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compare_models Compare Maxent OT models using a variety of methods

Description

Compares two or more model fit to the same data set to determine which provides the best fit, using
a variety of methods.

Usage

compare_models(..., method = "lrt")

Arguments

... Two or more models objects to be compared. These objects should be in the
same format as the objects returned by the optimize_weights function. Note
that the likelihood ratio test applies to exactly two models, while the other com-
parison methods can be applied to arbitrarily many models.

method The method of comparison to use. This currently includes lrt (likelihood ratio
test), aic (Akaike Information Criterion), aic_c (Akaike Information Criterion
adjusted for small sample sizes), and bic (Bayesian Information Criterion).

Details

The available comparison methods are

• lrt: The likelihood ratio test. This method can be applied to a maximum of two models, and
the parameters of these models (i.e., their constraints) must be in a strict subset/superset rela-
tionship. If your models do not meet these requirements, you should use a different method.
The likelihood ratio is calculated as follows:

LR = 2(LL2 − LL1)

where LL2 is log likelihood of the model with more parameters. A p-value is calculated by
conducting a chi-squared test with X2 = LR and the degrees of freedom set to the difference
in number of parameters between the two models. This p-value tells us whether the difference
in likelihood between the two models is significant (i.e., whether the extra parameters in the
full model are justified by the increase in model fit).
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• aic: The Akaike Information Criterion. This is calculated as follows for each model:

AIC = 2k − 2LL

where k is the number of model parameters (i.e., constraints) and LL is the model’s log like-
lihood.

• aic_c: The Akaike Information Criterion corrected for small sample sizes. This is calculated
as follows:

AICc = 2k − 2LL+
2k2 + 2k

n− k − 1

where n is the number of samples and the other parameters are identical to those used in the
AIC calculation. As n approaches infinity, the final term converges to 0, and so this equation
becomes equivalent to AIC. Please see the note below for information about sample sizes.

• bic: The Bayesian Information Criterion. This is calculated as follows:

BIC = k ln(n)− 2LL

As with aic_c, this calculation relies on the number of samples. Please see the discussion on
sample sizes below before using this method.

A few caveats for several of the comparison methods:

• The likelihood ratio test (lrt) method applies to exactly two models, and assumes that the
parameters of these models are nested: that is, the constraints in the smaller model are a strict
subset of the constraints in the larger model. This function will verify this to some extent
based on the number and names of constraints.

• The Akaike Information Criterion adjusted for small sample sizes (aic_c) and the Bayesian
Information Criterion (bic) rely on sample sizes in their calculations. The sample size for a
data set is defined as the sum of the column of surface form frequencies. If you want to apply
these methods, it is important that the values in the column are token counts, not relative
frequencies. Applying these methods to relative frequencies, which effectively ignore sample
size, will produce invalid results.

The aic, aic_c, and bic comparison methods return raw AIC/AICc/BIC values as well as weights
corresponding to these values. These weights are calculated similarly for each model:

Wi =
exp(−0.5δi)∑m
j=1 exp(−0.5δj)

where δi is the difference in score (AIC, AICc, BIC) between model i and the model with the
best score, and m is the number of models being compared. These weights provide the relative
likelihood or conditional probability of this model being the best model (by whatever definition of
"best" is assumed by the measurement type) given the data and the selection of models it is being
compared to.
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Value

A data frame containing information about the comparison. The contents and size of this data frame
vary depending on the method used.

• lrt: A data frame with a single row and the following columns:

– description: the names of the two models being compared. The name of the model
with more parameters will be first.

– chi_sq: the chi-squared value calculated during the test.
– k_delta: the difference in parameters between the two models used as degrees of free-

dom in the chi-squared test.
– p_value: the p-value calculated by the test

• aic: A data frame with as many rows as there were models passed in. The models are sorted
in ascending order of AIC (i.e., best first). This data frame has the following columns:

– model: The name of the model.
– k: The number of parameters.
– aic: The model’s AIC value.
– aic.delta: The difference between this model’s AIC value and the AIC value of the

model with the smallest AIC value.
– aic.wt: The model’s AIC weight: this reflects the relative likelihood (or conditional

probability) that this model is the "best" model in the set.
– cum.wt: The cumulative sum of AIC weights up to and including this model.
– ll: The log likelihood of this model.

• aicc: The data frame returned here is analogous to the structure of the AIC data frame, with
AICc values replacing AICs and accordingly modified column names. There is one additional
column:

– n: The number of samples in the data the model is fit to.

• bic: The data frame returned here is analogous to the structure of the AIC and AICc data
frames. Like the AICc data frame, it contains the n column.

Examples

# Get paths to toy data files
# This file has two constraints
data_file_small <- system.file(

"extdata", "sample_data_frame.csv", package = "maxent.ot"
)
# This file has three constraints
data_file_large <- system.file(

"extdata", "sample_data_frame_large.csv", package = "maxent.ot"
)

# Fit weights to both data sets with no biases
tableaux_small <- read.csv(data_file_small)
small_model <- optimize_weights(tableaux_small)

tableaux_large <- read.csv(data_file_large)
large_model <- optimize_weights(tableaux_large)
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# Compare models using likelihood ratio test. This is appropriate here
# because the constraints are nested.
compare_models(small_model, large_model, method='lrt')

# Compare models using AIC
compare_models(small_model, large_model, method='aic')

# Compare models using AICc
compare_models(small_model, large_model, method='aic_c')

# Compare models using BIC
compare_models(small_model, large_model, method='bic')

cross_validate Cross-validate bias parameters for constraint weights.

Description

Performs k-fold cross-validation of a data set and a set of input bias parameters. Cross-validation
allows the space of bias parameters to be searched to find the settings that best support generalization
to unseen data.

Usage

cross_validate(
input,
k,
mu_values,
sigma_values,
grid_search = FALSE,
output_path = NA,
out_sep = ",",
control_params = NA,
upper_bound = DEFAULT_UPPER_BOUND,
encoding = "unknown",
model_name = NA,
allow_negative_weights = FALSE

)

Arguments

input The input data frame/data table/tibble. This should contain one or more OT
tableaux consisting of mappings between underlying and surface forms with ob-
served frequency and violation profiles. Constraint violations must be numeric.
For an example of the data frame format, see inst/extdata/sample_data_frame.csv.
You can read this file into a data frame using read.csv or into a tibble using
dplyr::read_csv.



6 cross_validate

This function also supports the legacy OTSoft file format. You can use this
format by passing in a file path string to the OTSoft file rather than a data frame.
For examples of OTSoft format, see inst/extdata/sample_data_file.txt.

k The number of folds to use in cross-validation.
mu_values A vector or list of mu bias parameters to use in cross-validation. Parameters

may either be scalars, in which case the same mu parameter will be applied
to every constraint, or vectors/lists containing a separate mu bias parameter for
each constraint.

sigma_values A vector or list of sigma bias parameters to use in cross-validation. Parameters
may either be scalars, in which case the same sigma parameter will be applied
to every constraint, or vectors/lists containing a separate sigma bias parameter
for each constraint.

grid_search (optional) If TRUE, the Cartesian product of the values in mu_values and sigma_values
will be validated. For example, if mu_values = c(0, 1) and sigma_values =
c(0.1, 1), cross-validation will be done on the mu/sigma pairs (0, 0.1), (0, 1), (1, 0.1), (1, 1).
If FALSE (default), cross-validation will be done on each pair of values at the
same indices in mu_values and sigma_values. For example, if mu_values =
c(0, 1) and sigma_values = c(0.1, 1), cross-validation will be done on the
mu/sigma pairs (0, 0.1), (1, 1).

output_path (optional) A string specifying the path to a file to which the cross-validation
results will be saved. If the file exists it will be overwritten. If this argument
isn’t provided, the output will not be written to a file.

out_sep (optional) The delimiter used in the output files. Defaults to tabs.
control_params (optional) A named list of control parameters that will be passed to the optim

function. See the documentation of that function for details. Note that some
parameter settings may interfere with optimization. The parameter fnscale will
be overwritten with -1 if specified, since this must be treated as a maximization
problem.

upper_bound (optional) The maximum value for constraint weights. Defaults to 100.
encoding (optional) The character encoding of the input file. Defaults to "unknown".
model_name (optional) A name for the model. If not provided, the file name will be used if

the input is a file path. If the input is a data frame the name of the variable will
be used.

allow_negative_weights

(optional) Whether the optimizer should allow negative weights. Defaults to
FALSE.

Details

The cross-validation procedure is as follows:

1. Randomly divide the data into k partitions.
2. Iterate through every combination of mu and sigma specified in the input arguments (see the

documentation for the grid_search argument for details on how this is done).
3. For each combination, for each of the k partitions, train a model on the other (k-1) partitions

using optimize_weights and then run predict_probabilities on the remaining partition.
4. Record the mean log likelihood the models apply to the held-out partitions.
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Value

A data frame with the following columns:

• model_name: the name of the model

• mu: the value(s) of mu tested

• sigma: the value(s) of sigma tested

• folds: the number of folds

• mean_ll: the mean log likelihood of k-fold cross-validation using these bias parameters

Examples

# Get paths to OTSoft file. Note that you can also pass dataframes into
# this function, as described in the documentation for `optimize`.
data_file <- system.file(

"extdata", "amp_demo_grammar.csv", package = "maxent.ot"
)
tableaux_df <- read.csv(data_file)

# Define mu and sigma parameters to try
mus <- c(0, 1)
sigmas <- c(0.01, 0.1)

# Do 2-fold cross-validation
cross_validate(tableaux_df, 2, mus, sigmas)

# Do 2-fold cross-validation with grid search of parameters
cross_validate(tableaux_df, 2, mus, sigmas, grid_search=TRUE)

# You can also use vectors/lists for some/all of the bias parameters to set
# separate biases for each constraint
mus_v <- list(

c(0, 1),
c(1, 0)

)
sigmas_v <- list(

c(0.01, 0.1),
c(0.1, 0.01)

)

cross_validate(tableaux_df, 2, mus_v, sigmas_v)

# Save cross-validation results to a file
tmp_output <- tempfile()
cross_validate(tableaux_df, 2, mus, sigmas, output_path=tmp_output)
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monte_carlo_weights Create simulated data and learn weights for these data

Description

Creates a simulated data set by picking an output for each instance of an input. The probability of
picking a particular output is guided by its conditional probability given the input. Learns constraint
weights for each simulated data set.

Usage

monte_carlo_weights(
pred_prob,
num_simul,
bias_file = NA,
mu = NA,
sigma = NA,
output_path = NA,
out_sep = ",",
control_params = NA,
upper_bound = DEFAULT_UPPER_BOUND,
allow_negative_weights = FALSE

)

Arguments

pred_prob A data frame with a column for predicted probabilities. This object should be
in the same format as the predictions attribute of the object returned by the
predict_probabilities function.

num_simul The number of simulations to run.

bias_file (optional) The path to the file containing mus and sigma for constraint biases.
If this argument is provided, the scalar and vector mu and sigma arguments will
be ignored. Each row in this file should be the name of the constraint, followed
by the mu, followed by the sigma (separated by whatever the relevant separator
is; default is commas).

mu (optional) A scalar or vector that will serve as the mu for each constraint in the
bias term. Constraint weights will also be initialized to this value. If a vector,
its length must equal the number of constraints in the input file. This value will
not be used if bias_file is provided.

sigma (optional) A scalar or vector that will serve as the sigma for each constraint in
the bias term. If a vector, its length must equal the number of constraints in the
input file. This value will not be used if bias_file is provided.

output_path (optional) A string specifying the path to a file to which the output will be saved.
If the file exists it will be overwritten. If this argument isn’t provided, the output
will not be written to a file.
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out_sep (optional) The delimiter used in the output files. Defaults to commas.

control_params (optional) A named list of control parameters that will be passed to the optim
function. See the documentation of that function for details. Note that some
parameter settings may interfere with optimization. The parameter fnscale will
be overwritten with -1 if specified, since this must be treated as a maximization
problem.

upper_bound (optional) The maximum value for constraint weights. Defaults to 100.
allow_negative_weights

(optional) Whether the optimizer should allow negative weights. Defaults to
FALSE.

Details

This function creates multiple simulated data sets, and learns a set of weights that maximizes the
likelihood of data for each simulated data set.

To create a simulated data set, one output is randomly chosen for each instance of an input. The
probability of picking a particular output, Oi, which arises from input Ij depends on Pr(Oi|Ij).
The function optimize_weights() is called to find a set of weights that maximize the likelihood
of the simulated data. All optional arguments of optimize_weights() that were available for the
user to specify biases and bounds are likewise available in this function, monte_carlo_weights().

The process of simulating a data set and learning weights that optimize the likelihood of the simu-
lated data is repeated as per the number of specified simulations.

Value

A data frame with the following structure:

• rows: As many rows as the number of simulations

• columns: As many columns as the number of constraints

Why use this function?

This function gives us a way to estimate constraint weights via a Monte Carlo process. For example
we might be interested in the effect of temperature on polarizing predicted probabilities, and the
resulting constraint weights. This function can produce a distribution of constraint weights for
the simulated polarized data, as well as a distribution of constraint weights for the simulated non-
polarized ones, thereby allowing a comparison of the two.

Examples

# Get paths to toy data file
data_file <- system.file(

"extdata", "sample_data_frame.csv", package = "maxent.ot"
)

tableaux_df <- read.csv(data_file)

# Fit weights to data with no biases
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fit_model <- optimize_weights(tableaux_df)

# Predict probabilities for the same input with temperature = 2
pred_obj <- predict_probabilities(

tableaux_df, fit_model$weights, temperature = 2
)

# Run 5 monte carlo simulations
# based on predicted probabilities when temperature = 2,
# and learn weights for these 5 simulated data sets
monte_carlo_weights(pred_obj$predictions, 5)

# Save learned weights to a file
tmp_output <- tempfile()
monte_carlo_weights(pred_obj$predictions, 5, output_path=tmp_output)

optimize_weights Optimize MaxEnt OT constraint weights

Description

Optimizes constraint weights given a data set and optional biases. If no bias arguments are provided,
the bias term(s) will not be included in the optimization.

Usage

optimize_weights(
input,
bias_input = NA,
mu = NA,
sigma = NA,
control_params = NA,
upper_bound = DEFAULT_UPPER_BOUND,
encoding = "unknown",
model_name = NA,
allow_negative_weights = FALSE

)

Arguments

input The input data frame/data table/tibble. This should contain one or more OT
tableaux consisting of mappings between underlying and surface forms with ob-
served frequency and violation profiles. Constraint violations must be numeric.
For an example of the data frame format, see inst/extdata/sample_data_frame.csv.
You can read this file into a data frame using read.csv or into a tibble using
dplyr::read_csv.
This function also supports the legacy OTSoft file format. You can use this
format by passing in a file path string to the OTSoft file rather than a data frame.
For examples of OTSoft format, see inst/extdata/sample_data_file.txt.
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bias_input (optional) A data frame/data table/tibble containing the bias mus and sigmas.
Each row corresponds to an individual constraint, and consists of three columns:
Constraint, which contains the constraint name, Mu, which contains the mu,
and Sigma, which contains the sigma. If this argument is provided, the mu
and sigma arguments will be ignored. Like the input argument, this func-
tion also supports the legacy OTSoft file format for this argument. In this case,
bias_input should be a path to the bias parameters in OTSoft format.
For examples of OTSoft bias format, see inst/extdata/sample_bias_file_otsoft.txt.
Each row in this file should be the name of the constraint, followed by the mu,
followed by the sigma (separated by tabs).

mu (optional) A scalar or vector that will serve as the mu for each constraint in the
bias term. Constraint weights will also be initialized to this value. If a vector,
its length must equal the number of constraints in the input file. This value will
not be used if bias_file is provided.

sigma (optional) A scalar or vector that will serve as the sigma for each constraint in
the bias term. If a vector, its length must equal the number of constraints in the
input file. This value will not be used if bias_file is provided.

control_params (optional) A named list of control parameters that will be passed to the optim
function. See the documentation of that function for details. Note that some
parameter settings may interfere with optimization. The parameter fnscale will
be overwritten with -1 if specified, since this must be treated as a maximization
problem.

upper_bound (optional) The maximum value for constraint weights. Defaults to 100.

encoding (optional) The character encoding of the input file. Defaults to "unknown".

model_name (optional) A name for the model. If not provided, the name of the variable will
be used if the input is a data frame. If the input is a path to an OTSoft file, the
filename will be used.

allow_negative_weights

(optional) Whether the optimizer should allow negative weights. Defaults to
FALSE.

Details

The objective function J(w) that is optimized is defined as

J(w) =

n∑
i=1

lnP (yi|xi;w)−
m∑

k=1

(wk − µk)
2

2σ2
k

The first term in this equation calculates the natural logarithm of the conditional likelihood of the
training data under the weights w. n is the number of data points (i.e., the sample size or the sum of
the frequency column in the input),xi is the input form of the ith data point, and yi is the observed
surface form corresponding to xi.P (yi|xi;w) represents the probability of realizing underlying xi

as surface yi given weights w. This probability is defined as

P (yi|xi;w) =
1

Zw(xi)
exp(−

m∑
k=1

wkfk(yi, xi))
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where fk(yi, xi) is the number of violations of constraint k incurred by mapping underlying xi to
surface yi. Zw(xi) is a normalization term defined as

Z(xi) =
∑

y∈Y(xi)

exp(−
m∑

k=1

wkfk(y, xi))

where Y(xi) is the set of observed surface realizations of input xi.

The second term of the equation for calculating the objective function is the optional bias term,
where wk is the weight of constraint k, and µk and σk parameterize a normal distribution that
serves as a prior for the value of wk. µk specifies the mean of this distribution (the expected weight
of constraint k before seeing any data) and sigmak reflects certainty in this value: lower values of
σk penalize deviations from µk more severely, and thus require greater amounts of data to move
wk away from muk. While increasing σk will improve the fit to the training data, it may result in
overfitting, particularly for small data sets.

A general bias with µk = 0 for all k is commonly used as a form of simple regularization to prevent
overfitting (see, e.g., Goldwater and Johnson 2003). Bias terms have also been used to model
proposed phonological learning biases; see for example Wilson (2006), White (2013), and Mayer
(2021, Ch. 4). The choice of σ depends on the sample size. As the number of data points increases,
σ must decrease in order for the effect of the bias to remain constant: specifically, nσ2 must be held
constant, where n is the number of tokens.

Optimization is done using the optim function from the R-core statistics library. By default it uses
L-BFGS-B optimization, which is a quasi-Newtonian method that allows upper and lower bounds on
variables. Constraint weights are restricted to finite, non-negative values.

If no bias parameters are specified (either the bias_file argument or the mu and sigma parameters),
optimization will be done without the bias term.

Value

An object with the following named attributes:

• weights: A named list of the optimal constraint weights

• log_lik: the log likelihood of the data under the discovered weights

• k: the number of constraints

• n: the number of data points in the training set

Examples

# Get paths to toy data and bias files.
df_file <- system.file(

"extdata", "sample_data_frame.csv", package = "maxent.ot"
)
bias_file <- system.file(

"extdata", "sample_bias_data_frame.csv", package = "maxent.ot"
)
# Fit weights to data with no biases
tableaux_df <- read.csv(df_file)
optimize_weights(tableaux_df)
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# Fit weights with biases specified in file
bias_df <- read.csv(bias_file)
optimize_weights(tableaux_df, bias_df)

# Fit weights with biases specified in vector form
optimize_weights(

tableaux_df, mu = c(1, 2), sigma = c(100, 200)
)

# Fit weights with biases specified as scalars
optimize_weights(tableaux_df, mu = 0, sigma = 1000)

# Fit weights with mix of scalar and vector biases
optimize_weights(tableaux_df, mu = c(1, 2), sigma = 1000)

# Pass additional arguments to optim function
optimize_weights(tableaux_df, control_params = list(maxit = 500))

otsoft_bias_to_df Converts an OTSoft bias file to a data frame

Description

Loads an OTSoft bias file and converts it to the data frame format used by the maxent.ot functions.

Usage

otsoft_bias_to_df(input, output_path = NA)

Arguments

input The path to the input bias file. This should contain more OT tableaux consisting
of mappings between underlying and surface forms with observed frequency
and violation profiles. Constraint violations must be numeric.
The file should be in OTSoft format. For examples of OTSoft format, see
inst/extdata/sample_bias_file_otsoft.txt.

output_path (optional) A string specifying the path to a file to which the data frame will be
saved in CSV format. If the file exists it will be overwritten. If this argument
isn’t provided, the output will not be written to a file.

Value

A data frame corresponding to the input OTSoft bias file, containing the columns

• Constraint: The constraint name.

• Mu: The mu value for the regularization term.

• Sigma: The sigma value for the regularization term.
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Examples

# Convert OTSoft bias file to data frame format
otsoft_file <- system.file(

"extdata", "sample_bias_file_otsoft.txt", package = "maxent.ot"
)
df_output <- otsoft_bias_to_df(otsoft_file)

# Save data frame to a file
tmp_output <- tempfile()
otsoft_bias_to_df(otsoft_file, tmp_output)

otsoft_tableaux_to_df Converts an OTSoft tableaux file to a data frame

Description

Loads an OTSoft tableaux file and converts it to the data frame format used by the maxent.ot func-
tions.

Usage

otsoft_tableaux_to_df(input, output_path = NA, encoding = "unknown")

Arguments

input The path to the input data file. This should contain more OT tableaux consisting
of mappings between underlying and surface forms with observed frequency
and violation profiles. Constraint violations must be numeric.
The file should be in OTSoft format. For examples of OTSoft format, see
inst/extdata/sample_data_file.txt.

output_path (optional) A string specifying the path to a file to which the data frame will be
saved in CSV format. If the file exists it will be overwritten. If this argument
isn’t provided, the output will not be written to a file.

encoding (optional) The character encoding of the input file. Defaults to "unknown".

Value

A data frame corresponding to the input OTSoft tableau, containing the columns

• Input: The input form.

• Output: The output form.

• Frequency: The frequency of the input/output mapping.

• One column for each constraint containing its violation counts.
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Examples

# Convert OTSoft file to data frame format
otsoft_file <- system.file(

"extdata", "sample_data_file_otsoft.txt", package = "maxent.ot"
)
df_output <- otsoft_tableaux_to_df(otsoft_file)

# Save data frame to a file
tmp_output <- tempfile()
otsoft_tableaux_to_df(otsoft_file, tmp_output)

predict_probabilities Predict probabilities of OT candidates

Description

Predict probabilities of candidates based on their violation profiles and constraint weights.

Usage

predict_probabilities(
test_input,
constraint_weights,
output_path = NA,
out_sep = ",",
encoding = "unknown",
temperature = DEFAULT_TEMPERATURE

)

Arguments

test_input The input data frame/data table/tibble. This should contain one or more OT
tableaux consisting of mappings between underlying and surface forms with ob-
served frequency and violation profiles. Constraint violations must be numeric.
For an example of the data frame format, see inst/extdata/sample_data_frame.csv.
You can read this file into a data frame using read.csv or into a tibble using
dplyr::read_csv.
This function also supports the legacy OTSoft file format. You can use this
format by passing in a file path string to the OTSoft file rather than a data frame.
For examples of OTSoft format, see inst/extdata/sample_data_file.txt.

constraint_weights

A vector of constraint weights to use. These are typically generated by the
optimize_weights function.

output_path (optional) A string specifying the path to a file to which the predictions will be
saved. If the file exists it will be overwritten. If this argument isn’t provided, the
output will not be written to a file.
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out_sep (optional) The delimiter used in the output files. Defaults to commas.

encoding (optional) The character encoding of the input file. Defaults to "unknown".

temperature (optional) The temperature parameter, which should be a real number >= 1.
Defaults to 1.

Details

For each input/output pair in the provided file this function will calculate the probability of that
output given the input form and the provided weights. This probability is defined as

P (y|x;w) = 1

Zw(x)
exp(−

m∑
k=1

wkfk(y, x))

where fk(y, x) is the number of violations of constraint k incurred by mapping underlying x to
surface y, wk is the weight associated with constraint k, and Zw(x) is a normalization term defined
as

Zw(x) =
∑

y∈Y(x)

exp(−
m∑

k=1

wkfk(y, x))

where Y(x) is the set of all output candidates for input x.

The resulting probabilities will be appended to a data frame object representing the input tableaux.
This data frame can also be saved to a file if the output_path argument is provided.

Value

An object with the following named attributes:

• log_lik: the log likelihood of the data under the provided weights

• predictions: A data table containing all the tableaux, with probabilities assigned to each
candidate and errors.

Using temperature

If the temperature parameter T is specified, P (y|x;w) is calculated as

1

Zw(x)
exp(−

m∑
k=1

(wkfk(y, x))/T )

and Zw(x) is similarly calculated as

∑
y∈Y(x)

exp(−
m∑

k=1

(wkfk(y, x))/T )

Larger values of T move the predicted probabilities of output candidates for a particular input
towards equality with one another. For example, if a particular input has two candidate outputs,
higher values of T will move the probability of each towards 0.5.
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The temperature parameter can be used to generate less categorical predictions in a way that is
independent of the constraint weights. See Ackley, Hinton, and Sejnowski (1985, p. 150-152) for
more detail, and Hayes et al. (2009) and Mayer (2021, Ch. 4) for examples of temperature used in
practice. By default this parameter is set to 1, which renders the equations in this section equivalent
to the standard calculations of probability.

Examples

# Get paths to toy data file
df_file <- system.file(

"extdata", "sample_data_frame.csv", package = "maxent.ot"
)
# Fit weights to dataframe with no biases
tableaux_df <- read.csv(df_file)
fit_model <- optimize_weights(tableaux_df)
predict_probabilities(tableaux_df, fit_model$weights)

# Do so with a temperature parameter
predict_probabilities(tableaux_df, fit_model$weights, temperature = 2)

# Save predictions to a file
tmp_output <- tempfile()
predict_probabilities(tableaux_df, fit_model$weights, output_path=tmp_output)
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