
Package ‘marquee’
July 22, 2025

Title Markdown Parser and Renderer for R Graphics

Version 1.0.0

Description Provides the mean to parse and render markdown text with grid along
with facilities to define the styling of the text.

License MIT + file LICENSE

Encoding UTF-8

RoxygenNote 7.3.2

LinkingTo cpp11

Imports cli, glue, grDevices, grid, jpeg, png, rlang (>= 1.1.0),
systemfonts (>= 1.2.0), textshaping (>= 1.0.0), utils, vctrs

Suggests ggplot2, gt, gtable, knitr, patchwork, ragg, rmarkdown, rsvg,
testthat (>= 3.0.0)

URL https://marquee.r-lib.org, https://github.com/r-lib/marquee

BugReports https://github.com/r-lib/marquee/issues

Config/Needs/website tidyverse/tidytemplate

VignetteBuilder knitr

Config/testthat/edition 3

NeedsCompilation yes

Author Thomas Lin Pedersen [aut, cre] (ORCID:
<https://orcid.org/0000-0002-5147-4711>),

Martin Mitáš [aut] (Author of MD4C),
Posit Software, PBC [cph, fnd]

Maintainer Thomas Lin Pedersen <thomas.pedersen@posit.co>

Repository CRAN

Date/Publication 2025-01-20 16:01:56 UTC

1

https://marquee.r-lib.org
https://github.com/r-lib/marquee
https://github.com/r-lib/marquee/issues
https://orcid.org/0000-0002-5147-4711

2 classic_style

Contents
classic_style . 2
element_marquee . 4
geom_marquee . 6
guide_marquee . 9
ink . 11
marquee_glue . 13
marquee_grob . 15
marquee_parse . 18
marquefy_theme . 21
style . 22
style-helpers . 25
style_set . 26

Index 28

classic_style Classic styling for markdown

Description

This function facilitates construction of a complete style set based on the classic look of an HTML
rendered markdown document. It contains style specifications for all the supported markdown
elements as well as a sub and sup style that can be used for subscripts and superscript respectively.
These are only accessible through custom spans (e.g. H{.sub 2}O) as markdown doesn’t provide a
syntax for these formats.

Usage

classic_style(
base_size = 12,
body_font = "",
header_font = "",
code_font = "mono",
...,
ltr = TRUE

)

Arguments

base_size The base font size for the text. All other sizing is based on this

body_font The font family to use for body text

header_font The font family to use for headers

code_font The font family to use for code and code block text

... Arguments passed on to base_style

classic_style 3

weight The font weight to use. Can either be a number (0, 100, 200, 300, 400,
500, 600, 700, 800, or 900) or a strings ("undefined", "thin", "ultralight",
"light", "normal", "medium", "semibold", "bold", "ultrabold", or
"heavy")

italic Should the font be slanted
width The font width to use. Can either be a number (“0, 1‘, ‘2‘, ‘3‘, ‘4‘,

‘5‘, ‘6‘, ‘7‘, ‘8‘, or ‘9‘) or strings (‘"undefined"‘, ‘"ultracondensed"‘, ‘"ex-
tracondensed"‘, ‘"condensed"‘, ‘"semicondensed"‘, ‘"normal"‘, ‘"semiex-
panded"‘, ‘"expanded"‘, ‘"extraexpanded"‘, or ‘"ultraexpanded"‘)

features A font_feature object specifying any OpenType font features to apply
to the font

color Is the color of the font
lineheight The spacing between subsequent lines relative to the font size. Can

be relative() in which case it is based on the parent lineheight.
align The alignment within the text. One of "left", "center", "right",

"justified-left", "justified-center", "justified-right", or "distributed"
tracking Additional character spacing measured in 1/1000em. Can be relative()

in which case it is based on the parent tracking.
indent The indentation of the first line in a paragraph measured in points. Can

be relative() in which case it is based on the parent indent, em() in which
case it is based on the font size in this style, or rem() in which case it is
based on the font size of the body element.

hanging The indentation of all but the first line in a paragraph measured in
points. Can be relative() in which case it is based on the parent hanging,
em() in which case it is based on the font size in this style, or rem() in
which case it is based on the font size of the body element.

margin The margin around the element, given as a call to trbl(). Margin
refers to the area outside the box that text is placed in. If the element has a
background, the margin area will not be colored.

padding The padding around the element, given as a call to trbl(). Padding
refers to the distance between the text and the border of the box it will be
drawn in. If the element has a background, the padding area will be colored.

background The color of the background fill. The background includes the
padding but not the margin. Can be a solid color or a gradient or pattern
made with grid::linearGradient()/grid::radialGradient()/grid::pattern()

border The color of the background stroke. The background includes the padding
but not the margin

border_size The line width of the background stroke, given as a call to trbl()

border_radius The corner radius of the background, given in points
bullets A vector of strings to use for bullets in unordered lists. marquee_bullets

provides a selection
underline Should text be underlined
strikethrough Should text be strikethrough
baseline The baseline shift to apply to the text
img_asp The default aspect ratio for block level images if not provided by the

image itself

4 element_marquee

text_direction The directional flow of the text. Either "auto" to let it be
determined by the content of the text, or "ltr"/"rtl" to hard-code it to
either left-to-right or right-to-left. This setting will not change the order of
glyphs within a span of text, but rather whether consequtive blocks of text
are laid out left-to-right or right-to-left. It also affects to which side inden-
tation is applied as well as the meaning of "auto", and "justified-auto"
aligment.

ltr Is the style intended for left-to-right text? This affects list indentation and cita-
tion border

Value

A style set object

Examples

classic_style(16, "serif", "sans")

element_marquee ggplot2 theme element supporting marquee syntax

Description

This theme element is a drop-in replacement for ggplot2::element_text(). It works by integrat-
ing the various style settings of the element into the base style of the provided style set. If a margin
is given, it is set on the body tag with skip_inherit(). The default width is NA meaning that it
will span as long as the given text is, doing no line wrapping. You can set it to any unit to make
it fit within a specific width. However, this may not work as expected with rotated text (you may
get lucky). Note that you may see small shifts in the visuals when going from element_text() to
element_marquee() as size reporting may differ between the two elements.

Usage

element_marquee(
family = NULL,
colour = NULL,
size = NULL,
hjust = NULL,
vjust = NULL,
angle = NULL,
lineheight = NULL,
color = NULL,
margin = NULL,
style = NULL,
width = NULL,
inherit.blank = FALSE

)

element_marquee 5

Arguments

family The font family of the base style

colour, color The font colour of the base style

size The font size of the base style

hjust Horizontal justification (in [0, 1])

vjust Vertical justification (in [0, 1])

angle Angle (in [0, 360])

lineheight The lineheight of the base style

margin The margin for the body tag. As margins in element_text() doesn’t rotate
along with angle we follow this behavior here as well so that the right margin
becomes the bottom margin when rotating the text 90 degrees and so forth.

style A style set to base the rendering on

width The maximum width of the text. See the description for some caveats for this

inherit.blank Should this element inherit the existence of an element_blank among its par-
ents? If TRUE the existence of a blank element among its parents will cause this
element to be blank as well. If FALSE any blank parent element will be ignored
when calculating final element state.

Value

An element_marquee object that can be used in place of element_text in ggplot2 theme specifi-
cations

Examples

library(ggplot2)
p <- ggplot(mtcars) +

geom_point(aes(mpg, disp)) +
labs(title = "A {.red *marquee*} title\n* Look at this bullet list\n\n* great, huh?") +
theme_gray(base_size = 6) +
theme(title = element_marquee())

plot(p)

ggplot(mtcars) +
geom_histogram(aes(x = mpg)) +
labs(title =

"I put a plot in your title so you can plot while you title

What more could you _possibly_ want?") +
theme(title = element_marquee())

6 geom_marquee

geom_marquee Draw text formatted with marquee

Description

The geom is an extension of geom_text() and geom_label() that allows you to draw richly for-
matted text in marquee-markdown format in your plot. For plain text it is a near-drop-in replacement
for the above geoms except some sizing might be very slightly different. However, using this geom
you are able to access the much more powerful font settings available in marquee, so even then it
might make sense to opt for this geom.

Usage

geom_marquee(
mapping = NULL,
data = NULL,
stat = "identity",
position = "identity",
...,
size.unit = "mm",
na.rm = FALSE,
show.legend = NA,
inherit.aes = TRUE

)

Arguments

mapping Set of aesthetic mappings created by aes(). If specified and inherit.aes =
TRUE (the default), it is combined with the default mapping at the top level of
the plot. You must supply mapping if there is no plot mapping.

data The data to be displayed in this layer. There are three options:
If NULL, the default, the data is inherited from the plot data as specified in the
call to ggplot().
A data.frame, or other object, will override the plot data. All objects will be
fortified to produce a data frame. See fortify() for which variables will be
created.
A function will be called with a single argument, the plot data. The return
value must be a data.frame, and will be used as the layer data. A function
can be created from a formula (e.g. ~ head(.x, 10)).

stat The statistical transformation to use on the data for this layer. When using a
geom_*() function to construct a layer, the stat argument can be used the over-
ride the default coupling between geoms and stats. The stat argument accepts
the following:

• A Stat ggproto subclass, for example StatCount.

geom_marquee 7

• A string naming the stat. To give the stat as a string, strip the function name
of the stat_ prefix. For example, to use stat_count(), give the stat as
"count".

• For more information and other ways to specify the stat, see the layer stat
documentation.

position A position adjustment to use on the data for this layer. Cannot be jointy specified
with nudge_x or nudge_y. This can be used in various ways, including to pre-
vent overplotting and improving the display. The position argument accepts
the following:

• The result of calling a position function, such as position_jitter().
• A string nameing the position adjustment. To give the position as a string,

strip the function name of the position_ prefix. For example, to use
position_jitter(), give the position as "jitter".

• For more information and other ways to specify the position, see the layer
position documentation.

... Other arguments passed on to layer()’s params argument. These arguments
broadly fall into one of 4 categories below. Notably, further arguments to the
position argument, or aesthetics that are required can not be passed through
.... Unknown arguments that are not part of the 4 categories below are ignored.

• Static aesthetics that are not mapped to a scale, but are at a fixed value and
apply to the layer as a whole. For example, colour = "red" or linewidth
= 3. The geom’s documentation has an Aesthetics section that lists the
available options. The ’required’ aesthetics cannot be passed on to the
params. Please note that while passing unmapped aesthetics as vectors is
technically possible, the order and required length is not guaranteed to be
parallel to the input data.

• When constructing a layer using a stat_*() function, the ... argument
can be used to pass on parameters to the geom part of the layer. An example
of this is stat_density(geom = "area", outline.type = "both"). The
geom’s documentation lists which parameters it can accept.

• Inversely, when constructing a layer using a geom_*() function, the ...
argument can be used to pass on parameters to the stat part of the layer.
An example of this is geom_area(stat = "density", adjust = 0.5). The
stat’s documentation lists which parameters it can accept.

• The key_glyph argument of layer() may also be passed on through
This can be one of the functions described as key glyphs, to change the
display of the layer in the legend.

size.unit How the size aesthetic is interpreted: as millimetres ("mm", default), points
("pt"), centimetres ("cm"), inches ("in"), or picas ("pc").

na.rm If FALSE, the default, missing values are removed with a warning. If TRUE,
missing values are silently removed.

show.legend logical. Should this layer be included in the legends? NA, the default, includes if
any aesthetics are mapped. FALSE never includes, and TRUE always includes. It
can also be a named logical vector to finely select the aesthetics to display.

inherit.aes If FALSE, overrides the default aesthetics, rather than combining with them.
This is most useful for helper functions that define both data and aesthetics and
shouldn’t inherit behaviour from the default plot specification, e.g. borders().

8 geom_marquee

Details

Styling of the text is based on a style set with the exception that the standard aesthetics such as
family, size, colour, fill, etc. are recognized and applied to the base tag style. The default style set
(classic_style) can be changed using the style aesthetic which can take a vector of style sets so that
each text can rely on it’s own style if needed. As with element_marquee(), the fill aesthetic is
treated differently and not applied to the base tag, but to the body tag as a skip_inherit() style so
as to not propagate the fill.

Contrary to the standard text and label geoms, geom_marquee() takes a width aesthetic that can be
used to turn on soft wrapping of text. The default value (NA) lets the text run as long as it want’s
(honoring hard breaks), but setting this to something else will instruct marquee to use at most that
amount of space. You can use grid units to set it to an absolute amount.

Value

A ggplot2 layer that can be added to a plot

Examples

library(ggplot2)
Standard use
p <- ggplot(mtcars, aes(wt, mpg))
p + geom_marquee(aes(label = rownames(mtcars)))

Make use of more powerful font features (note, result may depend on fonts
installed on the system)
p + geom_marquee(

aes(label = rownames(mtcars)),
style = classic_style(weight = "thin", width = "condensed")

)

Turn on line wrapping
p + geom_marquee(aes(label = rownames(mtcars)), width = unit(2, "cm"))

Style like label
label_style <- modify_style(

classic_style(),
"body",
padding = skip_inherit(trbl(4)),
border = "black",
border_size = skip_inherit(trbl(1)),
border_radius = 3

)
p + geom_marquee(aes(label = rownames(mtcars), fill = gear), style = label_style)

Use markdown to style the text
red_bold_names <- sub("(\\w+)", "{.red **\\1**}", rownames(mtcars))
p + geom_marquee(aes(label = red_bold_names))

guide_marquee 9

guide_marquee Marquee subtitle guide

Description

This legend appears similar to a subtitle and uses marquee syntax to typeset the text and interpolate
legend glyphs.

Usage

guide_marquee(
title = ggplot2::waiver(),
style = marquee::style(background = NA),
detect = FALSE,
theme = NULL,
position = "top",
override.aes = list(),
order = 1

)

Arguments

title A single character string indicating the text to display. If NULL the title is not
shown. If waiver() (default), the name of the scale or the name specified in
labs() is used for the tyle.

style Either a style_set to override style sets inherited from the theme, or a style for
styling the labels specifically. For colour or fill scales, the color, background
and border style properties are overridden when set as NULL, see examples.

detect Either FALSE to typeset entirely through syntax or TRUE to automatically detect
labels and apply.

theme A theme object to style the guide individually or differently from the plot’s
theme settings. The theme argument in the guide overrides, and is combined
with, the plot’s theme.

position A character string indicating where the legend should be placed relative to the
plot panels.

override.aes A list specifying aesthetic parameters of the legend keys. See details and exam-
ples in ?guide_legend.

order positive integer less than 99 that specifies the order of this guide among multiple
guides. This controls the order in which multiple guides are displayed, not the
contents of the guide itself. If 0 (default), the order is determined by a secret
algorithm.

Value

A GuideMarquee object that can be passed to the guides() function or used as the guide argument
in a scale.

10 guide_marquee

Text formatting

In addition to standard marquee syntax, there is additional syntax to make building a guide easier.
In the text below, n marks the n-th break in the scale, label represents any of the scale’s labels and
foo represents arbitrary text.

• <<n>> or <<label>> can be used to insert key glyphs into the text.
• or can also be used to insert key glyphs into the text.
• {.n foo} or {.label foo} applies the style argument to foo, including recoloring when

the guide represents a colour or fill scale.

• !!n or !!label translates to {.label label} to insert the label verbatim with the application
of the style argument.

Examples

library(ggplot2)
A standard plot
base <- ggplot(mpg, aes(displ, hwy)) +

geom_point()

Using key glyphs
base + aes(shape = drv) +

scale_shape_discrete(
Same as using <<1>>, <<2>> and <<3>>,
or , and
or , and
name = "Cars with four wheel <<4>>, forward <<f>> or reverse <<r>> drive.",
guide = "marquee"

)

Recolouring text
base <- base +

aes(colour = drv) +
labs(

colour = "Cars with {.4 four wheel}, {.f forward} or {.r reverse} drive."
)

base + guides(colour = "marquee")

Adjust display of labels
st <- style(weight = "bold", italic = TRUE, background = NA)
base + guides(colour = guide_marquee(style = st))

Using background instead of text colour by setting it to NULL
st <- style(color = "black", background = NULL)
base + guides(colour = guide_marquee(style = st))

Customising style of each label through style sets
Note: tag names must be universal per `vctrs::vec_as_names` and
prefixed with `lab_`.
st <- classic_style()
st <- modify_style(st, tag = "lab_f", background = NULL, color = "black")
st <- modify_style(st, tag = "lab_r", border_size = trbl(1),

ink 11

color = "black", background = NA)
base + guides(colour = guide_marquee(style = st))

Alternatively:
base + guides(colour = "marquee") +

theme(plot.subtitle = element_marquee(style = st))

Splicing in labels by number (!!2) or label (!!subcompact)
base + aes(colour = class) +

labs(colour = "Cars including !!2 and !!subcompact vehicles") +
guides(colour = "marquee")

Using automatic detection
base + aes(colour = class) +

labs(colour = "Cars including suv and minivan vehicles") +
guides(colour = guide_marquee(detect = TRUE))

ink Make justifications relative to the ink extent of the text

Description

Marquee measures the extent of the box around text with bearings, that is, the height of the string
"mean" is the same as the height of the string "median", despite the latter having a "d" extending
upwards. This makes it easier to justification text irrespective of the glyphs used to render it. How-
ever, if you want alignment to be relative to the "tight" box around the text (the bounding box of
where ink has been placed), you can use the ink() function to inform marquee of your intend. In
general the effect is often minuscule for horizontal justifications but can have a big effect on vertical
justification depending on the presence of ascenders and descenders in the rendered glyphs.

Usage

ink(x = numeric(), use_ink = TRUE)

Arguments

x A string giving a valid justification or a numeric between 0 and 1

use_ink Should the values be relative to the ink extend. Will be recycled to the length of
x

Value

A marquee_ink vector

12 ink

Examples

Plot to illustrate the difference in vertical alignment
library(grid)
grid.newpage()
grid.draw(

marquee_grob(
c("### Textbox justification (default)",

"### Bounding box justification (using `ink()`)"),
x = 0.5,
y = c(0.95, 0.45),
hjust = 0.5,
width = NA

)
)

Standard justification
grid.draw(

marquee_grob(
"mean",
x = 0.5,
y = 0.75,
hjust = "right",
vjust = 0.5,
width = NA

)
)
grid.draw(

marquee_grob(
"median",
x = 0.5,
y = 0.75,
hjust = "left",
vjust = 0.5,
width = NA

)
)

Justification using `ink()`
grid.draw(

marquee_grob(
"mean",
x = 0.5,
y = 0.25,
hjust = "right",
vjust = ink(0.5),
width = NA

)
)
grid.draw(

marquee_grob(
"median",
x = 0.5,

marquee_glue 13

y = 0.25,
hjust = "left",
vjust = ink(0.5),
width = NA

)
)

marquee_glue Marquee-aware string interpolation

Description

If you want to create your markdown programmatically you’d probably want to use some sort of
string interpolation such as glue(). However, the custom span syntax of marquee interferes with
the standard interpolation syntax of glue. This function let’s you use both together.

Usage

marquee_glue(
...,
.sep = "",
.envir = parent.frame(),
.open = "{",
.close = "}",
.na = "NA",
.null = character(),
.comment = character(),
.literal = FALSE,
.transformer = NULL,
.trim = TRUE

)

marquee_glue_data(
.x,
...,
.sep = "",
.envir = parent.frame(),
.open = "{",
.close = "}",
.na = "NA",
.null = character(),
.comment = character(),
.literal = FALSE,
.transformer = NULL,
.trim = TRUE

)

14 marquee_glue

Arguments

... [expressions]
Unnamed arguments are taken to be expression string(s) to format. Multiple
inputs are concatenated together before formatting. Named arguments are taken
to be temporary variables available for substitution.

For glue_data(), elements in ... override the values in .x.

.sep [character(1): ‘""’]
Separator used to separate elements.

.envir [environment: parent.frame()]
Environment to evaluate each expression in. Expressions are evaluated from left
to right. If .x is an environment, the expressions are evaluated in that environ-
ment and .envir is ignored. If NULL is passed, it is equivalent to emptyenv().

.open [character(1): ‘\{’]
The opening delimiter. Doubling the full delimiter escapes it.

.close [character(1): ‘\}’]
The closing delimiter. Doubling the full delimiter escapes it.

.na [character(1): ‘NA’]
Value to replace NA values with. If NULL missing values are propagated, that is
an NA result will cause NA output. Otherwise the value is replaced by the value
of .na.

.null [character(1): ‘character()’]
Value to replace NULL values with. If character() whole output is character().
If NULL all NULL values are dropped (as in paste0()). Otherwise the value is
replaced by the value of .null.

.comment [character(1): ‘#’]
Value to use as the comment character.

.literal [boolean(1): ‘FALSE’]
Whether to treat single or double quotes, backticks, and comments as regular
characters (vs. as syntactic elements), when parsing the expression string. Set-
ting .literal = TRUE probably only makes sense in combination with a custom
.transformer, as is the case with glue_col(). Regard this argument (espe-
cially, its name) as experimental.

.transformer [function]
A function taking two arguments, text and envir, where text is the unparsed
string inside the glue block and envir is the execution environment. A .transformer
lets you modify a glue block before, during, or after evaluation, allowing you to
create your own custom glue()-like functions. See vignette("transformers")
for examples.

.trim [logical(1): ‘TRUE’]
Whether to trim the input template with trim() or not.

.x [listish]
An environment, list, or data frame used to lookup values.

marquee_grob 15

Details

If you choose a different set of delimiters than "{" and "}" for the interpolation the functions will
call the equivalent glue functions directly. However, if you keep the defaults, the functions will use
a custom transformer that will make sure to keep the marquee custom span notation. You can both
interpolate the content of the span, as well as the span class (see examples)

Value

A character vector

Examples

standard use
red_text <- "this text will be red"
marquee_glue("This will be black and {.red {red_text}}!")

if the span is not valid it will be treated as standard glue interpolation
try(

marquee_glue("This will be black and {.red}!")
)

You can interpolate the tag name as well
col <- "green"
marquee_glue("This will be black and {.{col} this text will be {col}}!")

Tag name interpolation must follow a `.` or a `#` as these identify the
bracket pair as a custom span class
col <- ".yellow"
This is not what you want probably
marquee_glue("This will be black and {{col} this text will be {col}}!")

Tag interpolation should also interpolate the full tag and be followed by
a space in order to be valid
part <- "l"
marquee_glue("This will be black and {.ye{part}low this text will be {col}}!")
try(

marquee_glue("This will be black and {.{part}avender this text will be {col}}!")
)

marquee_grob Construct a grob rendering one or more markdown texts

Description

This is the main function of marquee. It takes a vector of markdown strings, parses them with the
provided style, and returns a grob capable of rendering the parsed text into rich text and (possibly)
images. See marquee_parse() for more information about how markdown is parsed and see details
below for further information on how rendering proceeds.

16 marquee_grob

Usage

marquee_grob(
text,
style = classic_style(),
ignore_html = TRUE,
force_body_margin = FALSE,
x = 0,
y = 1,
width = NULL,
default.units = "npc",
hjust = "left",
vjust = "top",
angle = 0,
vp = NULL,
name = NULL

)

Arguments

text Either a character vector or a marquee_parsed object as created by marquee_parse()

style A style set such as classic_style() that defines how the text should be ren-
dered

ignore_html Should HTML code be removed from the output
force_body_margin

Should the body margin override margin collapsing calculations. See Details.

x, y The location of the markdown text in the graphics. If numeric it will be con-
verted to units using default.units

width The width of each markdown text. If numeric it will be converted to units using
default.units. NULL is equivalent to the width of the parent container. NA uses
the width of the text as the full width of the grob and will thus avoid any soft
breaking of lines.

default.units A string giving the default units to apply to x, y, and width

hjust The horizontal justification of the markdown with respect to x. Can either be a
numeric or one of "left", "left-ink", "center", "center-ink", "right-ink",
or "right"

vjust The vertical justification of the markdown with respect to y. Can either be a nu-
meric or one of "bottom", "bottom-ink", "last-line", "center", "center-ink",
"first-line", "top-ink", "top"

angle The angle of rotation (in degrees) around x and y

vp An optional viewport to assign to the grob

name The name for the grob. If NULL a unique name will be generated

Value

A grob of class marquee

marquee_grob 17

Rendering

marquee is first and foremost developed with the new ’glyph’ rendering features in 4.3.0 in mind.
However, not all graphics devices supports this, and while some might eventually do, it is quite
concievable that some never will. Because of this, marquee has a fallback where it will render text
as a mix of polygons and rasters (depending on the font in use) if the device doesn’t report ’glyphs’
capabilities. The upside is that it works (almost) everywhere, but the downside is that the fallback is
much slower and with poorer visual quality. Because of this it is advisable to use a modern graphics
device with glyphs support if at all possible.

Rendering style

The rendering more or less adheres to the styling provided by marquee_parse(), but has some
intricacies as detailed below:

Tight lists
If a list is tight, the bottom margin of each li tag will be set so the spacing matches the lineheight.
Further, the top margin will be set to 0.

Block images
In markdown, image tags are span elements so they can be placed inline. However, if an image tag
is the only thing that is contained inside a p tag marquee determines that it should be considered a
block element. In that case, the parent p element inherits the styling from the image element so that
the image can e.g. adhere to align properties, or provide their own padding.

Horizontal rulers
These elements are rendered as an empty block. The standard style sets a bottom border size and
no size for the other sides.

Margin collapsing
Margin calculations follows the margin collapsing rules of HTML. Read more about these at mdn.
Margin collapsing means that elements with margin set to 0 might end up with a margin. Specif-
ically for the body element this can be a problem if you want to enforce a tight box around your
text. Because of this the force_body_margin argument allows you to overwrite the margins for the
body element with the original values after collapsing has been performed.

Underline and strikethrough
Underlines are placed 0.1em below the baseline of the text. Strikethrough are placed 0.3em above
the baseline. The width of the line is set to 0.075em. It inherits the color of the text. No further
styling is possible.

Spans with background
Consecutive spans with the same background and border settings are merged into a single rectangle.
The padding of the span defines the size of the background.

Bullet position
Bullets are placed, right-aligned, 0.25em to the left of the first line in the li element if the text
direction is ltr. For rtl text it is placed, left-aligned, 0.25 em to the right of the first line.

Border with border radius
If borders are not the same on all sides they are drawn one by one. In this case the border radius is
ignored.

https://developer.mozilla.org/en-US/docs/Web/CSS/CSS_box_model/Mastering_margin_collapsing

18 marquee_parse

Image rendering

The image tag can be used to place images. There are support for both png, jpeg, and svg images.
If the path instead names a grob, ggplot, or patchwork object then this is rendered instead. If the
file cannot be read, if it d oesn’t exist, or if the path names an object that is not a grob, ggplot or
patchwork, a placeholder is rendered in it’s place (black square with red cross).

Image sizing

There is no standard in markdown for specifying the size of images. By default, block-level images
fill the width of it’s container and maintain it’s aspect ratio. Inline images have a default width of
0.65em and a height matching the aspect ration.

However, if you wish to control sizing, you can instead provide the image as a grob with a viewport
with fixed dimensions, in which case this will be used as long as the width doesn’t exceed the width
of the container (in which case it will get downsized). If a rastergrob is provided without absolute
sizing, the aspect ratio will match the raster, otherwise the aspect ratio will be taken from the styling
of the element (defaults to 1.65)

Table rendering

While marquee does not support the extended table syntax for markdown it does allow you to
include tables in the output. It does so by supporting gt objects as valid paths in image tags in the
same way as ggplots etc. This meeans that you can style your tables any way you wish and with the
full power of gt, which is much more flexible than the markdown table syntax.

Textbox justification

The justification options exceeds the classic ones provided by grid. While numeric values are
available as always, the number of possible text values are larger. Horizontal justification add
"left-ink", "center-ink", and "right-ink" which uses the left-most and right-most positioned
glyph (or halfway between them) as anchors. Vertical justification has the equivalent "bottom-ink",
"center-ink", and "top-ink" anchors, but also "first-line" and "last-line" which sets the
anchor at the baseline of the first or last line respectively.

marquee_parse Parse a text as marquee

Description

marquee uses an extension of CommonMark with no support for HTML code (it is rendered verba-
tim). The focus is to allow easy formatting of text for graphics, rather than fully fledged typesetting.
See marquee syntax for more about the format.

Usage

marquee_parse(text, style = classic_style(), ignore_html = TRUE)

marquee_parse 19

Arguments

text A character string. The core quality of markdown is that any text is valid mark-
down so there is no restrictions on the content

style A style set such as classic_style() that defines how the text should be ren-
dered

ignore_html Should HTML code be removed from the output

Value

A data frame describing the various tokens of the text and the style to apply to them. The output is
mainly meant for programmatic consumption such as in marquee_grob()

marquee tags

marquee tokenizes the input text into blocks and spans. It recognises the following tags:

Block tags

body is the parent tag of a markdown document. It never contains any text itself, only other blocks.

ul is an unordered list. It contains a number of li children

ol is an ordered list. It contains a number of li children

li is a list element. If the list is tight it contains text directly inside of it. If not, text are placed
inside child p blocks

hr is a horizontal line, spanning the width of the parent block. For styling, the bottom border size
is used when rendering

h1-h6 are headings at different levels

cb is a code block. Text inside code blocks are rendered verbatim, i.e. it cannot contain any children

p is a standard paragraph block. Text separated by two line-ends are separated into separate para-
graphs

qb is a quote block. It may contain children

Span tags

em is an emphasized text span. Often this means italicizing the text, but it is ultimately up to the
renderer

str is strong text, often rendered with bold text

a is a link text. While marquee rendering doesn’t allow for links, it can still be rendered in a
particular way

code is text rendered as code. Often this uses a monospaced font. Text inside this span is rendered
verbatim

u is text that should be underlined

del is text that should have strikethrough

custom spans is a marquee specific extension to the syntax that allows you to make up tags on the
fly. See the section on marquee syntax for more.

20 marquee_parse

marquee syntax

marquee uses md4c which is a fully CommonMark compliant markdown parser. CommonMark is
an effort to create an internally coherent markdown specification, something that was missing from
the original markdown description. If you are used to writing markdown, you are used to Com-
monMark. Below is a list of notable additions or details about the specific way marquee handles
CommonMark

Underlines and strikethrough

While not part of the basic CommonMark spec, underline and strikethrough are supported by mar-
quee using _ and ~ (e.g. _underline this_ and ~this was an error~).

Images

Image tags (![image title](path/to/image)) are supported, but the title is ignored. The path is
returned as the token text.

HTML

HTML tags are ignored, i.e. they are rendered verbatim. This is not that different from classic mark-
down rendering except that people often convert markdown to HTML where these tags suddenly
have meaning. They do not carry any special significance when rendered with marquee

Custom tags

While markdown provides most of what is necessary for standard text markup, there are situations,
especially in visualisation, where we need something more. Often users reach for inline HTML
spans for that, but since HTML is fully ignored in marquee this is not an option. Further, adding in
HTML decreases readability of the unformatted text a lot.

With marquee you can create a custom span using the {.tag <some text>} syntax, e.g. {.sm small text}
to wrap "small text" in the sm tag. You can alternatively use {#tag <some text>} for the same
effect. The only difference is that in the former syntax the . is stripped from the tag name, whereas
in the latter the # remains part of the name. See the Styling section for the primal use of the latter
syntax.

Styling

During parsing, each token is assigned a style based on the provided style set. The styling is
cascading, but without the intricacies of CSS. A child element inherits the styling of it’s parent
for the options that are set to NULL in the style matching the child tag. Any style element that
are relative() are computed based on the value of the parent style element. em() elements are
resolved based on the size element of the child style, and rem() elements are resolved using the
size element of the body style. If a style is not provided for the tag, it fully inherits the style of it’s
parent.

Automatic coloring Recognizing that the primary use for custom tags may be to change the color of
some text, marquee provides a shortcut for this. If a style is not found for the tag in the provided style
set, marquee will check if the tag matches a valid color (i.e. a string from grDevices::colors(),
or a valid hex string, e.g. #53f2a9). If it is a valid color it will set this as the font color of the style.
This means that parsing "Color {.red this} red" automatically sets the color of "this" to red,
even if no style is provided for the red tag. Likewise, parsing "Color {#00FF00 me} green" will
automatically set the color of "me" to #00FF00 (fully saturated green).

marquefy_theme 21

Additional parsing information

Apart from splitting the text up into tokens, marquee_parse() also provides some additional infor-
mation useful for rendering the output in the expected way. The id column refers the tokens back
to the original input text, the block relates tokens together into blocks. Block elements increment
the block count when they are entered, and decrement it when they are excited. The type column
provides the type of the block. The indentation column provides the node level in the tree. A
child block will increase the indentation for as long as it is active. ol_index provides the number
associated with the ordered list element. tight indicates whether the list is tight (i.e. it was pro-
vided with no empty lines between list elements). The ends column indicate until which row in the
output the tag is active (i.e. the tag is closed after the row indicated by the value in this column).

Examples

marquee_parse("# Header of the example\nSome body text", classic_style())

marquefy_theme Convert all text elements in a theme to marquee elements

Description

While element_marquee() should behave similar to ggplot2::element_text() when used on
plain text (i.e. text without any markdown markup), the reality can be different. This is because the
text shaping engine used by marquee (textshaping::shape_text()) may differ from the one used
by the graphics device (which is responsible for laying out text in element_text()). Differences
can range from slight differences in letter spacing to using a different font altogether (this is because
the font keywords "", "sans", "serif", "mono", and "symbol" may be mapped to different fonts
depending on the shaper). One way to handle this is to provide an explicit font name for the
elements, but alternatively you can use this function to convert all text elements in a theme to
element_marquee()

Usage

marquefy_theme(theme)

Arguments

theme A (complete) ggplot2 theme

Value

theme with all text elements substituted for marquee elements

22 style

Examples

library(ggplot2)
ggplot(mtcars) +

geom_point(aes(disp, mpg)) +
ggtitle("How about that") +
marquefy_theme(theme_gray())

style Create a style specification for a single tag

Description

style() constructs a marquee_style object specifying the styling for a single tag. The meaning of
NULL is to inherit the value from the parent element. It follows that top parent (the body element),
must have values for all it’s options. The base_style() constructor is a convenient constructor for
a style with sensible defaults for all it’s options.

Usage

style(
family = NULL,
weight = NULL,
italic = NULL,
width = NULL,
features = NULL,
size = NULL,
color = NULL,
lineheight = NULL,
align = NULL,
tracking = NULL,
indent = NULL,
hanging = NULL,
margin = NULL,
padding = NULL,
background = NULL,
border = NULL,
border_size = NULL,
border_radius = NULL,
bullets = NULL,
underline = NULL,
strikethrough = NULL,
baseline = NULL,
img_asp = NULL,
text_direction = NULL

)

style 23

base_style(
family = "",
weight = "normal",
italic = FALSE,
width = "normal",
features = systemfonts::font_feature(),
size = 12,
color = "black",
lineheight = 1.6,
align = "auto",
tracking = 0,
indent = 0,
hanging = 0,
margin = trbl(0, 0, rem(1)),
padding = trbl(0),
background = NA,
border = NA,
border_size = trbl(0),
border_radius = 0,
bullets = marquee_bullets,
underline = FALSE,
strikethrough = FALSE,
baseline = 0,
img_asp = 1.65,
text_direction = "auto"

)

Arguments

family The name of the font family to use

weight The font weight to use. Can either be a number (0, 100, 200, 300, 400, 500, 600,
700, 800, or 900) or a strings ("undefined", "thin", "ultralight", "light",
"normal", "medium", "semibold", "bold", "ultrabold", or "heavy")

italic Should the font be slanted

width The font width to use. Can either be a number (“0, 1‘, ‘2‘, ‘3‘, ‘4‘, ‘5‘, ‘6‘, ‘7‘,
‘8‘, or ‘9‘) or strings (‘"undefined"‘, ‘"ultracondensed"‘, ‘"extracondensed"‘,
‘"condensed"‘, ‘"semicondensed"‘, ‘"normal"‘, ‘"semiexpanded"‘, ‘"expanded"‘,
‘"extraexpanded"‘, or ‘"ultraexpanded"‘)

features A font_feature object specifying any OpenType font features to apply to the font

size The size of the font in points. Can be relative() or em() in which case it is
based on the parent font size (for size these are equivalent) or rem() in which
case it is based on the font size of the body element.

color Is the color of the font

lineheight The spacing between subsequent lines relative to the font size. Can be relative()
in which case it is based on the parent lineheight.

align The alignment within the text. One of "left", "center", "right", "justified-left",
"justified-center", "justified-right", or "distributed"

24 style

tracking Additional character spacing measured in 1/1000em. Can be relative() in
which case it is based on the parent tracking.

indent The indentation of the first line in a paragraph measured in points. Can be
relative() in which case it is based on the parent indent, em() in which case
it is based on the font size in this style, or rem() in which case it is based on the
font size of the body element.

hanging The indentation of all but the first line in a paragraph measured in points. Can
be relative() in which case it is based on the parent hanging, em() in which
case it is based on the font size in this style, or rem() in which case it is based
on the font size of the body element.

margin The margin around the element, given as a call to trbl(). Margin refers to the
area outside the box that text is placed in. If the element has a background, the
margin area will not be colored.

padding The padding around the element, given as a call to trbl(). Padding refers to
the distance between the text and the border of the box it will be drawn in. If the
element has a background, the padding area will be colored.

background The color of the background fill. The background includes the padding but not
the margin. Can be a solid color or a gradient or pattern made with grid::linearGradient()/grid::radialGradient()/grid::pattern()

border The color of the background stroke. The background includes the padding but
not the margin

border_size The line width of the background stroke, given as a call to trbl()

border_radius The corner radius of the background, given in points
bullets A vector of strings to use for bullets in unordered lists. marquee_bullets pro-

vides a selection
underline Should text be underlined
strikethrough Should text be strikethrough
baseline The baseline shift to apply to the text
img_asp The default aspect ratio for block level images if not provided by the image itself
text_direction The directional flow of the text. Either "auto" to let it be determined by the

content of the text, or "ltr"/"rtl" to hard-code it to either left-to-right or right-
to-left. This setting will not change the order of glyphs within a span of text,
but rather whether consequtive blocks of text are laid out left-to-right or right-
to-left. It also affects to which side indentation is applied as well as the meaning
of "auto", and "justified-auto" aligment.

Value

A marquee_style object

Examples

A partial style
style(color = "red", underline = TRUE)

Full style
base_style()

style-helpers 25

style-helpers Helpers for defining styles

Description

marquee provides a small set of helpers for constructing the needed styles. relative() specifies
a numeric value as relative to the value of the parent style by a certain factor, e.g. a font size of
relative(0.5) would give a style a font size half of it’s parent. em() specify a numeric value as
relative to the font size of the current style. If the font size is 12, and indent is set to em(2), then
the indent will be equivalent to 24. rem() works like em() but rather than using the font size of the
current style it uses the font size of the root style (which is the body element). trbl() helps you
construct styles that refers to sides of a rectangle (margin, padding, and border size). The function
names refers to the order of the arguments (top, right, bottom, left). skip_inherit() tells the style
inheritance to ignore this value and look for the value one above in the stack. marquee_bullets is
just a character vector with 6 sensible bullet glyphs for unordered lists.

Usage

relative(x)

em(x)

rem(x)

trbl(top = NULL, right = top, bottom = top, left = right)

skip_inherit(x)

marquee_bullets

Arguments

x A decimal number. If a vector is provided only the first element will be used

top, right, bottom, left
Values for the sides of the rectangles. Either numbers or modifiers (relative, em,
or rem)

Format

An object of class character of length 6.

Value

Objects of the relevant class

26 style_set

Examples

relative(0.35)

em(2)

rem(1.2)

Argument default means it recycles like CSS if fewer values are specified
trbl(6, em(1.5))

skip_inherit("sans")

marquee_bullets

style_set Create or modify a style set that describes a full markdown text

Description

A style set contains information on how to style the various tags in a markdown text. While it is not
necessary to provide a style for all tags (it will just inherit the parent if missing), it is required to
provide a complete style for the body tag so an option is avialable through inheritance for all tags
and all style options. It can often be easier to derive a new style set from an existing one rather than
building one from scratch.

Usage

style_set(...)

modify_style(x, tag, ...)

remove_style(x, tag)

Arguments

... Named arguments providing a style for the specific tags. For modify_style()
a number of style options to change. If the first argument is a marquee style it
will overwrite the tag and subsequent arguments are ignored. This only holds if
x is a style set.

x A style or style set to modify

tag The name of the tag to modify or remove if x is a style set. Tags are internally
all lowercase and tag will be converted to lowercase before matching

Value

A marquee_style_set object

style_set 27

Examples

Create a style
s_set <- style_set(base = base_style(), p = style(indent = em(2)))

Modify an existing tag
modify_style(s_set, "p", size = 16)

Add a new tag, supplying a full style object
modify_style(s_set, "str", style(weight = "bold"))

Same as above, but style object created implicitly
modify_style(s_set, "str", weight = "bold")

Remove a tag style
remove_style(s_set, "p")

Index

∗ datasets
style-helpers, 25

?guide_legend, 9

aes(), 6

base_style, 2
base_style (style), 22
borders(), 7

classic_style, 2, 8
classic_style(), 16, 19

element_marquee, 4
element_marquee(), 8, 21
em (style-helpers), 25
em(), 3, 20, 23, 24
emptyenv(), 14

font_feature, 3, 23
fortify(), 6

geom_marquee, 6
ggplot(), 6
guide_marquee, 9
guides(), 9

ink, 11

key glyphs, 7

labs(), 9
layer position, 7
layer stat, 7
layer(), 7

marquee syntax, 10
marquee_bullets (style-helpers), 25
marquee_glue, 13
marquee_glue_data (marquee_glue), 13
marquee_grob, 15

marquee_grob(), 19
marquee_parse, 18
marquee_parse(), 15–17
marquefy_theme, 21
modify_style (style_set), 26

relative (style-helpers), 25
relative(), 3, 20, 23, 24
rem (style-helpers), 25
rem(), 3, 20, 23, 24
remove_style (style_set), 26

skip_inherit (style-helpers), 25
skip_inherit(), 4, 8
style, 9, 22
style-helpers, 25
style_set, 9, 26

textshaping::shape_text(), 21
theme, 9
trbl (style-helpers), 25
trbl(), 3, 24
trim(), 14

waiver(), 9

28

	classic_style
	element_marquee
	geom_marquee
	guide_marquee
	ink
	marquee_glue
	marquee_grob
	marquee_parse
	marquefy_theme
	style
	style-helpers
	style_set
	Index

