or Yager's non-membership function |
mb |
PFS membership values for the data set y computed using either triangular or trapezoidal or guassian membership function |
nb |
PFS non-membership values for the data set y computed using either Sugeno and Terano's or Yager's non-membership function |
k |
A constant value, considered as 1 |
Value
The PFS similarity values of data set y with data set x
References
X. Peng, H. Yuan, and Y. Yang. Pythagorean fuzzy information measures and their applications. International Journal of Intelligent Systems, 32(10):991 - 1029, 2017.
Examples
x<-matrix(c(12,9,14,11,21,16,15,24,20,17,14,11),nrow=4)
y<-matrix(c(11,21,6),nrow=1)
a<-mn(x)
b<-std(x)
a1<-mn(y)
b1<-std(y)
lam<-0.5
ma<-memG(a,b,x)
na<-nonmemS(ma,lam)
mb<-memG(a1,b1,y)
nb<-nonmemS(mb,lam)
k<-1
simPYY3(ma,na,mb,nb,k)
#[1] 0.6973456 0.7033537 0.8813094 0.8813094
SFS similarity measure simSGFDK1
Description
SFS similarity measure values using simSGFDK1 computation technique with membership,non-membership, and indeterminacy membership values of two objects or set of objects.
Usage
simSGFDK1(ma, na, mb, nb, ia, ib, k)
Arguments
ma |
SFS membership values for the data set x computed using either triangular or trapezoidal or guassian membership function |
na |
SFS non-membership values for the data set x computed using either Sugeno and Terano's or Yager's non-membership function |
mb |
SFS membership values for the data set y computed using either triangular or trapezoidal or guassian membership function |
nb |
SFS non-membership values for the data set y computed using either Sugeno and Terano's or Yager's non-membership function |
ia |
SFS indeterminacy membership values for the data set x |
ib |
SFS indeterminacy membership values for the data set y |
k |
A constant value, considered as 1 |
Value
The SFS similarity values of data set y with data set x
References
S. A. S. Shishavan, F. K. Gundogdu, E. Farrokhizadeh, Y. Donyatalab, and C. Kahraman. Novel similarity measures in spherical fuzzy environment and their applications. Engineering Applications of Artificial Intelligence, 94:103837, 2020.
Examples
x<-matrix(c(12,9,14,11,21,16,15,24,20,17,14,11),nrow=4)
y<-matrix(c(11,21,6),nrow=1)
a<-mn(x)
b<-std(x)
a1<-mn(y)
b1<-std(y)
lam<-0.5
ma<-memG(a,b,x)
na<-nonmemS(ma,lam)
ia<-imemSFS(ma,na)
mb<-memG(a1,b1,y)
nb<-nonmemS(mb,lam)
ib<-imemSFS(mb,nb)
k<-1
simSGFDK1(ma,na,mb,nb,ia,ib,k)
#[1] 0.5765316 0.5799590 0.9132581 0.9132581
SFS similarity measure simSGFDK2
Description
SFS similarity measure values using simSGFDK2 computation technique with membership,non-membership, indeterminacy membership, and refusal membership values of two objects or set of objects.
Usage
simSGFDK2(ma, na, mb, nb, ia, ib, ra, rb, k)
Arguments
ma |
SFS membership values for the data set x computed using either triangular or trapezoidal or guassian membership function |
na |
SFS non-membership values for the data set x computed using either Sugeno and Terano's or Yager's non-membership function |
mb |
SFS membership values for the data set y computed using either triangular or trapezoidal or guassian membership function |
nb |
SFS non-membership values for the data set y computed using either Sugeno and Terano's or Yager's non-membership function |
ia |
SFS indeterminacy membership values for the data set x |
ib |
SFS indeterminacy membership values for the data set y |
ra |
SFS refusal membership values for the data set x |
rb |
SFS refusal membership values for the data set y |
k |
A constant value, considered as 1 |
Value
The SFS similarity values of data set y with data set x
References
S. A. S. Shishavan, F. K. Gundogdu, E. Farrokhizadeh, Y. Donyatalab, and C. Kahraman. Novel similarity measures in spherical fuzzy environment and their applications. Engineering Applications of Artificial Intelligence, 94:103837, 2020.
Examples
x<-matrix(c(12,9,14,11,21,16,15,24,20,17,14,11),nrow=4)
y<-matrix(c(11,21,6),nrow=1)
a<-mn(x)
b<-std(x)
a1<-mn(y)
b1<-std(y)
lam<-0.5
ma<-memG(a,b,x)
na<-nonmemS(ma,lam)
ia<-imemSFS(ma,na)
ra<-rmemSFS(ma,na,ia)
mb<-memG(a1,b1,y)
nb<-nonmemS(mb,lam)
ib<-imemSFS(mb,nb)
rb<-rmemSFS(mb,nb,ib)
k<-1
simSGFDK2(ma,na,mb,nb,ia,ib,ra,rb,k)
#[1] 0.5582521 0.5488739 0.8922309 0.8922309
SFS similarity measure simSGFDK3
Description
SFS similarity measure values using simSGFDK3 computation technique with membership,non-membership, and indeterminacy membership values of two objects or set of objects.
Usage
simSGFDK3(ma, na, mb, nb, ia, ib, k)
Arguments
ma |
SFS membership values for the data set x computed using either triangular or trapezoidal or guassian membership function |
na |
SFS non-membership values for the data set x computed using either Sugeno and Terano's or Yager's non-membership function |
mb |
SFS membership values for the data set y computed using either triangular or trapezoidal or guassian membership function |
nb |
SFS non-membership values for the data set y computed using either Sugeno and Terano's or Yager's non-membership function |
ia |
SFS indeterminacy membership values for the data set x |
ib |
SFS indeterminacy membership values for the data set y |
k |
A constant value, considered as 1 |
Value
The SFS similarity values of data set y with data set x
References
S. A. S. Shishavan, F. K. Gundogdu, E. Farrokhizadeh, Y. Donyatalab, and C. Kahraman. Novel similarity measures in spherical fuzzy environment and their applications. Engineering Applications of Artificial Intelligence, 94:103837, 2020.
Examples
x<-matrix(c(12,9,14,11,21,16,15,24,20,17,14,11),nrow=4)
y<-matrix(c(11,21,6),nrow=1)
a<-mn(x)
b<-std(x)
a1<-mn(y)
b1<-std(y)
lam<-0.5
ma<-memG(a,b,x)
na<-nonmemS(ma,lam)
ia<-imemSFS(ma,na)
mb<-memG(a1,b1,y)
nb<-nonmemS(mb,lam)
ib<-imemSFS(mb,nb)
k<-1
simSGFDK3(ma,na,mb,nb,ia,ib,k)
#[1] 0.5433799 0.5440421 0.8018367 0.8018367
SFS similarity measure simSGFDK4
Description
SFS similarity measure values using simSGFDK4 computation technique with membership,non-membership, indeterminacy membership, and refusal membership values of two objects or set of objects.
Usage
simSGFDK4(ma, na, mb, nb, ia, ib, ra, rb, k)
Arguments
ma |
SFS membership values for the data set x computed using either triangular or trapezoidal or guassian membership function |
na |
SFS non-membership values for the data set x computed using either Sugeno and Terano's or Yager's non-membership function |
mb |
SFS membership values for the data set y computed using either triangular or trapezoidal or guassian membership function |
nb |
SFS non-membership values for the data set y computed using either Sugeno and Terano's or Yager's non-membership function |
ia |
SFS indeterminacy membership values for the data set x |
ib |
SFS indeterminacy membership values for the data set y |
ra |
SFS refusal membership values for the data set x |
rb |
SFS refusal membership values for the data set y |
k |
A constant value, considered as 1 |
Value
The SFS similarity values of data set y with data set x
References
S. A. S. Shishavan, F. K. Gundogdu, E. Farrokhizadeh, Y. Donyatalab, and C. Kahraman. Novel similarity measures in spherical fuzzy environment and their applications. Engineering Applications of Artificial Intelligence, 94:103837, 2020.
Examples
x<-matrix(c(12,9,14,11,21,16,15,24,20,17,14,11),nrow=4)
y<-matrix(c(11,21,6),nrow=1)
a<-mn(x)
b<-std(x)
a1<-mn(y)
b1<-std(y)
lam<-0.5
ma<-memG(a,b,x)
na<-nonmemS(ma,lam)
ia<-imemSFS(ma,na)
ra<-rmemSFS(ma,na,ia)
mb<-memG(a1,b1,y)
nb<-nonmemS(mb,lam)
ib<-imemSFS(mb,nb)
rb<-rmemSFS(mb,nb,ib)
k<-1
simSGFDK4(ma,na,mb,nb,ia,ib,ra,rb,k)
#[1] 0.5433799 0.4910220 0.6803727 0.6803727
SFS similarity measure simSGFDK5
Description
SFS similarity measure values using simSGFDK5 computation technique with membership,non-membership, and indeterminacy membership values of two objects or set of objects.
Usage
simSGFDK5(ma, na, mb, nb, ia, ib, k)
Arguments
ma |
SFS membership values for the data set x computed using either triangular or trapezoidal or guassian membership function |
na |
SFS non-membership values for the data set x computed using either Sugeno and Terano's or Yager's non-membership function |
mb |
SFS membership values for the data set y computed using either triangular or trapezoidal or guassian membership function |
nb |
SFS non-membership values for the data set y computed using either Sugeno and Terano's or Yager's non-membership function |
ia |
SFS indeterminacy membership values for the data set x |
ib |
SFS indeterminacy membership values for the data set y |
k |
A constant value, considered as 1 |
Value
The SFS similarity values of data set y with data set x
References
S. A. S. Shishavan, F. K. Gundogdu, E. Farrokhizadeh, Y. Donyatalab, and C. Kahraman. Novel similarity measures in spherical fuzzy environment and their applications. Engineering Applications of Artificial Intelligence, 94:103837, 2020.
Examples
x<-matrix(c(12,9,14,11,21,16,15,24,20,17,14,11),nrow=4)
y<-matrix(c(11,21,6),nrow=1)
a<-mn(x)
b<-std(x)
a1<-mn(y)
b1<-std(y)
lam<-0.5
ma<-memG(a,b,x)
na<-nonmemS(ma,lam)
ia<-imemSFS(ma,na)
mb<-memG(a1,b1,y)
nb<-nonmemS(mb,lam)
ib<-imemSFS(mb,nb)
k<-1
simSGFDK5(ma,na,mb,nb,ia,ib,k)
#[1] 0.6563487 0.6447030 0.8547821 0.8547821
SFS similarity measure simSGFDK6
Description
SFS similarity measure values using simSGFDK6 computation technique with membership,non-membership, indeterminacy membership, and refusal membership values of two objects or set of objects.
Usage
simSGFDK6(ma, na, mb, nb, ia, ib, ra, rb, k)
Arguments
ma |
SFS membership values for the data set x computed using either triangular or trapezoidal or guassian membership function |
na |
SFS non-membership values for the data set x computed using either Sugeno and Terano's or Yager's non-membership function |
mb |
SFS membership values for the data set y computed using either triangular or trapezoidal or guassian membership function |
nb |
SFS non-membership values for the data set y computed using either Sugeno and Terano's or Yager's non-membership function |
ia |
SFS indeterminacy membership values for the data set x |
ib |
SFS indeterminacy membership values for the data set y |
ra |
SFS refusal membership values for the data set x |
rb |
SFS refusal membership values for the data set y |
k |
A constant value, considered as 1 |
Value
The SFS similarity values of data set y with data set x
References
S. A. S. Shishavan, F. K. Gundogdu, E. Farrokhizadeh, Y. Donyatalab, and C. Kahraman. Novel similarity measures in spherical fuzzy environment and their applications. Engineering Applications of Artificial Intelligence, 94:103837, 2020.
Examples
x<-matrix(c(12,9,14,11,21,16,15,24,20,17,14,11),nrow=4)
y<-matrix(c(11,21,6),nrow=1)
a<-mn(x)
b<-std(x)
a1<-mn(y)
b1<-std(y)
lam<-0.5
ma<-memG(a,b,x)
na<-nonmemS(ma,lam)
ia<-imemSFS(ma,na)
ra<-rmemSFS(ma,na,ia)
mb<-memG(a1,b1,y)
nb<-nonmemS(mb,lam)
ib<-imemSFS(mb,nb)
rb<-rmemSFS(mb,nb,ib)
k<-1
simSGFDK6(ma,na,mb,nb,ia,ib,ra,rb,k)
#[1] 0.6563487 0.6334610 0.7893601 0.7893601
SFS similarity measure simSGFDK7
Description
SFS similarity measure values using simSGFDK7 computation technique with membership,non-membership, and indeterminacy membership values of two objects or set of objects.
Usage
simSGFDK7(ma, na, mb, nb, ia, ib, k)
Arguments
ma |
SFS membership values for the data set x computed using either triangular or trapezoidal or guassian membership function |
na |
SFS non-membership values for the data set x computed using either Sugeno and Terano's or Yager's non-membership function |
mb |
SFS membership values for the data set y computed using either triangular or trapezoidal or guassian membership function |
nb |
SFS non-membership values for the data set y computed using either Sugeno and Terano's or Yager's non-membership function |
ia |
SFS indeterminacy membership values for the data set x |
ib |
SFS indeterminacy membership values for the data set y |
k |
A constant value, considered as 1 |
Value
The SFS similarity values of data set y with data set x
References
S. A. S. Shishavan, F. K. Gundogdu, E. Farrokhizadeh, Y. Donyatalab, and C. Kahraman. Novel similarity measures in spherical fuzzy environment and their applications. Engineering Applications of Artificial Intelligence, 94:103837, 2020.
Examples
x<-matrix(c(12,9,14,11,21,16,15,24,20,17,14,11),nrow=4)
y<-matrix(c(11,21,6),nrow=1)
a<-mn(x)
b<-std(x)
a1<-mn(y)
b1<-std(y)
lam<-0.5
ma<-memG(a,b,x)
na<-nonmemS(ma,lam)
ia<-imemSFS(ma,na)
mb<-memG(a1,b1,y)
nb<-nonmemS(mb,lam)
ib<-imemSFS(mb,nb)
k<-1
simSGFDK7(ma,na,mb,nb,ia,ib,k)
#[1] 0.9670246 0.9661003 0.9976603 0.9976603
SFS similarity measure simSGFDK8
Description
SFS similarity measure values using simSGFDK8 computation technique with membership,non-membership, indeterminacy membership, and refusal membership values of two objects or set of objects.
Usage
simSGFDK8(ma, na, mb, nb, ia, ib, ra, rb, k)
Arguments
ma |
SFS membership values for the data set x computed using either triangular or trapezoidal or guassian membership function |
na |
SFS non-membership values for the data set x computed using either Sugeno and Terano's or Yager's non-membership function |
mb |
SFS membership values for the data set y computed using either triangular or trapezoidal or guassian membership function |
nb |
SFS non-membership values for the data set y computed using either Sugeno and Terano's or Yager's non-membership function |
ia |
SFS indeterminacy membership values for the data set x |
ib |
SFS indeterminacy membership values for the data set y |
ra |
SFS refusal membership values for the data set x |
rb |
SFS refusal membership values for the data set y |
k |
A constant value, considered as 1 |
Value
The SFS similarity values of data set y with data set x
References
S. A. S. Shishavan, F. K. Gundogdu, E. Farrokhizadeh, Y. Donyatalab, and C. Kahraman. Novel similarity measures in spherical fuzzy environment and their applications. Engineering Applications of Artificial Intelligence, 94:103837, 2020.
Examples
x<-matrix(c(12,9,14,11,21,16,15,24,20,17,14,11),nrow=4)
y<-matrix(c(11,21,6),nrow=1)
a<-mn(x)
b<-std(x)
a1<-mn(y)
b1<-std(y)
lam<-0.5
ma<-memG(a,b,x)
na<-nonmemS(ma,lam)
ia<-imemSFS(ma,na)
ra<-rmemSFS(ma,na,ia)
mb<-memG(a1,b1,y)
nb<-nonmemS(mb,lam)
ib<-imemSFS(mb,nb)
rb<-rmemSFS(mb,nb,ib)
k<-1
simSGFDK8(ma,na,mb,nb,ia,ib,ra,rb,k)
#[1] 0.8558748 0.8421080 0.8994662 0.8994662
IFS similarity measure simSWLX
Description
IFS similarity measure values using simSWLX computation technique with membership,non-membership, and hesitancy values of two objects or set of objects.
Usage
simSWLX(ma, na, mb, nb, ha, hb, k)
Arguments
ma |
IFS membership values for the data set x computed using either triangular or trapezoidal or guassian membership function |
na |
IFS non-membership values for the data set x computed using either Sugeno and Terano's or Yager's non-membership function |
mb |
IFS membership values for the data set y computed using either triangular or trapezoidal or guassian membership function |
nb |
IFS non-membership values for the data set y computed using either Sugeno and Terano's or Yager's non-membership function |
ha |
IFS hesitancy values for the data set x |
hb |
IFS hesitancy values for the data set y |
k |
A constant value, considered as 1 |
Value
The IFS similarity values of data set y with data set x
References
Y. Song, X. Wang, L. Lei, and A. Xue. A new similarity measure between intuitionistic fuzzy sets and its application to pattern recognition. In Abstract and Applied Analysis, volume 2014. Hindawi, 2014.
Examples
x<-matrix(c(12,9,14,11,21,16,15,24,20,17,14,11),nrow=4)
y<-matrix(c(11,21,6),nrow=1)
a<-mn(x)
b<-std(x)
a1<-mn(y)
b1<-std(y)
lam<-0.5
ma<-memG(a,b,x)
na<-nonmemS(ma,lam)
ha<-hmemIFS(ma,na)
mb<-memG(a1,b1,y)
nb<-nonmemS(mb,lam)
hb<-hmemIFS(mb,nb)
k<-1
simSWLX(ma,na,mb,nb,ha,hb,k)
#[1] 0.9241207 0.9180258 0.9853267 0.9853267
IFS similarity measure simSY
Description
IFS similarity measure values using simSY computation technique with membership,non-membership, and hesitancy values of two objects or set of objects.
Usage
simSY(ma, na, mb, nb, ha, hb, k)
Arguments
ma |
IFS membership values for the data set x computed using either triangular or trapezoidal or guassian membership function |
na |
IFS non-membership values for the data set x computed using either Sugeno and Terano's or Yager's non-membership function |
mb |
IFS membership values for the data set y computed using either triangular or trapezoidal or guassian membership function |
nb |
IFS non-membership values for the data set y computed using either Sugeno and Terano's or Yager's non-membership function |
ha |
IFS hesitancy values for the data set x |
hb |
IFS hesitancy values for the data set y |
k |
A constant value, considered as 1 |
Value
The IFS similarity values of data set y with data set x
References
L. Shi and J. Ye. Study on fault diagnosis of turbine using an improved cosine similarity measure for vague sets. Journal of Applied Sciences, 13(10):1781 - 1786, 2013.
Examples
x<-matrix(c(12,9,14,11,21,16,15,24,20,17,14,11),nrow=4)
y<-matrix(c(11,21,6),nrow=1)
a<-mn(x)
b<-std(x)
a1<-mn(y)
b1<-std(y)
lam<-0.5
ma<-memG(a,b,x)
na<-nonmemS(ma,lam)
ha<-hmemIFS(ma,na)
mb<-memG(a1,b1,y)
nb<-nonmemS(mb,lam)
hb<-hmemIFS(mb,nb)
k<-1
simSY(ma,na,mb,nb,ha,hb,k)
#[1] 0.8982202 0.8904059 0.9890627 0.9890627
PFS similarity measure simWW1
Description
PFS similarity measure values using simWW1 computation technique with membership, and non-membership values of two objects or set of objects.
Usage
simWW1(ma, na, mb, nb, k)
Arguments
ma |
PFS membership values for the data set x computed using either triangular or trapezoidal or guassian membership function |
na |
PFS non-membership values for the data set x computed using either Sugeno and Terano's or Yager's non-membership function |
mb |
PFS membership values for the data set y computed using either triangular or trapezoidal or guassian membership function |
nb |
PFS non-membership values for the data set y computed using either Sugeno and Terano's or Yager's non-membership function |
k |
A constant value, considered as 1 |
Value
The PFS similarity values of data set y with data set x
References
G.Wei and Y.Wei. Similarity measures of pythagorean fuzzy sets based on the cosine function and their applications. International Journal of Intelligent Systems, 33(3):634 - 652, 2018.
Examples
x<-matrix(c(12,9,14,11,21,16,15,24,20,17,14,11),nrow=4)
y<-matrix(c(11,21,6),nrow=1)
a<-mn(x)
b<-std(x)
a1<-mn(y)
b1<-std(y)
lam<-0.5
ma<-memG(a,b,x)
na<-nonmemS(ma,lam)
mb<-memG(a1,b1,y)
nb<-nonmemS(mb,lam)
k<-1
simWW1(ma,na,mb,nb,k)
#[1] 0.9360206 0.9342653 0.9953501 0.9953501
PFS similarity measure simWW2
Description
PFS similarity measure values using simWW2 computation technique with membership,non-membership, and hesitancy values of two objects or set of objects.
Usage
simWW2(ma, na, mb, nb, ha, hb, k)
Arguments
ma |
PFS membership values for the data set x computed using either triangular or trapezoidal or guassian membership function |
na |
PFS non-membership values for the data set x computed using either Sugeno and Terano's or Yager's non-membership function |
mb |
PFS membership values for the data set y computed using either triangular or trapezoidal or guassian membership function |
nb |
PFS non-membership values for the data set y computed using either Sugeno and Terano's or Yager's non-membership function |
ha |
PFS hesitancy values for the data set x |
hb |
PFS hesitancy values for the data set y |
k |
A constant value, considered as 1 |
Value
The PFS similarity values of data set y with data set x
References
G.Wei and Y.Wei. Similarity measures of pythagorean fuzzy sets based on the cosine function and their applications. International Journal of Intelligent Systems, 33(3):634 - 652, 2018.
Examples
x<-matrix(c(12,9,14,11,21,16,15,24,20,17,14,11),nrow=4)
y<-matrix(c(11,21,6),nrow=1)
a<-mn(x)
b<-std(x)
a1<-mn(y)
b1<-std(y)
lam<-0.5
ma<-memG(a,b,x)
na<-nonmemS(ma,lam)
ha<-hmemPFS(ma,na)
mb<-memG(a1,b1,y)
nb<-nonmemS(mb,lam)
hb<-hmemPFS(mb,nb)
k<-1
simWW2(ma,na,mb,nb,ha,hb,k)
#[1] 0.7061971 0.6841839 0.9511029 0.9511029
PFS similarity measure simWW3
Description
PFS similarity measure values using simWW3 computation technique with membership, and non-membership values of two objects or set of objects.
Usage
simWW3(ma, na, mb, nb, k)
Arguments
ma |
PFS membership values for the data set x computed using either triangular or trapezoidal or guassian membership function |
na |
PFS non-membership values for the data set x computed using either Sugeno and Terano's or Yager's non-membership function |
mb |
PFS membership values for the data set y computed using either triangular or trapezoidal or guassian membership function |
nb |
PFS non-membership values for the data set y computed using either Sugeno and Terano's or Yager's non-membership function |
k |
A constant value, considered as 1 |
Value
The PFS similarity values of data set y with data set x
References
G.Wei and Y.Wei. Similarity measures of pythagorean fuzzy sets based on the cosine function and their applications. International Journal of Intelligent Systems, 33(3):634 - 652, 2018.
Examples
x<-matrix(c(12,9,14,11,21,16,15,24,20,17,14,11),nrow=4)
y<-matrix(c(11,21,6),nrow=1)
a<-mn(x)
b<-std(x)
a1<-mn(y)
b1<-std(y)
lam<-0.5
ma<-memG(a,b,x)
na<-nonmemS(ma,lam)
mb<-memG(a1,b1,y)
nb<-nonmemS(mb,lam)
k<-1
simWW3(ma,na,mb,nb,k)
#[1] 0.7362461 0.7150021 0.9511755 0.9511755
PFS similarity measure simWW4
Description
PFS similarity measure values using simWW4 computation technique with membership, and non-membership values of two objects or set of objects.
Usage
simWW4(ma, na, mb, nb, k)
Arguments
ma |
PFS membership values for the data set x computed using either triangular or trapezoidal or guassian membership function |
na |
PFS non-membership values for the data set x computed using either Sugeno and Terano's or Yager's non-membership function |
mb |
PFS membership values for the data set y computed using either triangular or trapezoidal or guassian membership function |
nb |
PFS non-membership values for the data set y computed using either Sugeno and Terano's or Yager's non-membership function |
k |
A constant value, considered as 1 |
Value
The PFS similarity values of data set y with data set x
References
G.Wei and Y.Wei. Similarity measures of pythagorean fuzzy sets based on the cosine function and their applications. International Journal of Intelligent Systems, 33(3):634 - 652, 2018.
Examples
x<-matrix(c(12,9,14,11,21,16,15,24,20,17,14,11),nrow=4)
y<-matrix(c(11,21,6),nrow=1)
a<-mn(x)
b<-std(x)
a1<-mn(y)
b1<-std(y)
lam<-0.5
ma<-memG(a,b,x)
na<-nonmemS(ma,lam)
mb<-memG(a1,b1,y)
nb<-nonmemS(mb,lam)
k<-1
simWW4(ma,na,mb,nb,k)
#[1] 0.8971627 0.8883797 0.9843815 0.9843815
PFS similarity measure simWW5
Description
PFS similarity measure values using simWW5 computation technique with membership,non-membership, and hesitancy values of two objects or set of objects.
Usage
simWW5(ma, na, mb, nb, ha, hb, k)
Arguments
ma |
PFS membership values for the data set x computed using either triangular or trapezoidal or guassian membership function |
na |
PFS non-membership values for the data set x computed using either Sugeno and Terano's or Yager's non-membership function |
mb |
PFS membership values for the data set y computed using either triangular or trapezoidal or guassian membership function |
nb |
PFS non-membership values for the data set y computed using either Sugeno and Terano's or Yager's non-membership function |
ha |
PFS hesitancy values for the data set x |
hb |
PFS hesitancy values for the data set y |
k |
A constant value, considered as 1 |
Value
The PFS similarity values of data set y with data set x
References
G.Wei and Y.Wei. Similarity measures of pythagorean fuzzy sets based on the cosine function and their applications. International Journal of Intelligent Systems, 33(3):634 - 652, 2018.
Examples
x<-matrix(c(12,9,14,11,21,16,15,24,20,17,14,11),nrow=4)
y<-matrix(c(11,21,6),nrow=1)
a<-mn(x)
b<-std(x)
a1<-mn(y)
b1<-std(y)
lam<-0.5
ma<-memG(a,b,x)
na<-nonmemS(ma,lam)
ha<-hmemPFS(ma,na)
mb<-memG(a1,b1,y)
nb<-nonmemS(mb,lam)
hb<-hmemPFS(mb,nb)
k<-1
simWW5(ma,na,mb,nb,ha,hb,k)
#[1] 0.7362461 0.7150021 0.9511755 0.9511755
PFS similarity measure simWW6
Description
PFS similarity measure values using simWW6 computation technique with membership,non-membership, and hesitancy values of two objects or set of objects.
Usage
simWW6(ma, na, mb, nb, ha, hb, k)
Arguments
ma |
PFS membership values for the data set x computed using either triangular or trapezoidal or guassian membership function |
na |
PFS non-membership values for the data set x computed using either Sugeno and Terano's or Yager's non-membership function |
mb |
PFS membership values for the data set y computed using either triangular or trapezoidal or guassian membership function |
nb |
PFS non-membership values for the data set y computed using either Sugeno and Terano's or Yager's non-membership function |
ha |
PFS hesitancy values for the data set x |
hb |
PFS hesitancy values for the data set y |
k |
A constant value, considered as 1 |
Value
The PFS similarity values of data set y with data set x
References
G.Wei and Y.Wei. Similarity measures of pythagorean fuzzy sets based on the cosine function and their applications. International Journal of Intelligent Systems, 33(3):634 - 652, 2018.
Examples
x<-matrix(c(12,9,14,11,21,16,15,24,20,17,14,11),nrow=4)
y<-matrix(c(11,21,6),nrow=1)
a<-mn(x)
b<-std(x)
a1<-mn(y)
b1<-std(y)
lam<-0.5
ma<-memG(a,b,x)
na<-nonmemS(ma,lam)
ha<-hmemPFS(ma,na)
mb<-memG(a1,b1,y)
nb<-nonmemS(mb,lam)
hb<-hmemPFS(mb,nb)
k<-1
simWW6(ma,na,mb,nb,ha,hb,k)
#[1] 0.7362461 0.7150021 0.9511755 0.9511755
SFS similarity measure simWWLWW1
Description
SFS similarity measure values using simWWLWW1 computation technique with membership,non-membership, and indeterminacy membership values of two objects or set of objects.
Usage
simWWLWW1(ma, na, mb, nb, ia, ib, k)
Arguments
ma |
SFS membership values for the data set x computed using either triangular or trapezoidal or guassian membership function |
na |
SFS non-membership values for the data set x computed using either Sugeno and Terano's or Yager's non-membership function |
mb |
SFS membership values for the data set y computed using either triangular or trapezoidal or guassian membership function |
nb |
SFS non-membership values for the data set y computed using either Sugeno and Terano's or Yager's non-membership function |
ia |
SFS indeterminacy membership values for the data set x |
ib |
SFS indeterminacy membership values for the data set y |
k |
A constant value, considered as 1 |
Value
The SFS similarity values of data set y with data set x
References
G. Wei, J. Wang, M. Lu, J. Wu, and C. Wei. Similarity measures of spherical fuzzy sets based on cosine function and their applications. IEEE Access, 7:159069 - 159080, 2019.
Examples
x<-matrix(c(12,9,14,11,21,16,15,24,20,17,14,11),nrow=4)
y<-matrix(c(11,21,6),nrow=1)
a<-mn(x)
b<-std(x)
a1<-mn(y)
b1<-std(y)
lam<-0.5
ma<-memG(a,b,x)
na<-nonmemS(ma,lam)
ia<-imemSFS(ma,na)
mb<-memG(a1,b1,y)
nb<-nonmemS(mb,lam)
ib<-imemSFS(mb,nb)
k<-1
simWWLWW1(ma,na,mb,nb,ia,ib,k)
#[1] 0.9357619 0.9339882 0.9953291 0.9953291
SFS similarity measure simWWLWW10
Description
SFS similarity measure values using simWWLWW10 computation technique with membership,non-membership, indeterminacy membership, and refusal membership values of two objects or set of objects.
Usage
simWWLWW10(ma, na, mb, nb, ia, ib, ra, rb, k)
Arguments
ma |
SFS membership values for the data set x computed using either triangular or trapezoidal or guassian membership function |
na |
SFS non-membership values for the data set x computed using either Sugeno and Terano's or Yager's non-membership function |
mb |
SFS membership values for the data set y computed using either triangular or trapezoidal or guassian membership function |
nb |
SFS non-membership values for the data set y computed using either Sugeno and Terano's or Yager's non-membership function |
ia |
SFS indeterminacy membership values for the data set x |
ib |
SFS indeterminacy membership values for the data set y |
ra |
SFS refusal membership values for the data set x |
rb |
SFS refusal membership values for the data set y |
k |
A constant value, considered as 1 |
Value
The SFS similarity values of data set y with data set x
References
G. Wei, J. Wang, M. Lu, J. Wu, and C. Wei. Similarity measures of spherical fuzzy sets based on cosine function and their applications. IEEE Access, 7:159069 - 159080, 2019.
Examples
x<-matrix(c(12,9,14,11,21,16,15,24,20,17,14,11),nrow=4)
y<-matrix(c(11,21,6),nrow=1)
a<-mn(x)
b<-std(x)
a1<-mn(y)
b1<-std(y)
lam<-0.5
ma<-memG(a,b,x)
na<-nonmemS(ma,lam)
ia<-imemSFS(ma,na)
ra<-rmemSFS(ma,na,ia)
mb<-memG(a1,b1,y)
nb<-nonmemS(mb,lam)
ib<-imemSFS(mb,nb)
rb<-rmemSFS(mb,nb,ib)
k<-1
simWWLWW10(ma,na,mb,nb,ia,ib,ra,rb,k)
#[1] 0.04488958 0.04334510 0.08280306 0.08280306
SFS similarity measure simWWLWW2
Description
SFS similarity measure values using simWWLWW2 computation technique with membership,non-membership, indeterminacy membership, and refusal membership values of two objects or set of objects.
Usage
simWWLWW2(ma, na, mb, nb, ia, ib, ra, rb, k)
Arguments
ma |
SFS membership values for the data set x computed using either triangular or trapezoidal or guassian membership function |
na |
SFS non-membership values for the data set x computed using either Sugeno and Terano's or Yager's non-membership function |
mb |
SFS membership values for the data set y computed using either triangular or trapezoidal or guassian membership function |
nb |
SFS non-membership values for the data set y computed using either Sugeno and Terano's or Yager's non-membership function |
ia |
SFS indeterminacy membership values for the data set x |
ib |
SFS indeterminacy membership values for the data set y |
ra |
SFS refusal membership values for the data set x |
rb |
SFS refusal membership values for the data set y |
k |
A constant value, considered as 1 |
Value
The SFS similarity values of data set y with data set x
References
G. Wei, J. Wang, M. Lu, J. Wu, and C. Wei. Similarity measures of spherical fuzzy sets based on cosine function and their applications. IEEE Access, 7:159069 - 159080, 2019.
Examples
x<-matrix(c(12,9,14,11,21,16,15,24,20,17,14,11),nrow=4)
y<-matrix(c(11,21,6),nrow=1)
a<-mn(x)
b<-std(x)
a1<-mn(y)
b1<-std(y)
lam<-0.5
ma<-memG(a,b,x)
na<-nonmemS(ma,lam)
ia<-imemSFS(ma,na)
ra<-rmemSFS(ma,na,ia)
mb<-memG(a1,b1,y)
nb<-nonmemS(mb,lam)
ib<-imemSFS(mb,nb)
rb<-rmemSFS(mb,nb,ib)
k<-1
simWWLWW2(ma,na,mb,nb,ia,ib,ra,rb,k)
#[1] 0.7092608 0.6874359 0.9519182 0.9519182
SFS similarity measure simWWLWW3
Description
SFS similarity measure values using simWWLWW3 computation technique with membership,non-membership, and indeterminacy membership values of two objects or set of objects.
Usage
simWWLWW3(ma, na, mb, nb, ia, ib, k)
Arguments
ma |
SFS membership values for the data set x computed using either triangular or trapezoidal or guassian membership function |
na |
SFS non-membership values for the data set x computed using either Sugeno and Terano's or Yager's non-membership function |
mb |
SFS membership values for the data set y computed using either triangular or trapezoidal or guassian membership function |
nb |
SFS non-membership values for the data set y computed using either Sugeno and Terano's or Yager's non-membership function |
ia |
SFS indeterminacy membership values for the data set x |
ib |
SFS indeterminacy membership values for the data set y |
k |
A constant value, considered as 1 |
Value
The SFS similarity values of data set y with data set x
References
G. Wei, J. Wang, M. Lu, J. Wu, and C. Wei. Similarity measures of spherical fuzzy sets based on cosine function and their applications. IEEE Access, 7:159069 - 159080, 2019.
Examples
x<-matrix(c(12,9,14,11,21,16,15,24,20,17,14,11),nrow=4)
y<-matrix(c(11,21,6),nrow=1)
a<-mn(x)
b<-std(x)
a1<-mn(y)
b1<-std(y)
lam<-0.5
ma<-memG(a,b,x)
na<-nonmemS(ma,lam)
ia<-imemSFS(ma,na)
mb<-memG(a1,b1,y)
nb<-nonmemS(mb,lam)
ib<-imemSFS(mb,nb)
k<-1
simWWLWW3(ma,na,mb,nb,ia,ib,k)
#[1] 0.7362461 0.7150021 0.9511755 0.9511755
SFS similarity measure simWWLWW4
Description
SFS similarity measure values using simWWLWW4 computation technique with membership,non-membership, and indeterminacy membership values of two objects or set of objects.
Usage
simWWLWW4(ma, na, mb, nb, ia, ib, k)
Arguments
ma |
SFS membership values for the data set x computed using either triangular or trapezoidal or guassian membership function |
na |
SFS non-membership values for the data set x computed using either Sugeno and Terano's or Yager's non-membership function |
mb |
SFS membership values for the data set y computed using either triangular or trapezoidal or guassian membership function |
nb |
SFS non-membership values for the data set y computed using either Sugeno and Terano's or Yager's non-membership function |
ia |
SFS indeterminacy membership values for the data set x |
ib |
SFS indeterminacy membership values for the data set y |
k |
A constant value, considered as 1 |
Value
The SFS similarity values of data set y with data set x
References
G. Wei, J. Wang, M. Lu, J. Wu, and C. Wei. Similarity measures of spherical fuzzy sets based on cosine function and their applications. IEEE Access, 7:159069 - 159080, 2019.
Examples
x<-matrix(c(12,9,14,11,21,16,15,24,20,17,14,11),nrow=4)
y<-matrix(c(11,21,6),nrow=1)
a<-mn(x)
b<-std(x)
a1<-mn(y)
b1<-std(y)
lam<-0.5
ma<-memG(a,b,x)
na<-nonmemS(ma,lam)
ia<-imemSFS(ma,na)
mb<-memG(a1,b1,y)
nb<-nonmemS(mb,lam)
ib<-imemSFS(mb,nb)
k<-1
simWWLWW4(ma,na,mb,nb,ia,ib,k)
#[1] 0.8946430 0.8856546 0.9840049 0.9840049
SFS similarity measure simWWLWW5
Description
SFS similarity measure values using simWWLWW5 computation technique with membership,non-membership, indeterminacy membership, and refusal membership values of two objects or set of objects.
Usage
simWWLWW5(ma, na, mb, nb, ia, ib, ra, rb, k)
Arguments
ma |
SFS membership values for the data set x computed using either triangular or trapezoidal or guassian membership function |
na |
SFS non-membership values for the data set x computed using either Sugeno and Terano's or Yager's non-membership function |
mb |
SFS membership values for the data set y computed using either triangular or trapezoidal or guassian membership function |
nb |
SFS non-membership values for the data set y computed using either Sugeno and Terano's or Yager's non-membership function |
ia |
SFS indeterminacy membership values for the data set x |
ib |
SFS indeterminacy membership values for the data set y |
ra |
SFS refusal membership values for the data set x |
rb |
SFS refusal membership values for the data set y |
k |
A constant value, considered as 1 |
Value
The SFS similarity values of data set y with data set x
References
G. Wei, J. Wang, M. Lu, J. Wu, and C. Wei. Similarity measures of spherical fuzzy sets based on cosine function and their applications. IEEE Access, 7:159069 - 159080, 2019.
Examples
x<-matrix(c(12,9,14,11,21,16,15,24,20,17,14,11),nrow=4)
y<-matrix(c(11,21,6),nrow=1)
a<-mn(x)
b<-std(x)
a1<-mn(y)
b1<-std(y)
lam<-0.5
ma<-memG(a,b,x)
na<-nonmemS(ma,lam)
ia<-imemSFS(ma,na)
ra<-rmemSFS(ma,na,ia)
mb<-memG(a1,b1,y)
nb<-nonmemS(mb,lam)
ib<-imemSFS(mb,nb)
rb<-rmemSFS(mb,nb,ib)
k<-1
simWWLWW5(ma,na,mb,nb,ia,ib,ra,rb,k)
#[1] 0.7362461 0.7150021 0.9511755 0.9511755
SFS similarity measure simWWLWW6
Description
SFS similarity measure values using simWWLWW6 computation technique with membership,non-membership, indeterminacy membership, and refusal membership values of two objects or set of objects.
Usage
simWWLWW6(ma, na, mb, nb, ia, ib, ra, rb, k)
Arguments
ma |
SFS membership values for the data set x computed using either triangular or trapezoidal or guassian membership function |
na |
SFS non-membership values for the data set x computed using either Sugeno and Terano's or Yager's non-membership function |
mb |
SFS membership values for the data set y computed using either triangular or trapezoidal or guassian membership function |
nb |
SFS non-membership values for the data set y computed using either Sugeno and Terano's or Yager's non-membership function |
ia |
SFS indeterminacy membership values for the data set x |
ib |
SFS indeterminacy membership values for the data set y |
ra |
SFS refusal membership values for the data set x |
rb |
SFS refusal membership values for the data set y |
k |
A constant value, considered as 1 |
Value
The SFS similarity values of data set y with data set x
References
G. Wei, J. Wang, M. Lu, J. Wu, and C. Wei. Similarity measures of spherical fuzzy sets based on cosine function and their applications. IEEE Access, 7:159069 - 159080, 2019.
Examples
x<-matrix(c(12,9,14,11,21,16,15,24,20,17,14,11),nrow=4)
y<-matrix(c(11,21,6),nrow=1)
a<-mn(x)
b<-std(x)
a1<-mn(y)
b1<-std(y)
lam<-0.5
ma<-memG(a,b,x)
na<-nonmemS(ma,lam)
ia<-imemSFS(ma,na)
ra<-rmemSFS(ma,na,ia)
mb<-memG(a1,b1,y)
nb<-nonmemS(mb,lam)
ib<-imemSFS(mb,nb)
rb<-rmemSFS(mb,nb,ib)
k<-1
simWWLWW6(ma,na,mb,nb,ia,ib,ra,rb,k)
#[1] 0.7362461 0.7150021 0.9511755 0.9511755
SFS similarity measure simWWLWW7
Description
SFS similarity measure values using simWWLWW7 computation technique with membership,non-membership, and indeterminacy membership values of two objects or set of objects.
Usage
simWWLWW7(ma, na, mb, nb, ia, ib, k)
Arguments
ma |
SFS membership values for the data set x computed using either triangular or trapezoidal or guassian membership function |
na |
SFS non-membership values for the data set x computed using either Sugeno and Terano's or Yager's non-membership function |
mb |
SFS membership values for the data set y computed using either triangular or trapezoidal or guassian membership function |
nb |
SFS non-membership values for the data set y computed using either Sugeno and Terano's or Yager's non-membership function |
ia |
SFS indeterminacy membership values for the data set x |
ib |
SFS indeterminacy membership values for the data set y |
k |
A constant value, considered as 1 |
Value
The SFS similarity values of data set y with data set x
References
G. Wei, J. Wang, M. Lu, J. Wu, and C. Wei. Similarity measures of spherical fuzzy sets based on cosine function and their applications. IEEE Access, 7:159069 - 159080, 2019.
Examples
x<-matrix(c(12,9,14,11,21,16,15,24,20,17,14,11),nrow=4)
y<-matrix(c(11,21,6),nrow=1)
a<-mn(x)
b<-std(x)
a1<-mn(y)
b1<-std(y)
lam<-0.5
ma<-memG(a,b,x)
na<-nonmemS(ma,lam)
ia<-imemSFS(ma,na)
mb<-memG(a1,b1,y)
nb<-nonmemS(mb,lam)
ib<-imemSFS(mb,nb)
k<-1
simWWLWW7(ma,na,mb,nb,ia,ib,k)
#[1] 0.04488958 0.04334510 0.08280306 0.08280306
SFS similarity measure simWWLWW8
Description
SFS similarity measure values using simWWLWW8 computation technique with membership,non-membership, and indeterminacy membership values of two objects or set of objects.
Usage
simWWLWW8(ma, na, mb, nb, ia, ib, k)
Arguments
ma |
SFS membership values for the data set x computed using either triangular or trapezoidal or guassian membership function |
na |
SFS non-membership values for the data set x computed using either Sugeno and Terano's or Yager's non-membership function |
mb |
SFS membership values for the data set y computed using either triangular or trapezoidal or guassian membership function |
nb |
SFS non-membership values for the data set y computed using either Sugeno and Terano's or Yager's non-membership function |
ia |
SFS indeterminacy membership values for the data set x |
ib |
SFS indeterminacy membership values for the data set y |
k |
A constant value, considered as 1 |
Value
The SFS similarity values of data set y with data set x
References
G. Wei, J. Wang, M. Lu, J. Wu, and C. Wei. Similarity measures of spherical fuzzy sets based on cosine function and their applications. IEEE Access, 7:159069 - 159080, 2019.
Examples
x<-matrix(c(12,9,14,11,21,16,15,24,20,17,14,11),nrow=4)
y<-matrix(c(11,21,6),nrow=1)
a<-mn(x)
b<-std(x)
a1<-mn(y)
b1<-std(y)
lam<-0.5
ma<-memG(a,b,x)
na<-nonmemS(ma,lam)
ia<-imemSFS(ma,na)
mb<-memG(a1,b1,y)
nb<-nonmemS(mb,lam)
ib<-imemSFS(mb,nb)
k<-1
simWWLWW8(ma,na,mb,nb,ia,ib,k)
#[1] 0.06899567 0.06819133 0.09416530 0.09416530
SFS similarity measure simWWLWW9
Description
SFS similarity measure values using simWWLWW9 computation technique with membership,non-membership, indeterminacy membership, and refusal membership values of two objects or set of objects.
Usage
simWWLWW9(ma, na, mb, nb, ia, ib, ra, rb, k)
Arguments
ma |
SFS membership values for the data set x computed using either triangular or trapezoidal or guassian membership function |
na |
SFS non-membership values for the data set x computed using either Sugeno and Terano's or Yager's non-membership function |
mb |
SFS membership values for the data set y computed using either triangular or trapezoidal or guassian membership function |
nb |
SFS non-membership values for the data set y computed using either Sugeno and Terano's or Yager's non-membership function |
ia |
SFS indeterminacy membership values for the data set x |
ib |
SFS indeterminacy membership values for the data set y |
ra |
SFS refusal membership values for the data set x |
rb |
SFS refusal membership values for the data set y |
k |
A constant value, considered as 1 |
Value
The SFS similarity values of data set y with data set x
References
G. Wei, J. Wang, M. Lu, J. Wu, and C. Wei. Similarity measures of spherical fuzzy sets based on cosine function and their applications. IEEE Access, 7:159069 - 159080, 2019.
Examples
x<-matrix(c(12,9,14,11,21,16,15,24,20,17,14,11),nrow=4)
y<-matrix(c(11,21,6),nrow=1)
a<-mn(x)
b<-std(x)
a1<-mn(y)
b1<-std(y)
lam<-0.5
ma<-memG(a,b,x)
na<-nonmemS(ma,lam)
ia<-imemSFS(ma,na)
ra<-rmemSFS(ma,na,ia)
mb<-memG(a1,b1,y)
nb<-nonmemS(mb,lam)
ib<-imemSFS(mb,nb)
rb<-rmemSFS(mb,nb,ib)
k<-1
simWWLWW9(ma,na,mb,nb,ia,ib,ra,rb,k)
#[1] 0.04488958 0.04334510 0.08280306 0.08280306
IFS similarity measure simY
Description
IFS similarity measure values using simY computation technique with membership, and non-membership values of two objects or set of objects.
Usage
simY(ma, na, mb, nb, k)
Arguments
ma |
IFS membership values for the data set x computed using either triangular or trapezoidal or guassian membership function |
na |
IFS non-membership values for the data set x computed using either Sugeno and Terano's or Yager's non-membership function |
mb |
IFS membership values for the data set y computed using either triangular or trapezoidal or guassian membership function |
nb |
IFS non-membership values for the data set y computed using either Sugeno and Terano's or Yager's non-membership function |
k |
A constant value, considered as 1 |
Value
The IFS similarity values of data set y with data set x
References
J. Ye. Cosine similarity measures for intuitionistic fuzzy sets and their applications. Mathematical and computer modelling, 53(1-2):91 - 97, 2011.
Examples
x<-matrix(c(12,9,14,11,21,16,15,24,20,17,14,11),nrow=4)
y<-matrix(c(11,21,6),nrow=1)
a<-mn(x)
b<-std(x)
a1<-mn(y)
b1<-std(y)
lam<-0.5
ma<-memG(a,b,x)
na<-nonmemS(ma,lam)
mb<-memG(a1,b1,y)
nb<-nonmemS(mb,lam)
k<-1
simY(ma,na,mb,nb,k)
#[1] 0.9024655 0.8950394 0.9898896 0.9898896
PFS similarity measure simZ
Description
PFS similarity measure values using simZ computation technique with membership,non-membership, and hesitancy values of two objects or set of objects.
Usage
simZ(ma, na, mb, nb, ha, hb, k)
Arguments
ma |
PFS membership values for the data set x computed using either triangular or trapezoidal or guassian membership function |
na |
PFS non-membership values for the data set x computed using either Sugeno and Terano's or Yager's non-membership function |
mb |
PFS membership values for the data set y computed using either triangular or trapezoidal or guassian membership function |
nb |
PFS non-membership values for the data set y computed using either Sugeno and Terano's or Yager's non-membership function |
ha |
PFS hesitancy values for the data set x |
hb |
PFS hesitancy values for the data set y |
k |
A constant value, considered as 1 |
Value
The PFS similarity values of data set y with data set x
References
X. Zhang. A novel approach based on similarity measure for pythagorean fuzzy multiple criteria group decision making. International Journal of Intelligent Systems, 31(6):593 - 611, 2016.
Examples
x<-matrix(c(12,9,14,11,21,16,15,24,20,17,14,11),nrow=4)
y<-matrix(c(11,21,6),nrow=1)
a<-mn(x)
b<-std(x)
a1<-mn(y)
b1<-std(y)
lam<-0.5
ma<-memG(a,b,x)
na<-nonmemS(ma,lam)
ha<-hmemPFS(ma,na)
mb<-memG(a1,b1,y)
nb<-nonmemS(mb,lam)
hb<-hmemPFS(mb,nb)
k<-1
simZ(ma,na,mb,nb,ha,hb,k)
#[1] 0.6128632 0.6335697 0.7722389 0.7722389
PFS similarity measure simZHFLL1
Description
PFS similarity measure values using simZHFLL1 computation technique with membership, and non-membership values of two objects or set of objects.
Usage
simZHFLL1(ma, na, mb, nb, k)
Arguments
ma |
PFS membership values for the data set x computed using either triangular or trapezoidal or guassian membership function |
na |
PFS non-membership values for the data set x computed using either Sugeno and Terano's or Yager's non-membership function |
mb |
PFS membership values for the data set y computed using either triangular or trapezoidal or guassian membership function |
nb |
PFS non-membership values for the data set y computed using either Sugeno and Terano's or Yager's non-membership function |
k |
A constant value, considered as 1 |
Value
The PFS similarity values of data set y with data set x
References
Q. Zhang, J. Hu, J. Feng, A. Liu, and Y. Li. New similarity measures of pythagorean fuzzy sets and their applications. IEEE Access, 7:138192 - 138202, 2019.
Examples
x<-matrix(c(12,9,14,11,21,16,15,24,20,17,14,11),nrow=4)
y<-matrix(c(11,21,6),nrow=1)
a<-mn(x)
b<-std(x)
a1<-mn(y)
b1<-std(y)
lam<-0.5
ma<-memG(a,b,x)
na<-nonmemS(ma,lam)
mb<-memG(a1,b1,y)
nb<-nonmemS(mb,lam)
k<-1
simZHFLL1(ma,na,mb,nb,k)
#[1] 0.4742565 0.4823949 0.7745995 0.7745995
PFS similarity measure simZHFLL2
Description
PFS similarity measure values using simZHFLL2 computation technique with membership, and non-membership values of two objects or set of objects.
Usage
simZHFLL2(ma, na, mb, nb, k)
Arguments
ma |
PFS membership values for the data set x computed using either triangular or trapezoidal or guassian membership function |
na |
PFS non-membership values for the data set x computed using either Sugeno and Terano's or Yager's non-membership function |
mb |
PFS membership values for the data set y computed using either triangular or trapezoidal or guassian membership function |
nb |
PFS non-membership values for the data set y computed using either Sugeno and Terano's or Yager's non-membership function |
k |
A constant value, considered as 1 |
Value
The PFS similarity values of data set y with data set x
References
Q. Zhang, J. Hu, J. Feng, A. Liu, and Y. Li. New similarity measures of pythagorean fuzzy sets and their applications. IEEE Access, 7:138192 - 138202, 2019.
Examples
x<-matrix(c(12,9,14,11,21,16,15,24,20,17,14,11),nrow=4)
y<-matrix(c(11,21,6),nrow=1)
a<-mn(x)
b<-std(x)
a1<-mn(y)
b1<-std(y)
lam<-0.5
ma<-memG(a,b,x)
na<-nonmemS(ma,lam)
mb<-memG(a1,b1,y)
nb<-nonmemS(mb,lam)
k<-1
simZHFLL2(ma,na,mb,nb,k)
#[1] 0.6572330 0.6610095 0.8652155 0.8652155
PFS similarity measure simZHFLL3
Description
PFS similarity measure values using simZHFLL3 computation technique with membership, and non-membership values of two objects or set of objects.
Usage
simZHFLL3(ma, na, mb, nb, ha, hb, k)
Arguments
ma |
PFS membership values for the data set x computed using either triangular or trapezoidal or guassian membership function |
na |
PFS non-membership values for the data set x computed using either Sugeno and Terano's or Yager's non-membership function |
mb |
PFS membership values for the data set y computed using either triangular or trapezoidal or guassian membership function |
nb |
PFS non-membership values for the data set y computed using either Sugeno and Terano's or Yager's non-membership function |
ha |
PFS hesitancy values for the data set x |
hb |
PFS hesitancy values for the data set y |
k |
A constant value, considered as 1 |
Value
The PFS similarity values of data set y with data set x
References
Q. Zhang, J. Hu, J. Feng, A. Liu, and Y. Li. New similarity measures of pythagorean fuzzy sets and their applications. IEEE Access, 7:138192 - 138202, 2019.
Examples
x<-matrix(c(12,9,14,11,21,16,15,24,20,17,14,11),nrow=4)
y<-matrix(c(11,21,6),nrow=1)
a<-mn(x)
b<-std(x)
a1<-mn(y)
b1<-std(y)
lam<-0.5
ma<-memG(a,b,x)
na<-nonmemS(ma,lam)
ha<-hmemPFS(ma,na)
mb<-memG(a1,b1,y)
nb<-nonmemS(mb,lam)
hb<-hmemPFS(mb,nb)
k<-1
simZHFLL3(ma,na,mb,nb,ha,hb,k)
#[1] 0.4742565 0.4823949 0.7745995 0.7745995
PFS similarity measure simZHFLL4
Description
PFS similarity measure values using simZHFLL4 computation technique with membership, and non-membership values of two objects or set of objects.
Usage
simZHFLL4(ma, na, mb, nb, ha, hb, k)
Arguments
ma |
PFS membership values for the data set x computed using either triangular or trapezoidal or guassian membership function |
na |
PFS non-membership values for the data set x computed using either Sugeno and Terano's or Yager's non-membership function |
mb |
PFS membership values for the data set y computed using either triangular or trapezoidal or guassian membership function |
nb |
PFS non-membership values for the data set y computed using either Sugeno and Terano's or Yager's non-membership function |
ha |
PFS hesitancy values for the data set x |
hb |
PFS hesitancy values for the data set y |
k |
A constant value, considered as 1 |
Value
The PFS similarity values of data set y with data set x
References
Q. Zhang, J. Hu, J. Feng, A. Liu, and Y. Li. New similarity measures of pythagorean fuzzy sets and their applications. IEEE Access, 7:138192 - 138202, 2019.
Examples
x<-matrix(c(12,9,14,11,21,16,15,24,20,17,14,11),nrow=4)
y<-matrix(c(11,21,6),nrow=1)
a<-mn(x)
b<-std(x)
a1<-mn(y)
b1<-std(y)
lam<-0.5
ma<-memG(a,b,x)
na<-nonmemS(ma,lam)
ha<-hmemPFS(ma,na)
mb<-memG(a1,b1,y)
nb<-nonmemS(mb,lam)
hb<-hmemPFS(mb,nb)
k<-1
simZHFLL4(ma,na,mb,nb,ha,hb,k)
#[1] 0.4742565 0.4823949 0.7745995 0.7745995
Standard deviation values
Description
Standard deviation of the data set for gaussian membership function
Usage
std(x)
Arguments
x |
A data set in the form of document-term matrix |
Value
Standard deviation values for individual row of the input data set X.
Examples
x<-matrix(c(12,9,14,11,21,16,15,24,20,17,14,11),nrow=4)
std(x)
#[1] 4.9328829 4.3588989 0.5773503 7.5055535