
Package ‘lolog’
July 22, 2025

Maintainer Ian E. Fellows <ian@fellstat.com>

License MIT + file LICENCE

Title Latent Order Logistic Graph Models

LinkingTo Rcpp, BH

Type Package

LazyLoad yes

Description Estimation of Latent Order Logistic (LOLOG) Models for Networks.
LOLOGs are a flexible and fully general class of statistical graph models.
This package provides functions for performing MOM, GMM and variational
inference. Visual diagnostics and goodness of fit metrics are provided.
See Fellows (2018) <doi:10.48550/arXiv.1804.04583> for a detailed description of the methods.

Version 1.3.1

Depends R (>= 4.0.0), methods, Rcpp (>= 0.9.4)

Imports network, parallel, ggplot2, reshape2, intergraph, Matrix

Suggests testthat, inline, knitr, rmarkdown, ergm, BH, igraph

URL https://github.com/statnet/lolog

RcppModules lolog

RoxygenNote 7.2.2

VignetteBuilder knitr

NeedsCompilation yes

Author Ian E. Fellows [aut, cre],
Mark S. Handcock [ctb]

Repository CRAN

Date/Publication 2023-12-07 12:40:02 UTC

Contents
as.BinaryNet . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
as.BinaryNet.default . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

1

https://doi.org/10.48550/arXiv.1804.04583
https://github.com/statnet/lolog


2 as.BinaryNet

as.network . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
as.network.Rcpp_DirectedNet . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
as.network.Rcpp_UndirectedNet . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
BinaryNet . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
calculateStatistics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
call-symbols . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
coef.lolog . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
createCppModel . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
createLatentOrderLikelihood . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
gofit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
gofit.lolog . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
inlineLologPlugin . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
LatentOrderLikelihood . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
lazega . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
lolog . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
lolog-terms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
LologModels . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
lologPackageSkeleton . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
lologVariational . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
plot.gofit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
plot.lologGmm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
plot.Rcpp_DirectedNet . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
plot.Rcpp_UndirectedNet . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
print.gofit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
print.lolog . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
print.lologVariationalFit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
registerDirectedStatistic . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
simulate.lolog . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
summary.lolog . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
ukFaculty . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
[ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

Index 31

as.BinaryNet Convert to either an UndirectedNet or DirectedNet object

Description

Convert to either an UndirectedNet or DirectedNet object

Usage

as.BinaryNet(x, ...)



as.BinaryNet.default 3

Arguments

x the object

... unused

Details

Converts network objects to BinaryNets. This function also converts other graph formats, such as
igraph and tidygraph, utilizing intergraph::asNetwork.

Value

either an Rcpp_UndirectedNet or Rcpp_DirectedNet object

Examples

data(ukFaculty)
net <- as.BinaryNet(ukFaculty)
net

as.BinaryNet.default Convert to either an UndirectedNet or DirectedNet object

Description

Convert to either an UndirectedNet or DirectedNet object

Usage

## Default S3 method:
as.BinaryNet(x, ...)

Arguments

x the object

... unused

Details

Converts network objects to BinaryNets. This function also converts other graph formats, such as
igraph and tidygraph, utilizing intergraph::asNetwork.

Value

either an Rcpp_UndirectedNet or Rcpp_DirectedNet object



4 as.network.Rcpp_DirectedNet

Examples

data(ukFaculty)
net <- as.BinaryNet(ukFaculty)
net

as.network Network conversion

Description

Network conversion

Arguments

x The object

... Additional parameters

as.network.Rcpp_DirectedNet

Convert a DirectedNet to a network object

Description

Convert a DirectedNet to a network object

Usage

## S3 method for class 'Rcpp_DirectedNet'
as.network(x, ...)

Arguments

x the object

... unused

Value

A network object

See Also

DirectedNet



as.network.Rcpp_UndirectedNet 5

Examples

el <- matrix(c(1,2),ncol=2)

#make an UndirectedNet with one edge and 5 nodes
net <- new(UndirectedNet, el, 5L)

nw <- as.network(net)
nw

as.network.Rcpp_UndirectedNet

Convert a UndirectedNet to a network object

Description

Convert a UndirectedNet to a network object

Usage

## S3 method for class 'Rcpp_UndirectedNet'
as.network(x, ...)

Arguments

x the object

... unused

Value

A network object

See Also

UndirectedNet

Examples

el <- matrix(c(1,2),ncol=2)

#make an UndirectedNet with one edge and 5 nodes
net <- new(UndirectedNet, el, 5L)
net[1:5,1:5]

nw <- as.network(net)
nw



6 call-symbols

BinaryNet BinaryNet

Description

BinaryNet

Details

Rcpp_DirectedNet and Rcpp_UndirectedNet are the native network classes for the lolog package.
They are designed for algorithmic performance, and are thin wrappers for an underlying C++ ob-
ject. These network objects can be passed back and forth between R and C++ with little overhead.
Because they are pointers to C++ objects, serialization via ’save’ or ’dput’ are not supported

calculateStatistics Calculate network statistics from a formula

Description

Calculate network statistics from a formula

Usage

calculateStatistics(formula)

Arguments

formula A lolog formula (See lolog).

Examples

data(ukFaculty)
calculateStatistics(ukFaculty ~ edges + mutual + triangles)

call-symbols Internal Symbols

Description

Internal symbols used to access compiles code.



coef.lolog 7

coef.lolog Extracts estimated model coefficients.

Description

Extracts estimated model coefficients.

Usage

## S3 method for class 'lolog'
coef(object, ...)

Arguments

object A ‘lolog‘ object.

... unused

Examples

# Extract parameter estimates as a numeric vector:
data(ukFaculty)
fit <- lolog(ukFaculty ~ edges)
coef(fit)

createCppModel Creates a model

Description

Creates a model

Usage

createCppModel(formula, cloneNet = TRUE, theta = NULL)

Arguments

formula the model formula

cloneNet create a deep copy of the network within the model object

theta the model parameters.

Details

Creates a C++ Model object. In general this isn’t needed by most users of the package.



8 createLatentOrderLikelihood

Examples

data(ukFaculty)
model <- createCppModel(ukFaculty ~ edges)
model$calculate()
model$statistics()

createLatentOrderLikelihood

Creates a probability model for a latent ordered network model

Description

Creates a probability model for a latent ordered network model

Usage

createLatentOrderLikelihood(formula, theta = NULL)

Arguments

formula A LOLOG formula. See link{lolog}

theta Parameter values.

Value

An Rcpp object representing the likelihood model

Examples

# See the methods of the objects returned by this function
UndirectedLatentOrderLikelihood
DirectedLatentOrderLikelihood

# A Barabasi-Albert type graph model with 1000 vertices
el <- matrix(0, nrow=0, ncol=2)
net <- new(UndirectedNet, el, 1000L)
lolik <- createLatentOrderLikelihood(net ~ preferentialAttachment(), theta=1)
banet <- lolik$generateNetwork()$network # generate a random network from the model
degrees <- banet$degree(1:1000)
hist(degrees, breaks=100) # plot the degree distribution
order <- banet[["__order__"]] # The vertex inclusion order

# Earlier nodes have higher degrees
library(ggplot2)
qplot(order, degrees, alpha=I(.25)) + geom_smooth(method="loess")



gofit 9

gofit Conduct goodness of fit diagnostics

Description

Conduct goodness of fit diagnostics

Usage

gofit(object, ...)

Arguments

object the object to evaluate

... additional parameters

Details

see gofit.lolog

gofit.lolog Goodness of Fit Diagnostics for a LOLOG fit

Description

Goodness of Fit Diagnostics for a LOLOG fit

Usage

## S3 method for class 'lolog'
gofit(object, formula, nsim = 100, ...)

Arguments

object the object to evaluate

formula A formula specifying the statistics on which to evaluate the fit

nsim The number of simulated statistics

... additional parameters



10 inlineLologPlugin

Examples

library(network)
data(ukFaculty)

# Delete vertices missing group
delete.vertices(ukFaculty, which(is.na(ukFaculty %v% "Group")))

# A dyad independent model
fitind <- lolog(ukFaculty ~ edges() + nodeMatch("GroupC") + nodeCov("GroupC"))
summary(fitind)

# Check gof on degree distribution (bad!)
gind <- gofit(fitind, ukFaculty ~ degree(0:50))
gind
plot(gind)

#check gof on esp distribution (bad!)
gind <- gofit(fitind, ukFaculty ~ esp(0:25))
gind
plot(gind)

## Not run:

#include triangles and 2-stars (in and out)
fitdep <- lolog(ukFaculty ~ edges() + nodeMatch("GroupC") + nodeCov("GroupC") +

triangles + star(2, direction="in") + star(2, direction="out"), nsamp=1500)
summary(fitdep)

# Check gof on (in + out) degree distribution (good!)
gdep <- gofit(fitdep, ukFaculty ~ degree(0:50))
gdep
plot(gdep)

#check gof on esp distribution (good!)
gdep <- gofit(fitdep, ukFaculty ~ esp(0:25))
gdep
plot(gdep)

## End(Not run)

inlineLologPlugin An lolog plug-in for easy C++ prototyping and access

Description

An lolog plug-in for easy C++ prototyping and access

The inline plug-in for lolog



LatentOrderLikelihood 11

Usage

inlineLologPlugin(...)

inlineLologPlugin

Arguments

... plug-in arguments

Details

The lolog Rcpp plugin allows for the rapid prototyping of compiled code. new functions can be
registered and exposed using cppFunction and new statistics can be compiled and registered using
sourceCpp.

See Also

cppFunction, sourceCpp, cppFunction

Examples

## Not run:
# This creates a function in C++ to create an empty network of size n
# and expose it to R.
src <- "
lolog::BinaryNet<lolog::Directed> makeEmptyNetwork(const int n){
Rcpp::IntegerMatrix tmp(0,2);
lolog::BinaryNet<lolog::Directed> net(tmp, n);
return net;
}
"
Rcpp::registerPlugin("lolog",inlineLologPlugin)
emptyNetwork <- cppFunction(src,plugin="lolog")
net <- emptyNetwork(10L)
net[1:10,1:10]

## End(Not run)

LatentOrderLikelihood LatentOrderLikelihood

Description

LatentOrderLikelihood



12 lolog

lazega Collaboration Relationships Among Partners at a New England Law
Firm

Description

This data set comes from a network study of corporate law partnership that was carried out in a
Northeastern US corporate law firm, referred to as SG&R, 1988-1991 in New England.

Usage

data(lazega)

Licenses and Citation

CC BY 4.0. When publishing results obtained using this data set, the original authors (Lazega,
2001) should be cited, along with this R package.

Copyright

Creative Commons Attribution-Share Alike 4.0 International License, see https://creativecommons.org/licenses/by/4.0/
for details.

Source

See http://elazega.fr/?page_id=609 and https://www.stats.ox.ac.uk/~snijders/siena/
Lazega_lawyers_data.htm

References

Lazega, Emmanuel (2001), The Collegial Phenomenon: The Social Mechanisms of Cooperation
among Peers in a Corporate Law Partnership, Oxford: Oxford University Press

lolog Fits a LOLOG model via Monte Carlo Generalized Method of Mo-
ments

Description

lolog is used to fit Latent Order Logistic Graph (LOLOG) models. LOLOG models are motivated
by the idea of network growth where the network begins empty, and edge variables are sequentially
’added’ to the network with an either unobserved, or partially observed order s. Conditional upon
the inclusion order, the probability of an edge has a logistic relationship with the change in network
statistics.

http://elazega.fr/?page_id=609
https://www.stats.ox.ac.uk/~snijders/siena/Lazega_lawyers_data.htm
https://www.stats.ox.ac.uk/~snijders/siena/Lazega_lawyers_data.htm


lolog 13

Usage

lolog(
formula,
auxFormula = NULL,
theta = NULL,
nsamp = 1000,
includeOrderIndependent = TRUE,
targetStats = NULL,
weights = "full",
tol = 0.1,
nHalfSteps = 10,
maxIter = 100,
minIter = 2,
startingStepSize = 0.1,
maxStepSize = 0.5,
cluster = NULL,
verbose = TRUE

)

Arguments

formula A lolog formula for the sufficient statistics (see details).

auxFormula A lolog formula of statistics to use for moment matching.

theta Initial parameters values. Estimated via lologVariational if NULL.

nsamp The number of sample networks to draw at each iteration.
includeOrderIndependent

If TRUE, all order independent terms in formula are used for moment matching.

targetStats A vector of network statistics to use as the target for the moment equations. If
NULL, the observed statistics for the network are used.

weights The type of weights to use in the GMM objective. Either ’full’ for the inverse
of the full covariance matrix or ’diagonal’ for the inverse of the diagonal of the
covariance matrix.

tol The Hotelling’s T^2 p-value tolerance for convergence for the transformed mo-
ment conditions.

nHalfSteps The maximum number of half steps to take when the objective is not improved
in an iteration.

maxIter The maximum number of iterations.

minIter The minimum number of iterations.
startingStepSize

The starting dampening of the parameter update.

maxStepSize The largest allowed value for dampening.

cluster A parallel cluster to use for graph simulation.

verbose Level of verbosity 0-3.



14 lolog

Details

LOLOG represents the probability of a tie, given the network grown up to a time point as

logit
(
p(yst = 1|η, yt−1, s≤t)

)
= θ · c(yst = 1|yt−1, s≤t)

where s≤t is the growth order of the network up to time t, yt−1 is the state of the graph at time
t− 1. c(yst |yt−1, s≤t) is a vector representing the change in graph statistics from time t− 1 to t if
an edge is present, and θ is a vector of parameters.

The motivating growth order proceeds ’by vertex.’ The network begins ’empty’ and then vertices
are ’added’ to the network sequentially. The order of vertex inclusion may be random or fixed.
When a vertex ’enters’ the network, each of the edge variables connecting it and vertices already in
the network are considered for edge creation in a completely random order.

LOLOG formulas contain a network, DirectedNet or UndirectedNet object on the left hand side.
the right hand side contains the model terms used. for example,

net ~ edges

represents and Erdos-Renyi model and

net ~ edges + preferentialAttachment()

represents a Barabasi-Albert model. See lolog-terms for a list of allowed model statistics

Conditioning on (partial) vertex order can be done by placing an ordering variable on the right hand
side of the ’|’ operator, as in

net ~ edges + preferentialAttachment() | order

’order’ should be a numeric vector with as many elements as there are vertices in the network. Ties
are allowed. Vertices with higher order values will always be included later. Those with the same
values will be included in a random order in each simulated network.

offsets and constraints are specified by wrapping them with either offset() or constraint(), for
example, the following specifies an Erdos-Renyi model with the constraint that degrees must be less
that 10

net ~ edges + constraint(boundedDegree(0L, 10L))

If the model contains any order dependent statistics, additional moment constraints must be spec-
ified in auxFormula. Ideally these should be chosen to capture the features modeled by the order
dependent statistics. For example, preferentialAttachment models the degree structure, so we
might choose two-stars as a moment constraint.

lolog(net ~ edges + preferentialAttachment(), net ~ star(2))

will fit a Barabasi-Albert model with the number of edges and number of two-stars as moment
constraints.

Value

An object of class ’lolog’. If the model is dyad independent, the returned object will also be of class
"lologVariational" (see lologVariational, otherwise it will also be a "lologGmm" object.

lologGmm objects contain:

method "Method of Moments" for order independent models, otherwise "Generalized
Method of Moments"



lolog 15

formula The model formula

auxFormula The formula containing additional moment conditions

theta The parameter estimates

stats The statistics for each network in the last iteration

estats The expected stats (G(y,s)) for each network in the last iteration

obsStats The observed h(y) network statistics

targetStats The target network statistics

obsModelStats The observed g(y,s) network statistics

net A network simulated from the fit model

grad The gradient of the moment conditions (D)

vcov The asymptotic covariance matrix of the parameter estimates
likelihoodModel

An object of class *LatentOrderLikelihood at the fit parameters

Examples

library(network)
set.seed(1)
data(flo)
flomarriage <- network(flo,directed=FALSE)
flomarriage %v% "wealth" <- c(10,36,27,146,55,44,20,8,42,103,48,49,10,48,32,3)

# A dyad independent model
fit <- lolog(flomarriage ~ edges + nodeCov("wealth"))
summary(fit)

# A dyad dependent model with 2-stars and triangles
fit2 <- lolog(flomarriage ~ edges + nodeCov("wealth") + star(2) + triangles, verbose=FALSE)
summary(fit2)

## Not run:

# An order dependent model
fit3 <- lolog(flomarriage ~ edges + nodeCov("wealth") + preferentialAttachment(),

flomarriage ~ star(2:3), verbose=FALSE)
summary(fit3)

# Try something a bit more real
data(ukFaculty)

# Delete vertices missing group
delete.vertices(ukFaculty, which(is.na(ukFaculty %v% "Group")))

fituk <- lolog(ukFaculty ~ edges() + nodeMatch("GroupC") + nodeCov("GroupC") + triangles + star(2))
summary(fituk)
plot(fituk$net, vertex.col= ukFaculty %v% "Group" + 2)



16 lolog-terms

## End(Not run)

lolog-terms LOLOG Model Terms

Description

LOLOG Model Terms

Statistic Descriptions

edges (dyad-independent) (order-independent) (directed) (undirected) Edges: This term adds
one network statistic equal to the number of edges (i.e. nonzero values) in the network.

star(k, direction="in") (order-independent) (directed) (undirected) The k argument is a
vector of distinct integers. This term adds one network statistic to the model for each element
in k. The ith such statistic counts the number of distinct k[i]-stars in the network, where a
k-star is defined to be a node N and a set of k different nodes {O1, . . . , Ok} such that the ties
{N,Oi} exist for i = 1, . . . , k. For directed networks, direction indicates whether the count
is of in-stars (direction="in") or out-stars (direction="out")

triangles() (order-independent) (directed) (undirected) This term adds one statistic to the model
equal to the number of triangles in the network. For an undirected network, a triangle is de-
fined to be any set {(i, j), (j, k), (k, i)} of three edges. For a directed network, a triangle is
defined as any set of three edges (i→j) and (j→k) and either (k→i) or (k←i).

clustering() (order-independent) (undirected) The global clustering coefficient, defined as the
number of triangles over the number of possible triangles https://en.wikipedia.org/
wiki/Clustering_coefficient, or 3 * triangles / 2-stars.

transitivity() (order-independent) (undirected) The Soffer-Vazquez transitivity. This is clus-
tering metric that adjusts for large degree differences and is described by C in Equation 6 of #’
https://pubmed.ncbi.nlm.nih.gov/16089694/. Note The approximation of the number
of possible shared neighbors between node i and j of min(d_i,d_j) - 1 in this implementation.

mutual() (order-independent) (directed) A count of the number of pairs of actors i and j for
which (i→j) and (j→i) both exist.

nodeMatch(name) (dyad-independent) (order-independent) (directed) (undirected) For cate-
gorical network nodal variable ’name,’ the number of edges between nodes with the same
variable value.

nodeMix(name) (dyad-independent) (order-independent) (directed) (undirected) For categor-
ical network nodal variable ’name,’ adds one statistic for each combination of levels of the
variable equal to the count of edges between those levels.

degree(d, direction="undirected", lessThanOrEqual=FALSE) (order-independent) (directed) (undirected)
The d argument is a vector of distinct integers. This term adds one network statistic to the
model for each element in d; the ith such statistic equals the number of nodes in the network
of degree d[i], i.e. with exactly d[i] edges. For directed networks if direction="undirected"
degree is counted as the sum of the in and out degrees of a node. If direction="in" then in-
degrees are used and direction="out" indicates out-degrees.

https://en.wikipedia.org/wiki/Clustering_coefficient
https://en.wikipedia.org/wiki/Clustering_coefficient
https://pubmed.ncbi.nlm.nih.gov/16089694/


lolog-terms 17

If lessThanOrEqual=TRUE, then the count is the number of nodes with degree less than or
equal to d.

twoPath (order-independent) (directed) (undirected) This term adds one statistic to the model,
equal to the number of 2-paths in the network. For a directed network this is defined as a pair
of edges (i→j), (j→k), where i and j must be distinct. That is, it is a directed path of length
2 from i to k via j. For directed networks a 2-path is also a mixed 2-star. For undirected
networks a twopath is defined as a pair of edges {i, j}, {j, k}. That is, it is an undirected path
of length 2 from i to k via j, also known as a 2-star.

degreeCrossProd() (order-independent) (undirected) This term adds one network statis-
tic equal to the mean of the cross-products of the degrees of all pairs of nodes in the network
which are tied.

nodeCov(name) (dyad-independent) (order-independent) (directed) (undirected) The name ar-
gument is a character string giving the name of a numeric attribute in the network’s vertex at-
tribute list. This term adds a single network statistic to the model equaling the sum of name(i)
and name(j) for all edges (i, j) in the network. For categorical variables, levels are coded as
1,..,nlevels‘.

edgeCov(x, name=NULL) (dyad-independent) (order-independent) (directed) (undirected) The
x argument is a square matrix of covariates, one for each possible edge in the network. This
term adds one statistic to the model, equal to the sum of the covariate values for each edge
appearing in the network. The edgeCov term applies to both directed and undirected networks.
For undirected networks the covariates are also assumed to be undirected. If present, the name
argument is a character string providing a name for the edgeCov term. The name will be
"edgeCov.<name>". It is recommended that all edgeCov terms be given explicit names. In
particular, if two unnamed edgeCov terms are supplied an error will occur (as they will have
the same default name "edgeCov.".

edgeCovSparse(x, name=NULL) (dyad-independent) (order-independent) (directed) (undirected)
Identical to edgeCov, except x should be a sparse matrix. This is especially useful for larger
networks, where passing a dense matrix to edgeCov is too memory intensive.

gwesp(alpha) (order-independent) (directed) (undirected) This term is just like gwdsp except
it adds a statistic equal to the geometrically weighted edgewise (not dyadwise) shared partner
distribution with decay parameter alpha parameter, which should be non-negative.

gwdegree(alpha, direction="undirected") (order-independent) (directed) (undirected) This
term adds one network statistic to the model equal to the weighted degree distribution with
decay controlled by the decay parameter. The alpha parameter is the same as theta_s in
equation (14) in Hunter (2007).
For directed networks if direction="undirected" degree is counted as the sum of the in and
out degrees of a node. If direction="in" then in-degrees are used ans direction="out" indicates
out-degrees.

gwdsp(alpha) (order-independent) (directed) (undirected) This term adds one network statis-
tic to the model equal to the geometrically weighted dyadwise shared partner distribution with
decay parameter decay parameter, which should be non-negative.

esp(d, type=2) (order-independent) (directed) (undirected) This term adds one network statis-
tic to the model for each element in d where the ith such statistic equals the number of edges
(rather than dyads) in the network with exactly d[i] shared partners. This term can be used
with directed and undirected networks. For directed networks the count depends on type:
type = 1 : from -> to -> nbr -> from



18 lolog-terms

type = 2 : from -> to <- nbr <- from (homogeneous)
type = 3 : either type 1 or 2
type = 4 : all combinations of from -> to <-> nbr <-> from

geoDist(long, lat, distCuts=Inf) (dyad-independent) (order-independent) (undirected) given
nodal variables for longitude and latitude, calculates the sum of the great circle distance be-
tween connected nodes. distCuts splits this into separate statistics that count the sum of the
minimum of the cut point and the distance.

dist(names (dyad-independent) (order-independent) (undirected) Calculates a statistic equal
to the sum of the euclidean distances between connected nodes on the numeric nodal variables
specified in names.

preferentialAttachment(k=1, direction="in") (directed) (undirected) An order dependent
preferential attachment term. For each edge, adds
log( (k+degree) / (n * (meanDegree + k)))
where degree is the current degree of the acting node, n is the network size, and meanDegree
is the mean degree of the network. This depends upon the order in which edges are added. For
directed networks, if direction="in" the in-degrees are used. If it is "out" the out degrees are
used, otherwise "undirected" means that the sum of the in and out degrees are used.

sharedNbrs(k=1) (undirected) for each edge adds
log(k + shared / minDeg)
where shared is the current number of shared neighbors between the two nodes, and minDeg
is the minimum of the current degrees of the two nodes (i.e. the number of possible shared
neighbors).

nodeLogMaxCov(name) (order-independent) (undirected) For each edge (i,j) and nodal variable
variable, add to the statistic
log(max(variable[i],variable[j]))
If the variable is a (partial) rank order of nodal inclusion into the network, this statistic can be
useful in modeling the mean degree over the course of the growth process.

nodeFactor(name, direction="undirected") (order-independent) (undirected) (directed)
The name argument is a character vector giving one or more names of categorical attributes
in the network’s vertex attribute list. This term adds multiple network statistics to the model,
one for each of (a subset of) the unique values of the attrname attribute (or each combina-
tion of the attributes given). Each of these statistics gives the number of times a node with
that attribute or those attributes appears in an edge in the network. In particular, for edges
whose endpoints both have the same attribute values, this value is counted twice. For directed
networks, if direction="in" then in-edges are used and direction="out" indicates out-edges.

absDiff(name, power=1) (order-independent) (undirected) (directed) The name argument is
a character string giving the name of one or mode quantitative attribute in the network’s
vertex attribute list. This term adds one network statistic to the model equaling the sum of
sum(abs(name[i]-name[j])^pow) for all edges (i,j) in the network.

Constraint Descriptions

boundedDegree(lower,upper) (order-independent) (undirected) Adds a constraint that the de-
grees for the network must be between lower and upper.



LologModels 19

LologModels Models

Description

Models

lologPackageSkeleton Create a skeleton for a package extending lolog

Description

Create a skeleton for a package extending lolog

Usage

lologPackageSkeleton(path = ".")

Arguments

path where to create the package

Details

lolog is a modular package, and can be extended at both the R and C++ level. This function will
build a package skeleton that can be used as a starting point for development. To create the package
in the current directory run:

lologPackageSkeleton()

Build and install the package from the command line with

R CMD build LologExtension

R CMD INSTALL LologExtension_1.0.tar.gz

See Also

inlineLologPlugin



20 lologVariational

Examples

## Not run:

#install package
lologPackageSkeleton()
system("R CMD build LologExtension")
system("R CMD INSTALL LologExtension_1.0.tar.gz")

library(LologExtension) #Load package

# Run model with new minDegree statistic
library(network)
m <- matrix(0,20,20)
for(i in 1:19) for(j in (i+1):20) m[i,j] <- m[j,i] <- rbinom(1,1,.1)
g <- network(m, directed=FALSE)
fit <- lologVariational(g ~ edges() + minDegree(1L))
summary(fit)

## End(Not run)

lologVariational Fits a latent ordered network model using Monte Carlo variational
inference

Description

Fits a latent ordered network model using Monte Carlo variational inference

Usage

lologVariational(
formula,
nReplicates = 5L,
dyadInclusionRate = NULL,
edgeInclusionRate = NULL,
targetFrameSize = 5e+05

)

Arguments

formula A lolog formula. See link{lolog}

nReplicates An integer controlling how many dyad ordering to perform.
dyadInclusionRate

Controls what proportion of non-edges in each ordering should be dropped.
edgeInclusionRate

Controls what proportion of edges in each ordering should be dropped.



lologVariational 21

targetFrameSize

Sets dyadInclusionRate so that the model frame for the logistic regression will
have on average this amount of observations.

Details

This function approximates the maximum likelihood solution via a variational inference on the
graph (y) over the latent edge variable inclusion order (s). Specifically, it replaces the conditional
probability p(s | y) by p(s). If the LOLOG model contains only dyad independent terms, then
these two probabilities are identical, and thus variational inference is exactly maximum likelihood
inference. The objective function is

Ep(s)

(
log p(y|S, θ)

)
This can be approximated by drawing samples from p(s) to approximate the expectation. The num-
ber of samples is controlled by the nReplicates parameter. The memory required is on the order
of nReplicates * (# of dyads). For large networks this can be impractical, so adjusting dyadInclu-
sionRate and edgeInclusionRate allows one to down sample the # of dyads in each replicate. By
default these are set attempting to achieve as equal a number of edges and non-edges as possible
while targeting a model frame with targetFrameSize number of rows.

If the model is dyad independent, replicates are redundant, and so nReplicates is set to 1 with a
note.

The functional form of the objective function is equivalent to logistic regression, and so the glm
function is used to maximize it. The asymptotic covariance of the parameter estimates is calculated
using the methods of Westling (2015).

Value

An object of class c(’lologVariationalFit’,’lolog’,’list’) consisting of the following items:

formula The model formula

method "variational"

theta The fit parameter values

vcov The asymptotic covariance matrix for the parameter values.

nReplicates The number of replicates
dyadInclusionRate

The rate at which non-edges are included
edgeInclusionRate

The rate at which edges are included
allDyadIndependent

Logical indicating model dyad independence
likelihoodModel

An object of class *LatentOrderLikelihood at the fit parameters

outcome The outcome vector for the logistic regression

predictors The change statistic predictor matrix for the logistic regression



22 plot.gofit

References

Westling, T., & McCormick, T. H. (2015). Beyond prediction: A framework for inference with
variational approximations in mixture models. arXiv preprint arXiv:1510.08151.

Examples

library(network)
data(ukFaculty)

# Delete vertices missing group
delete.vertices(ukFaculty, which(is.na(ukFaculty %v% "Group")))

fit <- lologVariational(ukFaculty ~ edges() + nodeMatch("GroupC"),
nReplicates=1L, dyadInclusionRate=1)

summary(fit)

plot.gofit Plots a gofit object

Description

Plots a gofit object

Usage

## S3 method for class 'gofit'
plot(
x,
y,
type = c("line", "box"),
scaling = c("none", "std", "sqrt"),
lineAlpha = 0.06,
lineSize = 1,
...

)

Arguments

x the gofit object
y unused
type type of plot, boxplot or lineplot
scaling type of scaling of the network statistics. If "std", network statistics are scaling

by subtracting off the observed statistics and scaling by the standard deviation.
If "sqrt", network statistics are plotted on the square root scale (The square root
is the variance stabilizing transformation for a Poisson random variable). The
default is "none", where by the network statistics are not scaled.



plot.lologGmm 23

lineAlpha The transparency of the simulated statistics lines

lineSize The width of the lines

... passed to either boxplot or geom_line

Examples

library(network)
data(ukFaculty)

# Delete vertices missing group
delete.vertices(ukFaculty, which(is.na(ukFaculty %v% "Group")))

# A dyad independent model
fitind <- lolog(ukFaculty ~ edges() + nodeMatch("GroupC") + nodeCov("GroupC"))
summary(fitind)

# Check gof on degree distribution (bad!)
gind <- gofit(fitind, ukFaculty ~ degree(0:50))
plot(gind)
plot(gind, type="box")

plot.lologGmm Conduct Monte Carlo diagnostics on a lolog model fit

Description

This function creates simple diagnostic plots for MC sampled statistics produced from a lolog fit.

Usage

## S3 method for class 'lologGmm'
plot(x, type = c("histograms", "target", "model"), ...)

Arguments

x A model fit object to be diagnosed.

type The type of diagnostic plot. "histograms", the default, produces histograms of
the sampled output statistic values with the observed statistics represented by
vertical lines. "target" produces a pairs plot of the target output statistic values
with the pairs of observed target statistics represented by red squares. output
statistic values with the observed statistics represented by vertical lines. "model"
produces a pairs plot of the sampled output statistic values with the pairs of
observed statistics represented by red squares.

... Additional parameters. Passed to geom_histogram if type="histogram" and pairs
otherwise.



24 plot.Rcpp_DirectedNet

Details

Plots are produced that represent the distributions of the output sampled statistic values or the target
statistics values. The values of the observed target statistics for the networks are also represented
for comparison with the sampled statistics.

Examples

library(network)
set.seed(1)
data(flo)
flomarriage <- network(flo,directed=FALSE)
flomarriage %v% "wealth" <- c(10,36,27,146,55,44,20,8,42,103,48,49,10,48,32,3)

# An order dependent model
fit3 <- lolog(flomarriage ~ edges + nodeCov("wealth") + preferentialAttachment(),

flomarriage ~ star(2:3), verbose=FALSE)
plot(fit3)
plot(fit3, "target")
plot(fit3, "model")

plot.Rcpp_DirectedNet plot an DirectedNet object

Description

plot an DirectedNet object

Usage

## S3 method for class 'Rcpp_DirectedNet'
plot(x, ...)

Arguments

x the Rcpp_DirectedNet object

... additional parameters for plot.network

Details

This is a thin wrapper around plot.network.

Examples

data(ukFaculty)
net <- as.BinaryNet(ukFaculty)
plot(net, vertex.col=net[["Group"]]+1)



plot.Rcpp_UndirectedNet 25

plot.Rcpp_UndirectedNet

Plot an UndirectedNet object

Description

Plot an UndirectedNet object

Usage

## S3 method for class 'Rcpp_UndirectedNet'
plot(x, ...)

Arguments

x the object

... additional parameters for plot.network

Details

This is a thin wrapper around plot.network.

Examples

el <- matrix(c(1,2),ncol=2)
net <- new(UndirectedNet, el, 5L)
net[1,5] <- 1
net[2,5] <- 1
plot(net)

print.gofit prints a gofit object

Description

prints a gofit object

Usage

## S3 method for class 'gofit'
print(x, ...)

Arguments

x The object

... passed to print.data.frame



26 registerDirectedStatistic

print.lolog Print a ‘lolog‘ object

Description

Print a ‘lolog‘ object

Usage

## S3 method for class 'lolog'
print(x, ...)

Arguments

x the object
... additional parameters (unused)

print.lologVariationalFit

Print of a lologVariationalFit object

Description

Print of a lologVariationalFit object

Usage

## S3 method for class 'lologVariationalFit'
print(x, ...)

Arguments

x the object
... additional parameters (unused)

registerDirectedStatistic

Register Statistics

Description

Register Statistics

Usage

registerDirectedStatistic



simulate.lolog 27

simulate.lolog Generates BinaryNetworks from a fit lolog object

Description

Generates BinaryNetworks from a fit lolog object

Usage

## S3 method for class 'lolog'
simulate(object, nsim = 1, seed = NULL, convert = FALSE, ...)

Arguments

object A ‘lolog‘ object.

nsim The number of simulated networks

seed Either NULL or an integer that will be used in a call to set.seed before simulating

convert convert to a network object#’

... unused

Value

A list of BinaryNet (or network if convert=TRUE) objects. Networks contain an additional vertex
covariate "__order__" that indicates the sequence order in which the vertex was ’added’ into the
network.

Examples

library(network)
data(flo)
flomarriage <- network(flo,directed=FALSE)
flomarriage %v% "wealth" <- c(10,36,27,146,55,44,20,8,42,103,48,49,10,48,32,3)
fit <- lolog(flomarriage ~ edges + nodeCov("wealth"))
net <- simulate(fit)[[1]]
plot(net)



28 ukFaculty

summary.lolog Summary of a ‘lolog‘ object

Description

Summary of a ‘lolog‘ object

Usage

## S3 method for class 'lolog'
summary(object, ...)

Arguments

object the object

... additional parameters (unused)

Examples

data(lazega)
fit <- lologVariational(lazega ~ edges() + nodeMatch("office") + triangles,

nReplicates=50L, dyadInclusionRate=1)
summary(fit)

ukFaculty Friendship network of a UK university faculty

Description

The personal friendship network of a faculty of a UK university, consisting of 81 vertices (individ-
uals) and 817 directed and weighted connections. The school affiliation of each individual is stored
as a vertex attribute. The survey contained missing data for the school of two individuals.

Usage

data(ukFaculty)

Licenses and Citation

When publishing results obtained using this data set, the original authors (Nepusz T., Petroczi A.,
Negyessy L., Bazso F. 2008) should be cited, along with this R package.

Copyright

Creative Commons Attribution-Share Alike 2.0 UK: England & Wales License, see http://creativecommons.org/licenses/by-
sa/2.0/uk/ for details.



[ 29

Source

The data set was originally reported by Nepusz et. al. (2008) and was subsequently processed and
included by the igraphdata package. We have simply converted their network from an igraph to a
network object.

References

Nepusz T., Petroczi A., Negyessy L., Bazso F.: Fuzzy communities and the concept of bridgeness
in complex networks. Physical Review E 77:016107, 2008.

[ indexing

Description

indexing

indexing

indexing

indexing

Usage

## S4 method for signature 'Rcpp_DirectedNet,ANY,ANY,ANY'
x[i, j, ..., maskMissing = TRUE, drop = TRUE]

## S4 method for signature 'Rcpp_UndirectedNet,ANY,ANY,ANY'
x[i, j, ..., maskMissing = TRUE, drop = TRUE]

## S4 replacement method for signature 'Rcpp_DirectedNet,ANY,ANY,ANY'
x[i, j, ...] <- value

## S4 replacement method for signature 'Rcpp_UndirectedNet,ANY,ANY,ANY'
x[i, j, ...] <- value

Arguments

x object

i indices

j indices

... unused

maskMissing should missing values be masked by NA

drop unused

value values to assign



30 [

Examples

data(ukFaculty)
net <- as.BinaryNet(ukFaculty)

#dyad Extraction
net[1:2,1:5]
net$outNeighbors(c(1,2,3))

#dyad assignment
net[1,1:5] <- rep(NA,5)
net[1:2,1:5]
net[1:2,1:5,maskMissing=FALSE] #remove the mask over missing values and see
#nothing was really changed

#node variables
net$variableNames()
net[["Group"]]
net[["rnorm"]] <- rnorm(net$size())
net[["rnorm"]]



Index

∗ datasets
lazega, 12
ukFaculty, 28

[, 29
[,Rcpp_DirectedNet,ANY,ANY,ANY-method

([), 29
[,Rcpp_DirectedNet-method ([), 29
[,Rcpp_UndirectedNet,ANY,ANY,ANY-method

([), 29
[,Rcpp_UndirectedNet-method ([), 29
[<- ([), 29
[<-,Rcpp_DirectedNet,ANY,ANY,ANY-method

([), 29
[<-,Rcpp_DirectedNet-method ([), 29
[<-,Rcpp_UndirectedNet,ANY,ANY,ANY-method

([), 29
[<-,Rcpp_UndirectedNet-method ([), 29
_lolog_initStats (call-symbols), 6
_rcpp_module_boot_lolog (call-symbols),

6

as.BinaryNet, 2
as.BinaryNet.default, 3
as.network, 4
as.network.Rcpp_DirectedNet, 4
as.network.Rcpp_UndirectedNet, 5

BinaryNet, 6

calculateStatistics, 6
call-symbols, 6
coef.lolog, 7
cppFunction, 11
createCppModel, 7
createLatentOrderLikelihood, 8

DirectedLatentOrderLikelihood
(LatentOrderLikelihood), 11

DirectedModel (LologModels), 19
DirectedNet, 4

DirectedNet (BinaryNet), 6

geom_histogram, 23
glm, 21
gofit, 9
gofit.lolog, 9, 9

initLologStatistics (call-symbols), 6
inlineLologPlugin, 10, 19

LatentOrderLikelihood, 11
lazega, 12
lolog, 6, 12
lolog-terms, 16
LologModels, 19
lologPackageSkeleton, 19
lologVariational, 13, 14, 20

pairs, 23
plot.gofit, 22
plot.lologGmm, 23
plot.network, 24, 25
plot.Rcpp_DirectedNet, 24
plot.Rcpp_UndirectedNet, 25
print.gofit, 25
print.lolog, 26
print.lologVariationalFit, 26

Rcpp_DirectedLatentOrderLikelihood-class
(LatentOrderLikelihood), 11

Rcpp_DirectedModel-class (LologModels),
19

Rcpp_DirectedNet-class (BinaryNet), 6
Rcpp_UndirectedLatentOrderLikelihood-class

(LatentOrderLikelihood), 11
Rcpp_UndirectedModel-class

(LologModels), 19
Rcpp_UndirectedNet-class (BinaryNet), 6
registerDirectedOffset

(registerDirectedStatistic), 26
registerDirectedStatistic, 26

31



32 INDEX

registerUndirectedOffset
(registerDirectedStatistic), 26

registerUndirectedStatistic
(registerDirectedStatistic), 26

runLologCppTests (call-symbols), 6

simulate.lolog, 27
sourceCpp, 11
summary.lolog, 28

ukFaculty, 28
UndirectedLatentOrderLikelihood

(LatentOrderLikelihood), 11
UndirectedModel (LologModels), 19
UndirectedNet, 5
UndirectedNet (BinaryNet), 6


	as.BinaryNet
	as.BinaryNet.default
	as.network
	as.network.Rcpp_DirectedNet
	as.network.Rcpp_UndirectedNet
	BinaryNet
	calculateStatistics
	call-symbols
	coef.lolog
	createCppModel
	createLatentOrderLikelihood
	gofit
	gofit.lolog
	inlineLologPlugin
	LatentOrderLikelihood
	lazega
	lolog
	lolog-terms
	LologModels
	lologPackageSkeleton
	lologVariational
	plot.gofit
	plot.lologGmm
	plot.Rcpp_DirectedNet
	plot.Rcpp_UndirectedNet
	print.gofit
	print.lolog
	print.lologVariationalFit
	registerDirectedStatistic
	simulate.lolog
	summary.lolog
	ukFaculty
	[
	Index

