Type: | Package |
Title: | Tools for Stable Isotope Geochemistry |
Version: | 1.1.1 |
Description: | This toolbox makes working with oxygen, carbon, and clumped isotope data reproducible and straightforward. Use it to quickly calculate isotope fractionation factors, and apply paleothermometry equations. |
License: | GPL (≥ 3) |
URL: | https://davidbajnai.github.io/isogeochem/ |
BugReports: | https://github.com/davidbajnai/isogeochem/issues |
Encoding: | UTF-8 |
LazyData: | true |
RoxygenNote: | 7.2.3 |
Suggests: | shades, viridisLite, knitr, rmarkdown, devtools, spelling, testthat (≥ 3.0.0), covr |
VignetteBuilder: | knitr |
Imports: | stats, graphics, methods, grDevices |
Depends: | R (≥ 3.1.0) |
Language: | en-US |
NeedsCompilation: | no |
Packaged: | 2023-03-15 14:34:45 UTC; bajnaidavid |
Author: | David Bajnai |
Maintainer: | David Bajnai <david.bajnai@uni-goettingen.de> |
Repository: | CRAN |
Date/Publication: | 2023-03-15 14:50:02 UTC |
Isotope delta from fractionation factor
Description
A_from_a()
calculates the isotope delta value of A from the
isotope fractionation factor and the isotope delta value of B.
Usage
A_from_a(a, B)
Arguments
a |
Isotope fractionation factor between A and B. |
B |
Isotope delta value of B (‰). |
Value
Returns the isotope delta value of B (‰).
See Also
a_A_B()
calculates the isotope fractionation factor between A and B.
B_from_a()
calculates the isotope delta value of B.
Examples
A_from_a(a = 1.033, B = -10)
Isotope delta from fractionation factor
Description
B_from_a()
calculates the isotope delta value of B from the
isotope fractionation factor and the isotope delta value of A.
Usage
B_from_a(a, A)
Arguments
a |
Isotope fractionation factor between A and B. |
A |
Isotope delta value of A (‰). |
Value
Returns the Isotope delta value of B (‰).
See Also
a_A_B()
calculates the isotope fractionation factor between A and B.
A_from_a()
calculates the isotope delta value of A.
Examples
B_from_a(a = 1.033, A = 10)
Triple oxygen isotope value
Description
D17O()
calculates the D17O value.
Usage
D17O(d18O, d17O, lambda = 0.528)
Arguments
d18O |
Isotope delta value (‰). |
d17O |
Isotope delta value (‰). |
lambda |
Triple oxygen isotope reference slope. Default |
Details
\Delta^{17}O_{VSMOW} = \delta'^{17}O_{VSMOW} -
\lambda \times \delta'^{18}O_{VSMOW}
Value
Returns the D17O value (‰).
Examples
D17O(d18O = -10, d17O = -5, lambda = 0.528)
Equilibrium carbonate D47 value
Description
D47()
calculates the equilibrium carbonate D47 value
for a given temperature.
Usage
D47(temp, eq)
Arguments
temp |
Carbonate growth temperature (°C). |
eq |
Equation used for the calculation.
|
Details
"Petersen19":
\Delta_{47, CDES90} =
0.0383 \times \frac{10^{6}}{T^{2}} + 0.170
"Anderson21":
\Delta_{47, I-CDES90} =
0.0391 \times \frac{10^{6}}{T^{2}} + 0.154
"Fiebig21":
\Delta_{47, CDES90} =
1.038 \times (-5.897 \times \frac{1}{T}
- 3.521 \times \frac{10^{3}}{T^{2}}
+ 2.391 \times \frac{10^{7}}{T^{3}}
- 3.541 \times \frac{10^{9}}{T^{4}}) + 0.1856
Value
Returns the carbonate D47 value expressed on the CDES90 scale (‰).
References
Petersen, S. V., Defliese, W. F., Saenger, C., Daëron, M., Huntington, K. W., John, C. M., et al. (2019). Effects of improved 17O correction on interlaboratory agreement in clumped isotope calibrations, estimates of mineral-specific offsets, and temperature dependence of acid digestion fractionation. Geochemistry, Geophysics, Geosystems, 20(7), 3495-3519. doi:10.1029/2018GC008127
Anderson, N. T., Kelson, J. R., Kele, S., Daëron, M., Bonifacie, M., Horita, J., et al. (2021). A unified clumped isotope thermometer calibration (0.5-1100°C) using carbonate-based standardization. Geophysical Research Letters, 48(7), e2020GL092069. doi:10.1029/2020gl092069
Fiebig, J., Daëron, M., Bernecker, M., Guo, W., Schneider, G., Boch, R., et al. (2021). Calibration of the dual clumped isotope thermometer for carbonates. Geochimica et Cosmochimica Acta. doi:10.1016/j.gca.2021.07.012
See Also
temp_D47()
calculates growth temperature from a D47 value.
Other equilibrium_carbonate:
D48()
,
d17O_c()
,
d18O_c()
Examples
D47(temp = 33.7, eq = "Petersen19") # Returns 0.577
D47(temp = 33.7, eq = "Fiebig21") # Returns 0.571
Equilibrium carbonate D47 value
Description
D48()
calculates the equilibrium carbonate D48 value
for a given temperature.
Usage
D48(temp, eq)
Arguments
temp |
Carbonate growth temperature (°C). |
eq |
Equation used for the calculation.
|
Details
"Fiebig21":
\Delta_{48, CDES90} = 1.028 \times (6.002 \times \frac{1}{T}
- 1.299 \times \frac{10^{4}}{T^{2}}
+ 8.996 \times \frac{10^{6}}{T^{3}}
- 7.423 \times \frac{10^{8}}{T^{4}}) + 0.1245
"Swart21":
\Delta_{48, CDES90} =
0.0142 \times \frac{10^{6}}{T^{2}} + 0.088
Value
Returns the carbonate equilibrium D48 value expressed on the CDES90 scale (‰).
References
Bajnai, D., Guo, W., Spötl, C., Coplen, T. B., Methner, K., Löffler, N., et al. (2020). Dual clumped isotope thermometry resolves kinetic biases in carbonate formation temperatures. Nature Communications, 11, 4005. doi:10.1038/s41467-020-17501-0
Fiebig, J., Daëron, M., Bernecker, M., Guo, W., Schneider, G., Boch, R., et al. (2021). Calibration of the dual clumped isotope thermometer for carbonates. Geochimica et Cosmochimica Acta. doi:10.1016/j.gca.2021.07.012
Swart, P. K., Lu, C., Moore, E., Smith, M., Murray, S. T., & Staudigel, P. T. (2021). A calibration equation between D48 values of carbonate and temperature. Rapid Communications in Mass Spectrometry, 35(17), e9147. doi:10.1002/rcm.9147
See Also
Other equilibrium_carbonate:
D47()
,
d17O_c()
,
d18O_c()
Examples
D48(temp = 33.7, eq = "Fiebig21") # Returns 0.237
D48(temp = 33.7, eq = "Swart21") # Returns 0.239
Oxygen isotope stratigraphy from the Geologic Time Scale 2020: macrofossils
Description
A dataset containing a compilation of d18O and d13C values of various macrofossils (bivalves, gastropods, belemnites, ammonites) together with information on their age, shell mineralogy, and the climate zone they represent. This dataset is a condensed version of the entire dataset presented in the Geologic Time Scale 2020. Specifically, the full dataset was filtered for those "select" d18O and d13C values that also have age information.
Usage
GTS2020
Format
A data frame with 9676 rows and 8 variables:
- age
Age of the sample expressed as millions of years before present (Ma).
- d18O_VPDB
Carbonate d18O value expressed on the VPDB scale (‰).
- d13C_VPDB
Carbonate d13C value expressed on the VPDB scale (‰).
- mineralogy
The mineralogy of the carbonate hard part.
- group
Taxonomic group of the sample (bivalve, gastropod, belemnite, ammonite).
- clim_zone
The climate zone the sample represents.
Source
https://download.pangaea.de/dataset/930093/files/GTS2020-App_10.2A.xlsx
References
Grossman, E. L., & Joachimski, M. M. (2020). Oxygen isotope stratigraphy. In F. M. Gradstein, J. G. Ogg, M. D. Schmitz, & G. M. Ogg (Eds.), Geologic Time Scale 2020: Volume 1 (pp. 279-307): Elsevier. doi:10.1016/B978-0-12-824360-2.00010-3
See Also
Other "datasets":
LR04
,
devilshole
,
meteoric_water
A Pliocene-Pleistocene benthic foraminifera d18O stack
Description
A dataset containing the LR04 benthic d18O stack.
Usage
LR04
Format
A data frame with 2115 rows and 3 variables:
- age
Age of the sample expressed as thousands of years before present (ka).
- d18O_VPDB
Carbonate d18O value expressed on the VPDB scale (‰).
- d18O_error
Standard error on the d18O value.
Source
https://lorraine-lisiecki.com/stack.html
References
Lisiecki, L. E., & Raymo, M. E. (2005). A Pliocene-Pleistocene stack of 57 globally distributed benthic d18O records. Paleoceanography, 20(1), PA1003. doi:10.1029/2004pa001071
See Also
Other "datasets":
GTS2020
,
devilshole
,
meteoric_water
Dissolved inorganic carbon species
Description
X_DIC()
calculates the relative abundance of the DIC species
as a function of solution temperature, pH, and salinity.
Usage
X_DIC(temp, pH, S)
Arguments
temp |
The temperature of the solution (°C). |
pH |
The pH of the solution. |
S |
The salinity of the solution (g/kg or ‰). |
Value
Returns a data frame with the relative abundance of the DIC species:
Relative abundance of dissolved CO2 (%).
Relative abundance of bicarbonate ion (%).
Relative abundance of carbonate ion (%).
References
Harned, H. S., and Scholes, S. R. (1941). The ionization constant of HCO3- from 0 to 50°. J. Am. Chem. Soc., 63(6), 1706-1709. doi:10.1021/ja01851a058
Harned, H. S., and Davis, R. (1943). The ionization constant of carbonic acid in water and the solubility of carbon dioxide in water and aqueous salt solutions from 0 to 50°. J. Am. Chem. Soc., 65(10), 2030-2037. doi:10.1021/ja01250a059
Millero, F. J., Graham, T. B., Huang, F., Bustos-Serrano, H., et al. (2006). Dissociation constants of carbonic acid in seawater as a function of salinity and temperature. Mar. Chem., 100(1-2), 80-94. doi:10.1016/j.marchem.2005.12.001
Examples
X_DIC(temp = 25, pH = 7, S = 30)
Relative rates of CO2 absorption reactions
Description
X_absorption()
calculates the relative abundance of the DIC species
as a function of solution temperature, pH, and salinity.
Usage
X_absorption(temp, pH, S)
Arguments
temp |
The temperature of the solution (°C). |
pH |
The pH of the solution. |
S |
The salinity of the solution (g/kg or ‰). |
Details
X_hydration = ((kCO2 / (kCO2 + kOHxKw / aH)) * 100), where
kCO2 is the rate constant for CO2 hydration from Johnson (1982)
kOHxKw is the rate constant for CO2 hydroxylation x Kw from Schulz et al. (2006).
aH is 10^(-pH)
Value
Returns a data frame with the relative rates of CO2 absorption reactions:
Relative rate of CO2 hydration (%).
Relative rate of CO2 hydroxylation (%).
References
Johnson, K. S. (1982). Carbon dioxide hydration and dehydration kinetics in seawater. Limnology and Oceanography, 27(5), 894-855. doi:10.4319/lo.1982.27.5.0849
Schulz, K. G., Riebesell, U., Rost, B., Thoms, S., & Zeebe, R. E. (2006). Determination of the rate constants for the carbon dioxide to bicarbonate inter-conversion in pH-buffered seawater systems. Marine Chemistry, 100(1-2), 53-65. doi:10.1016/j.marchem.2005.11.001
Examples
X_absorption(temp = 25, pH = 7, S = 30)
13C/12C fractionation factor between CO2(g) and CO2(aq)
Description
a13_CO2g_CO2aq()
calculates the 13C/12C fractionation factor
between gaseous and dissolved CO2.
Usage
a13_CO2g_CO2aq(temp)
Arguments
temp |
Temperature (°C). |
Details
\alpha^{13}_{CO2(g)/CO2(aq)} =
(\frac{-1.18 + 0.0041 \times (T - 273.15)}{1000} + 1)^{-1}
Value
Returns the 13C/12C fractionation factor.
References
Vogel, J. C., Grootes, P. M., & Mook, W. G. (1970). Isotopic fractionation between gaseous and dissolved carbon dioxide. Zeitschrift für Physik A: Hadrons and Nuclei, 230(3), 225-238. doi:10.1007/Bf01394688
See Also
Other fractionation_factors:
a18_CO2acid_c()
,
a18_CO2aq_H2O()
,
a18_CO2g_H2O()
,
a18_CO3_H2O()
,
a18_H2O_OH()
,
a18_HCO3_H2O()
,
a18_c_H2O()
,
a_A_B()
18O/16O acid fractionation factor
Description
a18_CO2acid_c()
calculates the 18O/16O fractionation factor between
CO2 produced from acid digestion and carbonate.
Usage
a18_CO2acid_c(temp, min)
Arguments
temp |
Acid digestion temperature (°C). |
min |
Mineralogy. Options are |
Details
calcite (Kim et al. 2015):
\alpha^{18}_{CO2acid/calcite} =
e^{(3.48 \times \frac{1}{T} - 0.00147)}
aragonite (Kim et al. 2007):
\alpha^{18}_{CO2acid/aragonite} =
e^{(3.39 \times \frac{1}{T} - 0.00083)}
dolomite (Rosenbaum & Sheppard 1986):
\alpha^{18}_{CO2acid/dolomite} =
e^{(665 \times \frac{1}{T^{2}} + 0.00423)}
Value
Returns the 18O/16O fractionation factor.
References
Sharma, T., and Clayton, R. N. (1965). Measurement of ratios of total oxygen of carbonates. Geochimica et Cosmochimica Acta, 29(12), 1347-1353. doi:10.1016/0016-7037(65)90011-6
Rosenbaum, J. and Sheppard, S.M.F. (1986). An isotopic study of siderites, dolomites and ankerites at high temperatures. Geochimica et Cosmochimica Acta, 50, 1147-1150. doi:10.1016/0016-7037(86)90396-0
Kim, S.-T., Mucci, A., and Taylor, B. E. (2007). Phosphoric acid fractionation factors for calcite and aragonite between 25 and 75 °C: Revisited. Chemical Geology, 246(3-4), 135-146. doi:10.1016/j.chemgeo.2007.08.005
Kim, S.-T., Coplen, T. B., and Horita, J. (2015). Normalization of stable isotope data for carbonate minerals: Implementation of IUPAC guidelines. Geochimica et Cosmochimica Acta, 158, 276-289. doi:10.1016/j.gca.2015.02.011
See Also
Other fractionation_factors:
a13_CO2g_CO2aq()
,
a18_CO2aq_H2O()
,
a18_CO2g_H2O()
,
a18_CO3_H2O()
,
a18_H2O_OH()
,
a18_HCO3_H2O()
,
a18_c_H2O()
,
a_A_B()
Examples
a18_CO2acid_c(temp = 90, min = "calcite")
a18_CO2acid_c(temp = 72, min = "aragonite")
18O/16O fractionation factor between CO2(aq) and H2O(l)
Description
a18_CO2_H2O()
calculates the 18O/16O fractionation factor
between dissolved CO2 and liquid water.
Usage
a18_CO2aq_H2O(temp)
Arguments
temp |
Temperature (°C). |
Details
\alpha^{18}_{CO2(aq)/H2O(l)} =
e^{2.52 \times \frac{1000}{T^{2}} + 0.01212}
Value
Returns the 18O/16O fractionation factor.
References
Beck, W. C., Grossman, E. L., & Morse, J. W. (2005). Experimental studies of oxygen isotope fractionation in the carbonic acid system at 15°, 25°, and 40°C. Geochimica et Cosmochimica Acta, 69(14), 3493-3503. doi:10.1016/j.gca.2005.02.003
See Also
Other fractionation_factors:
a13_CO2g_CO2aq()
,
a18_CO2acid_c()
,
a18_CO2g_H2O()
,
a18_CO3_H2O()
,
a18_H2O_OH()
,
a18_HCO3_H2O()
,
a18_c_H2O()
,
a_A_B()
18O/16O fractionation factor between CO2(g) and H2O(l)
Description
a18_CO2_H2O()
calculates the 18O/16O fractionation factor
between gaseous CO2 and liquid water.
Usage
a18_CO2g_H2O(temp)
Arguments
temp |
Temperature (°C). |
Details
\alpha^{18}_{CO2(g)/H2O(l)} =
(17.604 \times \frac{1}{T} - 0.01793) + 1
Value
Returns the 18O/16O fractionation factor.
References
Brenninkmeijer, C. A. M., Kraft, P., & Mook, W. G. (1983). Oxygen isotope fractionation between CO2 and H2O. Chemical Geology, 41, 181-190. doi:10.1016/S0009-2541(83)80015-1
See Also
Other fractionation_factors:
a13_CO2g_CO2aq()
,
a18_CO2acid_c()
,
a18_CO2aq_H2O()
,
a18_CO3_H2O()
,
a18_H2O_OH()
,
a18_HCO3_H2O()
,
a18_c_H2O()
,
a_A_B()
18O/16O fractionation factor between CO3(2-) and H2O
Description
a18_CO3_H2O()
calculates the 18O/16O fractionation factor
between carbonate ion CO3(2-) and water.
Usage
a18_CO3_H2O(temp)
Arguments
temp |
Temperature (°C). |
Details
\alpha^{18}_{CO3(2-)/H2O} =
e^{2.39 \times \frac{1000}{T^{2}} - 0.00270}
The equation above and in the function is the uncorrected equation in Beck et al. (2005). They experimentally determined the fractionation factor using BaCO3 precipitation experiments. However, they applied the acid fractionation factor of calcite during the data processing and not that of BaCO3. The acid fractionation factor of BaCO3 is not known accurately, which may result in a bias of up to 1‰ in the calculated 1000lna values.
Value
Returns the 18O/16O fractionation factor.
References
Beck, W. C., Grossman, E. L., & Morse, J. W. (2005). Experimental studies of oxygen isotope fractionation in the carbonic acid system at 15°, 25°, and 40°C. Geochimica et Cosmochimica Acta, 69(14), 3493-3503. doi:10.1016/j.gca.2005.02.003
See Also
Other fractionation_factors:
a13_CO2g_CO2aq()
,
a18_CO2acid_c()
,
a18_CO2aq_H2O()
,
a18_CO2g_H2O()
,
a18_H2O_OH()
,
a18_HCO3_H2O()
,
a18_c_H2O()
,
a_A_B()
18O/16O fractionation factor between water and hydroxide ion
Description
a18_H2O_OH()
calculates the 18O/16O fractionation factor between
water and aqueous hydroxide ion.
Usage
a18_H2O_OH(temp, eq)
Arguments
temp |
Temperature (°C). |
eq |
Equation used for the calculations.
|
Value
Returns the 18O/16O fractionation factor.
References
Zeebe, R. E. (2020). Oxygen isotope fractionation between water and the aqueous hydroxide ion. Geochimica et Cosmochimica Acta, 289, 182-195. doi:10.1016/j.gca.2020.08.025
See Also
Other fractionation_factors:
a13_CO2g_CO2aq()
,
a18_CO2acid_c()
,
a18_CO2aq_H2O()
,
a18_CO2g_H2O()
,
a18_CO3_H2O()
,
a18_HCO3_H2O()
,
a18_c_H2O()
,
a_A_B()
Examples
a18_H2O_OH(temp = 90, eq = "Z20-X3LYP")
18O/16O fractionation factor between HCO3(-) and H2O
Description
a18_HCO3_H2O()
calculates the 18O/16O fractionation factor
between bicarbonate ion HCO3(-) and water.
Usage
a18_HCO3_H2O(temp)
Arguments
temp |
Temperature (°C). |
Details
\alpha^{18}_{HCO3(-)/H2O} =
e^{2.59 \times \frac{1000}{T^{2}} + 0.00189}
The equation above and in the function is the uncorrected equation in Beck et al. (2005). They experimentally determined the fractionation factor using BaCO3 precipitation experiments. However, they applied the acid fractionation factor of calcite during the data processing and not that of BaCO3. The acid fractionation factor of BaCO3 is not known accurately, which may result in a bias of up to 1‰ in the calculated 1000lna values.
Value
Returns the 18O/16O fractionation factor.
References
Beck, W. C., Grossman, E. L., & Morse, J. W. (2005). Experimental studies of oxygen isotope fractionation in the carbonic acid system at 15°, 25°, and 40°C. Geochimica et Cosmochimica Acta, 69(14), 3493-3503. doi:10.1016/j.gca.2005.02.003
See Also
Other fractionation_factors:
a13_CO2g_CO2aq()
,
a18_CO2acid_c()
,
a18_CO2aq_H2O()
,
a18_CO2g_H2O()
,
a18_CO3_H2O()
,
a18_H2O_OH()
,
a18_c_H2O()
,
a_A_B()
18O/16O fractionation factor between carbonate and water
Description
a18_c_H2O()
calculates the 18O/16O fractionation factor
between carbonate and water.
Usage
a18_c_H2O(temp, min, eq)
Arguments
temp |
Carbonate growth temperature (°C). |
min |
Mineralogy. Options are |
eq |
Equation used for the calculations. See details. |
Details
Options for eq if min = "calcite"
:
"ONeil69"
: O'Neil et al. (1969), modified by Friedman and O'Neil (1977):
\alpha^{18}_{calcite/water} =
e^{(2.78 \times \frac{1000}{T^{2}} - 0.00289)}
"KO97-orig"
: Kim and O'Neil (1997):
\alpha^{18}_{calcite/water} =
e^{(18.03 \times \frac{1}{T} - 0.03242)}
NOTE: The "KO97-orig" equation should only be applied to data that considers a CO2(acid)/calcite AFF as in Kim & O'Neil (1997), i.e., 10.44 at 25 °C.
"KO97"
: Kim and O'Neil (1997), reprocessed here to match the IUPAC-recommended
AFF as in Kim et al. (2007, 2015):
\alpha^{18}_{calcite/water} =
e^{(18.04 \times \frac{1}{T} - 0.03218)}
"Coplen07"
: Coplen (2007):
\alpha^{18}_{calcite/water} =
e^{(17.4 \times \frac{1}{T} - 0.0286)}
"Tremaine11"
: Tremaine et al. (2011):
\alpha^{18}_{calcite/water} =
e^{(16.1 \times \frac{1}{T} - 0.0246)}
"Watkins13"
: Watkins et al. (2013):
\alpha^{18}_{calcite/water} =
e^{(17.747 \times \frac{1}{T} - 0.029777)}
"Daeron19"
: Daëron et al. (2019):
\alpha^{18}_{calcite/water} =
e^{(17.57 \times \frac{1}{T} - 0.02913)}
Options for eq if min = "aragonite"
:
"GK86"
: Grossman and Ku (1986), modified by Dettman et al. (1999):
\alpha^{18}_{aragonite/water} =
e^{(2.559 \times \frac{1000}{T^{2}} + 0.000715)}
"Kim07"
: Kim et al. (2007):
\alpha^{18}_{aragonite/water} =
e^{(17.88 \times \frac{1}{T} - 0.03114)}
Options for eq if min = "apatite"
.
Apatite refers to apatite-bound carbonate.
"Lecuyer10"
: Lécuyer et al. (2010):
\alpha^{18}_{apatite/water} =
e^{(25.19 \times \frac{1}{T} - 0.05647)}
Options for eq if min = "siderite"
:
"vanDijk18"
: van Dijk et al. (2018):
\alpha^{18}_{siderite/water} =
e^{(19.67 \times \frac{1}{T} - 0.03627)}
Options for eq if min = "dolomite"
:
"Vasconcelos05"
: Vasconcelos et al. (2005):
\alpha^{18}_{dolomite/water} =
e^{(2.73 \times \frac{1000}{T^{2}} + 0.00026)}
"Muller19"
: Müller et al. (2019):
\alpha^{18}_{dolomite/water} =
e^{(2.9923 \times \frac{1000}{T^{2}} + 0.0023592)}
Value
Returns the 18O/16O fractionation factor.
References
O'Neil, J. R., Clayton, R. N., & Mayeda, T. K. (1969). Oxygen isotope fractionation in divalent metal carbonates. The Journal of Chemical Physics, 51(12), 5547-5558. doi:10.1063/1.1671982
Grossman, E. L., & Ku, T. L. (1986). Oxygen and carbon isotope fractionation in biogenic aragonite: Temperature effects. Chemical Geology, 59(1), 59-74. doi:10.1016/0009-2541(86)90044-6
Kim, S.-T., & O'Neil, J. R. (1997). Equilibrium and nonequilibrium oxygen isotope effects in synthetic carbonates. Geochimica et Cosmochimica Acta, 61(16), 3461-3475. doi:10.1016/S0016-7037(97)00169-5
Dettman, D. L., Reische, A. K., & Lohmann, K. C. (1999). Controls on the stable isotope composition of seasonal growth bands in aragonitic fresh-water bivalves (unionidae). Geochimica et Cosmochimica Acta, 63(7-8), 1049-1057. doi:10.1016/s0016-7037(99)00020-4
Vasconcelos, C., McKenzie, J. A., Warthmann, R., & Bernasconi, S. M. (2005). Calibration of the d18O paleothermometer for dolomite precipitated in microbial cultures and natural environments. Geology, 33(4), 317-320. doi:10.1130/g20992.1
Kim, S.-T., Mucci, A., & Taylor, B. E. (2007). Phosphoric acid fractionation factors for calcite and aragonite between 25 and 75 °C: Revisited. Chemical Geology, 246(3-4), 135-146. doi:10.1016/j.chemgeo.2007.08.005
Coplen, T. B. (2007). Calibration of the calcite-water oxygen-isotope geothermometer at Devils Hole, Nevada, a natural laboratory. Geochimica et Cosmochimica Acta, 71(16), 3948-3957. doi:10.1016/j.gca.2007.05.028
Lécuyer, C., Balter, V., Martineau, F., Fourel, F., Bernard, A., Amiot, R., et al. (2010). Oxygen isotope fractionation between apatite-bound carbonate and water determined from controlled experiments with synthetic apatites precipitated at 10-37°C. Geochimica et Cosmochimica Acta, 74(7), 2072-2081. doi:10.1016/j.gca.2009.12.024
Tremaine, D. M., Froelich, P. N., & Wang, Y. (2011). Speleothem calcite farmed in situ: Modern calibration of d18O and d13C paleoclimate proxies in a continuously-monitored natural cave system. Geochimica et Cosmochimica Acta, 75(17), 4929-4950. doi:10.1016/j.gca.2011.06.005
Watkins, J. M., Nielsen, L. C., Ryerson, F. J., & DePaolo, D. J. (2013). The influence of kinetics on the oxygen isotope composition of calcium carbonate. Earth and Planetary Science Letters, 375, 349-360. doi:10.1016/j.epsl.2013.05.054
van Dijk, J., Fernandez, A., Müller, I. A., Lever, M., & Bernasconi, S. M. (2018). Oxygen isotope fractionation in the siderite-water system between 8.5 and 62 °C. Geochimica et Cosmochimica Acta, 220, 535-551. doi:10.1016/j.gca.2017.10.009
Daëron, M., Drysdale, R. N., Peral, M., Huyghe, D., Blamart, D., Coplen, T. B., et al. (2019). Most Earth-surface calcites precipitate out of isotopic equilibrium. Nature Communications, 10, 429. doi:10.1038/s41467-019-08336-5
Müller, I.A., Rodriguez-Blanco, J.D., Storck, J.-C., do Nascimento, G.S., Bontognali, T.R.R., Vasconcelos, C., Benning, L.G. & Bernasconi, S.M. (2019). Calibration of the oxygen and clumped isotope thermometers for (proto-)dolomite based on synthetic and natural carbonates. Chemical Geology, 525, 1-17. doi:10.1016/j.chemgeo.2019.07.014
See Also
Other fractionation_factors:
a13_CO2g_CO2aq()
,
a18_CO2acid_c()
,
a18_CO2aq_H2O()
,
a18_CO2g_H2O()
,
a18_CO3_H2O()
,
a18_H2O_OH()
,
a18_HCO3_H2O()
,
a_A_B()
Examples
a18_c_H2O(temp = 25, min = "calcite", eq = "Coplen07")
a18_c_H2O(temp = 25, min = "aragonite", eq = "GK86")
Isotope fractionation factor between A and B
Description
a_A_B()
calculates the isotope fractionation factor.
Usage
a_A_B(A, B)
Arguments
A |
Isotope delta value of A (‰). |
B |
Isotope delta value of B (‰). |
Details
\alpha^{i}E_{A/B} =
\frac{\delta^{i}E_{A} + 1}{\delta^{i}E_{B} + 1}
Value
Returns the isotope fractionation factor.
See Also
A_from_a()
calculates the isotope delta value of A.
B_from_a()
calculates the isotope delta value of B.
Other fractionation_factors:
a13_CO2g_CO2aq()
,
a18_CO2acid_c()
,
a18_CO2aq_H2O()
,
a18_CO2g_H2O()
,
a18_CO3_H2O()
,
a18_H2O_OH()
,
a18_HCO3_H2O()
,
a18_c_H2O()
Examples
a_A_B(A = 10, B = 12)
Triple oxygen isotope values of carbonates
Description
d17O_c()
calculates the equilibrium d18O, d17O, and D17O values of a
calcite grown at a given temperature.
Usage
d17O_c(
temp,
d18O_H2O_VSMOW,
D17O_H2O = 0,
min = "calcite",
eq17 = "Wostbrock20",
eq18 = "Daeron19",
lambda = 0.528
)
Arguments
temp |
Calcite growth temperature (°C). |
d18O_H2O_VSMOW |
Water d18O value expressed on the VSMOW scale (‰). |
D17O_H2O |
D17O value of ambient water calculated using
a lambda of |
min |
Mineralogy. Options are |
eq17 |
Equation used to calculate the 17O/16O fractionation factor
between carbonate and water. Options are |
eq18 |
Equation used to calculate the 18O/16O fractionation factor
between carbonate and water. Options are like in |
lambda |
Triple oxygen isotope reference slope. Default |
Details
\theta_{A/B} = \frac{\alpha^{17}_{A/B}}{\alpha^{18}_{A/B}}
\delta'^{17}O_{H2O,VSMOW} =
\beta \times \delta'^{18}O_{H2O,VSMOW} + \gamma
\textrm{ , where } \beta=0.528 \textrm{ and } \gamma = 0
\Delta^{17}O_{CaCO3,VSMOW} = \delta'^{17}O_{CaCO3,VSMOW} -
\lambda \times \delta'^{18}O_{CaCO3,VSMOW}
"Wostbrock20"
: Wostbrock et al. (2020):
\theta_{aragonite/water} = \frac{-1.53}{T} + 0.5305
\theta_{calcite/water} = \frac{-1.39}{T} + 0.5305
"GZ19"
: Guo and Zhou (2019):
\theta_{aragonite/water} = \frac{78.1173}{T^{2}} - \frac{1.5152}{T} + 0.5299
\theta_{calcite/water} = \frac{59.1047}{T^{2}} - \frac{1.4089}{T} + 0.5297
Value
Returns a data frame:
d18O value of the carbonate expressed on the VSMOW scale (‰).
d17O value of the carbonate expressed on the VSMOW scale (‰).
D17O value of the carbonate expressed on the VSMOW scale (‰).
References
Wostbrock, J.A.G., Brand, U., Coplen, T.B., Swart, P.K., Carlson, S.J., Brearley, A.J., and Sharp, Z.D. (2020). Calibration of carbonate-water triple oxygen isotope fractionation: Seeing through diagenesis in ancient carbonates. Geochimica et Cosmochimica Acta, 288, 369-388. doi:10.1016/j.gca.2020.07.045
Guo, W., and Zhou, C. (2019). Triple oxygen isotope fractionation in the DIC-H2O-CO2 system: A numerical framework and its implications. Geochimica et Cosmochimica Acta, 246, 541-564. doi:10.1016/j.gca.2018.11.018
See Also
Other equilibrium_carbonate:
D47()
,
D48()
,
d18O_c()
Examples
d17O_c(temp = 10, d18O_H2O_VSMOW = -1) # Returns the data frame (length = 3)
prime(d17O_c(temp = 10, d18O_H2O_VSMOW = -1)[, 2]) # Returns the d'17O value
d17O_c(temp = 10, d18O_H2O_VSMOW = -1)[, 3] # Returns the D17O value
Triple oxygen isotope values of quartz
Description
d17O_qz()
calculates the equilibrium d18O, d17O, and D17O values of
quartz grown at a given temperature.
Usage
d17O_qz(temp, d18O_H2O_VSMOW, D17O_H2O = 0, lambda = 0.528)
Arguments
temp |
Quartz growth temperature (°C). |
d18O_H2O_VSMOW |
Water d18O value expressed on the VSMOW scale (‰). |
D17O_H2O |
D17O value of ambient water calculated using
a lambda of |
lambda |
Triple oxygen isotope reference slope. Default |
Details
\theta_{A/B} = \frac{\alpha^{17}_{A/B}}{\alpha^{18}_{A/B}}
\delta'^{17}O_{H2O,VSMOW} =
\beta \times \delta'^{18}O_{H2O,VSMOW} + \gamma
\textrm{ , where } \beta=0.528 \textrm{ and } \gamma = 0
\Delta^{17}O_{SiO2,VSMOW} = \delta'^{17}O_{SiO2,VSMOW} -
\lambda \times \delta'^{18}O_{SiO2,VSMOW}
NOTE:
\theta_{quartz/water} = -\frac{1.85}{T} + 0.5305
\alpha^{18}_{quartz/water} =
e^{(\frac{4280}{T^{2}} - \frac{3.5}{T})}
Value
Returns a data frame:
d18O value of the quartz expressed on the VSMOW scale (‰).
d17O value of the quartz expressed on the VSMOW scale (‰).
D17O value of the quartz expressed on the VSMOW scale (‰).
References
Sharp, Z.D., Gibbons, J.A., Maltsev, O., Atudorei, V., Pack, A., Sengupta, S., Shock, E.L. and Knauth, L.P. (2016). A calibration of the triple oxygen isotope fractionation in the SiO2-H2O system and applications to natural samples. Geochimica et Cosmochimica Acta, 186, 105-119. doi:10.1016/j.gca.2016.04.047
Examples
d17O_qz(temp = 10, d18O_H2O_VSMOW = 0) # Returns the data frame (length = 3)
d17O_qz(temp = 10, d18O_H2O_VSMOW = 0)[, 3] # Returns the D17O value
Water d18O value
Description
d18O_H2O()
calculates the d18O value of the ambient water
from the d18O value of a carbonate and its growth temperature.
Usage
d18O_H2O(temp, d18O_c_VSMOW, min, eq)
Arguments
temp |
Carbonate growth temperature (°C). |
d18O_c_VSMOW |
Carbonate d18O value expressed on the VSMOW scale (‰). |
min |
Mineralogy. Options are |
eq |
Equation used to calculate the equilibrium 18O/16O oxygen isotope
fractionation factor between carbonate and water.
Options depend on mineralogy and listed in |
Value
Returns the water d18O value expressed on the VSMOW scale (‰).
Note
Use to_VSMOW()
and to_VPDB()
to convert between
the VSMOW and VPDB scales.
References
References are listed in the description of a18_c_H2O()
.
See Also
d18O_c()
calculates the equilibrium d18O value of a carbonate
grown at a given temperature.
temp_d18O()
calculates growth temperatures from oxygen isotope data.
Examples
d18O_H2O(temp = 33.7, d18O_c_VSMOW = 14.58,
min = "calcite", eq = "Coplen07")
d18O_H2O(temp = 25, d18O_c_VSMOW = to_VSMOW(-7.47),
min = "aragonite", eq = "GK86")
Equilibrium carbonate d18O value
Description
d18O_c()
calculates the equilibrium d18O value of a carbonate grown
at a given temperature.
Usage
d18O_c(temp, d18O_H2O_VSMOW, min, eq)
Arguments
temp |
Carbonate growth temperature (°C). |
d18O_H2O_VSMOW |
Water d18O value expressed on the VSMOW scale (‰). |
min |
Mineralogy. Options are as in |
eq |
Equation used for the calculations.
Options depend on mineralogy and are listed in |
Value
Returns the equilibrium carbonate d18O value expressed on the VSMOW scale (‰).
Note
Use to_VSMOW()
and to_VPDB()
to convert
between the VSMOW and VPDB scales.
References
References are listed in the description of a18_c_H2O()
.
See Also
d18O_H2O()
calculates the d18O value of the ambient water
from the d18O value of a carbonate and its growth temperature.
Other equilibrium_carbonate:
D47()
,
D48()
,
d17O_c()
Examples
d18O_c(33.7, -13.54, min = "calcite", eq = "Coplen07")
to_VPDB(d18O_c(temp = 12, d18O_H2O_VSMOW = -6.94,
min = "aragonite", eq = "GK86"))
Devils Hole carbonate d18O time series
Description
A dataset containing the d18O values of the "original" Devils Hole cores.
Usage
devilshole
Format
A data frame with 442 rows and 4 variables:
- age
Interpolated uranium-series age of the sample expressed as thousands of years before present (ka).
- d18O_VSMOW
Carbonate d18O value expressed on the VSMOW scale (‰).
- d18O_error
Standard deviation on the d18O value.
- core
Name of the core (DHC2-8, DHC2-3, DH-11).
Source
References
Winograd, I. J., Landwehr, J. M., Coplen, T. B., Sharp, W. D., Riggs, A. C., Ludwig, K. R., & Kolesar, P. T. (2006). Devils Hole, Nevada, d18O record extended to the mid-Holocene. Quaternary Research, 66(2), 202-212. doi:10.1016/j.yqres.2006.06.003
See Also
Other "datasets":
GTS2020
,
LR04
,
meteoric_water
Isotope fractionation value
Description
epsilon()
converts isotope fractionation factors to isotope fractionation values.
Usage
epsilon(alpha)
Arguments
alpha |
Isotope fractionation factor |
Details
\epsilon^{i}E_{A/B} = \alpha^{i}E_{A/B} - 1
Value
Returns the isotope fractionation value (‰).
See Also
a_A_B() calculates the isotope fractionation factor between A and B.
Examples
epsilon(a18_H2O_OH(25, "Z20-X3LYP"))
Oxygen isotope values for meteoric waters
Description
A dataset containing a compilation of d17O and d17O values of various meteoric waters.
Usage
meteoric_water
Format
A data frame with 156 rows and 4 variables:
- Sample
Sample ID as in the original publication.
- d17O
Water d17O value expressed on the VSMOW scale (‰).
- d18O
Water d18O value expressed on the VSMOW scale (‰).
- Reference
Abbreviated reference for the data point.
References
Luz, B., & Barkan, E. (2010). Variations of 17O/16O and 18O/16O in meteoric waters. Geochimica et Cosmochimica Acta, 74(22), 6276–6286. doi:10.1016/j.gca.2010.08.016
Aron, P. G., Levin, N. E., Beverly, E. J., Huth, T. E., Passey, B. H., Pelletier, E. M., Poulsen, C. J., Winkelstern, I. Z., & Yarian, D. A. (2021). Triple oxygen isotopes in the water cycle. Chemical Geology, 565, 116770. doi:10.1016/j.chemgeo.2020.120026
See Also
Other "datasets":
GTS2020
,
LR04
,
devilshole
Mixing curves in triple oxygen isotope space
Description
mix_d17O()
produces mixing curves between two endmembers (A and B) in
triple oxygen isotope space (d18O vs. D17O).
Usage
mix_d17O(
d18O_A,
d17O_A,
D17O_A,
d18O_B,
d17O_B,
D17O_B,
lambda = 0.528,
step = 10
)
Arguments
d18O_A |
d18O value of component A (‰). |
d17O_A |
d17O value of component A (‰). |
D17O_A |
Alternatively, the D17O value of component A (‰). |
d18O_B |
d18O value of component B (‰). |
d17O_B |
d17O value of component B (‰). |
D17O_B |
Alternatively, the D17O value of component B (‰). |
lambda |
Triple oxygen isotope reference slope. Default |
step |
Output resolution, i.e., step size. Default |
Details
If both d17O and D17O values are specified for a component, the function uses the d17O values for the calculations.
Value
Returns a data frame:
d18O value of the mixture at x% mixing (‰).
D17O value of the mixture at x% mixing (‰).
relative amount of component B in the mixture (%): from 100% A and 0% B to 0% A and 100% B.
d17O value of the mixture at x% mixing (‰).
See Also
d17O_c()
calculates equilibrium calcite d18O, d17O, and D17O
values for a given temperature.
Examples
# The two functions below yield the same output.
mix_d17O(d18O_A = d17O_c(10, -1)[1], d17O_A = d17O_c(10, -1)[2],
d18O_B = d17O_c(100,0)[1], d17O_B = d17O_c(100, 0)[2])
mix_d17O(d18O_A = d17O_c(10, -1)[1], D17O_A = d17O_c(10, -1)[3],
d18O_B = d17O_c(100,0)[1], D17O_B = d17O_c(100, 0)[3])
Converting delta to delta prime
Description
prime()
converts "classical delta" values to "delta prime" values.
Usage
prime(classical)
Arguments
classical |
"Classical delta" values to be converted (‰). |
Details
\delta'^{17}O = 1000 \times \ln(\frac{\delta^{17}O}{1000}+1)
Value
Returns the "delta prime" value (‰).
See Also
unprime()
converts "delta prime" values to
"classical delta" values.
Examples
prime(10) # Return 9.950331
Clumped isotope thermometry
Description
temp_D47()
calculates carbonate growth temperature from D47 value.
Usage
temp_D47(D47_CDES90, D47_error, eq)
Arguments
D47_CDES90 |
Carbonate D47 values expressed on the CDES90 scale (‰). |
D47_error |
Error on the D47 value. Optional. |
eq |
Equation used for the calculation. Options are as in |
Details
The D47 vs temperature equations are listed at D47()
.
Value
Returns the carbonate growth temperature (°C). If D47_error
is specified temp_D47()
returns a data frame.
References
References are listed at D47()
.
See Also
D47()
calculates the equilibrium carbonate D47 value.
Other thermometry:
temp_D48()
,
temp_d18O()
Examples
temp_D47(D47_CDES90 = 0.577, eq = "Petersen19")
Dual clumped isotope thermometry
Description
temp_D48()
calculates carbonate growth temperature from D47 and D48 values.
Usage
temp_D48(
D47_CDES90,
D48_CDES90,
D47_error,
D48_error,
ks,
add = FALSE,
col = "black",
pch = 19
)
Arguments
D47_CDES90 |
Carbonate D47 values expressed on the CDES90 scale (‰). |
D48_CDES90 |
Carbonate D48 values expressed on the CDES90 scale (‰). |
D47_error |
Error on the D47 value. Optional. |
D48_error |
Error on the D48 value. Optional. |
ks |
Kinetic slope. Has to be negative! |
add |
Add graphics to an already existing plot? Default: |
col |
Graphical parameter. Optional. |
pch |
Graphical parameter. Optional. |
Details
The function calculates a D47 value as an intersect of two curves:
the equilibrium D47 vs D48 curve from Fiebig et al. (2021) and
the kinetic slope. The resulting D47 value is then converted to temperature
using the temp_D47()
function and the equilibrium
D47_CDES90 vs temperature equation of Fiebig et al. (2021).
Value
Returns the carbonate growth temperature (°C). If both D47_error
and
D48_error
are specified temp_D48()
returns a data frame.
Contributors
The source code of this function contains elements from the reconPlots package, available at https://github.com/andrewheiss/reconPlots
References
References are listed at D48()
and D47()
.
See Also
D47()
calculates the equilibrium carbonate D47 value.
D48()
calculates the equilibrium carbonate D48 value.
Other thermometry:
temp_D47()
,
temp_d18O()
Examples
temp_D48(0.617, 0.139, ks = -0.6)
temp_D48(0.546, 0.277, ks = -1)
Oxygen isotope thermometry
Description
temp_d18O()
calculates carbonate growth temperature
from oxygen isotope data.
Usage
temp_d18O(d18O_c_VSMOW, d18O_H2O_VSMOW, min, eq)
Arguments
d18O_c_VSMOW |
Carbonate d18O value expressed on the VSMOW scale (‰). |
d18O_H2O_VSMOW |
Water d18O value expressed on the VSMOW scale (‰). |
min |
Mineralogy. Options are as in |
eq |
Equation used for the calculations.
Options depend on mineralogy and listed in |
Value
Returns the carbonate growth temperature (°C).
Note
Use to_VSMOW()
and to_VPDB()
to convert between the
VSMOW and VPDB scales.
References
References are listed in the description of a18_c_H2O()
.
See Also
d18O_c()
calculates the equilibrium d18O value of a carbonate
grown at a given temperature.
d18O_H2O()
calculates the d18O value of the ambient water
from the d18O value of a carbonate and its growth temperature.
Other thermometry:
temp_D47()
,
temp_D48()
Examples
temp_d18O(d18O_c_VSMOW = 14.58, d18O_H2O_VSMOW = -13.54,
min = "calcite", eq = "Coplen07")
Converting isotope delta from VSMOW to VPDB
Description
to_VPDB()
convert d18O value expressed on the VSMOW scale
to the VPDB scale.
Usage
to_VPDB(d18O_VSMOW, eq = "IUPAC")
Arguments
d18O_VSMOW |
d18O values expressed on the VSMOW scale (‰). |
eq |
Equation used for the conversion.
|
Details
The IUPAC recommended equation to convert between the scales is:
\delta^{18}O_{VPDB} = 0.97001 \times \delta^{18}O_{VSMOW} - 29.99
Value
Returns the d18O value expressed on the VPDB scale (‰).
References
References are listed at to_VSMOW()
.
See Also
to_VSMOW()
converts d18O values expressed on the VPDB scale
to the VSMOW scale.
Examples
to_VPDB(0)
to_VPDB(0, eq = "Coplen83")
Converting isotope delta from VPDB to VSMOW
Description
to_VSMOW()
converts d18O value expressed on the VPDB scale
to the VSMOW scale.
Usage
to_VSMOW(d18O_VPDB, eq = "IUPAC")
Arguments
d18O_VPDB |
d18O values expressed on the VPDB scale (‰). |
eq |
Equation used for the conversion.
|
Details
The IUPAC recommended equation to convert between the scales is:
\delta^{18}O_{VSMOW} = 1.03092 \times \delta^{18}O_{VPDB} + 30.92
Value
Returns the d18O value expressed on the VSMOW scale (‰).
References
Coplen, T. B., Kendall, C., & Hopple, J. (1983). Comparison of stable isotope reference samples. Nature, 302, 236-238. doi:10.1038/302236a0
Brand, W. A., Coplen, T. B., Vogl, J., Rosner, M., & Prohaska, T. (2014). Assessment of international reference materials for isotope-ratio analysis (IUPAC Technical Report). Pure and Applied Chemistry, 86(3), 425-467. doi:10.1515/pac-2013-1023
Kim, S.-T., Coplen, T. B., & Horita, J. (2015). Normalization of stable isotope data for carbonate minerals: Implementation of IUPAC guidelines. Geochimica et Cosmochimica Acta, 158, 276-289. doi:10.1016/j.gca.2015.02.011
See Also
to_VPDB()
converts d18O values expressed
on the VSMOW scale to the VPDB scale.
Examples
to_VSMOW(0)
to_VSMOW(0, eq = "Coplen83")
Converting delta prime to delta
Description
unprime()
converts "delta prime" values
to "classical delta" values.
Usage
unprime(prime)
Arguments
prime |
"Delta prime" values to be converted (‰). |
Details
\delta^{17}O = 1000 \times e^{(\frac{\delta'^{17}O}{1000}+1)}
Value
Returns the "classical delta" value (‰).
See Also
prime()
converts "classical delta" values to
"delta prime" values.
Examples
unprime(9.950331) # Return 10
Error-considering linear regression
Description
york_fit()
calculates the regression parameters of
an error-considering linear regression.
Usage
york_fit(x, y, x_err, y_err, r = 0)
Arguments
x |
vector of x values. |
y |
vector of y values. Has to be same the length as x. |
x_err |
Error on the x values. Has to be same the length as x. |
y_err |
Error on the y values. Has to be same the length as x. |
r |
Correlation coefficient of x_err and y_err at each data point.
Default: |
Details
Regression fitting method according to York et al. (2004). The algorithm is described in the appendix of Wacker et al. (2014).
Value
A list with regression parameters:
slope and its standard error
intercept and its standard error
weights of the points (normalized to 1)
residual standard error (sigma)
R2
p-value (two-tailed t-test).
Contributors
Julian Tödter
References
York, D., Evensen, N. M., López Martínez, M., & De Basabe Delgado, J. (2004). Unified equations for the slope, intercept, and standard errors of the best straight line. American Journal of Physics, 72(3), 367-375. doi:10.1119/1.1632486
Wacker, U., Fiebig, J., Tödter, J., Schöne, B. R., Bahr, A., Friedrich, O., et al. (2014). Empirical calibration of the clumped isotope paleothermometer using calcites of various origins. Geochimica et Cosmochimica Acta, 141, 127-144. doi:10.1016/j.gca.2014.06.004
Examples
york_fit(
x = c(1, 2, 3),
y = c(1.1, 1.9, 3.2),
x_err = c(0.1, 0.2, 0.1),
y_err = c(0.2, 0.1, 0.2))
Regression confidence intervals
Description
york_plot()
calculates and optionally plots the confidence intervals of
an (error-considering) linear regression.
Usage
york_plot(
x,
slope,
slope_se,
intercept,
intercept_se,
cl = 0.95,
weights = -1,
add = FALSE,
col = "black"
)
Arguments
x |
x values of the data points. |
slope |
regression slope. |
slope_se |
Standard error of the slope. |
intercept |
regression intercept. |
intercept_se |
Standard error of the intercept. |
cl |
Confidence level. Default: |
weights |
Weights of the data points. If given, mean & SD of x are computed with the weights. Has to be same the length as x. Optional. |
add |
Add graphics to an already existing plot? Default: |
col |
Graphical parameter. Optional. |
Details
The algorithm is described in the appendix of Wacker et al. (2014).
Value
A list with regression parameters:
slope and its standard error
intercept and its standard error
weights of the points (normalized to 1)
residual standard error (sigma)
R2
p-value (two-tailed t-test).
Contributors
Julian Tödter
References
Wacker, U., Fiebig, J., Tödter, J., Schöne, B. R., Bahr, A., Friedrich, O., et al. (2014). Empirical calibration of the clumped isotope paleothermometer using calcites of various origins. Geochimica et Cosmochimica Acta, 141, 127-144. doi:10.1016/j.gca.2014.06.004
Examples
york_plot(
x = c(1, 2, 3),
slope = 1.06,
slope_se = 1.60,
intercept = -0.05,
intercept_se = 0.34,
cl = 0.98)