Package 'mbbe'

July 22, 2025

Title Model Based Bio-Equivalence

Version 0.1.0

Description Uses several Nonlinear Mixed effect (NONMEM) models (as NONMEM control files) to perform bootstrap model averaging and Monte Carlo Simulation for Model Based Bio-Equivalence (MBBE). Power is returned as the fraction of the simulations with successful bioequivalence (BE) test, for maximum concentration (Cmax), Area under the curve to the last observed value (AUClast) and Area under the curve extrapolate to infinity (AUCinf). See Hooker, A. (2020) Improved bioequivalence assessment through model-informed and model-

based strategies https://www.fda.gov/media/138035/download.

URL https://github.com/certara/mbbe

BugReports https://github.com/certara/mbbe/issues

License LGPL-3 **Encoding** UTF-8

Imports dplyr, stringr, xml2, PKNCA, magrittr, nlme, emmeans, future, furrr (>= 0.3.1), processx, tictoc, ggplot2, ps, jsonlite

RoxygenNote 7.2.3

Suggests knitr, rmarkdown, testthat

VignetteBuilder knitr

NeedsCompilation no

Author Mark Sale [aut, cre] (ORCID: https://orcid.org/0000-0002-6239-2359, Funded by FDA/NIH grant 1U01FD007355), James Craig [aut] (ORCID: https://orcid.org/0000-0003-1757-9234), Michael Tomashevskiy [aut]

Maintainer Mark Sale <mark.sale@certara.com>

Repository CRAN

Date/Publication 2024-02-03 11:20:02 UTC

2 calc_NCA

Contents

calc	_NCA	Calcula	te Non	ı-Com	partm	ental Ar	nalysis (N	(CA) Param	neters	
Index										9
	run_mbbe_json .									8
	run_mbbe									
	run_example									4
	calc_power									3
	calc_NCA									

Description

This function performs Non-Compartmental Analysis (NCA) to derive key pharmacokinetic parameters such as Cmax, AUCinf, and AUClast for specified time intervals.

Usage

```
calc_NCA(
  run_dir,
  ngroups,
  reference_groups,
  test_groups,
  NCA_end_time,
  samp_size
)
```

Arguments

run_dir	Character string specifying the path to the run directory.			
ngroups	Integer specifying the total number of groups (e.g., 4 for an ABBA design).			
reference_groups				
	Numeric vector indicating the group IDs that are designated as reference.			
test_groups	Numeric vector indicating the group IDs that are designated as test.			
NCA_end_time	Numeric value specifying the end time for calculations of AUClast and AUCinf.			
samp_size	Integer indicating the sample size or the total number of samples for the analysis.			

Details

The calc_NCA function internally calls getNCA for each sample in the sequence from 1 to samp_size. Note that the function is currently executed in a serial manner and is not parallelized.

Value

The function returns a list containing the derived NCA parameters for each sample.

calc_power 3

Examples

```
## Not run:
run_dir <- "c:/Workspace/mbbe"
ngroups <- 4
reference_groups <- c(1,2)
test_groups <- c(3,4)
NCA_end_time <- 7
samp_size <- 6
calc_NCA(run_dir, ngroups, reference_groups, test_groups, NCA_end_time, samp_size)
## End(Not run)</pre>
```

calc_power

Calculate Bioequivalence Power

Description

Computes the power for bioequivalence (BE) testing based on EMA standards statistics applied to each Monte Carlo simulation. The power is determined by the proportion of simulations that meet the BE criteria.

Usage

```
calc_power(run_dir, samp_size, alpha, model_averaging_by, NTID)
```

Arguments

run_dir Character string specifying the run directory where simulation outputs are lo-

cated.

samp_size Integer indicating the number of samples to be used in the analysis.

alpha Numeric value representing the alpha error rate. It must lie between 0 and 1.

model_averaging_by

Character string indicating the method for model averaging, either "subject" or

"study".

NTID Logical indicating if the drug being tested is a narrow therapeutic index drug.

Details

When the simulation is conducted by study (i.e., a unique model for each study), this results in model averaging at the study level. If model_averaging_by is set to "subject", data from different studies are merged. For each study dataset, subjects are randomly selected (without replacement) from across all studies.

The function iterates over each sample, reading the corresponding NCAresults (designated by the sample number). Subsequently, it determines if each sample meets or fails the BE testing criteria.

run_example

Value

A list containing the results for:

- Cmax_result: Power for the Cmax parameter.
- AUCinf_result: Power for the AUCinf parameter.
- AUClast_result: Power for the AUClast parameter. All power values range between 0 and 1.

Examples

```
calc_power(
  run_dir = system.file(package = "mbbe", "examples", "calc_power"),
  samp_size = 5,
  alpha = 0.05,
  model_averaging_by = "study",
  NTID = FALSE
)
```

run_example

run_example for Model-Based BE Assessment

Description

This function calls the example models (model1-5.mod), performs the bootstrap, model averaging and the Monte Carlo simulation.

Usage

```
run_example(run_dir, nmfe_path, Include_R_Code = FALSE, plan = "multisession")
```

Arguments

run_dir	Character string specifying the directory containing the parent folder where the models are to be run.
nmfe_path	Character string indicating the path to the nmfe batch file (e.g., nmfe?.bat).
Include_R_Code	Logical, whether the include the code in R_Penalty_Code in model averaging algorithm, Default is \ensuremath{FALSE}
plan	for future execution, one of "sequential", "multisession", "multicore", Default is multisession

run_mbbe 5

Details

The function executes the mbbe::run_mbbe_json() function. A user supplied installation of NON-MEM is required run_dir is the parent folder where the models are to be run, nmfe_path is the path the nmfe??.bat where ?? is the version of NONMEM available plan is "sequential", "multisession","multicore", defining the plan for parallel execution (sequential is non-parallel execution) The function uses the included file mbbeargs.json as the options file for the run, and runs 5 supplied models for model averaging. Monte Carlo Simulation is then done, with the number of samples set in the mbbearg.json file, to 10 (probaby more would be appropriate for and actual power analysis) The model selection for the model averaging also includes a penalty calculate by the script RPenaltyCode.r for missing Cmax, AUCinf and AUClast Run time on 32 cores is ~3 minutes without the R code execution an 10 minutes with and the output should include:

Value

A list containing:

• Cmax_power: Power for Cmax

• AUClast_power: Power for AUClast

• AUCinf_power: Power for AUCinf

• run_dir: Directory where the function was executed

• Num_identifiable: Number of identifiable parameters

• BICS: Bayesian Information Criterion Scores

Examples

```
## Not run:
run_dir <- tempdir()
mbbe::run_example(run_dir = run_dir,
    nmfe_path = "c:/nm74g64/util/nmfe74.bat",
    plan = "multisession")
## End(Not run)</pre>
```

run_mbbe

Execute MBBE Analysis

Description

This function runs the MBBE analysis. It's typically called by run_mbbe_json which provides the necessary options via a JSON file.

6 run_mbbe

Usage

```
run_mbbe(
  crash_value,
  ngroups,
  reference_groups,
  test_groups,
  num_parallel,
  samp_size,
  run_dir,
 model_source,
  nmfe_path,
  delta_parms,
  use_check_identifiable,
  NCA_end_time,
  rndseed,
  simulation_data_path,
  plan = c("multisession", "sequential", "multicore"),
  alpha_error = 0.05,
 NTID = FALSE,
 model_averaging_by = "study",
  user_R_code = FALSE,
 R_{code_path} = "",
  save_plots = FALSE,
)
```

Arguments

crash_value Numeric. Value to be returned for BIC in models that crash during either boot-

strap or simulation.

ngroups Integer. Number of groups in the simulated data (e.g., an ABBA design has 4

groups).

reference_groups

Numeric vector. Indices of the groups representing the reference formulation

(e.g., c(2,3) for an ABBA design).

c(1,4) for an ABBA design).

num_parallel Integer. Number of NONMEM processes (both bootstrap and simulation) to run

concurrently.

samp_size Integer. Size of the bootstrap and simulation samples.

run_dir Character string. Directory for NONMEM execution.

model_source Character string. Paths to the NONMEM control files for model averaging.

nmfe_path Character string. Path to the nmfe executable.

delta_parms Numeric. Parameter difference threshold defining identifiability.

run_mbbe 7

use_check_identifiable

Logical. Should identifiability be checked based on the criterion defined by

Aoki?

NCA_end_time Numeric. The NCA calculation will start at 0 and end at this value.

rndseed Integer. Random seed for reproducibility.

simulation_data_path

Character string. Path to the simulation dataset.

plan Character string (default: "multisession"). Parallel execution plan. Can be "mul-

tisession", "sequential", or "multicore".

alpha_error Numeric (default: 0.05). Alpha error rate for statistical tests.

NTID Logical (default: FALSE). Is the drug a narrow therapeutic index drug?

model_averaging_by

Character string (default: "study"). Method of model averaging, either "study"

or "subject".

user_R_code Logical (default: FALSE). Should custom R code be used for model penalty?

R_code_path Character string. If user_R_code is TRUE, this parameter defines the path to

the custom R script.

save_plots Logical (default: FALSE). Set to TRUE to save plot output.

... Additional args

Details

This function is primarily intended to be called by run_mbbe_json, which provides input parameters through a JSON configuration.

Value

A list containing:

• Cmax_power: Power for Cmax

• AUClast_power: Power for AUClast

• AUCinf_power: Power for AUCinf

• run_dir: Directory where the function was executed

• Num_identifiable: Number of identifiable parameters

• BICS: Bayesian Information Criterion Scores

run_mbbe_json

run_mbbe_json

run_mbbe_json

Description

Runs MBBE from a json file of options e.g., calls run_mbbe

Usage

```
run_mbbe_json(Args.json)
```

Arguments

Args. json path to JSON file with arguments

Value

A list containing:

• Cmax_power: Power for Cmax

• AUClast_power: Power for AUClast

• AUCinf_power: Power for AUCinf

• run_dir: Directory where the function was executed

• Num_identifiable: Number of identifiable parameters

• BICS: Bayesian Information Criterion Scores

Examples

```
## Not run:
run_mbbe_json("Args.json")
## End(Not run)
```

Index

```
calc_NCA, 2
calc_power, 3

run_example, 4
run_mbbe, 5
run_mbbe_json, 8
```