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kofnGA-package kofnGA: A genetic algorithm for selection of fixed-size subsets.

Description

A genetic algorithm (GA) to do subset selection: search for a subset of a fixed size, k, from the
integers 1:n, such that user-supplied function is minimized at that subset.

Details

This package provides the function kofnGA, which implements a GA to perform subset selection;
that is, choosing the best k elements from among n possibilities. We label the set of possibilities
from which we are choosing by the integers 1:n, and a solution is represented by an index vector,
i.e., a vector of integers in the range [1, n] (with no duplicates) indicating which members of the set
to choose. The objective function (defining which solution is “best”) is arbitrary and user-supplied;
the only restriction on this function is that its first argument must be an index vector encoding the
solution.

The search results output by kofnGA are a list object assigned to the S3 class GAsearch. The package
includes summary, print, and plot methods for this class to make it easier to inspect the results.

kofnGA Search for the best subset of size k from n choices.

Description

kofnGA implements a genetic algorithm for subset selection. The function searches for a subset
of a fixed size, k, from the integers 1:n, such that user-supplied function OF is minimized at that
subset. The selection step is done by tournament selection based on ranks, and elitism may be used
to retain the best solutions from one generation to the next. Population objective function values
can be evaluated in parallel.

Usage

kofnGA(n, k, OF, popsize = 200, keepbest = floor(popsize/10),
ngen = 500, tourneysize = max(ceiling(popsize/10), 2),
mutprob = 0.01, mutfrac = NULL, initpop = NULL, verbose = 0,
cluster = NULL, sharedmemory = FALSE, ...)

Arguments

n The maximum permissible index (i.e., the size of the set we are doing subset
selection from). The algorithm chooses a subset of integers from 1 to n.

k The number of indices to choose (i.e., the size of the subset).
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OF The objective function. The first argument of OF should be an index vector of
length k containing integers in the range [1, n]. Additional arguments can be
passed to OF through ....

popsize The size of the population; equivalently, the number of offspring produced each
generation.

keepbest The keepbest least fit offspring each generation are replaced by the keepbest
most fit members of the previous generation. Used to implement elitism.

ngen The number of generations to run.

tourneysize The number of individuals involved in each tournament at the selection stage.

mutprob The probability of mutation for each of the k chosen indices in each individual.
An index chosen for mutation jumps to any other unused index, uniformly at
random. This probability can be set indirectly through mutfrac.

mutfrac The average fraction of offspring that will experience at least one mutation.
Equivalent to setting mutprob to 1 - (1 - mutfrac)^(1/k). Only used if mutprob
is not supplied. This method of controlling mutation may be preferable if the
algorithm is being run at different values of k.

initpop A popsize-by-k matrix of starting solutions. The final populations from one
GA search can be passed as the starting point of the next search. Possibly useful
if using this function in an adaptive, iterative, or parallel scheme (see examples).

verbose An integer controlling the display of progress during search. If verbose takes
positive value v, then the iteration number and best objective function value are
displayed at the console every v generations. Otherwise nothing is displayed.
Default is zero (no display).

cluster If non-null, the objective function evaluations for each generation are done in
parallel. cluster can be either a cluster as produced by makeCluster, or an in-
teger number of parallel workers to use. If an integer, makeCluster(cluster)
will be called to create a cluster, which will be stopped on function exit.

sharedmemory If cluster is non-null and sharedmemory is TRUE, the parallel computation will
employ shared-memory techniques to reduce the overhead of repeatedly passing
the population matrix to worker threads. Uses code from the Rdsm package,
which depends on bigmemory.

... Additional arguments passed to OF.

Details

• Tournament selection involves creating mating "tournaments" where two groups of tourneysize
solutions are selected at random without regard to fitness. Within each tournament, victors are
chosen by weighted sampling based on within-tournament fitness ranks (larger ranks given to
more fit individuals). The two victors become parents of an offspring. This process is carried
out popsize times to produce the new population.

• Crossover (reproduction) is carried out by combining the unique elements of both parents and
keeping k of them, chosen at random.

• Increasing tourneysize will put more "selection pressure" on the choice of mating pairs, and
will speed up convergence (to a local optimum) accordingly. Smaller tourneysize values
will conversely promote better searching of the solution space.
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• Increasing the size of the elite group (keepbest) also promotes more homogeneity in the
population, thereby speeding up convergence.

Value

A list of S3 class "GAsearch" with the following elements:

bestsol A vector of length k holding the best solution found.
bestobj The objective function value for the best solution found.
pop A popsize-by-k matrix holding the final population, row-sorted in order of in-

creasing objective function. Each row is an index vector representing one solu-
tion.

obj The objective function values corresponding to each row of pop.
old A list holding information about the search progress. Its elements are:
old$best The sequence of best solutions known over the course of the search (an (ngen+1)-

by-k matrix)
old$obj The sequence of objective function values corresponding to the solutions in

old$best

old$avg The average population objective function value over the course of the search
(a vector of length ngen+1). Useful to give a rough indication of population
diversity over the search. If the average fitness is close to the best fitness in the
population, most individuals are likely quite similar to each other.

Notes on parallel evaluation

Specifying a cluster allows OF to be evaluated over the population in parallel. The population of
solutions will be distributed among the workers in cluster using static dispatching. Any cluster
produced by makeCluster should work, though the sharedmemory option is only appropriate for a
cluster of workers on the same multicore processor.

Solutions must be sent to workers (and results gathered back) once per generation. This introduces
communication overhead. Overhead can be reduced, but not eliminated, by setting sharedmemory=TRUE.
The impact of parallelization on run time will depend on how the run time cost of evaluationg OF
compares to the communication overhead. Test runs are recommended to determine if parallel
execution is beneficial in a given situation.

Note that only the objective function evaluations are distributed to the workers. Other parts of the al-
gorithm (mutation, crossover) are computed serially. As long as OF is deterministic, reproducibility
of the results from a given random seed should not be affected by the use of parallel computation.

References

Mark A. Wolters (2015), “A Genetic Algorithm for Selection of Fixed-Size Subsets, with Appli-
cation to Design Problems,” Journal of Statistical Software, volume 68, Code Snippet 1, available
online.

See Also

plot.GAsearch plot method, print.GAsearch print method, and summary.GAsearch summary
method.

http://www.jstatsoft.org/article/view/v068c01
http://www.jstatsoft.org/article/view/v068c01
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Examples

#---Find the four smallest numbers in a random vector of 100 uniforms---
# Generate the numbers and sort them so the best solution is (1,2,3,4).
Numbers <- sort(runif(100))
Numbers[1:6] #-View the smallest numbers.
ObjFun <- function(v, some_numbers) sum(some_numbers[v]) #-The objective function.
ObjFun(1:4, Numbers) #-The global minimum.
out <- kofnGA(n = 100, k = 4, OF = ObjFun, ngen = 50, some_numbers = Numbers) #-Run the GA.
summary(out)
plot(out)

## Not run:
# Note: the following two examples take tens of seconds to run (on a 2018 laptop).

#---Harder: find the 50x50 principal submatrix of a 500x500 matrix s.t. determinant is max---
# Use eigenvalue decomposition and QR decomposition to make a matrix with known eigenvalues.
n <- 500 #-Dimension of the matrix.
k <- 50 #-Size of subset to sample.
eigenvalues <- seq(10, 1, length.out=n) #-Choose the eigenvalues (all positive).
L <- diag(eigenvalues)
RandMat <- matrix(rnorm(n^2), nrow=n)
Q <- qr.Q(qr(RandMat))
M <- Q %*% L %*% t(Q)
M <- (M+t(M))/2 #-Enusre symmetry (fix round-off errors).
ObjFun <- function(v,Mat) -(determinant(Mat[v,v],log=TRUE)$modulus)
out <- kofnGA(n=n, k=k, OF=ObjFun, Mat=M)
print(out)
summary(out)
plot(out)

#---For interest: run GA searches iteratively (use initpop argument to pass results)---
# Alternate running with mutation probability 0.05 and 0.005, 50 generations each time.
# Use the same problem as just above (need to run that first).
mutprob <- 0.05
result <- kofnGA(n=n, k=k, OF=ObjFun, ngen=50, mutprob=mutprob, Mat=M) #-First run (random start)
allavg <- result$old$avg #-For holding population average OF values
allbest <- result$old$obj #-For holding population best OF values
for(i in 2:10) {

if(mutprob==0.05) mutprob <- 0.005 else mutprob <- 0.05
result <- kofnGA(n=n, k=k, OF=ObjFun, ngen=50, mutprob=mutprob, initpop=result$pop, Mat=M)
allavg <- c(allavg, result$old$avg[2:51])
allbest <- c(allbest, result$old$obj[2:51])

}
plot(0:500, allavg, type="l", col="blue", ylim=c(min(allbest), max(allavg)))
lines(0:500, allbest, col="red")
legend("topright", legend=c("Pop average", "Pop best"), col=c("blue", "red"), bty="n",

lty=1, cex=0.8)
summary(result)

## End(Not run)
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plot.GAsearch Plot method for the GAsearch class output by kofnGA.

Description

Arguments type, lty, pch, col, lwd Can be supplied to change the appearance of the lines produced
by the plot method. Each is a 2-vector: the first element gives the parameter for the plot of average
objective function value, and the second element gives the parameter for the plot of the minimum
objective function value. See plot or matplot for description and possible values.

Usage

## S3 method for class 'GAsearch'
plot(x, type = c("l", "l"), lty = c(1, 1),
pch = c(-1, -1), col = c("blue", "red"), lwd = c(1, 1), ...)

Arguments

x An object of class GAsearch, as returned by kofnGA.

type Controls series types.

lty Controls line types.

pch Controls point markers.

col Controls colors.

lwd Controls line widths.

... Used to pass other plot-control arguments.

print.GAsearch Print method for the GAsearch class output by kofnGA.

Description

Print method for the GAsearch class output by kofnGA.

Usage

## S3 method for class 'GAsearch'
print(x, ...)

Arguments

x An object of class GAsearch, as returned by kofnGA.

... Included for consistency with generic functions.
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print.summary.GAsearch

Print method for the summary.GAsearch class used in kofnGA.

Description

Print method for the summary.GAsearch class used in kofnGA.

Usage

## S3 method for class 'summary.GAsearch'
print(x, ...)

Arguments

x An object of class summary.GAsearch.

... Included for consistency with generic functions.

summary.GAsearch Summary method for the GAsearch class output by kofnGA.

Description

Summary method for the GAsearch class output by kofnGA.

Usage

## S3 method for class 'GAsearch'
summary(object, ...)

Arguments

object An object of class GAsearch, as returned by kofnGA.

... Included for consistency with generic functions.
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