
Package ‘keyperm’
July 22, 2025

Type Package

Title Keyword Analysis Using Permutation Tests

Version 0.1.1

Description Efficient implementation of permutation tests for keyword analysis in corpus linguis-
tics as described in Mildenberger (2023) <doi:10.48550/arXiv.2308.13383>.

License GPL (>= 2)

Imports slam, tm

LinkingTo Rcpp

RoxygenNote 7.1.0

NeedsCompilation yes

Author Thoralf Mildenberger [aut, cre] (ORCID:
<https://orcid.org/0000-0001-7242-1873>)

Maintainer Thoralf Mildenberger <mild@zhaw.ch>

Repository CRAN

Date/Publication 2023-08-30 15:40:01 UTC

Contents

combine_results . 2
create_ifl . 3
keyness_scores . 4
keyperm . 5
p_value . 7

Index 9

1

https://doi.org/10.48550/arXiv.2308.13383
https://orcid.org/0000-0001-7242-1873

2 combine_results

combine_results Combine results of permutation test for keyness

Description

Combine results of two runs of keyperm() with output = "counts", possibly with different subsets
of terms.

Usage

combine_results(results_1, results_2)

Arguments

results_1 Results from permutation test. Must be of class keyperm_results_counts (ob-
tained by setting output = "counts" in keyperm())

results_2 Results from permutation test. Must be of class keyperm_results_counts and
have the same scoretype as results_1.

Details

Results of two runs of keyperm() with output = "counts", i.e. objects of type keyperm_results_counts
using can be combined using combine_results(). For this to make sense, scoretype needs to be
the same in both results, but terms in both objects need not be the same.

There are at least two important uses of the function:

Parallelization: keyperm() is run several times with the same parameters on different cores, using
parallel::mclapply() or a similar function.

Screening runs: keyperm() is first run using a small to medium number of permutations, but con-
sidering all terms. Terms with p-values clearly exceeding some reasonable significance threshold
are then excluded, and keyperm() is run a second time with a (preferably) large number of per-
mutations but using only the remaining terms. The results of both runs can then be combined into
one object. The rationale behind this approach is that in many cases small p-values need to be
determined with much greater accurary than larger ones far away from significance, especially if a
correction for multiple testing is to be applied or the p-values are used for ranking (although they
should not...).

Value

An object of class keyperm_results_counts

create_ifl 3

create_ifl Create an Indexed Frequency List

Description

The keyperm package stores frequency lists in a special data structure called indexed frequency list.
This can currently be created from a tdm object as implemented in the tm package.

Indexed frequency lists are essentially frequency lists stored in a three-column format, similar to
the simple triplet matrix internally used by tm to store term-document-matrices. The first column
stores number of document i, second number of term j and the third the frequencies with which
the term j occurs in document i. Zero occurences are omitted. All columns contain integers, and
the frequency list is sorted by document.

The object returned is of class indexed_frequency_list. In addition to the actual frequency list
it contains an index for fast access as well as pre-computed total number of tokens per document
and total occurences per term.

Usage

create_ifl(
tdm,
subset_terms = 1:dim(tdm)[1],
subset_docs = 1:dim(tdm)[2],
corpus

)

Arguments

tdm a tdm-matrix from the tm package. Currently, this is the only supported input,
but others may be added in later versions.

subset_terms vector of terms to be considered. Can be integer (indices) or boolean. Terms not
included still are counted for total number of token per document.

subset_docs vector of documents to be considered. Can be integer (indices) or boolean. Doc-
uments excluded do not contribute to total number of occurences of a term.

corpus vector indicating which documents belong to corpus A (first corpus). Can be
integer (indices) or boolean. Currently, only comparisons of two corpora are
supported.

Value

A list with class indexed_frequency_list containing the following components:

4 keyness_scores

keyness_scores Calculate observed keyness scores

Description

Calculates a vector of observed keyness scores for a given pair of corpora.

Usage

keyness_scores(ifl, type = "llr", laplace = 1)

Arguments

ifl Indexed frequency list as generated by create_ifl().

type The type of keyness measure. One of llr, chisq, diff, logratio or ratio.
See details.

laplace Parameter of laplace correction. Only relevant for type = "ratio" and type =
"logratio". See details.

Details

Keyness scores are calculated for an Indexed frequency list from a given pair of corpora as generated
by create_ifl().

Currently, the following types of scores are supported:

llr The log-likelihood ratio

chisq The Chi-Square-Statistic

diff Difference of relative frequencies

logratio Binary logarithm of the ratio of the relative frequencies, possibly using a laplace correc-
tion to avoid infinite values.

ratio ratio of the relative frequencies, possibly using a laplace correction to avoid infinite values.

llr and chisq are the test-statistics for a two-by-two contingency table.

corpus A corpus B TOTAL
term of interest o11 o12 r1

other tokens o21 o22 r2
TOTAL c1 c2 N

Both measure deviations from equal proportions but do not indicate the direction. For llr, the
correct version using terms for all four fields of the table is used, not the version using only two
terms that is sometimes used in corpus linguistics:

llr = −2∗ (o11∗ log(o11/e11)+o12∗ log(o12/e12)+o21∗ log(o21/e21)+o22∗ log(o22/e22))

keyperm 5

where oij ∗ log(oij/eij) = 0 if oij = 0.

chisq is the usual Chi-Square statistic for a test of independece / homogeneity:

chisq = (o11− e11)2/e11 + (o12− e12)2/e12 + (o21− e21)2/e21 + (o22− e22)2/e22

Here, oij are the observed counts as given above and eij are the correpsonding expected values
under an independence / homogeneity assumption.

diff and logratio are measures of the effect size, but using the permutation approach imple-
mented here a p-value can be calculated as well. Both indicate the direction of the effect, and can
be used for one- or two-sided tests.

diff = o11/c1− o12/c2

logratio is based on a ratio of ratios and would be infinite when a term does not occur in either of
the two corpora, irrespective of number of occurences in the other corpus. Hence, we use a laplace
correction adding a (not neccesarily integer) number k of ficticious occurences to both corpora:

logratio = log2(((o11 + k)/(c1 + k))/((o12 + k)/(c2 + k)))

where o11 and o12 are the number of occurences of the term of interest in Corpora A and B and
c1 and c2 are the total numbers of tokens in A and B. Setting k to zero corresponds to the usual
logratio (which may be infinite). k is given by the laplace argument and defaults to one, meaning
one ficticious occurence is added to either corpus. Doing so prevents infinite values but has little
effect when the number of occurences is large.

ratio is the same as logratio but omits the logarithm:

ratio = ((o11 + k)/(c1 + k))/((o12 + k)/(c2 + k))

This leads to the same p-values but is faster to compute.

Value

a numerical vector of the scores, one for each term. Terms are stored in the names attribute.

keyperm Calculate the permutation distribution for a keyness measure

Description

Calculate the permutation distributions of a given keyness measure for each term by shuffeling the
copus labels. Number of documents per corpus is kept constant.

Usage

keyperm(ifl, observed, type = "llr", laplace = 1, output = "counts", nperm)

6 keyperm

Arguments

ifl Indexed frequency list as generated by create_ifl().

observed The vector of observed values of the keyness scores as generarted by keyness_scores()

type The type of keyness measure. One of llr, chisq, diff, logratio or ratio.
See details.

laplace Parameter of laplace correction. Only relevant for type = "ratio" and type =
"logratio". See details.

output The type of output. For output = "full" a matrix with all generated scores
is returned, for output = "counts" a matrix with three columns counting the
number of permutations for which the score is strictly smaller than, equal to or
strictly larger than the observed value.

nperm The number of permutations to generate.

Details

While usually keyness scores are judged by reference to a limiting null distribution under a token-
by-token-sampling model, this implementation approximates the null distribution under a document-
by-document sampling model. The permutation distributions of a given keyness measure for each
term is calculated by repeatedly shuffeling the copus labels. Number of documents per corpus is
kept constant.

Currently, the following types of scores are supported:

llr The log-likelihood ratio

chisq The Chi-Square-Statistic

diff Difference of relative frequencies

logratio Binary logarithm of the ratio of the relative frequencies, possibly using a laplace correc-
tion to avoid infinite values.

ratio ratio of the relative frequencies, possibly using a laplace correction to avoid infinite values.

llr and chisq are the test-statistics for a two-by-two contingency table.

corpus A corpus B TOTAL
term of interest o11 o12 r1

other tokens o21 o22 r2
TOTAL c1 c2 N

Both measure deviations from equal proportions but do not indicate the direction. For llr, the
correct version using terms for all four fields of the table is used, not the version using only two
terms that is sometimes used in corpus linguistics:

llr = −2∗ (o11∗ log(o11/e11)+o12∗ log(o12/e12)+o21∗ log(o21/e21)+o22∗ log(o22/e22))

where oij ∗ log(oij/eij) = 0 if oij = 0.

chisq is the usual Chi-Square statistic for a test of independece / homogeneity:

chisq = (o11− e11)2/e11 + (o12− e12)2/e12 + (o21− e21)2/e21 + (o22− e22)2/e22

p_value 7

Both llr and chisq asymptotically follow a Chi-Square-Distribution with 1 degree of freedom
if the null hypothesis of equal frequencies in both populations is true and the corpora are drawn
iid token-by-token. In contrast, In contrast, the p-values calculated here are obtained based on a
document-by-document sampling model, which is arguably more realistic in many cases.

Here, oij are the observed counts as given above and eij are the correpsonding expected values
under an independence / homogeneity assumption.

diff and logratio are measures of the effect size, but using the permutation approach imple-
mented here a p-value can be calculated as well. Both indicate the direction of the effect, and can
be used for one- or two-sided tests.

diff = o11/c1− o12/c2

logratio is based on a ratio of ratios and would be infinite when a term does not occur in either of
the two corpora, irrespective of number of occurences in the other corpus. Hence, we use a laplace
correction adding a (not neccesarily integer) number k of ficticious occurences to both corpora:

logratio = log2(((o11 + k)/(c1 + k))/((o12 + k)/(c2 + k)))

where o11 and o12 are the number of occurences of the term of interest in Corpora A and B and
c1 and c2 are the total numbers of tokens in A and B. Setting k to zero corresponds to the usual
logratio (which may be infinite). k is given by the laplace argument and defaults to one, meaning
one ficticious occurence is added to either corpus. Doing so prevents infinite values but has little
effect when the number of occurences is large.

ratio is the same as logratio but omits the logarithm:

ratio = ((o11 + k)/(c1 + k))/((o12 + k)/(c2 + k))

This leads to the same p-values but is faster to compute.

Value

A numeric matrix with number of rows equal to the number of terms. The columns contain either
all permutation values of the keyness score (output = "full") or the number of permutations for
which the score is strictly smaller than, equal to or strictly larger than the observed value (output
= "counts").

p_value Convert results of permutation test for keyness to p-values

Description

Calculate p-values from the results of keyperm() with output = "counts".

Usage

p_value(results, alternative = NULL)

8 p_value

Arguments

results results from permutation test. Must be of class keyperm_results_counts (ob-
tained by setting output = "counts" in keyperm())

alternative direction of p-value to calculate, one of "two.sided", "greater", "less". De-
faults depend on the scores used. See details.

Details

Valid (slightly conservative) p-values are calculated from an object of class keyperm_results_counts
that is obtained by running keyperm() with output = "counts". keyperm_results_counts is a
matrix with three columns that contain the counts of generated permutations that resulted in a score
strictly less than, equal to and strictly greater that the observed score.

For a one-sided p-value we use

pvaluegreater = (no.greater + no.equal + 1)/(no.ofperms+ 1)

or
pvalueless = (no.less+ no.equal + 1)/(no.ofperms+ 1)

Adding 1 in both the numerator and denominator amounts to including the observed values. This
results in a slightly conservative p-value, but guarantees that the test is valid for any number of
random permutations. It also means that never a p-value of zero is returned but the minimum
possible p-value is 1/(no.perms+ 1).

The two-sided p-value is calculated by

pvaluetwosided = 2 ∗min(pvalueless, pvaluegreater)

(values larger than 1 are set to 1).

If alternative is not specified by the user, different defaults are used depending on the score-
type (which is included as an attribute in the keyperm_results_counts object). Since for llr
and chisq, large values indicate a great deviation from equal frequencies without indicating the
direction, alternative == "greater" is basically the only alternative of interest and is used as a
default. For diff and logratio large absolute values indicate a great deviation from equal frequen-
cies, and positive values correspond to higher frequencies in A, negative frequencies correspond to
a higher frequency in B. For these scoretypes, the default is alternative = "two.sided". If only
"positive" keywords for A with respect to B are desired, use alternative = "less".

Value

a numeric vector of p-values.

Index

combine_results, 2
create_ifl, 3

keyness_scores, 4
keyperm, 5

p_value, 7

9

	combine_results
	create_ifl
	keyness_scores
	keyperm
	p_value
	Index

