
Package ‘metacoder’
July 22, 2025

Title Tools for Parsing, Manipulating, and Graphing Taxonomic
Abundance Data

Version 0.3.8

Maintainer Zachary Foster <zacharyfoster1989@gmail.com>

Description Reads, plots, and manipulates large
taxonomic data sets, like those generated from modern high-throughput
sequencing, such as metabarcoding (i.e. amplification metagenomics, 16S
metagenomics, etc). It provides a tree-based visualization called ``heat
trees'' used to depict statistics for every taxon in a taxonomy using
color and size. It also provides various functions to do common tasks in
microbiome bioinformatics on data in the 'taxmap' format defined by the
'taxa' package. The 'metacoder' package is described in the publication
by Foster et al. (2017) <doi:10.1371/journal.pcbi.1005404>.

Depends R (>= 3.0.2)

License GPL-2 | GPL-3

LazyData true

URL https://grunwaldlab.github.io/metacoder_documentation/

BugReports https://github.com/grunwaldlab/metacoder/issues

Imports stringr, ggplot2, igraph, grid, taxize, seqinr, RCurl, ape,
stats, grDevices, utils, lazyeval, dplyr, magrittr, readr,
rlang, ggfittext, vegan, cowplot, GA, Rcpp, crayon, tibble, R6

Suggests knitr, rmarkdown, testthat, zlibbioc, BiocManager, phyloseq,
phylotate, traits, biomformat, DESeq2

VignetteBuilder knitr

RoxygenNote 7.3.2

Encoding UTF-8

LinkingTo Rcpp

NeedsCompilation yes

Author Zachary Foster [aut, cre],
Niklaus Grunwald [ths],

1

https://doi.org/10.1371/journal.pcbi.1005404
https://grunwaldlab.github.io/metacoder_documentation/
https://github.com/grunwaldlab/metacoder/issues

2 Contents

Kamil Slowikowski [ctb],
Scott Chamberlain [ctb],
Rob Gilmore [ctb]

Repository CRAN

Date/Publication 2025-02-11 17:40:02 UTC

Contents
all_names . 5
ambiguous_synonyms . 6
arrange_obs . 6
arrange_taxa . 7
as_phyloseq . 8
branches . 9
calc_diff_abund_deseq2 . 11
calc_group_mean . 13
calc_group_median . 15
calc_group_rsd . 16
calc_group_stat . 18
calc_n_samples . 20
calc_obs_props . 22
calc_prop_samples . 24
classifications . 26
compare_groups . 27
complement . 29
counts_to_presence . 30
database_list . 32
diverging_palette . 33
extract_tax_data . 33
ex_hierarchies . 36
ex_hierarchy1 . 36
ex_hierarchy2 . 37
ex_hierarchy3 . 38
ex_taxmap . 38
filtering-helpers . 39
filter_ambiguous_taxa . 40
filter_obs . 42
filter_taxa . 44
get_data . 46
get_dataset . 47
get_data_frame . 47
heat_tree . 48
heat_tree_matrix . 57
hierarchies . 59
hierarchy . 59
highlight_taxon_ids . 61
hmp_otus . 61

Contents 3

hmp_samples . 62
id_classifications . 62
internodes . 63
is_ambiguous . 64
is_branch . 65
is_internode . 66
is_leaf . 66
is_root . 67
is_stem . 68
layout_functions . 69
leaves . 70
leaves_apply . 71
lookup_tax_data . 72
make_dada2_asv_table . 75
make_dada2_tax_table . 76
map_data . 77
map_data_ . 78
metacoder . 79
mutate_obs . 83
ncbi_taxon_sample . 84
n_leaves . 86
n_leaves_1 . 87
n_obs . 88
n_obs_1 . 89
n_subtaxa . 90
n_subtaxa_1 . 90
n_supertaxa . 91
n_supertaxa_1 . 92
obs . 93
obs_apply . 94
parse_dada2 . 95
parse_greengenes . 96
parse_mothur_taxonomy . 97
parse_mothur_tax_summary . 98
parse_newick . 99
parse_phylo . 100
parse_phyloseq . 101
parse_primersearch . 102
parse_qiime_biom . 102
parse_rdp . 103
parse_silva_fasta . 104
parse_tax_data . 105
parse_ubiome . 109
parse_unite_general . 110
primersearch . 111
primersearch_raw . 115
print_tree . 118
qualitative_palette . 118

4 Contents

quantative_palette . 119
ranks_ref . 119
rarefy_obs . 119
read_fasta . 121
remove_redundant_names . 122
replace_taxon_ids . 123
reverse . 123
rev_comp . 124
roots . 124
sample_frac_obs . 125
sample_frac_taxa . 127
sample_n_obs . 128
sample_n_taxa . 129
select_obs . 131
stems . 132
subtaxa . 133
subtaxa_apply . 135
supertaxa . 136
supertaxa_apply . 137
taxa . 138
taxmap . 139
taxon . 143
taxonomy . 144
taxonomy_table . 146
taxon_database . 147
taxon_id . 148
taxon_ids . 149
taxon_indexes . 149
taxon_name . 150
taxon_names . 151
taxon_rank . 152
taxon_ranks . 153
transmute_obs . 153
write_greengenes . 154
write_mothur_taxonomy . 155
write_rdp . 157
write_silva_fasta . 158
write_unite_general . 159
zero_low_counts . 160

Index 163

all_names 5

all_names Return names of data in [taxonomy()] or [taxmap()]

Description

Return the names of data that can be used with functions in the taxa package that use [non-standard
evaluation](http://adv-r.had.co.nz/Computing-on-the-language.html) (NSE), like [filter_taxa()].

obj$all_names(tables = TRUE, funcs = TRUE,
others = TRUE, warn = FALSE)

all_names(obj, tables = TRUE, funcs = TRUE,
others = TRUE, warn = FALSE)

Arguments

obj ([taxonomy()] or [taxmap()]) The object containing taxon information to be
queried.

tables This option only applies to [taxmap()] objects. If ‘TRUE‘, include the names of
columns of tables in ‘obj$data‘

funcs This option only applies to [taxmap()] objects. If ‘TRUE‘, include the names of
user-definable functions in ‘obj$funcs‘.

others This option only applies to [taxmap()] objects. If ‘TRUE‘, include the names of
data in ‘obj$data‘ besides tables.

builtin_funcs This option only applies to [taxmap()] objects. If ‘TRUE‘, include functions like
[n_supertaxa()] that provide information for each taxon.

warn option only applies to [taxmap()] objects. If ‘TRUE‘, warn if there are duplicate
names. Duplicate names make it unclear what data is being referred to.

Value

‘character‘

See Also

Other NSE helpers: data_used, get_data(), names_used

Examples

Get the names of all data accesible by non-standard evaluation
all_names(ex_taxmap)

Dont include the names of automatically included functions.
all_names(ex_taxmap, builtin_funcs = FALSE)

6 arrange_obs

ambiguous_synonyms Get patterns for ambiguous taxa

Description

This function stores the regex patterns for ambiguous taxa.

Usage

ambiguous_synonyms(
unknown = TRUE,
uncultured = TRUE,
regex = TRUE,
case_variations = FALSE

)

Arguments

unknown If TRUE, include names that suggest they are placeholders for unknown taxa (e.g.
"unknown ...").

uncultured If TRUE, include names that suggest they are assigned to uncultured organisms
(e.g. "uncultured ...").

regex If TRUE, includes regex syntax to make matching things like spaces more robust.

case_variations

If TRUE, include variations of letter case.

arrange_obs Sort user data in [taxmap()] objects

Description

Sort rows of tables or the elements of lists/vectors in the ‘obj$data‘ list in [taxmap()] objects. Any
variable name that appears in [all_names()] can be used as if it was a vector on its own. See
[dplyr::arrange()] for the inspiration for this function and more information. Calling the function
using the ‘obj$arrange_obs(...)‘ style edits "obj" in place, unlike most R functions. However, calling
the function using the ‘arrange_obs(obj, ...)‘ imitates R’s traditional copy-on-modify semantics, so
"obj" would not be changed; instead a changed version would be returned, like most R functions.

obj$arrange_obs(data, ...)
arrange_obs(obj, data, ...)

arrange_taxa 7

Arguments

obj An object of type [taxmap()].

data Dataset names, indexes, or a logical vector that indicates which datasets in
‘obj$data‘ to sort If multiple datasets are sorted at once, then they must be the
same length.

... One or more expressions (e.g. column names) to sort on.

target DEPRECIATED. use "data" instead.

Value

An object of type [taxmap()]

See Also

Other taxmap manipulation functions: arrange_taxa(), filter_obs(), filter_taxa(), mutate_obs(),
sample_frac_obs(), sample_frac_taxa(), sample_n_obs(), sample_n_taxa(), select_obs(),
transmute_obs()

Examples

Sort in ascending order
arrange_obs(ex_taxmap, "info", n_legs)
arrange_obs(ex_taxmap, "foods", name)

Sort in decending order
arrange_obs(ex_taxmap, "info", desc(n_legs))

Sort multiple datasets at once
arrange_obs(ex_taxmap, c("info", "phylopic_ids", "foods"), n_legs)

arrange_taxa Sort the edge list of [taxmap()] objects

Description

Sort the edge list and taxon list in [taxonomy()] or [taxmap()] objects. See [dplyr::arrange()] for the
inspiration for this function and more information. Calling the function using the ‘obj$arrange_taxa(...)‘
style edits "obj" in place, unlike most R functions. However, calling the function using the ‘ar-
range_taxa(obj, ...)‘ imitates R’s traditional copy-on-modify semantics, so "obj" would not be
changed; instead a changed version would be returned, like most R functions.

obj$arrange_taxa(...)
arrange_taxa(obj, ...)

8 as_phyloseq

Arguments

obj [taxonomy()] or [taxmap()]

... One or more expressions (e.g. column names) to sort on. Any variable name
that appears in [all_names()] can be used as if it was a vector on its own.

Value

An object of type [taxonomy()] or [taxmap()]

See Also

Other taxmap manipulation functions: arrange_obs(), filter_obs(), filter_taxa(), mutate_obs(),
sample_frac_obs(), sample_frac_taxa(), sample_n_obs(), sample_n_taxa(), select_obs(),
transmute_obs()

Examples

Sort taxa in ascending order
arrange_taxa(ex_taxmap, taxon_names)

Sort taxa in decending order
arrange_taxa(ex_taxmap, desc(taxon_names))

Sort using an expression. List genera first.
arrange_taxa(ex_taxmap, taxon_ranks != "genus")

as_phyloseq Convert taxmap to phyloseq

Description

Convert a taxmap object to a phyloseq object.

Usage

as_phyloseq(
obj,
otu_table = NULL,
otu_id_col = "otu_id",
sample_data = NULL,
sample_id_col = "sample_id",
phy_tree = NULL

)

branches 9

Arguments

obj The taxmap object.

otu_table The table in ‘obj$data‘ with OTU counts. Must be one of the following:

NULL Look for a table named "otu_table" in ‘obj$data‘ with taxon IDs, OTU
IDs, and OTU counts. If it exists, use it.

character The name of the table stored in ‘obj$data‘ with taxon IDs, OTU
IDs, and OTU counts

data.frame A table with taxon IDs, OTU IDs, and OTU counts
FALSE Do not include an OTU table, even if "otu_table" exists in ‘obj$data‘

otu_id_col The name of the column storing OTU IDs in the OTU table.

sample_data A table containing sample data with sample IDs matching column names in the
OTU table. Must be one of the following:

NULL Look for a table named "sample_data" in ‘obj$data‘. If it exists, use it.
character The name of the table stored in ‘obj$data‘ with sample IDs
data.frame A table with sample IDs
FALSE Do not include a sample data table, even if "sample_data" exists in ‘obj$data‘

sample_id_col The name of the column storing sample IDs in the sample data table.

phy_tree A phylogenetic tree of class ape:phylo from the ape package with tip labels
matching OTU ids. Must be one of the following:

NULL Look for a tree named "phy_tree" in ‘obj$data‘ with tip labels matching
OTU ids. If it exists, use it.

character The name of the tree stored in ‘obj$data‘ with tip labels matching
OTU ids.

ape::phylo A tree with tip labels matching OTU ids.
FALSE Do not include a tree, even if "phy_tree" exists in ‘obj$data‘

Examples

Parse example dataset
library(phyloseq)
data(GlobalPatterns)
x <- parse_phyloseq(GlobalPatterns)

Convert back to a phylseq object
as_phyloseq(x)

branches Get "branch" taxa

10 branches

Description

Return the "branch" taxa for a [taxonomy()] or [taxmap()] object. A branch is anything that is not a
root, stem, or leaf. Its the interior of the tree after the first split starting from the roots. Can also be
used to get the branches of a subset of taxa.

obj$branches(subset = NULL, value = "taxon_indexes")
branches(obj, subset = NULL, value = "taxon_indexes")

Arguments

obj The [taxonomy()] or [taxmap()] object containing taxon information to be queried.

subset Taxon IDs, TRUE/FALSE vector, or taxon indexes used to subset the tree prior
to determining branches. Default: All taxa in ‘obj‘ will be used. Any variable
name that appears in [all_names()] can be used as if it was a vector on its own.
Note that branches are determined after the filtering, so a given taxon might be
a branch on the unfiltered tree, but not a branch on the filtered tree.

value What data to return. This is usually the name of column in a table in ‘obj$data‘.
Any result of [all_names()] can be used, but it usually only makes sense to use
data that corresponds to taxa 1:1, such as [taxon_ranks()]. By default, taxon
indexes are returned.

Value

‘character‘

See Also

Other taxonomy indexing functions: internodes(), leaves(), roots(), stems(), subtaxa(),
supertaxa()

Examples

Return indexes of branch taxa
branches(ex_taxmap)

Return indexes for a subset of taxa
branches(ex_taxmap, subset = 2:17)
branches(ex_taxmap, subset = n_obs > 1)

Return something besides taxon indexes
branches(ex_taxmap, value = "taxon_names")

calc_diff_abund_deseq2 11

calc_diff_abund_deseq2

Differential abundance with DESeq2

Description

EXPERIMENTAL: This function is still being tested and developed; use with caution. Uses the
DESeq2-package package to conduct differential abundance analysis of count data. Counts can be
of OTUs/ASVs or taxa. The plotting function heat_tree_matrix is useful for visualizing these
results. See details section below for considerations on preparing data for this analysis.

Usage

calc_diff_abund_deseq2(
obj,
data,
cols,
groups,
other_cols = FALSE,
lfc_shrinkage = c("none", "normal", "ashr"),
...

)

Arguments

obj A taxmap object

data The name of a table in obj that contains data for each sample in columns.

cols The names/indexes of columns in data to use. By default, all numeric columns
are used. Takes one of the following inputs:

TRUE/FALSE: All/No columns will used.
Character vector: The names of columns to use
Numeric vector: The indexes of columns to use
Vector of TRUE/FALSE of length equal to the number of columns: Use the

columns corresponding to TRUE values.

groups A vector defining how samples are grouped into "treatments". Must be the same
order and length as cols.

other_cols If TRUE, preserve all columns not in cols in the output. If FALSE, dont keep
other columns. If a column names or indexes are supplied, only preserve those
columns.

lfc_shrinkage What technique to use to adjust the log fold change results for low counts. Use-
ful for ranking and visualizing log fold changes. Must be one of the following:

’none’ No log fold change adjustments.
’normal’ The original DESeq2 shrinkage estimator

12 calc_diff_abund_deseq2

’ashr’ Adaptive shrinkage estimator from the ashr package, using a fitted mix-
ture of normals prior.

... Passed to results if the lfc_shrinkage option is "none" and to lfcShrink
otherwise.

Details

Data should be raw read counts, not rarefied, converted to proportions, or modified with any other
technique designed to correct for sample size since DESeq2-package is designed to be used with
count data and takes into account unequal sample size when determining differential abundance.
Warnings will be given if the data is not integers or all sample sizes are equal.

Value

A tibble with at least the taxon ID of the thing tested, the groups compared, and the DESeq2 results.
The log2FoldChange values will be positive if treatment_1 is more abundant and treatment_2.

See Also

Other calculations: calc_group_mean(), calc_group_median(), calc_group_rsd(), calc_group_stat(),
calc_n_samples(), calc_obs_props(), calc_prop_samples(), calc_taxon_abund(), compare_groups(),
counts_to_presence(), rarefy_obs(), zero_low_counts()

Examples

Parse data for plotting
x = parse_tax_data(hmp_otus, class_cols = "lineage", class_sep = ";",

class_key = c(tax_rank = "taxon_rank", tax_name = "taxon_name"),
class_regex = "^(.+)__(.+)$")

Get per-taxon counts
x$data$tax_table <- calc_taxon_abund(x, data = "tax_data", cols = hmp_samples$sample_id)

Calculate difference between groups
x$data$diff_table <- calc_diff_abund_deseq2(x, data = "tax_table",

cols = hmp_samples$sample_id,
groups = hmp_samples$body_site)

Plot results (might take a few minutes)
heat_tree_matrix(x,

data = "diff_table",
node_size = n_obs,
node_label = taxon_names,
node_color = ifelse(is.na(padj) | padj > 0.05, 0, log2FoldChange),
node_color_range = diverging_palette(),
node_color_trans = "linear",
node_color_interval = c(-3, 3),
edge_color_interval = c(-3, 3),
node_size_axis_label = "Number of OTUs",
node_color_axis_label = "Log2 fold change")

calc_group_mean 13

calc_group_mean Calculate means of groups of columns

Description

For a given table in a taxmap object, split columns by a grouping factor and return row means in a
table.

Usage

calc_group_mean(
obj,
data,
groups,
cols = NULL,
other_cols = FALSE,
out_names = NULL,
dataset = NULL

)

Arguments

obj A taxmap object

data The name of a table in obj$data.

groups Group multiple columns per treatment/group. This should be a vector of group
IDs (e.g. character, integer) the same length as cols that defines which samples
go in which group. When used, there will be one column in the output for each
unique value in groups.

cols The columns in data to use. By default, all numeric columns are used. Takes
one of the following inputs:

TRUE/FALSE: All/No columns will used.
Character vector: The names of columns to use
Numeric vector: The indexes of columns to use
Vector of TRUE/FALSE of length equal to the number of columns: Use the

columns corresponding to TRUE values.

other_cols Preserve in the output non-target columns present in the input data. New columns
will always be on the end. The "taxon_id" column will be preserved in the front.
Takes one of the following inputs:

NULL: No columns will be added back, not even the taxon id column.
TRUE/FALSE: All/None of the non-target columns will be preserved.
Character vector: The names of columns to preserve

14 calc_group_mean

Numeric vector: The indexes of columns to preserve

Vector of TRUE/FALSE of length equal to the number of columns: Preserve
the columns corresponding to TRUE values.

out_names The names of count columns in the output. Must be the same length and order
as cols (or unique(groups), if groups is used).

dataset DEPRECIATED. use "data" instead.

Value

A tibble

See Also

Other calculations: calc_diff_abund_deseq2(), calc_group_median(), calc_group_rsd(),
calc_group_stat(), calc_n_samples(), calc_obs_props(), calc_prop_samples(), calc_taxon_abund(),
compare_groups(), counts_to_presence(), rarefy_obs(), zero_low_counts()

Examples

Parse data for examples
x = parse_tax_data(hmp_otus, class_cols = "lineage", class_sep = ";",

class_key = c(tax_rank = "taxon_rank", tax_name = "taxon_name"),
class_regex = "^(.+)__(.+)$")

Calculate the means for each group
calc_group_mean(x, "tax_data", hmp_samples$sex)

Use only some columns
calc_group_mean(x, "tax_data", hmp_samples$sex[4:20],

cols = hmp_samples$sample_id[4:20])

Including all other columns in ouput
calc_group_mean(x, "tax_data", groups = hmp_samples$sex,

other_cols = TRUE)

Inlcuding specific columns in output
calc_group_mean(x, "tax_data", groups = hmp_samples$sex,

other_cols = 2)
calc_group_mean(x, "tax_data", groups = hmp_samples$sex,

other_cols = "otu_id")

Rename output columns
calc_group_mean(x, "tax_data", groups = hmp_samples$sex,

out_names = c("Women", "Men"))

calc_group_median 15

calc_group_median Calculate medians of groups of columns

Description

For a given table in a taxmap object, split columns by a grouping factor and return row medians in
a table.

Usage

calc_group_median(
obj,
data,
groups,
cols = NULL,
other_cols = FALSE,
out_names = NULL,
dataset = NULL

)

Arguments

obj A taxmap object

data The name of a table in obj$data.

groups Group multiple columns per treatment/group. This should be a vector of group
IDs (e.g. character, integer) the same length as cols that defines which samples
go in which group. When used, there will be one column in the output for each
unique value in groups.

cols The columns in data to use. By default, all numeric columns are used. Takes
one of the following inputs:

TRUE/FALSE: All/No columns will used.
Character vector: The names of columns to use
Numeric vector: The indexes of columns to use
Vector of TRUE/FALSE of length equal to the number of columns: Use the

columns corresponding to TRUE values.

other_cols Preserve in the output non-target columns present in the input data. New columns
will always be on the end. The "taxon_id" column will be preserved in the front.
Takes one of the following inputs:

NULL: No columns will be added back, not even the taxon id column.
TRUE/FALSE: All/None of the non-target columns will be preserved.
Character vector: The names of columns to preserve
Numeric vector: The indexes of columns to preserve
Vector of TRUE/FALSE of length equal to the number of columns: Preserve

the columns corresponding to TRUE values.

16 calc_group_rsd

out_names The names of count columns in the output. Must be the same length and order
as cols (or unique(groups), if groups is used).

dataset DEPRECIATED. use "data" instead.

Value

A tibble

See Also

Other calculations: calc_diff_abund_deseq2(), calc_group_mean(), calc_group_rsd(), calc_group_stat(),
calc_n_samples(), calc_obs_props(), calc_prop_samples(), calc_taxon_abund(), compare_groups(),
counts_to_presence(), rarefy_obs(), zero_low_counts()

Examples

Parse data for examples
x = parse_tax_data(hmp_otus, class_cols = "lineage", class_sep = ";",

class_key = c(tax_rank = "taxon_rank", tax_name = "taxon_name"),
class_regex = "^(.+)__(.+)$")

Calculate the medians for each group
calc_group_median(x, "tax_data", hmp_samples$sex)

Use only some columns
calc_group_median(x, "tax_data", hmp_samples$sex[4:20],

cols = hmp_samples$sample_id[4:20])

Including all other columns in ouput
calc_group_median(x, "tax_data", groups = hmp_samples$sex,

other_cols = TRUE)

Inlcuding specific columns in output
calc_group_median(x, "tax_data", groups = hmp_samples$sex,

other_cols = 2)
calc_group_median(x, "tax_data", groups = hmp_samples$sex,

other_cols = "otu_id")

Rename output columns
calc_group_median(x, "tax_data", groups = hmp_samples$sex,

out_names = c("Women", "Men"))

calc_group_rsd Relative standard deviations of groups of columns

Description

For a given table in a taxmap object, split columns by a grouping factor and return the relative
standard deviation for each row in a table. The relative standard deviation is the standard deviation
divided by the mean of a set of numbers. It is useful for comparing the variation when magnitude
of sets of number are very different.

calc_group_rsd 17

Usage

calc_group_rsd(
obj,
data,
groups,
cols = NULL,
other_cols = FALSE,
out_names = NULL,
dataset = NULL

)

Arguments

obj A taxmap object

data The name of a table in obj$data.

groups Group multiple columns per treatment/group. This should be a vector of group
IDs (e.g. character, integer) the same length as cols that defines which samples
go in which group. When used, there will be one column in the output for each
unique value in groups.

cols The columns in data to use. By default, all numeric columns are used. Takes
one of the following inputs:

TRUE/FALSE: All/No columns will used.
Character vector: The names of columns to use
Numeric vector: The indexes of columns to use
Vector of TRUE/FALSE of length equal to the number of columns: Use the

columns corresponding to TRUE values.

other_cols Preserve in the output non-target columns present in the input data. New columns
will always be on the end. The "taxon_id" column will be preserved in the front.
Takes one of the following inputs:

NULL: No columns will be added back, not even the taxon id column.
TRUE/FALSE: All/None of the non-target columns will be preserved.
Character vector: The names of columns to preserve
Numeric vector: The indexes of columns to preserve
Vector of TRUE/FALSE of length equal to the number of columns: Preserve

the columns corresponding to TRUE values.

out_names The names of count columns in the output. Must be the same length and order
as cols (or unique(groups), if groups is used).

dataset DEPRECIATED. use "data" instead.

Value

A tibble

18 calc_group_stat

See Also

Other calculations: calc_diff_abund_deseq2(), calc_group_mean(), calc_group_median(),
calc_group_stat(), calc_n_samples(), calc_obs_props(), calc_prop_samples(), calc_taxon_abund(),
compare_groups(), counts_to_presence(), rarefy_obs(), zero_low_counts()

Examples

Parse data for examples
x = parse_tax_data(hmp_otus, class_cols = "lineage", class_sep = ";",

class_key = c(tax_rank = "taxon_rank", tax_name = "taxon_name"),
class_regex = "^(.+)__(.+)$")

Calculate the RSD for each group
calc_group_rsd(x, "tax_data", hmp_samples$sex)

Use only some columns
calc_group_rsd(x, "tax_data", hmp_samples$sex[4:20],

cols = hmp_samples$sample_id[4:20])

Including all other columns in ouput
calc_group_rsd(x, "tax_data", groups = hmp_samples$sex,

other_cols = TRUE)

Inlcuding specific columns in output
calc_group_rsd(x, "tax_data", groups = hmp_samples$sex,

other_cols = 2)
calc_group_rsd(x, "tax_data", groups = hmp_samples$sex,

other_cols = "otu_id")

Rename output columns
calc_group_rsd(x, "tax_data", groups = hmp_samples$sex,

out_names = c("Women", "Men"))

calc_group_stat Apply a function to groups of columns

Description

For a given table in a taxmap object, apply a function to rows in groups of columns. The result of
the function is used to create new columns. This is equivalent to splitting columns of a table by a
factor and using apply on each group.

Usage

calc_group_stat(
obj,
data,
func,
groups = NULL,

calc_group_stat 19

cols = NULL,
other_cols = FALSE,
out_names = NULL,
dataset = NULL

)

Arguments

obj A taxmap object

data The name of a table in obj$data.

func The function to apply. It should take a vector and return a single value. For
example, max or mean could be used.

groups Group multiple columns per treatment/group. This should be a vector of group
IDs (e.g. character, integer) the same length as cols that defines which samples
go in which group. When used, there will be one column in the output for each
unique value in groups.

cols The columns in data to use. By default, all numeric columns are used. Takes
one of the following inputs:

TRUE/FALSE: All/No columns will used.
Character vector: The names of columns to use
Numeric vector: The indexes of columns to use
Vector of TRUE/FALSE of length equal to the number of columns: Use the

columns corresponding to TRUE values.

other_cols Preserve in the output non-target columns present in the input data. New columns
will always be on the end. The "taxon_id" column will be preserved in the front.
Takes one of the following inputs:

NULL: No columns will be added back, not even the taxon id column.
TRUE/FALSE: All/None of the non-target columns will be preserved.
Character vector: The names of columns to preserve
Numeric vector: The indexes of columns to preserve
Vector of TRUE/FALSE of length equal to the number of columns: Preserve

the columns corresponding to TRUE values.

out_names The names of count columns in the output. Must be the same length and order
as cols (or unique(groups), if groups is used).

dataset DEPRECIATED. use "data" instead.

Value

A tibble

See Also

Other calculations: calc_diff_abund_deseq2(), calc_group_mean(), calc_group_median(),
calc_group_rsd(), calc_n_samples(), calc_obs_props(), calc_prop_samples(), calc_taxon_abund(),
compare_groups(), counts_to_presence(), rarefy_obs(), zero_low_counts()

20 calc_n_samples

Examples

Parse data for examples
x = parse_tax_data(hmp_otus, class_cols = "lineage", class_sep = ";",

class_key = c(tax_rank = "taxon_rank", tax_name = "taxon_name"),
class_regex = "^(.+)__(.+)$")

Apply a function to every value without grouping
calc_group_stat(x, "tax_data", function(v) v > 3)

Calculate the means for each group
calc_group_stat(x, "tax_data", mean, groups = hmp_samples$sex)

Calculate the variation for each group
calc_group_stat(x, "tax_data", sd, groups = hmp_samples$body_site)

Different ways to use only some columns
calc_group_stat(x, "tax_data", function(v) v > 3,

cols = c("700035949", "700097855", "700100489"))
calc_group_stat(x, "tax_data", function(v) v > 3,

cols = 4:6)
calc_group_stat(x, "tax_data", function(v) v > 3,

cols = startsWith(colnames(x$data$tax_data), "70001"))

Including all other columns in ouput
calc_group_stat(x, "tax_data", mean, groups = hmp_samples$sex,

other_cols = TRUE)

Inlcuding specific columns in output
calc_group_stat(x, "tax_data", mean, groups = hmp_samples$sex,

other_cols = 2)
calc_group_stat(x, "tax_data", mean, groups = hmp_samples$sex,

other_cols = "otu_id")

Rename output columns
calc_group_stat(x, "tax_data", mean, groups = hmp_samples$sex,

out_names = c("Women", "Men"))

calc_n_samples Count the number of samples

Description

For a given table in a taxmap object, count the number of samples (i.e. columns) with greater than
a minimum value.

Usage

calc_n_samples(
obj,

calc_n_samples 21

data,
cols = NULL,
groups = "n_samples",
other_cols = FALSE,
out_names = NULL,
drop = FALSE,
more_than = 0,
dataset = NULL

)

Arguments

obj A taxmap object

data The name of a table in obj$data.

cols The columns in data to use. By default, all numeric columns are used. Takes
one of the following inputs:

TRUE/FALSE: All/No columns will used.
Character vector: The names of columns to use
Numeric vector: The indexes of columns to use
Vector of TRUE/FALSE of length equal to the number of columns: Use the

columns corresponding to TRUE values.

groups Group multiple columns per treatment/group. This should be a vector of group
IDs (e.g. character, integer) the same length as cols that defines which samples
go in which group. When used, there will be one column in the output for each
unique value in groups.

other_cols Preserve in the output non-target columns present in the input data. New columns
will always be on the end. The "taxon_id" column will be preserved in the front.
Takes one of the following inputs:

NULL: No columns will be added back, not even the taxon id column.
TRUE/FALSE: All/None of the non-target columns will be preserved.
Character vector: The names of columns to preserve
Numeric vector: The indexes of columns to preserve
Vector of TRUE/FALSE of length equal to the number of columns: Preserve

the columns corresponding to TRUE values.

out_names The names of count columns in the output. Must be the same length and order
as cols (or unique(groups), if groups is used).

drop If groups is not used, return a vector of the results instead of a table with one
column.

more_than A sample must have greater than this value for it to be counted as present.

dataset DEPRECIATED. use "data" instead.

Value

A tibble

22 calc_obs_props

See Also

Other calculations: calc_diff_abund_deseq2(), calc_group_mean(), calc_group_median(),
calc_group_rsd(), calc_group_stat(), calc_obs_props(), calc_prop_samples(), calc_taxon_abund(),
compare_groups(), counts_to_presence(), rarefy_obs(), zero_low_counts()

Examples

Parse data for example
x = parse_tax_data(hmp_otus, class_cols = "lineage", class_sep = ";",

class_key = c(tax_rank = "taxon_rank", tax_name = "taxon_name"),
class_regex = "^(.+)__(.+)$")

Count samples with at least one read
calc_n_samples(x, data = "tax_data")

Count samples with at least 5 reads
calc_n_samples(x, data = "tax_data", more_than = 5)

Return a vector instead of a table
calc_n_samples(x, data = "tax_data", drop = TRUE)

Only use some columns
calc_n_samples(x, data = "tax_data", cols = hmp_samples$sample_id[1:5])

Return a count for each treatment
calc_n_samples(x, data = "tax_data", groups = hmp_samples$body_site)

Rename output columns
calc_n_samples(x, data = "tax_data", groups = hmp_samples$body_site,

out_names = c("A", "B", "C", "D", "E"))

Preserve other columns from input
calc_n_samples(x, data = "tax_data", other_cols = TRUE)
calc_n_samples(x, data = "tax_data", other_cols = 2)
calc_n_samples(x, data = "tax_data", other_cols = "otu_id")

calc_obs_props Calculate proportions from observation counts

Description

For a given table in a taxmap object, convert one or more columns containing counts to proportions.
This is meant to be used with counts associated with observations (e.g. OTUs), as opposed to counts
that have already been summed per taxon.

calc_obs_props 23

Usage

calc_obs_props(
obj,
data,
cols = NULL,
groups = NULL,
other_cols = FALSE,
out_names = NULL,
dataset = NULL

)

Arguments

obj A taxmap object

data The name of a table in obj$data.

cols The columns in data to use. By default, all numeric columns are used. Takes
one of the following inputs:

TRUE/FALSE: All/No columns will used.
Character vector: The names of columns to use
Numeric vector: The indexes of columns to use
Vector of TRUE/FALSE of length equal to the number of columns: Use the

columns corresponding to TRUE values.

groups Group multiple columns per treatment/group. This should be a vector of group
IDs (e.g. character, integer) the same length as cols that defines which samples
go in which group. When used, there will be one column in the output for each
unique value in groups.

other_cols Preserve in the output non-target columns present in the input data. New columns
will always be on the end. The "taxon_id" column will be preserved in the front.
Takes one of the following inputs:

NULL: No columns will be added back, not even the taxon id column.
TRUE/FALSE: All/None of the non-target columns will be preserved.
Character vector: The names of columns to preserve
Numeric vector: The indexes of columns to preserve
Vector of TRUE/FALSE of length equal to the number of columns: Preserve

the columns corresponding to TRUE values.

out_names The names of count columns in the output. Must be the same length and order
as cols (or unique(groups), if groups is used).

dataset DEPRECIATED. use "data" instead.

Value

A tibble

24 calc_prop_samples

See Also

Other calculations: calc_diff_abund_deseq2(), calc_group_mean(), calc_group_median(),
calc_group_rsd(), calc_group_stat(), calc_n_samples(), calc_prop_samples(), calc_taxon_abund(),
compare_groups(), counts_to_presence(), rarefy_obs(), zero_low_counts()

Examples

Parse data for examples
x = parse_tax_data(hmp_otus, class_cols = "lineage", class_sep = ";",

class_key = c(tax_rank = "taxon_rank", tax_name = "taxon_name"),
class_regex = "^(.+)__(.+)$")

Calculate proportions for all numeric columns
calc_obs_props(x, "tax_data")

Calculate proportions for a subset of columns
calc_obs_props(x, "tax_data", cols = c("700035949", "700097855", "700100489"))
calc_obs_props(x, "tax_data", cols = 4:6)
calc_obs_props(x, "tax_data", cols = startsWith(colnames(x$data$tax_data), "70001"))

Including all other columns in ouput
calc_obs_props(x, "tax_data", other_cols = TRUE)

Inlcuding specific columns in output
calc_obs_props(x, "tax_data", cols = c("700035949", "700097855", "700100489"),

other_cols = 2:3)

Rename output columns
calc_obs_props(x, "tax_data", cols = c("700035949", "700097855", "700100489"),

out_names = c("a", "b", "c"))

Get proportions for groups of samples
calc_obs_props(x, "tax_data", groups = hmp_samples$sex)
calc_obs_props(x, "tax_data", groups = hmp_samples$sex,

out_names = c("Women", "Men"))

calc_prop_samples Calculate the proportion of samples

Description

For a given table in a taxmap object, calculate the proportion of samples (i.e. columns) with greater
than a minimum value.

Usage

calc_prop_samples(
obj,
data,

calc_prop_samples 25

cols = NULL,
groups = "prop_samples",
other_cols = FALSE,
out_names = NULL,
drop = FALSE,
more_than = 0,
dataset = NULL

)

Arguments

obj A taxmap object

data The name of a table in obj$data.

cols The columns in data to use. By default, all numeric columns are used. Takes
one of the following inputs:

TRUE/FALSE: All/No columns will used.
Character vector: The names of columns to use
Numeric vector: The indexes of columns to use
Vector of TRUE/FALSE of length equal to the number of columns: Use the

columns corresponding to TRUE values.

groups Group multiple columns per treatment/group. This should be a vector of group
IDs (e.g. character, integer) the same length as cols that defines which samples
go in which group. When used, there will be one column in the output for each
unique value in groups.

other_cols Preserve in the output non-target columns present in the input data. New columns
will always be on the end. The "taxon_id" column will be preserved in the front.
Takes one of the following inputs:

NULL: No columns will be added back, not even the taxon id column.
TRUE/FALSE: All/None of the non-target columns will be preserved.
Character vector: The names of columns to preserve
Numeric vector: The indexes of columns to preserve
Vector of TRUE/FALSE of length equal to the number of columns: Preserve

the columns corresponding to TRUE values.

out_names The names of count columns in the output. Must be the same length and order
as cols (or unique(groups), if groups is used).

drop If groups is not used, return a vector of the results instead of a table with one
column.

more_than A sample must have greater than this value for it to be counted as present.

dataset DEPRECIATED. use "data" instead.

Value

A tibble

26 classifications

See Also

Other calculations: calc_diff_abund_deseq2(), calc_group_mean(), calc_group_median(),
calc_group_rsd(), calc_group_stat(), calc_n_samples(), calc_obs_props(), calc_taxon_abund(),
compare_groups(), counts_to_presence(), rarefy_obs(), zero_low_counts()

Examples

Parse data for example
x = parse_tax_data(hmp_otus, class_cols = "lineage", class_sep = ";",

class_key = c(tax_rank = "taxon_rank", tax_name = "taxon_name"),
class_regex = "^(.+)__(.+)$")

Count samples with at least one read
calc_prop_samples(x, data = "tax_data")

Count samples with at least 5 reads
calc_prop_samples(x, data = "tax_data", more_than = 5)

Return a vector instead of a table
calc_prop_samples(x, data = "tax_data", drop = TRUE)

Only use some columns
calc_prop_samples(x, data = "tax_data", cols = hmp_samples$sample_id[1:5])

Return a count for each treatment
calc_prop_samples(x, data = "tax_data", groups = hmp_samples$body_site)

Rename output columns
calc_prop_samples(x, data = "tax_data", groups = hmp_samples$body_site,

out_names = c("A", "B", "C", "D", "E"))

Preserve other columns from input
calc_prop_samples(x, data = "tax_data", other_cols = TRUE)
calc_prop_samples(x, data = "tax_data", other_cols = 2)
calc_prop_samples(x, data = "tax_data", other_cols = "otu_id")

classifications Get classifications of taxa

Description

Get character vector classifications of taxa in an object of type [taxonomy()] or [taxmap()] com-
posed of data associated with taxa. Each classification is constructed by concatenating the data of
the given taxon and all of its supertaxa.

obj$classifications(value = "taxon_names", sep = ";")
classifications(obj, value = "taxon_names", sep = ";")

compare_groups 27

Arguments

obj ([taxonomy()] or [taxmap()])

value What data to return. Any result of ‘all_names(obj)‘ can be used, but it usually
only makes sense to data that corresponds to taxa 1:1, such as [taxon_ranks()].
By default, taxon indexes are returned.

sep (‘character‘ of length 1) The character(s) to place between taxon IDs

Value

‘character‘

See Also

Other taxonomy data functions: id_classifications(), is_branch(), is_internode(), is_leaf(),
is_root(), is_stem(), map_data(), map_data_(), n_leaves(), n_leaves_1(), n_subtaxa(),
n_subtaxa_1(), n_supertaxa(), n_supertaxa_1(), taxon_ids(), taxon_indexes(), taxon_names(),
taxon_ranks()

Examples

Defualt settings returns taxon names separated by ;
classifications(ex_taxmap)

Other values can be returned besides taxon names
classifications(ex_taxmap, value = "taxon_ids")

The separator can also be changed
classifications(ex_taxmap, value = "taxon_ranks", sep = "||")

compare_groups Compare groups of samples

Description

Apply a function to compare data, usually abundance, from pairs of treatments/groups. By default,
every pairwise combination of treatments are compared. A custom function can be supplied to
perform the comparison. The plotting function heat_tree_matrix is useful for visualizing these
results.

Usage

compare_groups(
obj,
data,
cols,
groups,

28 compare_groups

func = NULL,
combinations = NULL,
other_cols = FALSE,
dataset = NULL

)

Arguments

obj A taxmap object
data The name of a table in obj that contains data for each sample in columns.
cols The names/indexes of columns in data to use. By default, all numeric columns

are used. Takes one of the following inputs:
TRUE/FALSE: All/No columns will used.
Character vector: The names of columns to use
Numeric vector: The indexes of columns to use
Vector of TRUE/FALSE of length equal to the number of columns: Use the

columns corresponding to TRUE values.
groups A vector defining how samples are grouped into "treatments". Must be the same

order and length as cols.
func The function to apply for each comparison. For each row in data, for each

combination of groups, this function will receive the data for each treatment,
passed as two vectors. Therefore the function must take at least 2 arguments
corresponding to the two groups compared. The function should return a vector
or list of results of a fixed length. If named, the names will be used in the output.
The names should be consistent as well. A simple example is function(x, y)
mean(x) - mean(y). By default, the following function is used:

function(abund_1, abund_2) {
log_ratio <- log2(median(abund_1) / median(abund_2))
if (is.nan(log_ratio)) {
log_ratio <- 0

}
list(log2_median_ratio = log_ratio,

median_diff = median(abund_1) - median(abund_2),
mean_diff = mean(abund_1) - mean(abund_2),
wilcox_p_value = wilcox.test(abund_1, abund_2)$p.value)

}

combinations Which combinations of groups to use. Must be a list of vectors, each containing
the names of 2 groups to compare. By default, all pairwise combinations of
groups are compared.

other_cols If TRUE, preserve all columns not in cols in the output. If FALSE, dont keep
other columns. If a column names or indexes are supplied, only preserve those
columns.

dataset DEPRECIATED. use "data" instead.

Value

A tibble

complement 29

See Also

Other calculations: calc_diff_abund_deseq2(), calc_group_mean(), calc_group_median(),
calc_group_rsd(), calc_group_stat(), calc_n_samples(), calc_obs_props(), calc_prop_samples(),
calc_taxon_abund(), counts_to_presence(), rarefy_obs(), zero_low_counts()

Examples

Parse data for plotting
x = parse_tax_data(hmp_otus, class_cols = "lineage", class_sep = ";",

class_key = c(tax_rank = "taxon_rank", tax_name = "taxon_name"),
class_regex = "^(.+)__(.+)$")

Convert counts to proportions
x$data$otu_table <- calc_obs_props(x, data = "tax_data", cols = hmp_samples$sample_id)

Get per-taxon counts
x$data$tax_table <- calc_taxon_abund(x, data = "otu_table", cols = hmp_samples$sample_id)

Calculate difference between groups
x$data$diff_table <- compare_groups(x, data = "tax_table",

cols = hmp_samples$sample_id,
groups = hmp_samples$body_site)

Plot results (might take a few minutes)
heat_tree_matrix(x,

data = "diff_table",
node_size = n_obs,
node_label = taxon_names,
node_color = log2_median_ratio,
node_color_range = diverging_palette(),
node_color_trans = "linear",
node_color_interval = c(-3, 3),
edge_color_interval = c(-3, 3),
node_size_axis_label = "Number of OTUs",
node_color_axis_label = "Log2 ratio median proportions")

How to get results for only some pairs of groups
compare_groups(x, data = "tax_table",

cols = hmp_samples$sample_id,
groups = hmp_samples$body_site,
combinations = list(c('Nose', 'Saliva'),

c('Skin', 'Throat')))

complement Find complement of sequences

30 counts_to_presence

Description

Find the complement of one or more sequences stored as a character vector. This is a wrapper for
comp for character vectors instead of lists of character vectors with one value per letter. IUPAC
ambiguity code are handled and the upper/lower case is preserved.

Usage

complement(seqs)

Arguments

seqs A character vector with one element per sequence.

See Also

Other sequence transformations: rev_comp(), reverse()

Examples

complement(c("aagtgGGTGaa", "AAGTGGT"))

counts_to_presence Apply a function to groups of columns

Description

For a given table in a taxmap object, apply a function to rows in groups of columns. The result of
the function is used to create new columns. This is equivalent to splitting columns of a table by a
factor and using apply on each group.

Usage

counts_to_presence(
obj,
data,
threshold = 0,
groups = NULL,
cols = NULL,
other_cols = FALSE,
out_names = NULL,
dataset = NULL

)

counts_to_presence 31

Arguments

obj A taxmap object

data The name of a table in obj$data.

threshold The value a number must be greater than to count as present. By, default, any-
thing above 0 is considered present.

groups Group multiple columns per treatment/group. This should be a vector of group
IDs (e.g. character, integer) the same length as cols that defines which samples
go in which group. When used, there will be one column in the output for each
unique value in groups.

cols The columns in data to use. By default, all numeric columns are used. Takes
one of the following inputs:

TRUE/FALSE: All/No columns will used.
Character vector: The names of columns to use
Numeric vector: The indexes of columns to use
Vector of TRUE/FALSE of length equal to the number of columns: Use the

columns corresponding to TRUE values.

other_cols Preserve in the output non-target columns present in the input data. New columns
will always be on the end. The "taxon_id" column will be preserved in the front.
Takes one of the following inputs:

NULL: No columns will be added back, not even the taxon id column.
TRUE/FALSE: All/None of the non-target columns will be preserved.
Character vector: The names of columns to preserve
Numeric vector: The indexes of columns to preserve
Vector of TRUE/FALSE of length equal to the number of columns: Preserve

the columns corresponding to TRUE values.

out_names The names of count columns in the output. Must be the same length and order
as cols (or unique(groups), if groups is used).

dataset DEPRECIATED. use "data" instead.

Value

A tibble

See Also

Other calculations: calc_diff_abund_deseq2(), calc_group_mean(), calc_group_median(),
calc_group_rsd(), calc_group_stat(), calc_n_samples(), calc_obs_props(), calc_prop_samples(),
calc_taxon_abund(), compare_groups(), rarefy_obs(), zero_low_counts()

Examples

Parse data for examples
x = parse_tax_data(hmp_otus, class_cols = "lineage", class_sep = ";",

class_key = c(tax_rank = "taxon_rank", tax_name = "taxon_name"),
class_regex = "^(.+)__(.+)$")

32 database_list

Convert count to presence/absence
counts_to_presence(x, "tax_data")

Check if there are any reads in each group of samples
counts_to_presence(x, "tax_data", groups = hmp_samples$body_site)

database_list Database list

Description

The list of known databases. Not currently used much, but will be when we add more check for
taxon IDs and taxon ranks from particular databases.

Usage

database_list

Format

An object of class list of length 8.

Details

List of databases with pre-filled details, where each has the format:

• url: A base URL for the database source.

• description: Description of the database source.

• id regex: identifier regex.

See Also

[taxon_database]

Examples

database_list
database_list$ncbi
database_list$ncbi$name
database_list$ncbi$description
database_list$ncbi$url

diverging_palette 33

diverging_palette The default diverging color palette

Description

Returns the default color palette for diverging data

Usage

diverging_palette()

Value

character of hex color codes

Examples

diverging_palette()

extract_tax_data Extracts taxonomy info from vectors with regex

Description

Convert taxonomic information in a character vector into a [taxmap()] object. The location and iden-
tity of important information in the input is specified using a [regular expression](https://en.wikipedia.org/wiki/Regular_expression)
with capture groups and a corresponding key. An object of type [taxmap()] is returned containing
the specified information. See the ‘key‘ option for accepted sources of taxonomic information.

Usage

extract_tax_data(
tax_data,
key,
regex,
class_key = "taxon_name",
class_regex = "(.*)",
class_sep = NULL,
sep_is_regex = FALSE,
class_rev = FALSE,
database = "ncbi",
include_match = FALSE,
include_tax_data = TRUE

)

34 extract_tax_data

Arguments

tax_data A vector from which to extract taxonomy information.

key (‘character‘) The identity of the capturing groups defined using ‘regex‘. The
length of ‘key‘ must be equal to the number of capturing groups specified in
‘regex‘. Any names added to the terms will be used as column names in the
output. Only ‘"info"‘ can be used multiple times. Each term must be one of
those described below: * ‘taxon_id‘: A unique numeric id for a taxon for a
particular ‘database‘ (e.g. ncbi accession number). Requires an internet con-
nection. * ‘taxon_name‘: The name of a taxon (e.g. "Mammalia" or "Homo
sapiens"). Not necessarily unique, but interpretable by a particular ‘database‘.
Requires an internet connection. * ‘fuzzy_name‘: The name of a taxon, but
check for misspellings first. Only use if you think there are misspellings. Using
‘"taxon_name"‘ is faster. * ‘class‘: A list of taxon information that constitutes
the full taxonomic classification (e.g. "K_Mammalia;P_Carnivora;C_Felidae").
Individual taxa are separated by the ‘class_sep‘ argument and the information
is parsed by the ‘class_regex‘ and ‘class_key‘ arguments. * ‘seq_id‘: Sequence
ID for a particular database that is associated with a taxonomic classification.
Currently only works with the "ncbi" database. * ‘info‘: Arbitrary taxon info
you want included in the output. Can be used more than once.

regex (‘character‘ of length 1) A regular expression with capturing groups indicating
the locations of relevant information. The identity of the information must be
specified using the ‘key‘ argument.

class_key (‘character‘ of length 1) The identity of the capturing groups defined using
‘class_regex‘. The length of ‘class_key‘ must be equal to the number of cap-
turing groups specified in ‘class_regex‘. Any names added to the terms will be
used as column names in the output. Only ‘"info"‘ can be used multiple times.
Each term must be one of those described below: * ‘taxon_name‘: The name
of a taxon. Not necessarily unique. * ‘taxon_rank‘: The rank of the taxon.
This will be used to add rank info into the output object that can be accessed
by ‘out$taxon_ranks()‘. * ‘info‘: Arbitrary taxon info you want included in the
output. Can be used more than once.

class_regex (‘character‘ of length 1) A regular expression with capturing groups indicating
the locations of data for each taxon in the ‘class‘ term in the ‘key‘ argument. The
identity of the information must be specified using the ‘class_key‘ argument.
The ‘class_sep‘ option can be used to split the classification into data for each
taxon before matching. If ‘class_sep‘ is ‘NULL‘, each match of ‘class_regex‘
defines a taxon in the classification.

class_sep (‘character‘ of length 1) Used with the ‘class‘ term in the ‘key‘ argument. The
character(s) used to separate individual taxa within a classification. After the
string defined by the ‘class‘ capture group in ‘regex‘ is split by ‘class_sep‘,
its capture groups are extracted by ‘class_regex‘ and defined by ‘class_key‘.
If ‘NULL‘, every match of ‘class_regex‘ is used instead with first splitting by
‘class_sep‘.

sep_is_regex (‘TRUE‘/‘FALSE‘) Whether or not ‘class_sep‘ should be used as a [regular ex-
pression](https://en.wikipedia.org/wiki/Regular_expression).

extract_tax_data 35

class_rev (‘logical‘ of length 1) Used with the ‘class‘ term in the ‘key‘ argument. If
‘TRUE‘, the order of taxon data in a classification is reversed to be specific
to broad.

database (‘character‘ of length 1) The name of the database that patterns given in ‘parser‘
will apply to. Valid databases include "ncbi", "itis", "eol", "col", "tropicos",
"nbn", and "none". ‘"none"‘ will cause no database to be queried; use this if you
want to not use the internet. NOTE: Only ‘"ncbi"‘ has been tested extensively
so far.

include_match (‘logical‘ of length 1) If ‘TRUE‘, include the part of the input matched by ‘regex‘
in the output object.

include_tax_data

(‘TRUE‘/‘FALSE‘) Whether or not to include ‘tax_data‘ as a dataset.

Value

Returns an object of type [taxmap()]

Failed Downloads

If you have invalid inputs or a download fails for another reason, then there will be a "unknown"
taxon ID as a placeholder and failed inputs will be assigned to this ID. You can remove these using
[filter_taxa()] like so: ‘filter_taxa(result, taxon_ids != "unknown")‘. Add ‘drop_obs = FALSE‘ if
you want the input data, but want to remove the taxon.

See Also

Other parsers: lookup_tax_data(), parse_dada2(), parse_edge_list(), parse_greengenes(),
parse_mothur_tax_summary(), parse_mothur_taxonomy(), parse_newick(), parse_phylo(),
parse_phyloseq(), parse_qiime_biom(), parse_rdp(), parse_silva_fasta(), parse_tax_data(),
parse_ubiome(), parse_unite_general()

Examples

For demonstration purposes, the following example dataset has all the
types of data that can be used, but any one of them alone would work.
raw_data <- c(
">id:AB548412-tid:9689-Panthera leo-tax:K_Mammalia;P_Carnivora;C_Felidae;G_Panthera;S_leo",
">id:FJ358423-tid:9694-Panthera tigris-tax:K_Mammalia;P_Carnivora;C_Felidae;G_Panthera;S_tigris",
">id:DQ334818-tid:9643-Ursus americanus-tax:K_Mammalia;P_Carnivora;C_Felidae;G_Ursus;S_americanus"
)

Build a taxmap object from classifications
extract_tax_data(raw_data,

key = c(my_seq = "info", my_tid = "info", org = "info", tax = "class"),
regex = "^>id:(.+)-tid:(.+)-(.+)-tax:(.+)$",
class_sep = ";", class_regex = "^(.+)_(.+)$",
class_key = c(my_rank = "info", tax_name = "taxon_name"))

Build a taxmap object from taxon ids

36 ex_hierarchy1

Note: this requires an internet connection
extract_tax_data(raw_data,

key = c(my_seq = "info", my_tid = "taxon_id", org = "info", tax = "info"),
regex = "^>id:(.+)-tid:(.+)-(.+)-tax:(.+)$")

Build a taxmap object from ncbi sequence accession numbers
Note: this requires an internet connection
extract_tax_data(raw_data,

key = c(my_seq = "seq_id", my_tid = "info", org = "info", tax = "info"),
regex = "^>id:(.+)-tid:(.+)-(.+)-tax:(.+)$")

Build a taxmap object from taxon names
Note: this requires an internet connection
extract_tax_data(raw_data,

key = c(my_seq = "info", my_tid = "info", org = "taxon_name", tax = "info"),
regex = "^>id:(.+)-tid:(.+)-(.+)-tax:(.+)$")

ex_hierarchies An example hierarchies object

Description

An example hierarchies object built from the ground up.

Format

A [hierarchies()] object.

Source

Created from the example code in the [hierarchies()] documentation.

See Also

Other taxa-datasets: ex_hierarchy1, ex_hierarchy2, ex_hierarchy3, ex_taxmap

ex_hierarchy1 An example Hierarchy object

Description

An example Hierarchy object built from the ground up.

ex_hierarchy2 37

Format

A [hierarchy()] object with

• name: Poaceae / rank: family / id: 4479

• name: Poa / rank: genus / id: 4544

• name: Poa annua / rank: species / id: 93036

Based on NCBI taxonomic classification

Source

Created from the example code in the [hierarchy()] documentation.

See Also

Other taxa-datasets: ex_hierarchies, ex_hierarchy2, ex_hierarchy3, ex_taxmap

ex_hierarchy2 An example Hierarchy object

Description

An example Hierarchy object built from the ground up.

Format

A [hierarchy()] object with

• name: Felidae / rank: family / id: 9681

• name: Puma / rank: genus / id: 146712

• name: Puma concolor / rank: species / id: 9696

Based on NCBI taxonomic classification

Source

Created from the example code in the [hierarchy()] documentation.

See Also

Other taxa-datasets: ex_hierarchies, ex_hierarchy1, ex_hierarchy3, ex_taxmap

38 ex_taxmap

ex_hierarchy3 An example Hierarchy object

Description

An example Hierarchy object built from the ground up.

Format

A [hierarchy()] object with

• name: Chordata / rank: phylum / id: 158852
• name: Vertebrata / rank: subphylum / id: 331030
• name: Teleostei / rank: class / id: 161105
• name: Salmonidae / rank: family / id: 161931
• name: Salmo / rank: genus / id: 161994
• name: Salmo salar / rank: species / id: 161996

Based on ITIS taxonomic classification

Source

Created from the example code in the [hierarchy()] documentation.

See Also

Other taxa-datasets: ex_hierarchies, ex_hierarchy1, ex_hierarchy2, ex_taxmap

ex_taxmap An example taxmap object

Description

An example taxmap object built from the ground up. Typically, data stored in taxmap would be
parsed from an input file, but this data set is just for demonstration purposes.

Format

A [taxmap()] object.

Source

Created from the example code in the [taxmap()] documentation.

See Also

Other taxa-datasets: ex_hierarchies, ex_hierarchy1, ex_hierarchy2, ex_hierarchy3

filtering-helpers 39

filtering-helpers Taxonomic filtering helpers

Description

Taxonomic filtering helpers

Usage

ranks(...)

nms(...)

ids(...)

Arguments

... quoted rank names, taxonomic names, taxonomic ids, or any of those with sup-
ported operators (See Supported Relational Operators below)

How do these functions work?

Each function assigns some metadata so we can more easily process your query downstream. In
addition, we check for whether you’ve used any relational operators and pull those out to make
downstream processing easier

The goal of these functions is to make it easy to combine queries based on each of rank names,
taxonomic names, and taxonomic ids.

These are designed to be used inside of [pop()], [pick()], [span()]. Inside of those functions, we
figure out what rank names you want to filter on, then check against a reference dataset ([ranks_ref])
to allow ordered queries like I want all taxa between Class and Genus. If you provide rank names,
we just use those, then do the filtering you requested. If you provide taxonomic names or ids we
figure out what rank names you are referring to, then we can proceed as in the previous sentence.

Supported Relational Operators

• ‘>‘ all items above rank of x

• ‘>=‘ all items above rank of x, inclusive

• ‘<‘ all items below rank of x

• ‘<=‘ all items below rank of x, inclusive

ranks

Ranks can be any character string in the set of acceptable rank names.

40 filter_ambiguous_taxa

nms

‘nms‘ is named to avoid using ‘names‘ which would collide with the fxn [base::names()] in Base R.
Can pass in any character taxonomic names.

ids

Ids are any alphanumeric taxonomic identifier. Some database providers use all digits, but some use
a combination of digits and characters.

Note

NSE is not supported at the moment, but may be in the future

Examples

ranks("genus")
ranks("order", "genus")
ranks("> genus")

nms("Poaceae")
nms("Poaceae", "Poa")
nms("< Poaceae")

ids(4544)
ids(4544, 4479)
ids("< 4479")

filter_ambiguous_taxa Filter ambiguous taxon names

Description

Filter out taxa with ambiguous names, such as "unknown" or "uncultured". NOTE: some parameters
of this function are passed to filter_taxa with the "invert" option set to TRUE. Works the same
way as filter_taxa for the most part.

Usage

filter_ambiguous_taxa(
obj,
unknown = TRUE,
uncultured = TRUE,
name_regex = ".",
ignore_case = TRUE,
subtaxa = FALSE,
drop_obs = TRUE,
reassign_obs = TRUE,
reassign_taxa = TRUE

)

filter_ambiguous_taxa 41

Arguments

obj A taxmap object

unknown If TRUE, Remove taxa with names the suggest they are placeholders for unknown
taxa (e.g. "unknown ...").

uncultured If TRUE, Remove taxa with names the suggest they are assigned to uncultured
organisms (e.g. "uncultured ...").

name_regex The regex code to match a valid character in a taxon name. For example, "[a-z]"
would mean taxon names can only be lower case letters.

ignore_case If TRUE, dont consider the case of the text when determining a match.

subtaxa (‘logical‘ or ‘numeric‘ of length 1) If ‘TRUE‘, include subtaxa of taxa passing
the filter. Positive numbers indicate the number of ranks below the target taxa
to return. ‘0‘ is equivalent to ‘FALSE‘. Negative numbers are equivalent to
‘TRUE‘.

drop_obs (‘logical‘) This option only applies to [taxmap()] objects. If ‘FALSE‘, include
observations (i.e. user-defined data in ‘obj$data‘) even if the taxon they are as-
signed to is filtered out. Observations assigned to removed taxa will be assigned
to NA. This option can be either simply ‘TRUE‘/‘FALSE‘, meaning that all data
sets will be treated the same, or a logical vector can be supplied with names
corresponding one or more data sets in ‘obj$data‘. For example, ‘c(abundance
= FALSE, stats = TRUE)‘ would include observations whose taxon was filtered
out in ‘obj$data$abundance‘, but not in ‘obj$data$stats‘. See the ‘reassign_obs‘
option below for further complications.

reassign_obs (‘logical‘ of length 1) This option only applies to [taxmap()] objects. If ‘TRUE‘,
observations (i.e. user-defined data in ‘obj$data‘) assigned to removed taxa will
be reassigned to the closest supertaxon that passed the filter. If there are no
supertaxa of such an observation that passed the filter, they will be filtered out
if ‘drop_obs‘ is ‘TRUE‘. This option can be either simply ‘TRUE‘/‘FALSE‘,
meaning that all data sets will be treated the same, or a logical vector can be
supplied with names corresponding one or more data sets in ‘obj$data‘. For
example, ‘c(abundance = TRUE, stats = FALSE)‘ would reassign observations
in ‘obj$data$abundance‘, but not in ‘obj$data$stats‘.

reassign_taxa (‘logical‘ of length 1) If ‘TRUE‘, subtaxa of removed taxa will be reassigned to
the closest supertaxon that passed the filter. This is useful for removing inter-
mediate levels of a taxonomy.

Details

If you encounter a taxon name that represents an ambiguous taxon that is not filtered out by this
function, let us know and we will add it.

Value

A taxmap object

42 filter_obs

Examples

obj <- parse_tax_data(c("Plantae;Solanaceae;Solanum;lycopersicum",
"Plantae;Solanaceae;Solanum;tuberosum",
"Plantae;Solanaceae;Solanum;unknown",
"Plantae;Solanaceae;Solanum;uncultured",
"Plantae;UNIDENTIFIED"))

filter_ambiguous_taxa(obj)

filter_obs Filter observations with a list of conditions

Description

Filter data in a [taxmap()] object (in ‘obj$data‘) with a set of conditions. See [dplyr::filter()] for the
inspiration for this function and more information. Calling the function using the ‘obj$filter_obs(...)‘
style edits "obj" in place, unlike most R functions. However, calling the function using the ‘fil-
ter_obs(obj, ...)‘ imitates R’s traditional copy-on-modify semantics, so "obj" would not be changed;
instead a changed version would be returned, like most R functions.

obj$filter_obs(data, ..., drop_taxa = FALSE, drop_obs = TRUE,
subtaxa = FALSE, supertaxa = TRUE, reassign_obs = FALSE)

filter_obs(obj, data, ..., drop_taxa = FALSE, drop_obs = TRUE,
subtaxa = FALSE, supertaxa = TRUE, reassign_obs = FALSE)

Arguments

obj An object of type [taxmap()]

data Dataset names, indexes, or a logical vector that indicates which datasets in
‘obj$data‘ to filter. If multiple datasets are filterd at once, then they must be
the same length.

... One or more filtering conditions. Any variable name that appears in [all_names()]
can be used as if it was a vector on its own. Each filtering condition can be
one of two things: * ‘integer‘: One or more dataset indexes. * ‘logical‘: A
‘TRUE‘/‘FALSE‘ vector of length equal to the number of items in the dataset.

drop_taxa (‘logical‘ of length 1) If ‘FALSE‘, preserve taxa even if all of their observations
are filtered out. If ‘TRUE‘, remove taxa for which all observations were filtered
out. Note that only taxa that are unobserved due to this filtering will be removed;
there might be other taxa without observations to begin with that will not be
removed.

drop_obs (‘logical‘) This only has an effect when ‘drop_taxa‘ is ‘TRUE‘. When ‘TRUE‘,
observations for other data sets (i.e. not ‘data‘) assigned to taxa that are removed
when filtering ‘data‘ are also removed. Otherwise, only data for taxa that are
not present in all other data sets will be removed. This option can be either
simply ‘TRUE‘/‘FALSE‘, meaning that all data sets will be treated the same,
or a logical vector can be supplied with names corresponding one or more data

filter_obs 43

sets in ‘obj$data‘. For example, ‘c(abundance = TRUE, stats = FALSE)‘ would
remove observations in ‘obj$data$abundance‘, but not in ‘obj$data$stats‘.

subtaxa (‘logical‘ or ‘numeric‘ of length 1) This only has an effect when ‘drop_taxa‘ is
‘TRUE‘. If ‘TRUE‘, include subtaxa of taxa passing the filter. Positive numbers
indicate the number of ranks below the target taxa to return. ‘0‘ is equivalent to
‘FALSE‘. Negative numbers are equivalent to ‘TRUE‘.

supertaxa (‘logical‘ or ‘numeric‘ of length 1) This only has an effect when ‘drop_taxa‘
is ‘TRUE‘. If ‘TRUE‘, include supertaxa of taxa passing the filter. Positive
numbers indicate the number of ranks above the target taxa to return. ‘0‘ is
equivalent to ‘FALSE‘. Negative numbers are equivalent to ‘TRUE‘.

reassign_obs (‘logical‘) This only has an effect when ‘drop_taxa‘ is ‘TRUE‘. If ‘TRUE‘,
observations assigned to removed taxa will be reassigned to the closest super-
taxon that passed the filter. If there are no supertaxa of such an observation
that passed the filter, they will be filtered out if ‘drop_obs‘ is ‘TRUE‘. This
option can be either simply ‘TRUE‘/‘FALSE‘, meaning that all data sets will
be treated the same, or a logical vector can be supplied with names correspond-
ing one or more data sets in ‘obj$data‘. For example, ‘c(abundance = TRUE,
stats = FALSE)‘ would reassign observations in ‘obj$data$abundance‘, but not
in ‘obj$data$stats‘.

target DEPRECIATED. use "data" instead.

Value

An object of type [taxmap()]

See Also

Other taxmap manipulation functions: arrange_obs(), arrange_taxa(), filter_taxa(), mutate_obs(),
sample_frac_obs(), sample_frac_taxa(), sample_n_obs(), sample_n_taxa(), select_obs(),
transmute_obs()

Examples

Filter by row index
filter_obs(ex_taxmap, "info", 1:2)

Filter by TRUE/FALSE
filter_obs(ex_taxmap, "info", dangerous == FALSE)
filter_obs(ex_taxmap, "info", dangerous == FALSE, n_legs > 0)
filter_obs(ex_taxmap, "info", n_legs == 2)

Remove taxa whose obserservations were filtered out
filter_obs(ex_taxmap, "info", n_legs == 2, drop_taxa = TRUE)

Preserve other data sets while removing taxa
filter_obs(ex_taxmap, "info", n_legs == 2, drop_taxa = TRUE,

drop_obs = c(abund = FALSE))

When filtering taxa, do not return supertaxa of taxa that are preserved

44 filter_taxa

filter_obs(ex_taxmap, "info", n_legs == 2, drop_taxa = TRUE,
supertaxa = FALSE)

Filter multiple datasets at once
filter_obs(ex_taxmap, c("info", "phylopic_ids", "foods"), n_legs == 2)

filter_taxa Filter taxa with a list of conditions

Description

Filter taxa in a [taxonomy()] or [taxmap()] object with a series of conditions. Any variable name that
appears in [all_names()] can be used as if it was a vector on its own. See [dplyr::filter()] for the in-
spiration for this function and more information. Calling the function using the ‘obj$filter_taxa(...)‘
style edits "obj" in place, unlike most R functions. However, calling the function using the ‘fil-
ter_taxa(obj, ...)‘ imitates R’s traditional copy-on-modify semantics, so "obj" would not be changed;
instead a changed version would be returned, like most R functions.

filter_taxa(obj, ..., subtaxa = FALSE, supertaxa = FALSE,
drop_obs = TRUE, reassign_obs = TRUE, reassign_taxa = TRUE,
invert = FALSE, keep_order = TRUE)

obj$filter_taxa(..., subtaxa = FALSE, supertaxa = FALSE,
drop_obs = TRUE, reassign_obs = TRUE, reassign_taxa = TRUE,
invert = FALSE, keep_order = TRUE)

Arguments

obj An object of class [taxonomy()] or [taxmap()]

... One or more filtering conditions. Any variable name that appears in [all_names()]
can be used as if it was a vector on its own. Each filtering condition must re-
solve to one of three things: * ‘character‘: One or more taxon IDs contained
in ‘obj$edge_list$to‘ * ‘integer‘: One or more row indexes of ‘obj$edge_list‘ *
‘logical‘: A ‘TRUE‘/‘FALSE‘ vector of length equal to the number of rows in
‘obj$edge_list‘ * ‘NULL‘: ignored

subtaxa (‘logical‘ or ‘numeric‘ of length 1) If ‘TRUE‘, include subtaxa of taxa passing
the filter. Positive numbers indicate the number of ranks below the target taxa
to return. ‘0‘ is equivalent to ‘FALSE‘. Negative numbers are equivalent to
‘TRUE‘.

supertaxa (‘logical‘ or ‘numeric‘ of length 1) If ‘TRUE‘, include supertaxa of taxa passing
the filter. Positive numbers indicate the number of ranks above the target taxa
to return. ‘0‘ is equivalent to ‘FALSE‘. Negative numbers are equivalent to
‘TRUE‘.

drop_obs (‘logical‘) This option only applies to [taxmap()] objects. If ‘FALSE‘, include
observations (i.e. user-defined data in ‘obj$data‘) even if the taxon they are as-
signed to is filtered out. Observations assigned to removed taxa will be assigned

filter_taxa 45

to NA. This option can be either simply ‘TRUE‘/‘FALSE‘, meaning that all data
sets will be treated the same, or a logical vector can be supplied with names
corresponding one or more data sets in ‘obj$data‘. For example, ‘c(abundance
= FALSE, stats = TRUE)‘ would include observations whose taxon was filtered
out in ‘obj$data$abundance‘, but not in ‘obj$data$stats‘. See the ‘reassign_obs‘
option below for further complications.

reassign_obs (‘logical‘ of length 1) This option only applies to [taxmap()] objects. If ‘TRUE‘,
observations (i.e. user-defined data in ‘obj$data‘) assigned to removed taxa will
be reassigned to the closest supertaxon that passed the filter. If there are no
supertaxa of such an observation that passed the filter, they will be filtered out
if ‘drop_obs‘ is ‘TRUE‘. This option can be either simply ‘TRUE‘/‘FALSE‘,
meaning that all data sets will be treated the same, or a logical vector can be
supplied with names corresponding one or more data sets in ‘obj$data‘. For
example, ‘c(abundance = TRUE, stats = FALSE)‘ would reassign observations
in ‘obj$data$abundance‘, but not in ‘obj$data$stats‘.

reassign_taxa (‘logical‘ of length 1) If ‘TRUE‘, subtaxa of removed taxa will be reassigned to
the closest supertaxon that passed the filter. This is useful for removing inter-
mediate levels of a taxonomy.

invert (‘logical‘ of length 1) If ‘TRUE‘, do NOT include the selection. This is different
than just replacing a ‘==‘ with a ‘!=‘ because this option negates the selection
after taking into account the ‘subtaxa‘ and ‘supertaxa‘ options. This is useful
for removing a taxon and all its subtaxa for example.

keep_order (‘logical‘ of length 1) If ‘TRUE‘, keep relative order of taxa not filtered out. For
example, the result of ‘filter_taxa(ex_taxmap, 1:3)‘ and ‘filter_taxa(ex_taxmap,
3:1)‘ would be the same. Does not affect dataset order, only taxon order. This
is useful for maintaining order correspondence with a dataset that has one value
per taxon.

Value

An object of type [taxonomy()] or [taxmap()]

See Also

Other taxmap manipulation functions: arrange_obs(), arrange_taxa(), filter_obs(), mutate_obs(),
sample_frac_obs(), sample_frac_taxa(), sample_n_obs(), sample_n_taxa(), select_obs(),
transmute_obs()

Examples

Filter by index
filter_taxa(ex_taxmap, 1:3)

Filter by taxon ID
filter_taxa(ex_taxmap, c("b", "c", "d"))

Fiter by TRUE/FALSE
filter_taxa(ex_taxmap, taxon_names == "Plantae", subtaxa = TRUE)
filter_taxa(ex_taxmap, n_obs > 3)

46 get_data

filter_taxa(ex_taxmap, ! taxon_ranks %in% c("species", "genus"))
filter_taxa(ex_taxmap, taxon_ranks == "genus", n_obs > 1)

Filter by an observation characteristic
dangerous_taxa <- sapply(ex_taxmap$obs("info"),

function(i) any(ex_taxmap$data$info$dangerous[i]))
filter_taxa(ex_taxmap, dangerous_taxa)

Include supertaxa
filter_taxa(ex_taxmap, 12, supertaxa = TRUE)
filter_taxa(ex_taxmap, 12, supertaxa = 2)

Include subtaxa
filter_taxa(ex_taxmap, 1, subtaxa = TRUE)
filter_taxa(ex_taxmap, 1, subtaxa = 2)

Dont remove rows in user-defined data corresponding to removed taxa
filter_taxa(ex_taxmap, 2, drop_obs = FALSE)
filter_taxa(ex_taxmap, 2, drop_obs = c(info = FALSE))

Remove a taxon and it subtaxa
filter_taxa(ex_taxmap, taxon_names == "Mammalia",

subtaxa = TRUE, invert = TRUE)

get_data Get data in a taxmap object by name

Description

Given a vector of names, return a list of data (usually lists/vectors) contained in a [taxonomy()] or
[taxmap()] object. Each item will be named by taxon ids when possible.

obj$get_data(name = NULL, ...)
get_data(obj, name = NULL, ...)

Arguments

obj A [taxonomy()] or [taxmap()] object

name (‘character‘) Names of data to return. If not supplied, return all data listed in
[all_names()].

... Passed to [all_names()]. Used to filter what kind of data is returned (e.g. columns
in tables or function output?) if ‘name‘ is not supplied or what kinds are allowed
if ‘name‘ is supplied.

Value

‘list‘ of vectors or lists. Each vector or list will be named by associated taxon ids if possible.

get_dataset 47

See Also

Other NSE helpers: all_names(), data_used, names_used

Examples

Get specific values
get_data(ex_taxmap, c("reaction", "n_legs", "taxon_ranks"))

Get all values
get_data(ex_taxmap)

get_dataset Get a data set from a taxmap object

Description

Get a data set from a taxmap object and complain if it does not exist.

Arguments

obj A taxmap object

data Dataset name, index, or a logical vector that indicates which dataset in ‘obj$data‘
to add columns to.

Examples

Get data set by name
get_dataset(ex_taxmap, "info")

Get data set by indeex_taxmap
get_dataset(ex_taxmap, 1)

Get data set by T/F vector
get_dataset(ex_taxmap, startsWith(names(ex_taxmap$data), "i"))

get_data_frame Get data in a taxonomy or taxmap object by name

Description

Given a vector of names, return a table of the indicated data contained in a [taxonomy()] or [taxmap()]
object.

obj$get_data_frame(name = NULL, ...)
get_data_frame(obj, name = NULL, ...)

48 heat_tree

Arguments

obj A [taxonomy()] or [taxmap()] object

name (‘character‘) Names of data to return. If not supplied, return all data listed in
[all_names()].

... Passed to [all_names()]. Used to filter what kind of data is returned (e.g. columns
in tables or function output?) if ‘name‘ is not supplied or what kinds are allowed
if ‘name‘ is supplied.

Details

Note: This function will not work with variables in datasets in [taxmap()] objects unless their rows
correspond 1:1 with all taxa.

Value

‘data.frame‘

Examples

Get specific values
get_data_frame(ex_taxmap, c("taxon_names", "taxon_indexes", "is_stem"))

heat_tree Plot a taxonomic tree

Description

Plots the distribution of values associated with a taxonomic classification/heirarchy. Taxonomic
classifications can have multiple roots, resulting in multiple trees on the same plot. A tree consists
of elements, element properties, conditions, and mapping properties which are represented as pa-
rameters in the heat_tree object. The elements (e.g. nodes, edges, lables, and individual trees) are
the infrastructure of the heat tree. The element properties (e.g. size and color) are characteristics
that are manipulated by various data conditions and mapping properties. The element properties can
be explicitly defined or automatically generated. The conditions are data (e.g. taxon statistics, such
as abundance) represented in the taxmap/metacoder object. The mapping properties are parameters
(e.g. transformations, range, interval, and layout) used to change the elements/element properties
and how they are used to represent (or not represent) the various conditions.

Usage

heat_tree(...)

S3 method for class 'Taxmap'
heat_tree(.input, ...)

heat_tree 49

Default S3 method:
heat_tree(
taxon_id,
supertaxon_id,
node_label = NA,
edge_label = NA,
tree_label = NA,
node_size = 1,
edge_size = node_size,
node_label_size = node_size,
edge_label_size = edge_size,
tree_label_size = as.numeric(NA),
node_color = "#999999",
edge_color = node_color,
tree_color = NA,
node_label_color = "#000000",
edge_label_color = "#000000",
tree_label_color = "#000000",
node_size_trans = "area",
edge_size_trans = node_size_trans,
node_label_size_trans = node_size_trans,
edge_label_size_trans = edge_size_trans,
tree_label_size_trans = "area",
node_color_trans = "area",
edge_color_trans = node_color_trans,
tree_color_trans = "area",
node_label_color_trans = "area",
edge_label_color_trans = "area",
tree_label_color_trans = "area",
node_size_range = c(NA, NA),
edge_size_range = c(NA, NA),
node_label_size_range = c(NA, NA),
edge_label_size_range = c(NA, NA),
tree_label_size_range = c(NA, NA),
node_color_range = quantative_palette(),
edge_color_range = node_color_range,
tree_color_range = quantative_palette(),
node_label_color_range = quantative_palette(),
edge_label_color_range = quantative_palette(),
tree_label_color_range = quantative_palette(),
node_size_interval = range(node_size, na.rm = TRUE, finite = TRUE),
node_color_interval = NULL,
edge_size_interval = range(edge_size, na.rm = TRUE, finite = TRUE),
edge_color_interval = NULL,
node_label_max = 500,
edge_label_max = 500,
tree_label_max = 500,
overlap_avoidance = 1,

50 heat_tree

margin_size = c(0, 0, 0, 0),
layout = "reingold-tilford",
initial_layout = "fruchterman-reingold",
make_node_legend = TRUE,
make_edge_legend = TRUE,
title = NULL,
title_size = 0.08,
node_legend_title = "Nodes",
edge_legend_title = "Edges",
node_color_axis_label = NULL,
node_size_axis_label = NULL,
edge_color_axis_label = NULL,
edge_size_axis_label = NULL,
node_color_digits = 3,
node_size_digits = 3,
edge_color_digits = 3,
edge_size_digits = 3,
background_color = "#FFFFFF00",
output_file = NULL,
aspect_ratio = 1,
repel_labels = TRUE,
repel_force = 1,
repel_iter = 1000,
verbose = FALSE,
...

)

Arguments

... (other named arguments) Passed to the igraph layout function used.

.input An object of type taxmap

taxon_id The unique ids of taxa.

supertaxon_id The unique id of supertaxon taxon_id is a part of.

node_label See details on labels. Default: no labels.

edge_label See details on labels. Default: no labels.

tree_label See details on labels. The label to display above each graph. The value of the
root of each graph will be used. Default: None.

node_size See details on size. Default: constant size.

edge_size See details on size. Default: relative to node size.
node_label_size

See details on size. Default: relative to vertex size.
edge_label_size

See details on size. Default: relative to edge size.
tree_label_size

See details on size. Default: relative to graph size.

node_color See details on colors. Default: grey.

heat_tree 51

edge_color See details on colors. Default: same as node color.

tree_color See details on colors. The value of the root of each graph will be used. Over-
writes the node and edge color if specified. Default: Not used.

node_label_color

See details on colors. Default: black.
edge_label_color

See details on colors. Default: black.
tree_label_color

See details on colors. Default: black.
node_size_trans

See details on transformations. Default: "area".
edge_size_trans

See details on transformations. Default: same as node_size_trans.
node_label_size_trans

See details on transformations. Default: same as node_size_trans.
edge_label_size_trans

See details on transformations. Default: same as edge_size_trans.
tree_label_size_trans

See details on transformations. Default: "area".
node_color_trans

See details on transformations. Default: "area".
edge_color_trans

See details on transformations. Default: same as node color transformation.
tree_color_trans

See details on transformations. Default: "area".
node_label_color_trans

See details on transformations. Default: "area".
edge_label_color_trans

See details on transformations. Default: "area".
tree_label_color_trans

See details on transformations. Default: "area".
node_size_range

See details on ranges. Default: Optimize to balance overlaps and range size.
edge_size_range

See details on ranges. Default: relative to node size range.
node_label_size_range

See details on ranges. Default: relative to node size.
edge_label_size_range

See details on ranges. Default: relative to edge size.
tree_label_size_range

See details on ranges. Default: relative to tree size.
node_color_range

See details on ranges. Default: Color-blind friendly palette.
edge_color_range

See details on ranges. Default: same as node color.

52 heat_tree

tree_color_range

See details on ranges. Default: Color-blind friendly palette.
node_label_color_range

See details on ranges. Default: Color-blind friendly palette.
edge_label_color_range

See details on ranges. Default: Color-blind friendly palette.
tree_label_color_range

See details on ranges. Default: Color-blind friendly palette.
node_size_interval

See details on intervals. Default: The range of values in node_size.
node_color_interval

See details on intervals. Default: The range of values in node_color.
edge_size_interval

See details on intervals. Default: The range of values in edge_size.
edge_color_interval

See details on intervals. Default: The range of values in edge_color.

node_label_max The maximum number of node labels. Default: 20.

edge_label_max The maximum number of edge labels. Default: 20.

tree_label_max The maximum number of tree labels. Default: 20.
overlap_avoidance

(numeric) The relative importance of avoiding overlaps vs maximizing size
range. Higher numbers will cause node size optimization to avoid overlaps
more. Default: 1.

margin_size (numeric of length 2) The horizontal and vertical margins. c(left, right, bottom,
top). Default: 0, 0, 0, 0.

layout The layout algorithm used to position nodes. See details on layouts. Default:
"reingold-tilford".

initial_layout he layout algorithm used to set the initial position of nodes, passed as input to
the layout algorithm. See details on layouts. Default: Not used.

make_node_legend

if TRUE, make legend for node size/color mappings.
make_edge_legend

if TRUE, make legend for edge size/color mappings.

title Name to print above the graph.

title_size The size of the title relative to the rest of the graph.
node_legend_title

The title of the legend for node data. Can be ‘NA‘ or ‘NULL‘ to remove the
title.

edge_legend_title

The title of the legend for edge data. Can be ‘NA‘ or ‘NULL‘ to remove the
title.

node_color_axis_label

The label on the scale axis corresponding to node_color. Default: The expres-
sion given to node_color.

heat_tree 53

node_size_axis_label

The label on the scale axis corresponding to node_size. Default: The expres-
sion given to node_size.

edge_color_axis_label

The label on the scale axis corresponding to edge_color. Default: The expres-
sion given to edge_color.

edge_size_axis_label

The label on the scale axis corresponding to edge_size. Default: The expres-
sion given to edge_size.

node_color_digits

The number of significant figures used for the numbers on the scale axis corre-
sponding to node_color. Default: 3.

node_size_digits

The number of significant figures used for the numbers on the scale axis corre-
sponding to node_size. Default: 3.

edge_color_digits

The number of significant figures used for the numbers on the scale axis corre-
sponding to edge_color. Default: 3.

edge_size_digits

The number of significant figures used for the numbers on the scale axis corre-
sponding to edge_size. Default: 3.

background_color

The background color of the plot. Default: Transparent

output_file The path to one or more files to save the plot in using ggplot2::ggsave. The
type of the file will be determined by the extension given. Default: Do not save
plot.

aspect_ratio The aspect_ratio of the plot.

repel_labels If TRUE (Default), use the ggrepel package to spread out labels.

repel_force The force of which overlapping labels will be repelled from eachother.

repel_iter The number of iterations used when repelling labels

verbose If TRUE print progress reports as the function runs.

labels

The labels of nodes, edges, and trees can be added. Node labels are centered over their node. Edge
labels are displayed over edges, in the same orientation. Tree labels are displayed over their tree.

Accepts a vector, the same length taxon_id or a factor of its length.

sizes

The size of nodes, edges, labels, and trees can be mapped to various conditions. This is useful
for displaying statistics for taxa, such as abundance. Only the relative size of the condition is
used, not the values themselves. The <element>_size_trans (transformation) parameter can be used
to make the size mapping non-linear. The <element>_size_range parameter can be used to pro-
portionately change the size of an element based on the condition mapped to that element. The

54 heat_tree

<element>_size_interval parameter can be used to change the limit at which a condition will be
graphically represented as the same size as the minimum/maximum <element>_size_range.

Accepts a numeric vector, the same length taxon_id or a factor of its length.

colors

The colors of nodes, edges, labels, and trees can be mapped to various conditions. This is useful
for visually highlighting/clustering groups of taxa. Only the relative size of the condition is used,
not the values themselves. The <element>_color_trans (transformation) parameter can be used to
make the color mapping non-linear. The <element>_color_range parameter can be used to pro-
portionately change the color of an element based on the condition mapped to that element. The
<element>_color_interval parameter can be used to change the limit at which a condition will be
graphically represented as the same color as the minimum/maximum <element>_color_range.

Accepts a vector, the same length taxon_id or a factor of its length. If a numeric vector is given, it
is mapped to a color scale. Hex values or color names can be used (e.g. #000000 or "black").

Mapping Properties

transformations

Before any conditions specified are mapped to an element property (color/size), they can be trans-
formed to make the mapping non-linear. Any of the transformations listed below can be used by
specifying their name. A customized function can also be supplied to do the transformation.

"linear" Proportional to radius/diameter of node

"area" circular area; better perceptual accuracy than "linear"

"log10" Log base 10 of radius

"log2" Log base 2 of radius

"ln" Log base e of radius

"log10 area" Log base 10 of circular area

"log2 area" Log base 2 of circular area

"ln area" Log base e of circular area

ranges

The displayed range of colors and sizes can be explicitly defined or automatically generated. When
explicitly used, the size range will proportionately increase/decrease the size of a particular ele-
ment. Size ranges are specified by supplying a numeric vector with two values: the minimum and
maximum. The units used should be between 0 and 1, representing the proportion of a dimension
of the graph. Since the dimensions of the graph are determined by layout, and not always square,
the value that 1 corresponds to is the square root of the graph area (i.e. the side of a square with
the same area as the plotted space). Color ranges can be any number of color values as either HEX
codes (e.g. #000000) or color names (e.g. "black").

heat_tree 55

layout

Layouts determine the position of node elements on the graph. They are implemented using the
igraph package. Any additional arguments passed to heat_tree are passed to the igraph function
used. The following character values are understood:

"automatic" Use igraph::nicely. Let igraph choose the layout.

"reingold-tilford" Use igraph::as_tree. A circular tree-like layout.

"davidson-harel" Use igraph::with_dh. A type of simulated annealing.

"gem" Use igraph::with_gem. A force-directed layout.

"graphopt" Use igraph::with_graphopt. A force-directed layout.

"mds" Use igraph::with_mds. Multidimensional scaling.

"fruchterman-reingold" Use igraph::with_fr. A force-directed layout.

"kamada-kawai" Use igraph::with_kk. A layout based on a physical model of springs.

"large-graph" Use igraph::with_lgl. Meant for larger graphs.

"drl" Use igraph::with_drl. A force-directed layout.

intervals

This is the minimum and maximum of values displayed on the legend scales. Intervals are specified
by supplying a numeric vector with two values: the minimum and maximum. When explicitly
used, the <element>_<property>_interval will redefine the way the actual conditional values are
being represented by setting a limit for the <element>_<property>. Any condition below the min-
imum <element>_<property>_interval will be graphically represented the same as a condition AT
the minimum value in the full range of conditional values. Any value above the maximum <ele-
ment>_<property>_interval will be graphically represented the same as a value AT the maximum
value in the full range of conditional values. By default, the minimum and maximum equals the <el-
ement>_<property>_range used to infer the value of the <element>_<property>. Setting a custom
interval is useful for making <element>_<properties> in multiple graphs correspond to the same
conditions, or setting logical boundaries (such as c(0,1) for proportions. Note that this is differ-
ent from the <element>_<property>_range mapping property, which determines the size/color of
graphed elements.

Acknowledgements

This package includes code from the R package ggrepel to handle label overlap avoidance with
permission from the author of ggrepel Kamil Slowikowski. We included the code instead of de-
pending on ggrepel because we are using internal functions to ggrepel that might change in the
future. We thank Kamil Slowikowski for letting us use his code and would like to acknowledge his
implementation of the label overlap avoidance used in metacoder.

Examples

Parse dataset for plotting
x = parse_tax_data(hmp_otus, class_cols = "lineage", class_sep = ";",

class_key = c(tax_rank = "taxon_rank", tax_name = "taxon_name"),
class_regex = "^(.+)__(.+)$")

56 heat_tree

Default appearance:
No parmeters are needed, but the default tree is not too useful
heat_tree(x)

A good place to start:
There will always be "taxon_names" and "n_obs" variables, so this is a
good place to start. This will shown the number of OTUs in this case.
heat_tree(x, node_label = taxon_names, node_size = n_obs, node_color = n_obs)

Plotting read depth:
To plot read depth, you first need to add up the number of reads per taxon.
The function `calc_taxon_abund` is good for this.
x$data$taxon_counts <- calc_taxon_abund(x, data = "tax_data")
x$data$taxon_counts$total <- rowSums(x$data$taxon_counts[, -1]) # -1 = taxon_id column
heat_tree(x, node_label = taxon_names, node_size = total, node_color = total)

Plotting multiple variables:
You can plot up to 4 quantative variables use node/edge size/color, but it
is usually best to use 2 or 3. The plot below uses node size for number of
OTUs and color for number of reads and edge size for number of samples
x$data$n_samples <- calc_n_samples(x, data = "taxon_counts")
heat_tree(x, node_label = taxon_names, node_size = n_obs, node_color = total,

edge_color = n_samples)

Different layouts:
You can use any layout implemented by igraph. You can also specify an
initial layout to seed the main layout with.
heat_tree(x, node_label = taxon_names, node_size = n_obs, node_color = n_obs,

layout = "davidson-harel")
heat_tree(x, node_label = taxon_names, node_size = n_obs, node_color = n_obs,

layout = "davidson-harel", initial_layout = "reingold-tilford")

Axis labels:
You can add custom labeles to the legends
heat_tree(x, node_label = taxon_names, node_size = n_obs, node_color = total,

edge_color = n_samples, node_size_axis_label = "Number of OTUs",
node_color_axis_label = "Number of reads",
edge_color_axis_label = "Number of samples")

Overlap avoidance:
You can change how much node overlap avoidance is used.
heat_tree(x, node_label = taxon_names, node_size = n_obs, node_color = n_obs,

overlap_avoidance = .5)

Label overlap avoidance
You can modfiy how label scattering is handled using the `replel_force` and
`repel_iter` options. You can turn off label scattering using the `repel_labels` option.
heat_tree(x, node_label = taxon_names, node_size = n_obs, node_color = n_obs,

repel_force = 2, repel_iter = 20000)
heat_tree(x, node_label = taxon_names, node_size = n_obs, node_color = n_obs,

repel_labels = FALSE)

heat_tree_matrix 57

Setting the size of graph elements:
You can force nodes, edges, and lables to be a specific size/color range instead
of letting the function optimize it. These options end in `_range`.
heat_tree(x, node_label = taxon_names, node_size = n_obs, node_color = n_obs,

node_size_range = c(0.01, .1))
heat_tree(x, node_label = taxon_names, node_size = n_obs, node_color = n_obs,

edge_color_range = c("black", "#FFFFFF"))
heat_tree(x, node_label = taxon_names, node_size = n_obs, node_color = n_obs,

node_label_size_range = c(0.02, 0.02))

Setting the transformation used:
You can change how raw statistics are converted to color/size using options
ending in _trans.
heat_tree(x, node_label = taxon_names, node_size = n_obs, node_color = n_obs,

node_size_trans = "log10 area")

Setting the interval displayed:
By default, the whole range of the statistic provided will be displayed.
You can set what range of values are displayed using options ending in `_interval`.
heat_tree(x, node_label = taxon_names, node_size = n_obs, node_color = n_obs,

node_size_interval = c(10, 100))

heat_tree_matrix Plot a matrix of heat trees

Description

Plot a matrix of heat trees for showing pairwise comparisons. A larger, labelled tree serves as a
key for the matrix of smaller unlabelled trees. The data for this function is typically created with
compare_groups,

Usage

heat_tree_matrix(
obj,
data,
label_small_trees = FALSE,
key_size = 0.6,
seed = 1,
output_file = NULL,
row_label_color = diverging_palette()[3],
col_label_color = diverging_palette()[1],
row_label_size = 12,
col_label_size = 12,
...,
dataset = NULL

)

58 heat_tree_matrix

Arguments

obj A taxmap object

data The name of a table in obj$data that is the output of compare_groups or in the
same format.

label_small_trees

If TRUE add labels to small trees as well as the key tree. Otherwise, only the key
tree will be labeled.

key_size The size of the key tree relative to the whole graph. For example, 0.5 means half
the width/height of the graph.

seed That random seed used to make the graphs.

output_file The path to one or more files to save the plot in using ggsave. The type of the
file will be determined by the extension given. Default: Do not save plot.

row_label_color

The color of the row labels on the right side of the matrix. Default: based on the
node_color_range.

col_label_color

The color of the columns labels along the top of the matrix. Default: based on
the node_color_range.

row_label_size The size of the row labels on the right side of the matrix. Default: 12.

col_label_size The size of the columns labels along the top of the matrix. Default: 12.

... Passed to heat_tree. Some options will be overwritten.

dataset DEPRECIATED. use "data" instead.

Examples

Parse dataset for plotting
x <- parse_tax_data(hmp_otus, class_cols = "lineage", class_sep = ";",

class_key = c(tax_rank = "taxon_rank", tax_name = "taxon_name"),
class_regex = "^(.+)__(.+)$")

Convert counts to proportions
x$data$otu_table <- calc_obs_props(x, data = "tax_data", cols = hmp_samples$sample_id)

Get per-taxon counts
x$data$tax_table <- calc_taxon_abund(x, data = "otu_table", cols = hmp_samples$sample_id)

Calculate difference between treatments
x$data$diff_table <- compare_groups(x, data = "tax_table",

cols = hmp_samples$sample_id,
groups = hmp_samples$body_site)

Plot results (might take a few minutes)
heat_tree_matrix(x,

data = "diff_table",
node_size = n_obs,
node_label = taxon_names,
node_color = log2_median_ratio,

hierarchies 59

node_color_range = diverging_palette(),
node_color_trans = "linear",
node_color_interval = c(-3, 3),
edge_color_interval = c(-3, 3),
node_size_axis_label = "Number of OTUs",
node_color_axis_label = "Log2 ratio median proportions")

hierarchies Make a set of many [hierarchy()] class objects

Description

NOTE: This will soon be depreciated. Make a set of many [hierarchy()] class objects. This is just a
thin wrapper over a standard list.

Usage

hierarchies(..., .list = NULL)

Arguments

... Any number of object of class [hierarchy()]

.list Any number of object of class [hierarchy()] in a list

Value

An ‘R6Class‘ object of class [hierarchy()]

See Also

Other classes: hierarchy(), taxa(), taxmap(), taxon(), taxon_database(), taxon_id(), taxon_name(),
taxon_rank(), taxonomy()

hierarchy The Hierarchy class

Description

A class containing an ordered list of [taxon()] objects that represent a hierarchical classification.

Usage

hierarchy(..., .list = NULL)

60 hierarchy

Arguments

... Any number of object of class ‘Taxon‘ or taxonomic names as character strings

.list An alternate to the ‘...‘ input. Any number of object of class [taxon()] or char-
acter vectors in a list. Cannot be used with ‘...‘.

Details

On initialization, taxa are sorted if they have ranks with a known order.

Methods

‘pop(rank_names)‘ Remove ‘Taxon‘ elements by rank name, taxon name or taxon ID. The change
happens in place, so you don’t need to assign output to a new object. returns self - rank_names
(character) a vector of rank names

‘pick(rank_names)‘ Select ‘Taxon‘ elements by rank name, taxon name or taxon ID. The change
happens in place, so you don’t need to assign output to a new object. returns self - rank_names
(character) a vector of rank names

Value

An ‘R6Class‘ object of class ‘Hierarchy‘

See Also

Other classes: hierarchies(), taxa(), taxmap(), taxon(), taxon_database(), taxon_id(),
taxon_name(), taxon_rank(), taxonomy()

Examples

(x <- taxon(
name = taxon_name("Poaceae"),
rank = taxon_rank("family"),
id = taxon_id(4479)

))

(y <- taxon(
name = taxon_name("Poa"),
rank = taxon_rank("genus"),
id = taxon_id(4544)

))

(z <- taxon(
name = taxon_name("Poa annua"),
rank = taxon_rank("species"),
id = taxon_id(93036)

))

(res <- hierarchy(z, y, x))

res$taxa
res$ranklist

highlight_taxon_ids 61

null taxa
x <- taxon(NULL)
(res <- hierarchy(x, x, x))
similar to hierarchy(), but `taxa` slot is not empty

highlight_taxon_ids Highlight taxon ID column

Description

Changes the font of a taxon ID column in a table print out.

Usage

highlight_taxon_ids(table_text, header_index, row_indexes)

Arguments

table_text The print out of the table in a character vector, one element per line.
header_index The row index that contains the table column names
row_indexes The indexes of the rows to be formatted.

hmp_otus A HMP subset

Description

A subset of the Human Microbiome Project abundance matrix produced by QIIME. It contains OTU
ids, taxonomic lineages, and the read counts for 50 samples. See hmp_samples for the matching
dataset of sample information.

Format

A 1,000 x 52 tibble.

Details

The 50 samples were randomly selected such that there were 10 in each of 5 treatments: "Saliva",
"Throat", "Stool", "Right_Antecubital_fossa", "Anterior_nares". For each treatment, there were 5
samples from men and 5 from women.

Source

Subset from data available at https://www.hmpdacc.org/hmp/HMQCP/

See Also

Other hmp_data: hmp_samples

62 id_classifications

hmp_samples Sample information for HMP subset

Description

The sample information for a subset of the Human Microbiome Project data. It contains the sample
ID, sex, and body site for each sample in the abundance matrix stored in hmp_otus. The "sample_id"
column corresponds to the column names of hmp_otus.

Format

A 50 x 3 tibble.

Details

The 50 samples were randomly selected such that there were 10 in each of 5 treatments: "Saliva",
"Throat", "Stool", "Right_Antecubital_fossa", "Anterior_nares". For each treatment, there were
5 samples from men and 5 from women. "Right_Antecubital_fossa" was renamed to "Skin" and
"Anterior_nares" to "Nose".

Source

Subset from data available at https://www.hmpdacc.org/hmp/HMQCP/

See Also

Other hmp_data: hmp_otus

id_classifications Get ID classifications of taxa

Description

Get classification strings of taxa in an object of type [taxonomy()] or [taxmap()] composed of taxon
IDs. Each classification is constructed by concatenating the taxon ids of the given taxon and its
supertaxa.

obj$id_classifications(sep = ";")
id_classifications(obj, sep = ";")

Arguments

obj ([taxonomy()] or [taxmap()])

sep (‘character‘ of length 1) The character(s) to place between taxon IDs

internodes 63

Value

‘character‘

See Also

Other taxonomy data functions: classifications(), is_branch(), is_internode(), is_leaf(),
is_root(), is_stem(), map_data(), map_data_(), n_leaves(), n_leaves_1(), n_subtaxa(),
n_subtaxa_1(), n_supertaxa(), n_supertaxa_1(), taxon_ids(), taxon_indexes(), taxon_names(),
taxon_ranks()

Examples

Get classifications of IDs for each taxon
id_classifications(ex_taxmap)

Use a different seperator
id_classifications(ex_taxmap, sep = '|')

internodes Get "internode" taxa

Description

Return the "internode" taxa for a [taxonomy()] or [taxmap()] object. An internode is any taxon with
a single immediate supertaxon and a single immediate subtaxon. They can be removed from a tree
without any loss of information on the relative relationship between remaining taxa. Can also be
used to get the internodes of a subset of taxa.

obj$internodes(subset = NULL, value = "taxon_indexes")
internodes(obj, subset = NULL, value = "taxon_indexes")

Arguments

obj The [taxonomy()] or [taxmap()] object containing taxon information to be queried.

subset Taxon IDs, TRUE/FALSE vector, or taxon indexes used to subset the tree prior
to determining internodes. Default: All taxa in ‘obj‘ will be used. Any variable
name that appears in [all_names()] can be used as if it was a vector on its own.
Note that internodes are determined after the filtering, so a given taxon might be
a internode on the unfiltered tree, but not a internode on the filtered tree.

value What data to return. This is usually the name of column in a table in ‘obj$data‘.
Any result of [all_names()] can be used, but it usually only makes sense to use
data that corresponds to taxa 1:1, such as [taxon_ranks()]. By default, taxon
indexes are returned.

Value

‘character‘

64 is_ambiguous

See Also

Other taxonomy indexing functions: branches(), leaves(), roots(), stems(), subtaxa(), supertaxa()

Examples

Return indexes of branch taxa
internodes(ex_taxmap)

Return indexes for a subset of taxa
internodes(ex_taxmap, subset = 2:17)
internodes(ex_taxmap, subset = n_obs > 1)

Return something besides taxon indexes
internodes(ex_taxmap, value = "taxon_names")

is_ambiguous Find ambiguous taxon names

Description

Find taxa with ambiguous names, such as "unknown" or "uncultured".

Usage

is_ambiguous(
taxon_names,
unknown = TRUE,
uncultured = TRUE,
name_regex = ".",
ignore_case = TRUE

)

Arguments

taxon_names A taxmap object
unknown If TRUE, Remove taxa with names the suggest they are placeholders for unknown

taxa (e.g. "unknown ...").
uncultured If TRUE, Remove taxa with names the suggest they are assigned to uncultured

organisms (e.g. "uncultured ...").
name_regex The regex code to match a valid character in a taxon name. For example, "[a-z]"

would mean taxon names can only be lower case letters.
ignore_case If TRUE, dont consider the case of the text when determining a match.

Details

If you encounter a taxon name that represents an ambiguous taxon that is not filtered out by this
function, let us know and we will add it.

is_branch 65

Value

TRUE/FALSE vector corresponding to taxon_names

Examples

is_ambiguous(c("unknown", "uncultured", "homo sapiens", "kfdsjfdljsdf"))

is_branch Test if taxa are branches

Description

Test if taxa are branches in a [taxonomy()] or [taxmap()] object. Branches are taxa in the interior of
the tree that are not [roots()], [stems()], or [leaves()].

obj$is_branch()
is_branch(obj)

Arguments

obj The [taxonomy()] or [taxmap()] object.

Value

A ‘logical‘ of length equal to the number of taxa.

See Also

Other taxonomy data functions: classifications(), id_classifications(), is_internode(),
is_leaf(), is_root(), is_stem(), map_data(), map_data_(), n_leaves(), n_leaves_1(),
n_subtaxa(), n_subtaxa_1(), n_supertaxa(), n_supertaxa_1(), taxon_ids(), taxon_indexes(),
taxon_names(), taxon_ranks()

Examples

Test which taxon IDs correspond to branches
is_branch(ex_taxmap)

Filter out branches
filter_taxa(ex_taxmap, ! is_branch)

66 is_leaf

is_internode Test if taxa are "internodes"

Description

Test if taxa are "internodes" in a [taxonomy()] or [taxmap()] object. An internode is any taxon with
a single immediate supertaxon and a single immediate subtaxon. They can be removed from a tree
without any loss of information on the relative relationship between remaining taxa.

obj$is_internode()
is_internode(obj)

Arguments

obj The [taxonomy()] or [taxmap()] object.

Value

A ‘logical‘ of length equal to the number of taxa.

See Also

Other taxonomy data functions: classifications(), id_classifications(), is_branch(),
is_leaf(), is_root(), is_stem(), map_data(), map_data_(), n_leaves(), n_leaves_1(),
n_subtaxa(), n_subtaxa_1(), n_supertaxa(), n_supertaxa_1(), taxon_ids(), taxon_indexes(),
taxon_names(), taxon_ranks()

Examples

Test for which taxon IDs correspond to internodes
is_internode(ex_taxmap)

Filter out internodes
filter_taxa(ex_taxmap, ! is_internode)

is_leaf Test if taxa are leaves

Description

Test if taxa are leaves in a [taxonomy()] or [taxmap()] object. Leaves are taxa without subtaxa,
typically species.

obj$is_leaf()
is_leaf(obj)

is_root 67

Arguments

obj The [taxonomy()] or [taxmap()] object.

Value

A ‘logical‘ of length equal to the number of taxa.

See Also

Other taxonomy data functions: classifications(), id_classifications(), is_branch(),
is_internode(), is_root(), is_stem(), map_data(), map_data_(), n_leaves(), n_leaves_1(),
n_subtaxa(), n_subtaxa_1(), n_supertaxa(), n_supertaxa_1(), taxon_ids(), taxon_indexes(),
taxon_names(), taxon_ranks()

Examples

Test which taxon IDs correspond to leaves
is_leaf(ex_taxmap)

Filter out leaves
filter_taxa(ex_taxmap, ! is_leaf)

is_root Test if taxa are roots

Description

Test if taxa are roots in a [taxonomy()] or [taxmap()] object. Roots are taxa without supertaxa,
typically things like "Bacteria", or "Life".

obj$is_root()
is_root(obj)

Arguments

obj The [taxonomy()] or [taxmap()] object.

Value

A ‘logical‘ of length equal to the number of taxa.

See Also

Other taxonomy data functions: classifications(), id_classifications(), is_branch(),
is_internode(), is_leaf(), is_stem(), map_data(), map_data_(), n_leaves(), n_leaves_1(),
n_subtaxa(), n_subtaxa_1(), n_supertaxa(), n_supertaxa_1(), taxon_ids(), taxon_indexes(),
taxon_names(), taxon_ranks()

68 is_stem

Examples

Test for which taxon IDs correspond to roots
is_root(ex_taxmap)

Filter out roots
filter_taxa(ex_taxmap, ! is_root)

is_stem Test if taxa are stems

Description

Test if taxa are stems in a [taxonomy()] or [taxmap()] object. Stems are taxa from the [roots()] taxa
to the first taxon with more than one subtaxon. These can usually be filtered out of the taxonomy
without removing any information on how the remaining taxa are related.

obj$is_stem()
is_stem(obj)

Arguments

obj The [taxonomy()] or [taxmap()] object.

Value

A ‘logical‘ of length equal to the number of taxa.

See Also

Other taxonomy data functions: classifications(), id_classifications(), is_branch(),
is_internode(), is_leaf(), is_root(), map_data(), map_data_(), n_leaves(), n_leaves_1(),
n_subtaxa(), n_subtaxa_1(), n_supertaxa(), n_supertaxa_1(), taxon_ids(), taxon_indexes(),
taxon_names(), taxon_ranks()

Examples

Test which taxon IDs correspond to stems
is_stem(ex_taxmap)

Filter out stems
filter_taxa(ex_taxmap, ! is_stem)

layout_functions 69

layout_functions Layout functions

Description

Functions used to determine graph layout. Calling the function with no parameters returns avail-
able function names. Calling the function with only the name of a function returns that function.
Supplying a name and a graph object to run the layout function on the graph.

Usage

layout_functions(
name = NULL,
graph = NULL,
intitial_coords = NULL,
effort = 1,
...

)

Arguments

name (character of length 1 OR NULL) name of algorithm. Leave NULL to see all
options.

graph (igraph) The graph to generate the layout for.
intitial_coords

(matrix) Initial node layout to base new layout off of.

effort (numeric of length 1) The amount of effort to put into layouts. Typically deter-
mines the the number of iterations.

... (other arguments) Passed to igraph layout function used.

Value

The name available functions, a layout functions, or a two-column matrix depending on how argu-
ments are provided.

Examples

List available function names:
layout_functions()

Execute layout function on graph:
layout_functions("davidson-harel", igraph::make_ring(5))

70 leaves

leaves Get leaf taxa

Description

Return the leaf taxa for a [taxonomy()] or [taxmap()] object. Leaf taxa are taxa with no subtaxa.

obj$leaves(subset = NULL, recursive = TRUE, simplify = FALSE, value = "taxon_indexes")
leaves(obj, subset = NULL, recursive = TRUE, simplify = FALSE, value = "taxon_indexes")

Arguments

obj The [taxonomy()] or [taxmap()] object containing taxon information to be queried.

subset Taxon IDs, TRUE/FALSE vector, or taxon indexes to find leaves for. Default:
All taxa in ‘obj‘ will be used. Any variable name that appears in [all_names()]
can be used as if it was a vector on its own.

recursive (‘logical‘ or ‘numeric‘) If ‘FALSE‘, only return the leaves if they occur one
rank below the target taxa. If ‘TRUE‘, return all of the leaves for each taxon.
Positive numbers indicate the number of recursions (i.e. number of ranks below
the target taxon to return). ‘1‘ is equivalent to ‘FALSE‘. Negative numbers are
equivalent to ‘TRUE‘.

simplify (‘logical‘) If ‘TRUE‘, then combine all the results into a single vector of unique
values.

value What data to return. This is usually the name of column in a table in ‘obj$data‘.
Any result of ‘all_names(obj)‘ can be used, but it usually only makes sense to
data that corresponds to taxa 1:1, such as [taxon_ranks()]. By default, taxon
indexes are returned.

Value

‘character‘

See Also

Other taxonomy indexing functions: branches(), internodes(), roots(), stems(), subtaxa(),
supertaxa()

Examples

Return indexes of leaf taxa
leaves(ex_taxmap)

Return indexes for a subset of taxa
leaves(ex_taxmap, subset = 2:17)
leaves(ex_taxmap, subset = taxon_names == "Plantae")

Return something besides taxon indexes

leaves_apply 71

leaves(ex_taxmap, value = "taxon_names")
leaves(ex_taxmap, subset = taxon_ranks == "genus", value = "taxon_names")

Return a vector of all unique values
leaves(ex_taxmap, value = "taxon_names", simplify = TRUE)

Only return leaves for their direct supertaxa
leaves(ex_taxmap, value = "taxon_names", recursive = FALSE)

leaves_apply Apply function to leaves of each taxon

Description

Apply a function to the leaves of each taxon. This is similar to using [leaves()] with [lapply()] or
[sapply()].

obj$leaves_apply(func, subset = NULL, recursive = TRUE,
simplify = FALSE, value = "taxon_indexes", ...)

leaves_apply(obj, func, subset = NULL, recursive = TRUE,
simplify = FALSE, value = "taxon_indexes", ...)

Arguments

obj The [taxonomy()] or [taxmap()] object containing taxon information to be queried.

func (‘function‘) The function to apply.

subset Taxon IDs, TRUE/FALSE vector, or taxon indexes to use. Default: All taxa in
‘obj‘ will be used. Any variable name that appears in [all_names()] can be used
as if it was a vector on its own.

recursive (‘logical‘ or ‘numeric‘) If ‘FALSE‘, only return the leaves if they occur one
rank below the target taxa. If ‘TRUE‘, return all of the leaves for each taxon.
Positive numbers indicate the number of recursions (i.e. number of ranks below
the target taxon to return). ‘1‘ is equivalent to ‘FALSE‘. Negative numbers are
equivalent to ‘TRUE‘.

simplify (‘logical‘) If ‘TRUE‘, then combine all the results into a single vector of unique
values.

value What data to give to the function. Any result of ‘all_names(obj)‘ can be used,
but it usually only makes sense to use data that has an associated taxon id.

... Extra arguments are passed to the function ‘func‘.

72 lookup_tax_data

Examples

Count number of leaves under each taxon or its subtaxa
leaves_apply(ex_taxmap, length)

Count number of leaves under each taxon
leaves_apply(ex_taxmap, length, recursive = FALSE)

Converting output of leaves to upper case
leaves_apply(ex_taxmap, value = "taxon_names", toupper)

Passing arguments to the function
leaves_apply(ex_taxmap, value = "taxon_names", paste0, collapse = ", ")

lookup_tax_data Convert one or more data sets to taxmap

Description

Looks up taxonomic data from NCBI sequence IDs, taxon IDs, or taxon names that are present in a
table, list, or vector. Also can incorporate additional associated datasets.

Usage

lookup_tax_data(
tax_data,
type,
column = 1,
datasets = list(),
mappings = c(),
database = "ncbi",
include_tax_data = TRUE,
use_database_ids = TRUE,
ask = TRUE

)

Arguments

tax_data A table, list, or vector that contain sequence IDs, taxon IDs, or taxon names. *
tables: The ‘column‘ option must be used to specify which column contains the
sequence IDs, taxon IDs, or taxon names. * lists: There must be only one item
per list entry unless the ‘column‘ option is used to specify what item to use in
each list entry. * vectors: simply a vector of sequence IDs, taxon IDs, or taxon
names.

type What type of information can be used to look up the classifications. Takes one
of the following values: * ‘"seq_id"‘: A database sequence ID with an associ-
ated classification (e.g. NCBI accession numbers). * ‘"taxon_id"‘: A reference

lookup_tax_data 73

database taxon ID (e.g. a NCBI taxon ID) * ‘"taxon_name"‘: A single taxon
name (e.g. "Homo sapiens" or "Primates") * ‘"fuzzy_name"‘: A single taxon
name, but check for misspellings first. Only use if you think there are mis-
spellings. Using ‘"taxon_name"‘ is faster.

column (‘character‘ or ‘integer‘) The name or index of the column that contains infor-
mation used to lookup classifications. This only applies when a table or list is
supplied to ‘tax_data‘.

datasets Additional lists/vectors/tables that should be included in the resulting ‘taxmap‘
object. The ‘mappings‘ option is use to specify how these data sets relate to the
‘tax_data‘ and, by inference, what taxa apply to each item.

mappings (named ‘character‘) This defines how the taxonomic information in ‘tax_data‘
applies to data in ‘datasets‘. This option should have the same number of in-
puts as ‘datasets‘, with values corresponding to each dataset. The names of the
character vector specify what information in ‘tax_data‘ is shared with info in
each ‘dataset‘, which is specified by the corresponding values of the character
vector. If there are no shared variables, you can add ‘NA‘ as a placeholder, but
you could just leave that data out since it is not benefiting from being in the
taxmap object. The names/values can be one of the following: * For tables,
the names of columns can be used. * ‘"{{index}}"‘ : This means to use the
index of rows/items * ‘"{{name}}"‘ : This means to use row/item names. *
‘"{{value}}"‘ : This means to use the values in vectors or lists. Lists will be
converted to vectors using [unlist()].

database (‘character‘) The name of a database to use to look up classifications. Options
include "ncbi", "itis", "eol", "col", "tropicos", and "nbn".

include_tax_data

(‘TRUE‘/‘FALSE‘) Whether or not to include ‘tax_data‘ as a dataset, like those
in ‘datasets‘.

use_database_ids

(‘TRUE‘/‘FALSE‘) Whether or not to use downloaded database taxon ids in-
stead of arbitrary, automatically-generated taxon ids.

ask (‘TRUE‘/‘FALSE‘) Whether or not to prompt the user for input. Currently, this
would only happen when looking up the taxonomy of a taxon name with mul-
tiple matches. If ‘FALSE‘, taxa with multiple hits are treated as if they do not
exist in the database. This might change in the future if we can find an elegant
way of handling this.

Failed Downloads

If you have invalid inputs or a download fails for another reason, then there will be a "unknown"
taxon ID as a placeholder and failed inputs will be assigned to this ID. You can remove these using
[filter_taxa()] like so: ‘filter_taxa(result, taxon_ids != "unknown")‘. Add ‘drop_obs = FALSE‘ if
you want the input data, but want to remove the taxon.

See Also

Other parsers: extract_tax_data(), parse_dada2(), parse_edge_list(), parse_greengenes(),
parse_mothur_tax_summary(), parse_mothur_taxonomy(), parse_newick(), parse_phylo(),

74 lookup_tax_data

parse_phyloseq(), parse_qiime_biom(), parse_rdp(), parse_silva_fasta(), parse_tax_data(),
parse_ubiome(), parse_unite_general()

Examples

Look up taxon names in vector from NCBI
lookup_tax_data(c("homo sapiens", "felis catus", "Solanaceae"),

type = "taxon_name")

Look up taxon names in list from NCBI
lookup_tax_data(list("homo sapiens", "felis catus", "Solanaceae"),

type = "taxon_name")

Look up taxon names in table from NCBI
my_table <- data.frame(name = c("homo sapiens", "felis catus"),

decency = c("meh", "good"))
lookup_tax_data(my_table, type = "taxon_name", column = "name")

Look up taxon names from a different database
lookup_tax_data(c("homo sapiens", "felis catus", "Solanaceae"),

type = "taxon_name", database = "ITIS")

Prevent asking questions for ambiguous taxon names
lookup_tax_data(c("homo sapiens", "felis catus", "Solanaceae"),

type = "taxon_name", database = "ITIS", ask = FALSE)

Look up taxon IDs from NCBI
lookup_tax_data(c("9689", "9694", "9643"), type = "taxon_id")

Look up sequence IDs from NCBI
lookup_tax_data(c("AB548412", "FJ358423", "DQ334818"),

type = "seq_id")

Make up new taxon IDs instead of using the downloaded ones
lookup_tax_data(c("AB548412", "FJ358423", "DQ334818"),

type = "seq_id", use_database_ids = FALSE)

--- Parsing multiple datasets at once (advanced) ---
The rest is one example for how to classify multiple datasets at once.

Make example data with taxonomic classifications
species_data <- data.frame(tax = c("Mammalia;Carnivora;Felidae",

"Mammalia;Carnivora;Felidae",
"Mammalia;Carnivora;Ursidae"),

species = c("Panthera leo",
"Panthera tigris",
"Ursus americanus"),

species_id = c("A", "B", "C"))

Make example data associated with the taxonomic data
Note how this does not contain classifications, but
does have a varaible in common with "species_data" ("id" = "species_id")

make_dada2_asv_table 75

abundance <- data.frame(id = c("A", "B", "C", "A", "B", "C"),
sample_id = c(1, 1, 1, 2, 2, 2),
counts = c(23, 4, 3, 34, 5, 13))

Make another related data set named by species id
common_names <- c(A = "Lion", B = "Tiger", C = "Bear", "Oh my!")

Make another related data set with no names
foods <- list(c("ungulates", "boar"),

c("ungulates", "boar"),
c("salmon", "fruit", "nuts"))

Make a taxmap object with these three datasets
x = lookup_tax_data(species_data,

type = "taxon_name",
datasets = list(counts = abundance,

my_names = common_names,
foods = foods),

mappings = c("species_id" = "id",
"species_id" = "{{name}}",
"{{index}}" = "{{index}}"),

column = "species")

Note how all the datasets have taxon ids now
x$data

This allows for complex mappings between variables that other functions use
map_data(x, my_names, foods)
map_data(x, counts, my_names)

make_dada2_asv_table Make a imitation of the dada2 ASV abundance matrix

Description

Attempts to save the abundance matrix stored as a table in a taxmap object in the dada2 ASV
abundance matrix format. If the taxmap object was created using parse_dada2, then it should be
able to replicate the format exactly with the default settings.

Usage

make_dada2_asv_table(obj, asv_table = "asv_table", asv_id = "asv_id")

Arguments

obj A taxmap object

asv_table The name of the abundance matrix in the taxmap object to use.

asv_id The name of the column in asv_table with unique ASV ids or sequences.

76 make_dada2_tax_table

Value

A numeric matrix with rows as samples and columns as ASVs

See Also

Other writers: make_dada2_tax_table(), write_greengenes(), write_mothur_taxonomy(),
write_rdp(), write_silva_fasta(), write_unite_general()

make_dada2_tax_table Make a imitation of the dada2 taxonomy matrix

Description

Attempts to save the taxonomy information assocaited with an abundance matrix in a taxmap object
in the dada2 taxonomy matrix format. If the taxmap object was created using parse_dada2, then it
should be able to replicate the format exactly with the default settings.

Usage

make_dada2_tax_table(obj, asv_table = "asv_table", asv_id = "asv_id")

Arguments

obj A taxmap object

asv_table The name of the abundance matrix in the taxmap object to use.

asv_id The name of the column in asv_table with unique ASV ids or sequences.

Value

A character matrix with rows as ASVs and columns as taxonomic ranks.

See Also

Other writers: make_dada2_asv_table(), write_greengenes(), write_mothur_taxonomy(),
write_rdp(), write_silva_fasta(), write_unite_general()

map_data 77

map_data Create a mapping between two variables

Description

Creates a named vector that maps the values of two variables associated with taxa in a [taxonomy()]
or [taxmap()] object. Both values must be named by taxon ids.

obj$map_data(from, to, warn = TRUE)
map_data(obj, from, to, warn = TRUE)

Arguments

obj The [taxonomy()] or [taxmap()] object.

from The value used to name the output. There will be one output value for each value
in ‘from‘. Any variable that appears in [all_names()] can be used as if it was a
variable on its own.

to The value returned in the output. Any variable that appears in [all_names()] can
be used as if it was a variable on its own.

warn If ‘TRUE‘, issue a warning if there are multiple unique values of ‘to‘ for each
value of ‘from‘.

Value

A vector of ‘to‘ values named by values in ‘from‘.

See Also

Other taxonomy data functions: classifications(), id_classifications(), is_branch(),
is_internode(), is_leaf(), is_root(), is_stem(), map_data_(), n_leaves(), n_leaves_1(),
n_subtaxa(), n_subtaxa_1(), n_supertaxa(), n_supertaxa_1(), taxon_ids(), taxon_indexes(),
taxon_names(), taxon_ranks()

Examples

Mapping between two variables in `all_names(ex_taxmap)`
map_data(ex_taxmap, from = taxon_names, to = n_legs > 0)

Mapping with external variables
x = c("d" = "looks like a cat", "h" = "big scary cats",

"i" = "smaller cats", "m" = "might eat you", "n" = "Meow! (Feed me!)")
map_data(ex_taxmap, from = taxon_names, to = x)

78 map_data_

map_data_ Create a mapping without NSE

Description

Creates a named vector that maps the values of two variables associated with taxa in a [taxonomy()]
or [taxmap()] object without using Non-Standard Evaluation (NSE). Both values must be named by
taxon ids. This is the same as [map_data()] without NSE and can be useful in some odd cases where
NSE fails to work as expected.

obj$map_data(from, to)
map_data(obj, from, to)

Arguments

obj The [taxonomy()] or [taxmap()] object.

from The value used to name the output. There will be one output value for each value
in ‘from‘.

to The value returned in the output.

Value

A vector of ‘to‘ values named by values in ‘from‘.

See Also

Other taxonomy data functions: classifications(), id_classifications(), is_branch(),
is_internode(), is_leaf(), is_root(), is_stem(), map_data(), n_leaves(), n_leaves_1(),
n_subtaxa(), n_subtaxa_1(), n_supertaxa(), n_supertaxa_1(), taxon_ids(), taxon_indexes(),
taxon_names(), taxon_ranks()

Examples

x = c("d" = "looks like a cat", "h" = "big scary cats",
"i" = "smaller cats", "m" = "might eat you", "n" = "Meow! (Feed me!)")

map_data_(ex_taxmap, from = ex_taxmap$taxon_names(), to = x)

metacoder 79

metacoder Metacoder

Description

A package for planning and analysis of amplicon metagenomics research projects.

Details

The goal of the metacoder package is to provide a set of tools for:

• Standardized parsing of taxonomic information from diverse resources.

• Visualization of statistics distributed over taxonomic classifications.

• Evaluating potential metabarcoding primers for taxonomic specificity.

• Providing flexible functions for analyzing taxonomic and abundance data.

To accomplish these goals, metacoder leverages resources from other R packages, interfaces with
external programs, and provides novel functions where needed to allow for entire analyses within
R.

Documentation

The full documentation can be found online at https://grunwaldlab.github.io/metacoder_
documentation/.

There is also a short vignette included for offline use that can be accessed by the following code:

browseVignettes(package = "metacoder")

Plotting:

• heat_tree

• heat_tree_matrix

In silico PCR:

• primersearch

Analysis:

• calc_taxon_abund

• calc_obs_props

• rarefy_obs

• compare_groups

• zero_low_counts

• calc_n_samples

• filter_ambiguous_taxa

https://grunwaldlab.github.io/metacoder_documentation/
https://grunwaldlab.github.io/metacoder_documentation/

80 metacoder

Parsers:

• parse_greengenes

• parse_mothur_tax_summary

• parse_mothur_taxonomy

• parse_newick

• parse_phyloseq

• parse_phylo

• parse_qiime_biom

• parse_rdp

• parse_silva_fasta

• parse_unite_general

Writers:

• write_greengenes

• write_mothur_taxonomy

• write_rdp

• write_silva_fasta

• write_unite_general

Database querying:

• ncbi_taxon_sample

Main classes

These are the classes users would typically interact with:

* [taxon]: A class used to define a single taxon. Many other classes in the ‘taxa“ package include
one or more objects of this class. * : Stores one or more [taxon] objects. This is just a thin wrapper
for a list of [taxon] objects. * [hierarchy]: A class containing an ordered list of [taxon] objects
that represent a hierarchical classification. * [hierarchies]: A list of taxonomic classifications. This
is just a thin wrapper for a list of [hierarchy] objects. * [taxonomy]: A taxonomy composed of
[taxon] objects organized in a tree structure. This differs from the [hierarchies] class in how the
[taxon] objects are stored. Unlike a [hierarchies] object, each unique taxon is stored only once and
the relationships between taxa are stored in an edgelist. * [taxmap]: A class designed to store a
taxonomy and associated user-defined data. This class builds on the [taxonomy] class. User defined
data can be stored in the list ‘obj$data‘, where ‘obj‘ is a taxmap object. Any number of user-defined
lists, vectors, or tables mapped to taxa can be manipulated in a cohesive way such that relationships
between taxa and data are preserved.

metacoder 81

Minor classes

These classes are mostly components for the larger classes above and would not typically be used
on their own.

* [taxon_database]: Used to store information about taxonomy databases. * [taxon_id]: Used to
store taxon IDs, either arbitrary or from a particular taxonomy database. * [taxon_name]: Used to
store taxon names, either arbitrary or from a particular taxonomy database. * [taxon_rank]: Used
to store taxon ranks (e.g. species, family), either arbitrary or from a particular taxonomy database.

Major manipulation functions

These are some of the more important functions used to filter data in classes that store multiple taxa,
like [hierarchies], [taxmap], and [taxonomy].

* [filter_taxa]: Filter taxa in a [taxonomy] or [taxmap] object with a series of conditions. Re-
lationships between remaining taxa and user-defined data are preserved (There are many options
controlling this). * [filter_obs]: Filter user-defined data [taxmap] object with a series of conditions.
Relationships between remaining taxa and user-defined data are preserved (There are many options
controlling this); * [sample_n_taxa]: Randomly sample taxa. Has same abilities as [filter_taxa]. *
[sample_n_obs]: Randomly sample observations. Has same abilities as [filter_obs]. * [mutate_obs]:
Add datasets or columns to datasets in the ‘data‘ list of [taxmap] objects. * [pick]: Pick out specific
taxa, while others are dropped in [hierarchy] and [hierarchies] objects. * [pop]: Pop out taxa (drop
them) in [hierarchy] and [hierarchies] objects. * [span]: Select a range of taxa, either by two names,
or relational operators in [hierarchy] and [hierarchies] objects.

Mapping functions

There are lots of functions for getting information for each taxon.

* [subtaxa]: Return data for the subtaxa of each taxon in an [taxonomy] or [taxmap] object. *
[supertaxa]: Return data for the supertaxa of each taxon in an [taxonomy] or [taxmap] object. *
[roots]: Return data for the roots of each taxon in an [taxonomy] or [taxmap] object. * [leaves]:
Return data for the leaves of each taxon in an [taxonomy] or [taxmap] object. * [obs]: Return
user-specific data for each taxon and all of its subtaxa in an [taxonomy] or [taxmap] object.

The kind of classes used

Note, this is mostly of interest to developers and advanced users.

The classes in the ‘taxa‘ package are mostly [R6](https://adv-r.hadley.nz/r6.html) classes ([R6Class]).
A few of the simpler ones (and [hierarchies]) are [S3](https://adv-r.hadley.nz/s3.html) instead. R6
classes are different than most R objects because they are [mutable](https://en.wikipedia.org/wiki/Immutable_object)
(e.g. A function can change its input without returning it). In this, they are more similar to class sys-
tems in [object-oriented](https://en.wikipedia.org/wiki/Object-oriented_programming) languages like
python. As in other object-oriented class systems, functions are thought to "belong" to classes (i.e.
the data), rather than functions existing independently of the data. For example, the function ‘print‘
in R exists apart from what it is printing, although it will change how it prints based on what the
class of the data is that is passed to it. In fact, a user can make a custom print method for their
own class by defining a function called ‘print.myclassname‘. In contrast, the functions that operate
on R6 functions are "packaged" with the data they operate on. For example, a print method of an
object for an R6 class might be called like ‘my_data$print()‘ instead of ‘print(my_data)‘.

82 metacoder

The two ways to call functions

Note, you will need to read the previous section to fully understand this one.

Since the R6 function syntax (e.g. ‘my_data$print()‘) might be confusing to many R users, all func-
tions in ‘taxa‘ also have S3 versions. For example, the [filter_taxa()] function can be called on a
[taxmap] object called ‘my_obj‘ like ‘my_obj$filter_taxa(...)‘ (the R6 syntax) or ‘filter_taxa(my_obj,
...)‘ (the S3 syntax). For some functions, these two way of calling the function can have different
effect. For functions that do not returned a modified version of the input (e.g. [subtaxa()]), the
two ways have identical behavior. However, functions like [filter_taxa()], that modify their inputs,
actually change the object passed to them as the first argument as well as returning that object. For
example,

‘my_obj <- filter_taxa(my_obj, ...)‘

and

‘my_obj$filter_taxa(...)‘

and

‘new_obj <- my_obj$filter_taxa(...)‘

all replace ‘my_obj‘ with the filtered result, but

‘new_obj <- filter_taxa(my_obj, ...)‘

will not modify ‘my_obj‘.

Non-standard evaluation

This is a rather advanced topic.

Like packages such as ‘ggplot2‘ and [dplyr], the ‘taxa‘ package uses non-standard evaluation to
allow code to be more readable and shorter. In effect, there are variables that only "exist" inside a
function call and depend on what is passed to that function as the first parameter (usually a class
object). For example, in the ‘dpylr‘ function [filter()], column names can be used as if they were
independent variables. See ‘?dpylr::filter‘ for examples of this. The ‘taxa‘ package builds on this
idea.

For many functions that work on [taxonomy] or [taxmap] objects (e.g. [filter_taxa]), some functions
that return per-taxon information (e.g. [taxon_names()]) can be referred to by just the name of the
function. When one of these functions are referred to by name, the function is run on the relevant
object and its value replaces the function name. For example,

‘new_obj <- filter_taxa(my_obj, taxon_names == "Bacteria")‘

is identical to:

‘new_obj <- filter_taxa(my_obj, taxon_names(my_obj) == "Bacteria")‘

which is identical to:

‘new_obj <- filter_taxa(my_obj, my_obj$taxon_names() == "Bacteria")‘

which is identical to:

‘my_names <- taxon_names(my_obj)‘

‘new_obj <- filter_taxa(my_obj, my_names == "Bacteria")‘

For ‘taxmap‘ objects, you can also use names of user defined lists, vectors, and the names of
columns in user-defined tables that are stored in the ‘obj$data‘ list. See [filter_taxa()] for examples.

mutate_obs 83

You can even add your own functions that are called by name by adding them to the ‘obj$funcs‘
list. For any object with functions that use non-standard evaluation, you can see what values can be
used with [all_names()] like ‘all_names(obj)‘.

Dependencies and inspiration

Various elements of the ‘taxa‘ package were inspired by the [dplyr] and [taxize] packages. This
package started as parts of the ‘metacoder‘ and ‘binomen‘ packages. There are also many depen-
dencies that make ‘taxa‘ possible.

Feedback and contributions

Find a problem? Have a suggestion? Have a question? Please submit an issue at our [GitHub
repository](https://github.com/ropensci/taxa):

https://github.com/ropensci/taxa/issues

A GitHub account is free and easy to set up. We welcome feedback! If you don’t want to use
GitHub for some reason, feel free to email us. We do prefer posting to github since it allows others
that might have the same issue to see our conversation. It also helps us keep track of what problems
we need to address.

Want to contribute code or make a change to the code? Great, thank you! Please [fork](https://help.github.com/articles/fork-
a-repo/) our GitHub repository and submit a [pull request](https://help.github.com/articles/about-
pull-requests/).

Author(s)

Zachary Foster and Niklaus Grunwald

mutate_obs Add columns to [taxmap()] objects

Description

Add columns to tables in ‘obj$data‘ in [taxmap()] objects. See [dplyr::mutate()] for the inspiration
for this function and more information. Calling the function using the ‘obj$mutate_obs(...)‘ style ed-
its "obj" in place, unlike most R functions. However, calling the function using the ‘mutate_obs(obj,
...)‘ imitates R’s traditional copy-on-modify semantics, so "obj" would not be changed; instead a
changed version would be returned, like most R functions.

obj$mutate_obs(data, ...)
mutate_obs(obj, data, ...)

84 ncbi_taxon_sample

Arguments

obj An object of type [taxmap()]

data Dataset name, index, or a logical vector that indicates which dataset in ‘obj$data‘
to add columns to.

... One or more named columns to add. Newly created columns can be referenced
in the same function call. Any variable name that appears in [all_names()] can
be used as if it was a vector on its own.

target DEPRECIATED. use "data" instead.

Value

An object of type [taxmap()]

See Also

Other taxmap manipulation functions: arrange_obs(), arrange_taxa(), filter_obs(), filter_taxa(),
sample_frac_obs(), sample_frac_taxa(), sample_n_obs(), sample_n_taxa(), select_obs(),
transmute_obs()

Examples

Add column to existing tables
mutate_obs(ex_taxmap, "info",

new_col = "Im new",
newer_col = paste0(new_col, "er!"))

Create columns in a new table
mutate_obs(ex_taxmap, "new_table",

nums = 1:10,
squared = nums ^ 2)

Add a new vector
mutate_obs(ex_taxmap, "new_vector", 1:10)

Add a new list
mutate_obs(ex_taxmap, "new_list", list(1, 2))

ncbi_taxon_sample Download representative sequences for a taxon

Description

Downloads a sample of sequences meant to evenly capture the diversity of a given taxon. Can be
used to get a shallow sampling of vast groups. CAUTION: This function can make MANY queries
to Genbank depending on arguments given and can take a very long time. Choose your arguments
carefully to avoid long waits and needlessly stressing NCBI’s servers. Use a downloaded database
and a parser from the taxa package when possible.

ncbi_taxon_sample 85

Usage

ncbi_taxon_sample(
name = NULL,
id = NULL,
target_rank,
min_counts = NULL,
max_counts = NULL,
interpolate_min = TRUE,
interpolate_max = TRUE,
min_children = NULL,
max_children = NULL,
seqrange = "1:3000",
getrelated = FALSE,
fuzzy = TRUE,
limit = 10,
entrez_query = NULL,
hypothetical = FALSE,
verbose = TRUE

)

Arguments

name (character of length 1) The taxon to download a sample of sequences for.

id (character of length 1) The taxon id to download a sample of sequences for.

target_rank (character of length 1) The finest taxonomic rank at which to sample. The
finest rank at which replication occurs. Must be a finer rank than taxon.

min_counts (named numeric) The minimum number of sequences to download for each
taxonomic rank. The names correspond to taxonomic ranks.

max_counts (named numeric) The maximum number of sequences to download for each
taxonomic rank. The names correspond to taxonomic ranks.

interpolate_min

(logical) If TRUE, values supplied to min_counts and min_children will be
used to infer the values of intermediate ranks not specified. Linear interpolation
between values of specified ranks will be used to determine values of unspecified
ranks.

interpolate_max

(logical) If TRUE, values supplied to max_counts and max_children will be
used to infer the values of intermediate ranks not specified. Linear interpolation
between values of specified ranks will be used to determine values of unspecified
ranks.

min_children (named numeric) The minimum number sub-taxa of taxa for a given rank must
have for its sequences to be searched. The names correspond to taxonomic
ranks.

max_children (named numeric) The maximum number sub-taxa of taxa for a given rank must
have for its sequences to be searched. The names correspond to taxonomic
ranks.

86 n_leaves

seqrange (character) Sequence range, as e.g., "1:1000". This is the range of sequence
lengths to search for. So "1:1000" means search for sequences from 1 to 1000
characters in length.

getrelated (logical) If TRUE, gets the longest sequences of a species in the same genus as
the one searched for. If FALSE, returns nothing if no match found.

fuzzy (logical) Whether to do fuzzy taxonomic ID search or exact search. If TRUE,
we use xXarbitraryXx[porgn:__txid<ID>], but if FALSE, we use txid<ID>.
Default: FALSE

limit (numeric) Number of sequences to search for and return. Max of 10,000. If you
search for 6000 records, and only 5000 are found, you will of course only get
5000 back.

entrez_query (character; length 1) An Entrez-format query to filter results with. This is
useful to search for sequences with specific characteristics. The format is the
same as the one used to seach genbank. (https://www.ncbi.nlm.nih.gov/
books/NBK3837/#EntrezHelp.Entrez_Searching_Options)

hypothetical (logical; length 1) If FALSE, an attempt will be made to not return hypothetical
or predicted sequences judging from accession number prefixs (XM and XR).
This can result in less than the limit being returned even if there are more
sequences available, since this filtering is done after searching NCBI.

verbose (logical) If TRUE, progress messages will be printed.

Examples

Look up 5 ITS sequences from each fungal class
data <- ncbi_taxon_sample(name = "Fungi", target_rank = "class", limit = 5,

entrez_query = '"internal transcribed spacer"[All Fields]')

Look up taxonomic information for sequences
obj <- lookup_tax_data(data, type = "seq_id", column = "gi_no")

Plot information
metacoder::filter_taxa(obj, taxon_names == "Fungi", subtaxa = TRUE) %>%

heat_tree(node_label = taxon_names, node_color = n_obs, node_size = n_obs)

n_leaves Get number of leaves

Description

Get number of leaves for each taxon in an object of type [taxonomy()] or [taxmap()]

obj$n_leaves()
n_leaves(obj)

https://www.ncbi.nlm.nih.gov/books/NBK3837/#EntrezHelp.Entrez_Searching_Options
https://www.ncbi.nlm.nih.gov/books/NBK3837/#EntrezHelp.Entrez_Searching_Options

n_leaves_1 87

Arguments

obj ([taxonomy()] or [taxmap()])

Value

numeric

See Also

Other taxonomy data functions: classifications(), id_classifications(), is_branch(),
is_internode(), is_leaf(), is_root(), is_stem(), map_data(), map_data_(), n_leaves_1(),
n_subtaxa(), n_subtaxa_1(), n_supertaxa(), n_supertaxa_1(), taxon_ids(), taxon_indexes(),
taxon_names(), taxon_ranks()

Examples

Get number of leaves for each taxon
n_leaves(ex_taxmap)

Filter taxa based on number of leaves
filter_taxa(ex_taxmap, n_leaves > 0)

n_leaves_1 Get number of leaves

Description

Get number of leaves for each taxon in an object of type [taxonomy()] or [taxmap()], not including
leaves of subtaxa etc.

obj$n_leaves_1()
n_leaves_1(obj)

Arguments

obj ([taxonomy()] or [taxmap()])

Value

numeric

See Also

Other taxonomy data functions: classifications(), id_classifications(), is_branch(),
is_internode(), is_leaf(), is_root(), is_stem(), map_data(), map_data_(), n_leaves(),
n_subtaxa(), n_subtaxa_1(), n_supertaxa(), n_supertaxa_1(), taxon_ids(), taxon_indexes(),
taxon_names(), taxon_ranks()

88 n_obs

Examples

Get number of leaves for each taxon
n_leaves_1(ex_taxmap)

Filter taxa based on number of leaves
filter_taxa(ex_taxmap, n_leaves_1 > 0)

n_obs Count observations in [taxmap()]

Description

Count observations for each taxon in a data set in a [taxmap()] object. This includes observations
for the specific taxon and the observations of its subtaxa. "Observations" in this sense are the items
(for list/vectors) or rows (for tables) in a dataset. By default, observations in the first data set in the
[taxmap()] object is used. For example, if the data set is a table, then a value of 3 for a taxon means
that their are 3 rows in that table assigned to that taxon or one of its subtaxa.

obj$n_obs(data)
n_obs(obj, data)

Arguments

obj ([taxmap()])
data Dataset name, index, or a logical vector that indicates which dataset in ‘obj$data‘

to add columns to.
target DEPRECIATED. use "data" instead.

Value

‘numeric‘

See Also

Other taxmap data functions: n_obs_1()

Examples

Get number of observations for each taxon in first dataset
n_obs(ex_taxmap)

Get number of observations in a specified data set
n_obs(ex_taxmap, "info")
n_obs(ex_taxmap, "abund")

Filter taxa using number of observations in the first table
filter_taxa(ex_taxmap, n_obs > 1)

n_obs_1 89

n_obs_1 Count observation assigned in [taxmap()]

Description

Count observations for each taxon in a data set in a [taxmap()] object. This includes observations
for the specific taxon but NOT the observations of its subtaxa. "Observations" in this sense are the
items (for list/vectors) or rows (for tables) in a dataset. By default, observations in the first data set
in the [taxmap()] object is used. For example, if the data set is a table, then a value of 3 for a taxon
means that their are 3 rows in that table assigned to that taxon.

obj$n_obs_1(data)
n_obs_1(obj, data)

Arguments

obj ([taxmap()])

data Dataset name, index, or a logical vector that indicates which dataset in ‘obj$data‘
to add columns to.

target DEPRECIATED. use "data" instead.

Value

‘numeric‘

See Also

Other taxmap data functions: n_obs()

Examples

Get number of observations for each taxon in first dataset
n_obs_1(ex_taxmap)

Get number of observations in a specified data set
n_obs_1(ex_taxmap, "info")
n_obs_1(ex_taxmap, "abund")

Filter taxa using number of observations in the first table
filter_taxa(ex_taxmap, n_obs_1 > 0)

90 n_subtaxa_1

n_subtaxa Get number of subtaxa

Description

Get number of subtaxa for each taxon in an object of type [taxonomy()] or [taxmap()]

obj$n_subtaxa()
n_subtaxa(obj)

Arguments

obj ([taxonomy()] or [taxmap()])

Value

numeric

See Also

Other taxonomy data functions: classifications(), id_classifications(), is_branch(),
is_internode(), is_leaf(), is_root(), is_stem(), map_data(), map_data_(), n_leaves(),
n_leaves_1(), n_subtaxa_1(), n_supertaxa(), n_supertaxa_1(), taxon_ids(), taxon_indexes(),
taxon_names(), taxon_ranks()

Examples

Count number of subtaxa within each taxon
n_subtaxa(ex_taxmap)

Filter taxa based on number of subtaxa
(this command removed all leaves or "tips" of the tree)
filter_taxa(ex_taxmap, n_subtaxa > 0)

n_subtaxa_1 Get number of subtaxa

Description

Get number of subtaxa for each taxon in an object of type [taxonomy()] or [taxmap()], not including
subtaxa of subtaxa etc. This does not include subtaxa assigned to subtaxa.

obj$n_subtaxa_1()
n_subtaxa_1(obj)

n_supertaxa 91

Arguments

obj ([taxonomy()] or [taxmap()])

Value

numeric

See Also

Other taxonomy data functions: classifications(), id_classifications(), is_branch(),
is_internode(), is_leaf(), is_root(), is_stem(), map_data(), map_data_(), n_leaves(),
n_leaves_1(), n_subtaxa(), n_supertaxa(), n_supertaxa_1(), taxon_ids(), taxon_indexes(),
taxon_names(), taxon_ranks()

Examples

Count number of immediate subtaxa in each taxon
n_subtaxa_1(ex_taxmap)

Filter taxa based on number of subtaxa
(this command removed all leaves or "tips" of the tree)
filter_taxa(ex_taxmap, n_subtaxa_1 > 0)

n_supertaxa Get number of supertaxa

Description

Get number of supertaxa for each taxon in an object of type [taxonomy()] or [taxmap()].

obj$n_supertaxa()
n_supertaxa(obj)

Arguments

obj ([taxonomy()] or [taxmap()])

Value

numeric

See Also

Other taxonomy data functions: classifications(), id_classifications(), is_branch(),
is_internode(), is_leaf(), is_root(), is_stem(), map_data(), map_data_(), n_leaves(),
n_leaves_1(), n_subtaxa(), n_subtaxa_1(), n_supertaxa_1(), taxon_ids(), taxon_indexes(),
taxon_names(), taxon_ranks()

92 n_supertaxa_1

Examples

Count number of supertaxa that contain each taxon
n_supertaxa(ex_taxmap)

Filter taxa based on the number of supertaxa
(this command removes all root taxa)
filter_taxa(ex_taxmap, n_supertaxa > 0)

n_supertaxa_1 Get number of supertaxa

Description

Get number of immediate supertaxa (i.e. not supertaxa of supertaxa, etc) for each taxon in an object
of type [taxonomy()] or [taxmap()]. This should always be either 1 or 0.

obj$n_supertaxa_1()
n_supertaxa_1(obj)

Arguments

obj ([taxonomy()] or [taxmap()])

Value

numeric

See Also

Other taxonomy data functions: classifications(), id_classifications(), is_branch(),
is_internode(), is_leaf(), is_root(), is_stem(), map_data(), map_data_(), n_leaves(),
n_leaves_1(), n_subtaxa(), n_subtaxa_1(), n_supertaxa(), taxon_ids(), taxon_indexes(),
taxon_names(), taxon_ranks()

Examples

Test for the presence of supertaxa containing each taxon
n_supertaxa_1(ex_taxmap)

Filter taxa based on the presence of supertaxa
(this command removes all root taxa)
filter_taxa(ex_taxmap, n_supertaxa_1 > 0)

obs 93

obs Get data indexes associated with taxa

Description

Given a [taxmap()] object, return data associated with each taxon in a given table included in that
[taxmap()] object.

obj$obs(data, value = NULL, subset = NULL,
recursive = TRUE, simplify = FALSE)

obs(obj, data, value = NULL, subset = NULL,
recursive = TRUE, simplify = FALSE)

Arguments

obj ([taxmap()]) The [taxmap()] object containing taxon information to be queried.

data Either the name of something in ‘obj$data‘ that has taxon information or a an ex-
ternal object with taxon information. For tables, there must be a column named
"taxon_id" and lists/vectors must be named by taxon ID.

value What data to return. This is usually the name of column in a table in ‘obj$data‘.
Any result of ‘all_names(obj)‘ can be used. If the value used has names, it is
assumed that the names are taxon ids and the taxon ids are used to look up the
correct values.

subset Taxon IDs, TRUE/FALSE vector, or taxon indexes to find observations for.
Default: All taxa in ‘obj‘ will be used. Any variable name that appears in
[all_names()] can be used as if it was a vector on its own.

recursive (‘logical‘ or ‘numeric‘) If ‘FALSE‘, only return the observation assigned to the
specified input taxa, not subtaxa. If ‘TRUE‘, return all the observations of every
subtaxa, etc. Positive numbers indicate the number of ranks below the each
taxon to get observations for ‘0‘ is equivalent to ‘FALSE‘. Negative numbers
are equivalent to ‘TRUE‘.

simplify (‘logical‘) If ‘TRUE‘, then combine all the results into a single vector of unique
observation indexes.

Value

If ‘simplify = FALSE‘, then a list of vectors of observation indexes are returned corresponding
to the ‘data‘ argument. If ‘simplify = TRUE‘, then the observation indexes for all ‘data‘ taxa are
returned in a single vector.

Examples

Get indexes of rows corresponding to each taxon
obs(ex_taxmap, "info")

Get only a subset of taxon indexes

94 obs_apply

obs(ex_taxmap, "info", subset = 1:2)

Get only a subset of taxon IDs
obs(ex_taxmap, "info", subset = c("b", "c"))

Get only a subset of taxa using logical tests
obs(ex_taxmap, "info", subset = taxon_ranks == "genus")

Only return indexes of rows assinged to each taxon explicitly
obs(ex_taxmap, "info", recursive = FALSE)

Lump all row indexes in a single vector
obs(ex_taxmap, "info", simplify = TRUE)

Return values from a dataset instead of indexes
obs(ex_taxmap, "info", value = "name")

obs_apply Apply function to observations per taxon

Description

Apply a function to data for the observations for each taxon. This is similar to using [obs()] with
[lapply()] or [sapply()].

obj$obs_apply(data, func, simplify = FALSE, value = NULL,
subset = NULL, recursive = TRUE, ...)

obs_apply(obj, data, func, simplify = FALSE, value = NULL,
subset = NULL, recursive = TRUE, ...)

Arguments

obj The [taxmap()] object containing taxon information to be queried.

data Either the name of something in ‘obj$data‘ that has taxon information or a an ex-
ternal object with taxon information. For tables, there must be a column named
"taxon_id" and lists/vectors must be named by taxon ID.

func (‘function‘) The function to apply.

simplify (‘logical‘) If ‘TRUE‘, convert lists to vectors.

value What data to give to the function. This is usually the name of column in a table
in ‘obj$data‘. Any result of ‘all_names(obj)‘ can be used, but it usually only
makes sense to use columns in the dataset specified by the ‘data‘ option. By
default, the indexes of observation in ‘data‘ are returned.

subset Taxon IDs, TRUE/FALSE vector, or taxon indexes to use. Default: All taxa in
‘obj‘ will be used. Any variable name that appears in [all_names()] can be used
as if it was a vector on its own.

parse_dada2 95

recursive (‘logical‘ or ‘numeric‘) If ‘FALSE‘, only return the observation assigned to the
specified input taxa, not subtaxa. If ‘TRUE‘, return all the observations of every
subtaxa, etc. Positive numbers indicate the number of ranks below the each
taxon to get observations for ‘0‘ is equivalent to ‘FALSE‘. Negative numbers
are equivalent to ‘TRUE‘.

... Extra arguments are passed to the function.

Examples

Find the average number of legs in each taxon
obs_apply(ex_taxmap, "info", mean, value = "n_legs", simplify = TRUE)

One way to implement `n_obs` and find the number of observations per taxon
obs_apply(ex_taxmap, "info", length, simplify = TRUE)

parse_dada2 Convert the output of dada2 to a taxmap object

Description

Convert the ASV table and taxonomy table returned by dada2 into a taxmap object. An example of
the input format can be found by following the dada2 tutorial here: shttps://benjjneb.github.io/dada2/tutorial.html

Usage

parse_dada2(
seq_table,
tax_table,
class_key = "taxon_name",
class_regex = "(.*)",
include_match = TRUE

)

Arguments

seq_table The ASV abundance matrix, with rows as samples and columns as ASV ids or
sequences

tax_table The table with taxonomic classifications for ASVs, with ASVs in rows and tax-
onomic ranks as columns.

class_key (‘character‘ of length 1) The identity of the capturing groups defined using
‘class_regex‘. The length of ‘class_key‘ must be equal to the number of cap-
turing groups specified in ‘class_regex‘. Any names added to the terms will be
used as column names in the output. At least one ‘"taxon_name"‘ must be spec-
ified. Only ‘"info"‘ can be used multiple times. Each term must be one of those
described below: * ‘taxon_name‘: The name of a taxon. Not necessarily unique,
but are interpretable by a particular ‘database‘. Requires an internet connection.

96 parse_greengenes

* ‘taxon_rank‘: The rank of the taxon. This will be used to add rank info into the
output object that can be accessed by ‘out$taxon_ranks()‘. * ‘info‘: Arbitrary
taxon info you want included in the output. Can be used more than once.

class_regex (‘character‘ of length 1) A regular expression with capturing groups indicating
the locations of data for each taxon in the ‘class‘ term in the ‘key‘ argument. The
identity of the information must be specified using the ‘class_key‘ argument.
The ‘class_sep‘ option can be used to split the classification into data for each
taxon before matching. If ‘class_sep‘ is ‘NULL‘, each match of ‘class_regex‘
defines a taxon in the classification.

include_match (‘logical‘ of length 1) If ‘TRUE‘, include the part of the input matched by
‘class_regex‘ in the output object.

Value

taxmap

See Also

Other parsers: extract_tax_data(), lookup_tax_data(), parse_edge_list(), parse_greengenes(),
parse_mothur_tax_summary(), parse_mothur_taxonomy(), parse_newick(), parse_phylo(),
parse_phyloseq(), parse_qiime_biom(), parse_rdp(), parse_silva_fasta(), parse_tax_data(),
parse_ubiome(), parse_unite_general()

parse_greengenes Parse Greengenes release

Description

Parses the greengenes database.

Usage

parse_greengenes(tax_file, seq_file = NULL)

Arguments

tax_file (character of length 1) The file path to the greengenes taxonomy file.

seq_file (character of length 1) The file path to the greengenes sequence fasta file. This
is optional.

Details

The taxonomy input file has a format like:

228054 k__Bacteria; p__Cyanobacteria; c__Synechococcophycideae; o__Synech...
844608 k__Bacteria; p__Cyanobacteria; c__Synechococcophycideae; o__Synech...
...

parse_mothur_taxonomy 97

The optional sequence file has a format like:

>1111886
AACGAACGCTGGCGGCATGCCTAACACATGCAAGTCGAACGAGACCTTCGGGTCTAGTGGCGCACGGGTGCGTA...
>1111885
AGAGTTTGATCCTGGCTCAGAATGAACGCTGGCGGCGTGCCTAACACATGCAAGTCGTACGAGAAATCCCGAGC...
...

Value

taxmap

See Also

Other parsers: extract_tax_data(), lookup_tax_data(), parse_dada2(), parse_edge_list(),
parse_mothur_tax_summary(), parse_mothur_taxonomy(), parse_newick(), parse_phylo(),
parse_phyloseq(), parse_qiime_biom(), parse_rdp(), parse_silva_fasta(), parse_tax_data(),
parse_ubiome(), parse_unite_general()

parse_mothur_taxonomy Parse mothur Classify.seqs *.taxonomy output

Description

Parse the ‘*.taxonomy‘ file that is returned by the ‘Classify.seqs‘ command in mothur. If confidence
scores are present, they are included in the output.

Usage

parse_mothur_taxonomy(file = NULL, text = NULL)

Arguments

file (character of length 1) The file path to the input file. Either "file" or "text"
must be used, but not both.

text (character) An alternate input to "file". The contents of the file as a character.
Either "file" or "text" must be used, but not both.

Details

The input file has a format like:

AY457915 Bacteria(100);Firmicutes(99);Clostridiales(99);Johnsone...
AY457914 Bacteria(100);Firmicutes(100);Clostridiales(100);Johnso...
AY457913 Bacteria(100);Firmicutes(100);Clostridiales(100);Johnso...
AY457912 Bacteria(100);Firmicutes(99);Clostridiales(99);Johnsone...
AY457911 Bacteria(100);Firmicutes(99);Clostridiales(98);Ruminoco...

98 parse_mothur_tax_summary

or...

AY457915 Bacteria;Firmicutes;Clostridiales;Johnsonella_et_rel.;J...
AY457914 Bacteria;Firmicutes;Clostridiales;Johnsonella_et_rel.;J...
AY457913 Bacteria;Firmicutes;Clostridiales;Johnsonella_et_rel.;J...
AY457912 Bacteria;Firmicutes;Clostridiales;Johnsonella_et_rel.;J...
AY457911 Bacteria;Firmicutes;Clostridiales;Ruminococcus_et_rel.;...

Value

taxmap

See Also

Other parsers: extract_tax_data(), lookup_tax_data(), parse_dada2(), parse_edge_list(),
parse_greengenes(), parse_mothur_tax_summary(), parse_newick(), parse_phylo(), parse_phyloseq(),
parse_qiime_biom(), parse_rdp(), parse_silva_fasta(), parse_tax_data(), parse_ubiome(),
parse_unite_general()

parse_mothur_tax_summary

Parse mothur *.tax.summary Classify.seqs output

Description

Parse the ‘*.tax.summary‘ file that is returned by the ‘Classify.seqs‘ command in mothur.

Usage

parse_mothur_tax_summary(file = NULL, text = NULL, table = NULL)

Arguments

file (character of length 1) The file path to the input file. Either "file", "text", or
"table" must be used, but only one.

text (character) An alternate input to "file". The contents of the file as a character.
Either "file", "text", or "table" must be used, but only one.

table (character of length 1) An already parsed data.frame or tibble. Either "file",
"text", or "table" must be used, but only one.

Details

The input file has a format like:

parse_newick 99

taxlevel rankID taxon daughterlevels total A B C
0 0 Root 2 242 84 84 74
1 0.1 Bacteria 50 242 84 84 74
2 0.1.2 Actinobacteria 38 13 0 13 0
3 0.1.2.3 Actinomycetaceae-Bifidobacteriaceae 10 13 0 13 0
4 0.1.2.3.7 Bifidobacteriaceae 6 13 0 13 0
5 0.1.2.3.7.2 Bifidobacterium_choerinum_et_rel. 8 13 0 13 0
6 0.1.2.3.7.2.1 Bifidobacterium_angulatum_et_rel. 1 11 0 11 0
7 0.1.2.3.7.2.1.1 unclassified 1 11 0 11 0
8 0.1.2.3.7.2.1.1.1 unclassified 1 11 0 11 0
9 0.1.2.3.7.2.1.1.1.1 unclassified 1 11 0 11 0
10 0.1.2.3.7.2.1.1.1.1.1 unclassified 1 11 0 11 0
11 0.1.2.3.7.2.1.1.1.1.1.1 unclassified 1 11 0 11 0
12 0.1.2.3.7.2.1.1.1.1.1.1.1 unclassified 1 11 0 11 0
6 0.1.2.3.7.2.5 Bifidobacterium_longum_et_rel. 1 2 0 2 0
7 0.1.2.3.7.2.5.1 unclassified 1 2 0 2 0
8 0.1.2.3.7.2.5.1.1 unclassified 1 2 0 2 0
9 0.1.2.3.7.2.5.1.1.1 unclassified 1 2 0 2 0

or

taxon total A B C
"k__Bacteria";"p__Actinobacteria";"c__Actinobacteria";... 1 0 1 0
"k__Bacteria";"p__Actinobacteria";"c__Actinobacteria";... 1 0 1 0
"k__Bacteria";"p__Actinobacteria";"c__Actinobacteria";... 1 0 1 0

Value

taxmap

See Also

Other parsers: extract_tax_data(), lookup_tax_data(), parse_dada2(), parse_edge_list(),
parse_greengenes(), parse_mothur_taxonomy(), parse_newick(), parse_phylo(), parse_phyloseq(),
parse_qiime_biom(), parse_rdp(), parse_silva_fasta(), parse_tax_data(), parse_ubiome(),
parse_unite_general()

parse_newick Parse a Newick file

Description

Parse a Newick file into a taxmap object.

Usage

parse_newick(file = NULL, text = NULL)

100 parse_phylo

Arguments

file (character of length 1) The file path to the input file. Either file or text must
be supplied but not both.

text (character of length 1) The raw text to parse. Either file or text must be
supplied but not both.

Details

The input file has a format like:

(ant:17, (bat:31, cow:22):7, dog:22, (elk:33, fox:12):40);
(dog:20, (elephant:30, horse:60):20):50;

Value

taxmap

See Also

Other parsers: extract_tax_data(), lookup_tax_data(), parse_dada2(), parse_edge_list(),
parse_greengenes(), parse_mothur_tax_summary(), parse_mothur_taxonomy(), parse_phylo(),
parse_phyloseq(), parse_qiime_biom(), parse_rdp(), parse_silva_fasta(), parse_tax_data(),
parse_ubiome(), parse_unite_general()

parse_phylo Parse a phylo object

Description

Parses a phylo object from the ape package.

Usage

parse_phylo(obj)

Arguments

obj A phylo object from the ape package.

Value

taxmap

See Also

Other parsers: extract_tax_data(), lookup_tax_data(), parse_dada2(), parse_edge_list(),
parse_greengenes(), parse_mothur_tax_summary(), parse_mothur_taxonomy(), parse_newick(),
parse_phyloseq(), parse_qiime_biom(), parse_rdp(), parse_silva_fasta(), parse_tax_data(),
parse_ubiome(), parse_unite_general()

parse_phyloseq 101

parse_phyloseq Convert a phyloseq to taxmap

Description

Converts a phyloseq object to a taxmap object.

Usage

parse_phyloseq(obj, class_regex = "(.*)", class_key = "taxon_name")

Arguments

obj A phyloseq object

class_regex A regular expression used to parse data in the taxon names. There must be a cap-
ture group (a pair of parentheses) for each item in class_key. See parse_tax_data
for examples of how this works.

class_key (‘character‘ of length 1) The identity of the capturing groups defined using
‘class_regex‘. The length of ‘class_key‘ must be equal to the number of cap-
turing groups specified in ‘class_regex‘. Any names added to the terms will be
used as column names in the output. At least one ‘"taxon_name"‘ must be spec-
ified. Only ‘"info"‘ can be used multiple times. Each term must be one of those
described below: * ‘taxon_name‘: The name of a taxon. Not necessarily unique,
but are interpretable by a particular ‘database‘. Requires an internet connection.
* ‘taxon_rank‘: The rank of the taxon. This will be used to add rank info into the
output object that can be accessed by ‘out$taxon_ranks()‘. * ‘info‘: Arbitrary
taxon info you want included in the output. Can be used more than once.

Value

A taxmap object

See Also

Other parsers: extract_tax_data(), lookup_tax_data(), parse_dada2(), parse_edge_list(),
parse_greengenes(), parse_mothur_tax_summary(), parse_mothur_taxonomy(), parse_newick(),
parse_phylo(), parse_qiime_biom(), parse_rdp(), parse_silva_fasta(), parse_tax_data(),
parse_ubiome(), parse_unite_general()

Examples

Parse example dataset
library(phyloseq)
data(GlobalPatterns)
x <- parse_phyloseq(GlobalPatterns)

Plot data

102 parse_qiime_biom

heat_tree(x,
node_size = n_obs,
node_color = n_obs,
node_label = taxon_names,
tree_label = taxon_names)

parse_primersearch Parse EMBOSS primersearch output

Description

Parses the output file from EMBOSS primersearch into a data.frame with rows corresponding to
predicted amplicons and their associated information.

Usage

parse_primersearch(file_path)

Arguments

file_path The path to a primersearch output file.

Value

A data frame with each row corresponding to amplicon data

See Also

run_primersearch

parse_qiime_biom Parse a BIOM output from QIIME

Description

Parses a file in BIOM format from QIIME into a taxmap object. This also seems to work with files
from MEGAN. I have not tested if it works with other BIOM files.

Usage

parse_qiime_biom(file, class_regex = "(.*)", class_key = "taxon_name")

parse_rdp 103

Arguments

file (character of length 1) The file path to the input file.

class_regex A regular expression used to parse data in the taxon names. There must be a cap-
ture group (a pair of parentheses) for each item in class_key. See parse_tax_data
for examples of how this works.

class_key (‘character‘ of length 1) The identity of the capturing groups defined using
‘class_regex‘. The length of ‘class_key‘ must be equal to the number of cap-
turing groups specified in ‘class_regex‘. Any names added to the terms will be
used as column names in the output. At least one ‘"taxon_name"‘ must be spec-
ified. Only ‘"info"‘ can be used multiple times. Each term must be one of those
described below: * ‘taxon_name‘: The name of a taxon. Not necessarily unique,
but are interpretable by a particular ‘database‘. Requires an internet connection.
* ‘taxon_rank‘: The rank of the taxon. This will be used to add rank info into the
output object that can be accessed by ‘out$taxon_ranks()‘. * ‘info‘: Arbitrary
taxon info you want included in the output. Can be used more than once.

Details

This function was inspired by the tutorial created by Geoffrey Zahn at http://geoffreyzahn.com/getting-
your-otu-table-into-r/.

Value

A taxmap object

See Also

Other parsers: extract_tax_data(), lookup_tax_data(), parse_dada2(), parse_edge_list(),
parse_greengenes(), parse_mothur_tax_summary(), parse_mothur_taxonomy(), parse_newick(),
parse_phylo(), parse_phyloseq(), parse_rdp(), parse_silva_fasta(), parse_tax_data(),
parse_ubiome(), parse_unite_general()

parse_rdp Parse RDP FASTA release

Description

Parses an RDP reference FASTA file.

Usage

parse_rdp(input = NULL, file = NULL, include_seqs = TRUE, add_species = FALSE)

104 parse_silva_fasta

Arguments

input (character) One of the following:

A character vector of sequences See the example below for what this looks
like. The parser read_fasta produces output like this.

A list of character vectors Each vector should have one base per element.
A "DNAbin" object This is the result of parsers like read.FASTA.
A list of "SeqFastadna" objects This is the result of parsers like read.fasta.

Either "input" or "file" must be supplied but not both.

file The path to a FASTA file containing sequences to use. Either "input" or "file"
must be supplied but not both.

include_seqs (logical of length 1) If TRUE, include sequences in the output object.

add_species (logical of length 1) If TRUE, add the species information to the taxonomy. In
this database, the species name often contains other information as well.

Details

The input file has a format like:

>S000448483 Sparassis crispa; MBUH-PIRJO&ILKKA94-1587/ss5 Lineage=Root;rootrank;Fun...
ggattcccctagtaactgcgagtgaagcgggaagagctcaaatttaaaatctggcggcgtcctcgtcgtccgagttgtaa
tctggagaagcgacatccgcgctggaccgtgtacaagtctcttggaaaagagcgtcgtagagggtgacaatcccgtcttt
...

Value

taxmap

See Also

Other parsers: extract_tax_data(), lookup_tax_data(), parse_dada2(), parse_edge_list(),
parse_greengenes(), parse_mothur_tax_summary(), parse_mothur_taxonomy(), parse_newick(),
parse_phylo(), parse_phyloseq(), parse_qiime_biom(), parse_silva_fasta(), parse_tax_data(),
parse_ubiome(), parse_unite_general()

parse_silva_fasta Parse SILVA FASTA release

Description

Parses an SILVA FASTA file that can be found at https://www.arb-silva.de/no_cache/download/
archive/release_128/Exports/.

Usage

parse_silva_fasta(file = NULL, input = NULL, include_seqs = TRUE)

https://www.arb-silva.de/no_cache/download/archive/release_128/Exports/
https://www.arb-silva.de/no_cache/download/archive/release_128/Exports/

parse_tax_data 105

Arguments

file The path to a FASTA file containing sequences to use. Either "input" or "file"
must be supplied but not both.

input (character) One of the following:

A character vector of sequences See the example below for what this looks
like. The parser read_fasta produces output like this.

A list of character vectors Each vector should have one base per element.
A "DNAbin" object This is the result of parsers like read.FASTA.
A list of "SeqFastadna" objects This is the result of parsers like read.fasta.

Either "input" or "file" must be supplied but not both.

include_seqs (logical of length 1) If TRUE, include sequences in the output object.

Details

The input file has a format like:

>GCVF01000431.1.2369
Bacteria;Proteobacteria;Gammaproteobacteria;Oceanospiril...
CGUGCACGGUGGAUGCCUUGGCAGCCAGAGGCGAUGAAGGACGUUGUAGCCUGCGAUAAGCUCCGGUUAGGUGGCAAACA
ACCGUUUGACCCGGAGAUCUCCGAAUGGGGCAACCCACCCGUUGUAAGGCGGGUAUCACCGACUGAAUCCAUAGGUCGGU
...

Value

taxmap

See Also

Other parsers: extract_tax_data(), lookup_tax_data(), parse_dada2(), parse_edge_list(),
parse_greengenes(), parse_mothur_tax_summary(), parse_mothur_taxonomy(), parse_newick(),
parse_phylo(), parse_phyloseq(), parse_qiime_biom(), parse_rdp(), parse_tax_data(),
parse_ubiome(), parse_unite_general()

parse_tax_data Convert one or more data sets to taxmap

Description

Reads taxonomic information and associated data in tables, lists, and vectors and stores it in a
[taxmap()] object. [Taxonomic classifications](https://en.wikipedia.org/wiki/Taxonomy_(biology)#Classifying_organisms)
must be present.

106 parse_tax_data

Usage

parse_tax_data(
tax_data,
datasets = list(),
class_cols = 1,
class_sep = ";",
sep_is_regex = FALSE,
class_key = "taxon_name",
class_regex = "(.*)",
class_reversed = FALSE,
include_match = TRUE,
mappings = c(),
include_tax_data = TRUE,
named_by_rank = FALSE

)

Arguments

tax_data A table, list, or vector that contains the names of taxa that represent [taxonomic
classifications](https://en.wikipedia.org/wiki/Taxonomy_(biology)#Classifying_organisms).
Accepted representations of classifications include: * A list/vector or table with
column(s) of taxon names: Something like ‘"Animalia;Chordata;Mammalia;Primates;Hominidae;Homo"‘.
What separator(s) is used (";" in this example) can be changed with the ‘class_sep‘
option. For tables, the classification can be spread over multiple columns and
the separator(s) will be applied to each column, although each column could just
be single taxon names with no separator. Use the ‘class_cols‘ option to specify
which columns have taxon names. * A list in which each entry is a classifica-
tions. For example, ‘list(c("Animalia", "Chordata", "Mammalia", "Primates",
"Hominidae", "Homo"), ...)‘. * A list of data.frames where each represents a
classification with one taxon per row. The column that contains taxon names is
specified using the ‘class_cols‘ option. In this instance, it only makes sense to
specify a single column.

datasets Additional lists/vectors/tables that should be included in the resulting ‘taxmap‘
object. The ‘mappings‘ option is use to specify how these data sets relate to the
‘tax_data‘ and, by inference, what taxa apply to each item.

class_cols (‘character‘ or ‘integer‘) The names or indexes of columns that contain classi-
fications if the first input is a table. If multiple columns are specified, they will
be combined in the order given. Negative column indexes mean "every column
besides these columns".

class_sep (‘character‘) One or more separators that delineate taxon names in a classifica-
tion. For example, if one column had ‘"Homo sapiens"‘ and another had ‘"Ani-
malia;Chordata;Mammalia;Primates;Hominidae"‘, then ‘class_sep = c(" ", ";")‘.
All separators are applied to each column so order does not matter.

sep_is_regex (‘TRUE‘/‘FALSE‘) Whether or not ‘class_sep‘ should be used as a [regular ex-
pression](https://en.wikipedia.org/wiki/Regular_expression).

class_key (‘character‘ of length 1) The identity of the capturing groups defined using
‘class_regex‘. The length of ‘class_key‘ must be equal to the number of cap-

parse_tax_data 107

turing groups specified in ‘class_regex‘. Any names added to the terms will be
used as column names in the output. At least one ‘"taxon_name"‘ must be spec-
ified. Only ‘"info"‘ can be used multiple times. Each term must be one of those
described below: * ‘taxon_name‘: The name of a taxon. Not necessarily unique,
but are interpretable by a particular ‘database‘. Requires an internet connection.
* ‘taxon_rank‘: The rank of the taxon. This will be used to add rank info into the
output object that can be accessed by ‘out$taxon_ranks()‘. * ‘info‘: Arbitrary
taxon info you want included in the output. Can be used more than once.

class_regex (‘character‘ of length 1) A regular expression with capturing groups indicating
the locations of data for each taxon in the ‘class‘ term in the ‘key‘ argument. The
identity of the information must be specified using the ‘class_key‘ argument.
The ‘class_sep‘ option can be used to split the classification into data for each
taxon before matching. If ‘class_sep‘ is ‘NULL‘, each match of ‘class_regex‘
defines a taxon in the classification.

class_reversed If ‘TRUE‘, then classifications go from specific to general. For example: ‘Ab-
ditomys latidens : Muridae : Rodentia : Mammalia : Chordata‘.

include_match (‘logical‘ of length 1) If ‘TRUE‘, include the part of the input matched by
‘class_regex‘ in the output object.

mappings (named ‘character‘) This defines how the taxonomic information in ‘tax_data‘
applies to data set in ‘datasets‘. This option should have the same number of
inputs as ‘datasets‘, with values corresponding to each data set. The names of
the character vector specify what information in ‘tax_data‘ is shared with info
in each ‘dataset‘, which is specified by the corresponding values of the character
vector. If there are no shared variables, you can add ‘NA‘ as a placeholder, but
you could just leave that data out since it is not benefiting from being in the
taxmap object. The names/values can be one of the following: * For tables,
the names of columns can be used. * ‘"{{index}}"‘ : This means to use the
index of rows/items * ‘"{{name}}"‘ : This means to use row/item names. *
‘"{{value}}"‘ : This means to use the values in vectors or lists. Lists will be
converted to vectors using [unlist()].

include_tax_data

(‘TRUE‘/‘FALSE‘) Whether or not to include ‘tax_data‘ as a dataset, like those
in ‘datasets‘.

named_by_rank (‘TRUE‘/‘FALSE‘) If ‘TRUE‘ and the input is a table with columns named by
ranks or a list of vectors with each vector named by ranks, include that rank info
in the output object, so it can be accessed by ‘out$taxon_ranks()‘. If ‘TRUE‘,
taxa with different ranks, but the same name and location in the taxonomy, will
be considered different taxa. Cannot be used with the ‘sep‘, ‘class_regex‘, or
‘class_key‘ options.

See Also

Other parsers: extract_tax_data(), lookup_tax_data(), parse_dada2(), parse_edge_list(),
parse_greengenes(), parse_mothur_tax_summary(), parse_mothur_taxonomy(), parse_newick(),
parse_phylo(), parse_phyloseq(), parse_qiime_biom(), parse_rdp(), parse_silva_fasta(),
parse_ubiome(), parse_unite_general()

108 parse_tax_data

Examples

Read a vector of classifications
my_taxa <- c("Mammalia;Carnivora;Felidae",

"Mammalia;Carnivora;Felidae",
"Mammalia;Carnivora;Ursidae")

parse_tax_data(my_taxa, class_sep = ";")

Read a list of classifications
my_taxa <- list("Mammalia;Carnivora;Felidae",

"Mammalia;Carnivora;Felidae",
"Mammalia;Carnivora;Ursidae")

parse_tax_data(my_taxa, class_sep = ";")

Read classifications in a table in a single column
species_data <- data.frame(tax = c("Mammalia;Carnivora;Felidae",

"Mammalia;Carnivora;Felidae",
"Mammalia;Carnivora;Ursidae"),

species_id = c("A", "B", "C"))
parse_tax_data(species_data, class_sep = ";", class_cols = "tax")

Read classifications in a table in multiple columns
species_data <- data.frame(lineage = c("Mammalia;Carnivora;Felidae",

"Mammalia;Carnivora;Felidae",
"Mammalia;Carnivora;Ursidae"),

species = c("Panthera leo",
"Panthera tigris",
"Ursus americanus"),

species_id = c("A", "B", "C"))
parse_tax_data(species_data, class_sep = c(" ", ";"),

class_cols = c("lineage", "species"))

Read classification tables with one column per rank
species_data <- data.frame(class = c("Mammalia", "Mammalia", "Mammalia"),

order = c("Carnivora", "Carnivora", "Carnivora"),
family = c("Felidae", "Felidae", "Ursidae"),
genus = c("Panthera", "Panthera", "Ursus"),
species = c("leo", "tigris", "americanus"),
species_id = c("A", "B", "C"))

parse_tax_data(species_data, class_cols = 1:5)
parse_tax_data(species_data, class_cols = 1:5,

named_by_rank = TRUE) # makes `taxon_ranks()` work

Classifications with extra information
my_taxa <- c("Mammalia_class_1;Carnivora_order_2;Felidae_genus_3",

"Mammalia_class_1;Carnivora_order_2;Felidae_genus_3",
"Mammalia_class_1;Carnivora_order_2;Ursidae_genus_3")

parse_tax_data(my_taxa, class_sep = ";",
class_regex = "(.+)_(.+)_([0-9]+)",
class_key = c(my_name = "taxon_name",

a_rank = "taxon_rank",
some_num = "info"))

parse_ubiome 109

--- Parsing multiple datasets at once (advanced) ---
The rest is one example for how to classify multiple datasets at once.

Make example data with taxonomic classifications
species_data <- data.frame(tax = c("Mammalia;Carnivora;Felidae",

"Mammalia;Carnivora;Felidae",
"Mammalia;Carnivora;Ursidae"),

species = c("Panthera leo",
"Panthera tigris",
"Ursus americanus"),

species_id = c("A", "B", "C"))

Make example data associated with the taxonomic data
Note how this does not contain classifications, but
does have a varaible in common with "species_data" ("id" = "species_id")
abundance <- data.frame(id = c("A", "B", "C", "A", "B", "C"),

sample_id = c(1, 1, 1, 2, 2, 2),
counts = c(23, 4, 3, 34, 5, 13))

Make another related data set named by species id
common_names <- c(A = "Lion", B = "Tiger", C = "Bear", "Oh my!")

Make another related data set with no names
foods <- list(c("ungulates", "boar"),

c("ungulates", "boar"),
c("salmon", "fruit", "nuts"))

Make a taxmap object with these three datasets
x = parse_tax_data(species_data,

datasets = list(counts = abundance,
my_names = common_names,
foods = foods),

mappings = c("species_id" = "id",
"species_id" = "{{name}}",
"{{index}}" = "{{index}}"),

class_cols = c("tax", "species"),
class_sep = c(" ", ";"))

Note how all the datasets have taxon ids now
x$data

This allows for complex mappings between variables that other functions use
map_data(x, my_names, foods)
map_data(x, counts, my_names)

parse_ubiome Converts the uBiome file format to taxmap

110 parse_unite_general

Description

Converts the uBiome file format to taxmap. NOTE: This is experimental and might not work if
uBiome changes their format. Contact the maintainers if you encounter problems/

Usage

parse_ubiome(file = NULL, table = NULL)

Arguments

file (character of length 1) The file path to the input file. Either "file", or "table"
must be used, but only one.

table (character of length 1) An already parsed data.frame or tibble. Either "file", or
"table" must be used, but only one.

Details

The input file has a format like:

tax_name,tax_rank,count,count_norm,taxon,parent
root,root,29393,1011911,1,
Bacteria,superkingdom,29047,1000000,2,131567
Campylobacter,genus,23,791,194,72294
Flavobacterium,genus,264,9088,237,49546

Value

taxmap

See Also

Other parsers: extract_tax_data(), lookup_tax_data(), parse_dada2(), parse_edge_list(),
parse_greengenes(), parse_mothur_tax_summary(), parse_mothur_taxonomy(), parse_newick(),
parse_phylo(), parse_phyloseq(), parse_qiime_biom(), parse_rdp(), parse_silva_fasta(),
parse_tax_data(), parse_unite_general()

parse_unite_general Parse UNITE general release FASTA

Description

Parse the UNITE general release FASTA file

Usage

parse_unite_general(input = NULL, file = NULL, include_seqs = TRUE)

primersearch 111

Arguments

input (character) One of the following:

A character vector of sequences See the example below for what this looks
like. The parser read_fasta produces output like this.

A list of character vectors Each vector should have one base per element.
A "DNAbin" object This is the result of parsers like read.FASTA.
A list of "SeqFastadna" objects This is the result of parsers like read.fasta.

Either "input" or "file" must be supplied but not both.

file The path to a FASTA file containing sequences to use. Either "input" or "file"
must be supplied but not both.

include_seqs (logical of length 1) If TRUE, include sequences in the output object.

Details

The input file has a format like:

>Glomeromycota_sp|KJ484724|SH523877.07FU|reps|k__Fungi;p__Glomeromycota;c__unid...
ATAATTTGCCGAACCTAGCGTTAGCGCGAGGTTCTGCGATCAACACTTATATTTAAAACCCAACTCTTAAATTTTGTAT...

Value

taxmap

See Also

Other parsers: extract_tax_data(), lookup_tax_data(), parse_dada2(), parse_edge_list(),
parse_greengenes(), parse_mothur_tax_summary(), parse_mothur_taxonomy(), parse_newick(),
parse_phylo(), parse_phyloseq(), parse_qiime_biom(), parse_rdp(), parse_silva_fasta(),
parse_tax_data(), parse_ubiome()

primersearch Use EMBOSS primersearch for in silico PCR

Description

A pair of primers are aligned against a set of sequences. A taxmap object with two tables is re-
turned: a table with information for each predicted amplicon, quality of match, and predicted
amplicons, and a table with per-taxon amplification statistics. Requires the EMBOSS tool kit
(https://emboss.sourceforge.net/) to be installed.

Usage

primersearch(obj, seqs, forward, reverse, mismatch = 5, clone = TRUE)

https://emboss.sourceforge.net/

112 primersearch

Arguments

obj A taxmap object.
seqs The sequences to do in silico PCR on. This can be any variable in obj$data

listed in all_names(obj) or an external variable. If an external variable (i.e.
not in obj$data), it must be named by taxon IDs or have the same length as the
number of taxa in obj. Currently, only character vectors are accepted.

forward (character of length 1) The forward primer sequence
reverse (character of length 1) The reverse primer sequence
mismatch An integer vector of length 1. The percentage of mismatches allowed.
clone If TRUE, make a copy of the input object and add on the results (like most R

functions). If FALSE, the input will be changed without saving the result, which
uses less RAM.

Details

It can be confusing how the primer sequence relates to the binding sites on a reference database
sequence. A simplified diagram can help. For example, if the top strand below (5’ -> 3’) is the
database sequence, the forward primer has the same sequence as the target region, since it will bind
to the other strand (3’ -> 5’) during PCR and extend on the 3’ end. However, the reverse primer
must bind to the database strand, so it will have to be the complement of the reference sequence. It
also has to be reversed to make it in the standard 5’ -> 3’ orientation. Therefore, the reverse primer
must be the reverse complement of its binding site on the reference sequence.

Primer 1: 5' AAGTACCTTAACGGAATTATAG 3'
Primer 2: 5' GCTCCACCTACGAAACGAAT 3'

<- TAAGCAAAGCATCCACCTCG 5'
5' ...AAGTACCTTAACGGAATTATAG......ATTCGTTTCGTAGGTGGAGC... 3'

3' ...TTCATGGAATTGCCTTAATATC......TAAGCAAAGCATCCACCTCG... 5'
5' AAGTACCTTAACGGAATTATAG ->

However, a database might have either the top or the bottom strand as a reference sequence. Since
one implies the sequence of the other, either is valid, but this is another source of confusion. If
we take the diagram above and rotate it 180 degrees, it would mean the same thing, but which
primer we would want to call "forward" and which we would want to call "reverse" would change.
Databases of a single locus (e.g. Greengenes) will likely have a convention for which strand will
be present, so relative to this convention, there is a distinct "forward" and "reverse". However,
computers dont know about this convention, so the "forward" primer is whichever primer has the
same sequence as its binding region in the database (as opposed to the reverse complement). For this
reason, primersearch will redefine which primer is "forward" and which is "reverse" based on how
it binds the reference sequence. See the example code in primersearch_raw for a demonstration
of this.

Value

A copy of the input taxmap object with two tables added. One table contains amplicon information
with one row per predicted amplicon with the following info:

primersearch 113

(f_primer)
5' AAGTACCTTAACGGAATTATAG -> (r_primer)

<- TAAGCAAAGCATCCACCTCG 5'
5' ...AAGTACCTTAACGGAATTATAG......ATTCGTTTCGTAGGTGGAGC... 3'

^ ^ ^ ^
f_start f_end r_rtart r_end

|--------------------||----||------------------|
f_match amplicon r_match

|--|
product

taxon_id: The taxon IDs for the sequence.
seq_index: The index of the input sequence.
f_primer: The sequence of the forward primer.
r_primer: The sequence of the reverse primer.
f_mismatch: The number of mismatches on the forward primer.
r_mismatch: The number of mismatches on the reverse primer.
f_start: The start location of the forward primer.
f_end: The end location of the forward primer.
r_start: The start location of the reverse primer.
r_end: The end location of the reverse primer.
f_match: The sequence matched by the forward primer.
r_match: The sequence matched by the reverse primer.
amplicon: The sequence amplified by the primers, not including the primers.
product: The sequence amplified by the primers including the primers. This simulates a real PCR

product.

The other table contains per-taxon information about the PCR, with one row per taxon. It has the
following columns:

taxon_ids: Taxon IDs.
query_count: The number of sequences used as input.
seq_count: The number of sequences that had at least one amplicon.
amp_count: The number of amplicons. Might be more than one per sequence.
amplified: If at least one sequence of that taxon had at least one amplicon.
multiple: If at least one sequences had at least two amplicons.
prop_amplified: The proportion of sequences with at least one amplicon.
med_amp_len: The median amplicon length.
min_amp_len: The minimum amplicon length.
max_amp_len: The maximum amplicon length.
med_prod_len: The median product length.
min_prod_len: The minimum product length.
max_prod_len: The maximum product length.

114 primersearch

Installing EMBOSS

The command-line tool "primersearch" from the EMBOSS tool kit is needed to use this function.
How you install EMBOSS will depend on your operating system:

Linux:

Open up a terminal and type:

sudo apt-get install emboss

Mac OSX:

The easiest way to install EMBOSS on OSX is to use homebrew. After installing homebrew, open
up a terminal and type:

brew install homebrew/science/emboss

Windows:

There is an installer for Windows here:

ftp://emboss.open-bio.org/pub/EMBOSS/windows/mEMBOSS-6.5.0.0-setup.exe

Examples

Get example FASTA file
fasta_path <- system.file(file.path("extdata", "silva_subset.fa"),

package = "metacoder")

Parse the FASTA file as a taxmap object
obj <- parse_silva_fasta(file = fasta_path)

Simulate PCR with primersearch
Have to replace Us with Ts in sequences since primersearch
does not understand Us.
obj <- primersearch(obj,

gsub(silva_seq, pattern = "U", replace = "T"),
forward = c("U519F" = "CAGYMGCCRCGGKAAHACC"),
reverse = c("Arch806R" = "GGACTACNSGGGTMTCTAAT"),
mismatch = 10)

Plot what did not ampilify
obj %>%

filter_taxa(prop_amplified < 1) %>%
heat_tree(node_label = taxon_names,

node_color = prop_amplified,
node_color_range = c("grey", "red", "purple", "green"),
node_color_trans = "linear",
node_color_axis_label = "Proportion amplified",
node_size = n_obs,
node_size_axis_label = "Number of sequences",
layout = "da",
initial_layout = "re")

https://brew.sh/

primersearch_raw 115

primersearch_raw Use EMBOSS primersearch for in silico PCR

Description

A pair of primers are aligned against a set of sequences. The location of the best hits, quality of
match, and predicted amplicons are returned. Requires the EMBOSS tool kit (https://emboss.
sourceforge.net/) to be installed.

Usage

primersearch_raw(input = NULL, file = NULL, forward, reverse, mismatch = 5)

Arguments

input (character) One of the following:

A character vector of sequences See the example below for what this looks
like. The parser read_fasta produces output like this.

A list of character vectors Each vector should have one base per element.
A "DNAbin" object This is the result of parsers like read.FASTA.
A list of "SeqFastadna" objects This is the result of parsers like read.fasta.

Either "input" or "file" must be supplied but not both.

file The path to a FASTA file containing sequences to use. Either "input" or "file"
must be supplied but not both.

forward (character of length 1) The forward primer sequence

reverse (character of length 1) The reverse primer sequence

mismatch An integer vector of length 1. The percentage of mismatches allowed.

Details

It can be confusing how the primer sequence relates to the binding sites on a reference database
sequence. A simplified diagram can help. For example, if the top strand below (5’ -> 3’) is the
database sequence, the forward primer has the same sequence as the target region, since it will bind
to the other strand (3’ -> 5’) during PCR and extend on the 3’ end. However, the reverse primer
must bind to the database strand, so it will have to be the complement of the reference sequence. It
also has to be reversed to make it in the standard 5’ -> 3’ orientation. Therefore, the reverse primer
must be the reverse complement of its binding site on the reference sequence.

Primer 1: 5' AAGTACCTTAACGGAATTATAG 3'
Primer 2: 5' GCTCCACCTACGAAACGAAT 3'

<- TAAGCAAAGCATCCACCTCG 5'
5' ...AAGTACCTTAACGGAATTATAG......ATTCGTTTCGTAGGTGGAGC... 3'

3' ...TTCATGGAATTGCCTTAATATC......TAAGCAAAGCATCCACCTCG... 5'
5' AAGTACCTTAACGGAATTATAG ->

https://emboss.sourceforge.net/
https://emboss.sourceforge.net/

116 primersearch_raw

However, a database might have either the top or the bottom strand as a reference sequence. Since
one implies the sequence of the other, either is valid, but this is another source of confusion. If
we take the diagram above and rotate it 180 degrees, it would mean the same thing, but which
primer we would want to call "forward" and which we would want to call "reverse" would change.
Databases of a single locus (e.g. Greengenes) will likely have a convention for which strand will
be present, so relative to this convention, there is a distinct "forward" and "reverse". However,
computers dont know about this convention, so the "forward" primer is whichever primer has the
same sequence as its binding region in the database (as opposed to the reverse complement). For
this reason, primersearch will redefine which primer is "forward" and which is "reverse" based on
how it binds the reference sequence. See the example code for a demonstration of this.

Value

A table with one row per predicted amplicon with the following info:

(f_primer)
5' AAGTACCTTAACGGAATTATAG -> (r_primer)

<- TAAGCAAAGCATCCACCTCG 5'
5' ...AAGTACCTTAACGGAATTATAG......ATTCGTTTCGTAGGTGGAGC... 3'

^ ^ ^ ^
f_start f_end r_rtart r_end

|--------------------||----||------------------|
f_match amplicon r_match

|--|
product

f_mismatch: The number of mismatches on the forward primer
r_mismatch: The number of mismatches on the reverse primer
input: The index of the input sequence

Installing EMBOSS

The command-line tool "primersearch" from the EMBOSS tool kit is needed to use this function.
How you install EMBOSS will depend on your operating system:

Linux:
Open up a terminal and type:

sudo apt-get install emboss

Mac OSX:
The easiest way to install EMBOSS on OSX is to use homebrew. After installing homebrew, open
up a terminal and type:

brew install homebrew/science/emboss

Windows:
There is an installer for Windows here:

ftp://emboss.open-bio.org/pub/EMBOSS/windows/mEMBOSS-6.5.0.0-setup.exe

https://brew.sh/

primersearch_raw 117

Examples

Dummy test data set

primer_1_site <- "AAGTACCTTAACGGAATTATAG"
primer_2_site <- "ATTCGTTTCGTAGGTGGAGC"
amplicon <- "NNNAGTGGATAGATAGGGGTTCTGTGGCGTTTGGGAATTAAAGATTAGAGANNN"
seq_1 <- paste0("AA", primer_1_site, amplicon, primer_2_site, "AAAA")
seq_2 <- rev_comp(seq_1)
f_primer <- "ACGTACCTTAACGGAATTATAG" # Note the "C" mismatch at position 2
r_primer <- rev_comp(primer_2_site)
seqs <- c(a = seq_1, b = seq_2)

result <- primersearch_raw(seqs, forward = f_primer, reverse = r_primer)

Real data set

Get example FASTA file
fasta_path <- system.file(file.path("extdata", "silva_subset.fa"),

package = "metacoder")

Parse the FASTA file as a taxmap object
obj <- parse_silva_fasta(file = fasta_path)

Simulate PCR with primersearch
pcr_result <- primersearch_raw(obj$data$tax_data$silva_seq,

forward = c("U519F" = "CAGYMGCCRCGGKAAHACC"),
reverse = c("Arch806R" = "GGACTACNSGGGTMTCTAAT"),
mismatch = 10)

Add result to input table
NOTE: We want to add a function to handle running pcr on a
taxmap object directly, but we are still trying to figure out
the best way to implement it. For now, do the following:
obj$data$pcr <- pcr_result
obj$data$pcr$taxon_id <- obj$datatax_datataxon_id[pcr_result$input]

Visualize which taxa were amplified
This work because only amplicons are returned by `primersearch`
n_amplified <- unlist(obj$obs_apply("pcr",

function(x) length(unique(obj$data$tax_data$input[x]))))
prop_amped <- n_amplified / obj$n_obs()
heat_tree(obj,

node_label = taxon_names,
node_color = prop_amped,
node_color_range = c("grey", "red", "purple", "green"),
node_color_trans = "linear",
node_color_axis_label = "Proportion amplified",
node_size = n_obs,
node_size_axis_label = "Number of sequences",
layout = "da",
initial_layout = "re")

118 qualitative_palette

print_tree Print a text tree

Description

Print a text-based tree of a [taxonomy()] or [taxmap()] object.

Arguments

obj A taxonomy or taxmap object

value What data to return. Default is taxon names. Any result of [all_names()] can be
used, but it usually only makes sense to use data with one value per taxon, like
taxon names.

Examples

print_tree(ex_taxmap)

qualitative_palette The default qualitative color palette

Description

Returns the default color palette for qualitative data

Usage

qualitative_palette()

Value

character of hex color codes

Examples

qualitative_palette()

quantative_palette 119

quantative_palette The default quantative color palette

Description

Returns the default color palette for quantative data.

Usage

quantative_palette()

Value

character of hex color codes

Examples

quantative_palette()

ranks_ref Lookup-table for IDs of taxonomic ranks

Description

Composed of two columns:

• rankid - the ordered identifier value. lower values mean higher rank

• ranks - all the rank names that belong to the same level, with different variants that mean
essentially the same thing

rarefy_obs Calculate rarefied observation counts

Description

For a given table in a taxmap object, rarefy counts to a constant total. This is a wrapper around
rrarefy that automatically detects which columns are numeric and handles the reformatting needed
to use tibbles.

120 rarefy_obs

Usage

rarefy_obs(
obj,
data,
sample_size = NULL,
cols = NULL,
other_cols = FALSE,
out_names = NULL,
dataset = NULL

)

Arguments

obj A taxmap object

data The name of a table in obj$data.

sample_size The sample size counts will be rarefied to. This can be either a single integer or
a vector of integers of equal length to the number of columns.

cols The columns in data to use. By default, all numeric columns are used. Takes
one of the following inputs:

TRUE/FALSE: All/No columns will used.
Character vector: The names of columns to use
Numeric vector: The indexes of columns to use
Vector of TRUE/FALSE of length equal to the number of columns: Use the

columns corresponding to TRUE values.

other_cols Preserve in the output non-target columns present in the input data. New columns
will always be on the end. The "taxon_id" column will be preserved in the front.
Takes one of the following inputs:

NULL: No columns will be added back, not even the taxon id column.
TRUE/FALSE: All/None of the non-target columns will be preserved.
Character vector: The names of columns to preserve
Numeric vector: The indexes of columns to preserve
Vector of TRUE/FALSE of length equal to the number of columns: Preserve

the columns corresponding to TRUE values.

out_names The names of count columns in the output. Must be the same length and order
as cols (or unique(groups), if groups is used).

dataset DEPRECIATED. use "data" instead.

Value

A tibble

See Also

Other calculations: calc_diff_abund_deseq2(), calc_group_mean(), calc_group_median(),
calc_group_rsd(), calc_group_stat(), calc_n_samples(), calc_obs_props(), calc_prop_samples(),
calc_taxon_abund(), compare_groups(), counts_to_presence(), zero_low_counts()

read_fasta 121

Examples

Parse data for examples
x = parse_tax_data(hmp_otus, class_cols = "lineage", class_sep = ";",

class_key = c(tax_rank = "taxon_rank", tax_name = "taxon_name"),
class_regex = "^(.+)__(.+)$")

Rarefy all numeric columns
rarefy_obs(x, "tax_data")

Rarefy a subset of columns
rarefy_obs(x, "tax_data", cols = c("700035949", "700097855", "700100489"))
rarefy_obs(x, "tax_data", cols = 4:6)
rarefy_obs(x, "tax_data", cols = startsWith(colnames(x$data$tax_data), "70001"))

Including all other columns in ouput
rarefy_obs(x, "tax_data", other_cols = TRUE)

Inlcuding specific columns in output
rarefy_obs(x, "tax_data", cols = c("700035949", "700097855", "700100489"),

other_cols = 2:3)

Rename output columns
rarefy_obs(x, "tax_data", cols = c("700035949", "700097855", "700100489"),

out_names = c("a", "b", "c"))

read_fasta Read a FASTA file

Description

Reads a FASTA file. This is the FASTA parser for metacoder. It simply tries to read a FASTA file
into a named character vector with minimal fuss. It does not do any checks for valid characters etc.
Other FASTA parsers you might want to consider include read.FASTA or read.fasta.

Usage

read_fasta(file_path)

Arguments

file_path (character of length 1) The path to a file to read.

Value

named character vector

122 remove_redundant_names

Examples

Get example FASTA file
fasta_path <- system.file(file.path("extdata", "silva_subset.fa"),

package = "metacoder")

Read fasta file
my_seqs <- read_fasta(fasta_path)

remove_redundant_names

Remove redundant parts of taxon names

Description

Remove the names of parent taxa in the beginning of their children’s names in a taxonomy or
taxmap object. This is useful for removing genus names in species binomials.

obj$remove_redundant_names()
remove_redundant_names(obj)

Arguments

obj A taxonomy or taxmap object

Value

A taxonomy or taxmap object

Examples

Remove genus named from species taxa
species_data <- c("Carnivora;Felidae;Panthera;Panthera leo",

"Carnivora;Felidae;Panthera;Panthera tigris",
"Carnivora;Ursidae;Ursus;Ursus americanus")

obj <- parse_tax_data(species_data, class_sep = ";")
remove_redundant_names(obj)

replace_taxon_ids 123

replace_taxon_ids Replace taxon ids

Description

Replace taxon ids in a [taxmap()] or [taxonomy()] object.

obj$replace_taxon_ids(new_ids)
replace_taxon_ids(obj, new_ids)

Arguments

obj The [taxonomy()] or [taxmap()] object.

new_ids A vector of new ids, one per taxon. They must be unique and in the same order
as the corresponding ids in ‘obj$taxon_ids()‘.

Value

A [taxonomy()] or [taxmap()] object with new taxon ids

Examples

Replace taxon IDs with numbers
replace_taxon_ids(ex_taxmap, seq_len(length(ex_taxmap$taxa)))

Make taxon IDs capital letters
replace_taxon_ids(ex_taxmap, toupper(taxon_ids(ex_taxmap)))

reverse Reverse sequences

Description

Find the reverse of one or more sequences stored as a character vector. This is a wrapper for rev
for character vectors instead of lists of character vectors with one value per letter.

Usage

reverse(seqs)

Arguments

seqs A character vector with one element per sequence.

124 roots

See Also

Other sequence transformations: complement(), rev_comp()

Examples

reverse(c("aagtgGGTGaa", "AAGTGGT"))

rev_comp Revere complement sequences

Description

Make the reverse complement of one or more sequences stored as a character vector. This is a
wrapper for comp for character vectors instead of lists of character vectors with one value per letter.
IUPAC ambiguity codes are handled and the upper/lower case is preserved.

Usage

rev_comp(seqs)

Arguments

seqs A character vector with one element per sequence.

See Also

Other sequence transformations: complement(), reverse()

Examples

rev_comp(c("aagtgGGTGaa", "AAGTGGT"))

roots Get root taxa

Description

Return the root taxa for a [taxonomy()] or [taxmap()] object. Can also be used to get the roots of a
subset of taxa.

obj$roots(subset = NULL, value = "taxon_indexes")
roots(obj, subset = NULL, value = "taxon_indexes")

sample_frac_obs 125

Arguments

obj The [taxonomy()] or [taxmap()] object containing taxon information to be queried.
subset Taxon IDs, TRUE/FALSE vector, or taxon indexes to find roots for. Default: All

taxa in ‘obj‘ will be used. Any variable name that appears in [all_names()] can
be used as if it was a vector on its own.

value What data to return. This is usually the name of column in a table in ‘obj$data‘.
Any result of ‘all_names(obj)‘ can be used, but it usually only makes sense to
data that corresponds to taxa 1:1, such as [taxon_ranks()]. By default, taxon
indexes are returned.

Value

‘character‘

See Also

Other taxonomy indexing functions: branches(), internodes(), leaves(), stems(), subtaxa(),
supertaxa()

Examples

Return indexes of root taxa
roots(ex_taxmap)

Return indexes for a subset of taxa
roots(ex_taxmap, subset = 2:17)

Return something besides taxon indexes
roots(ex_taxmap, value = "taxon_names")

sample_frac_obs Sample a proportion of observations from [taxmap()]

Description

Randomly sample some proportion of observations from a [taxmap()] object. Weights can be spec-
ified for observations or their taxa. See [dplyr::sample_frac()] for the inspiration for this function.
Calling the function using the ‘obj$sample_frac_obs(...)‘ style edits "obj" in place, unlike most R
functions. However, calling the function using the ‘sample_frac_obs(obj, ...)‘ imitates R’s tradi-
tional copy-on-modify semantics, so "obj" would not be changed; instead a changed version would
be returned, like most R functions.

obj$sample_frac_obs(data, size, replace = FALSE,
taxon_weight = NULL, obs_weight = NULL,
use_supertaxa = TRUE, collapse_func = mean, ...)

sample_frac_obs(obj, data, size, replace = FALSE,
taxon_weight = NULL, obs_weight = NULL,
use_supertaxa = TRUE, collapse_func = mean, ...)

126 sample_frac_obs

Arguments

obj ([taxmap()]) The object to sample from.

data Dataset names, indexes, or a logical vector that indicates which datasets in
‘obj$data‘ to sample. If multiple datasets are sample at once, then they must
be the same length.

size (‘numeric‘ of length 1) The proportion of observations to sample.

replace (‘logical‘ of length 1) If ‘TRUE‘, sample with replacement.

taxon_weight (‘numeric‘) Non-negative sampling weights of each taxon. If ‘use_supertaxa‘ is
‘TRUE‘, the weights for each taxon in an observation’s classification are sup-
plied to ‘collapse_func‘ to get the observation weight. If ‘obs_weight‘ is also
specified, the two weights are multiplied (after ‘taxon_weight‘ for each obser-
vation is calculated).

obs_weight (‘numeric‘) Sampling weights of each observation. If ‘taxon_weight‘ is also
specified, the two weights are multiplied (after ‘taxon_weight‘ for each obser-
vation is calculated).

use_supertaxa (‘logical‘ or ‘numeric‘ of length 1) Affects how the ‘taxon_weight‘ is used. If
‘TRUE‘, the weights for each taxon in an observation’s classification are mul-
tiplied to get the observation weight. If ‘FALSE‘ just the taxonomic level the
observation is assign to it considered. Positive numbers indicate the number
of ranks above the each taxon to use. ‘0‘ is equivalent to ‘FALSE‘. Negative
numbers are equivalent to ‘TRUE‘.

collapse_func (‘function‘ of length 1) If ‘taxon_weight‘ option is used and ‘supertaxa‘ is ‘TRUE‘,
the weights for each taxon in an observation’s classification are supplied to ‘col-
lapse_func‘ to get the observation weight. This function should take numeric
vector and return a single number.

... Additional options are passed to [filter_obs()].

target DEPRECIATED. use "data" instead.

Value

An object of type [taxmap()]

See Also

Other taxmap manipulation functions: arrange_obs(), arrange_taxa(), filter_obs(), filter_taxa(),
mutate_obs(), sample_frac_taxa(), sample_n_obs(), sample_n_taxa(), select_obs(), transmute_obs()

Examples

Sample half of the rows fram a table
sample_frac_obs(ex_taxmap, "info", 0.5)

Sample multiple datasets at once
sample_frac_obs(ex_taxmap, c("info", "phylopic_ids", "foods"), 0.5)

sample_frac_taxa 127

sample_frac_taxa Sample a proportion of taxa from [taxonomy()] or [taxmap()]

Description

Randomly sample some proportion of taxa from a [taxonomy()] or [taxmap()] object. Weights
can be specified for taxa or the observations assigned to them. See [dplyr::sample_frac()] for the
inspiration for this function.

obj$sample_frac_taxa(size, taxon_weight = NULL,
obs_weight = NULL, obs_target = NULL,
use_subtaxa = TRUE, collapse_func = mean, ...)

sample_frac_taxa(obj, size, taxon_weight = NULL,
obs_weight = NULL, obs_target = NULL,
use_subtaxa = TRUE, collapse_func = mean, ...)

Arguments

obj ([taxonomy()] or [taxmap()]) The object to sample from.

size (‘numeric‘ of length 1) The proportion of taxa to sample.

taxon_weight (‘numeric‘) Non-negative sampling weights of each taxon. If ‘obs_weight‘ is
also specified, the two weights are multiplied (after ‘obs_weight‘ for each taxon
is calculated).

obs_weight (‘numeric‘) This option only applies to [taxmap()] objects. Sampling weights of
each observation. The weights for each observation assigned to a given taxon
are supplied to ‘collapse_func‘ to get the taxon weight. If ‘use_subtaxa‘ is
‘TRUE‘ then the observations assigned to every subtaxa are also used. Any
variable name that appears in [all_names()] can be used as if it was a vector on
its own. If ‘taxon_weight‘ is also specified, the two weights are multiplied (after
‘obs_weight‘ for each observation is calculated). ‘obs_target‘ must be used with
this option.

obs_target (‘character‘ of length 1) This option only applies to [taxmap()] objects. The
name of the data set in ‘obj$data‘ that values in ‘obs_weight‘ corresponds to.
Must be used when ‘obs_weight‘ is used.

use_subtaxa (‘logical‘ or ‘numeric‘ of length 1) Affects how the ‘obs_weight‘ option is used.
If ‘TRUE‘, the weights for each taxon in an observation’s classification are mul-
tiplied to get the observation weight. If ‘TRUE‘ just the taxonomic level the
observation is assign to it considered. Positive numbers indicate the number of
ranks below the target taxa to return. ‘0‘ is equivalent to ‘FALSE‘. Negative
numbers are equivalent to ‘TRUE‘.

collapse_func (‘function‘ of length 1) If ‘taxon_weight‘ is used and ‘supertaxa‘ is ‘TRUE‘,
the weights for each taxon in an observation’s classification are supplied to ‘col-
lapse_func‘ to get the observation weight. This function should take numeric
vector and return a single number.

... Additional options are passed to [filter_taxa()].

128 sample_n_obs

Value

An object of type [taxonomy()] or [taxmap()]

See Also

Other taxmap manipulation functions: arrange_obs(), arrange_taxa(), filter_obs(), filter_taxa(),
mutate_obs(), sample_frac_obs(), sample_n_obs(), sample_n_taxa(), select_obs(), transmute_obs()

Examples

sample half of the taxa
sample_frac_taxa(ex_taxmap, 0.5, supertaxa = TRUE)

sample_n_obs Sample n observations from [taxmap()]

Description

Randomly sample some number of observations from a [taxmap()] object. Weights can be specified
for observations or the taxa they are classified by. Any variable name that appears in [all_names()]
can be used as if it was a vector on its own. See [dplyr::sample_n()] for the inspiration for this
function. Calling the function using the ‘obj$sample_n_obs(...)‘ style edits "obj" in place, unlike
most R functions. However, calling the function using the ‘sample_n_obs(obj, ...)‘ imitates R’s
traditional copy-on-modify semantics, so "obj" would not be changed; instead a changed version
would be returned, like most R functions.

obj$sample_n_obs(data, size, replace = FALSE,
taxon_weight = NULL, obs_weight = NULL,
use_supertaxa = TRUE, collapse_func = mean, ...)

sample_n_obs(obj, data, size, replace = FALSE,
taxon_weight = NULL, obs_weight = NULL,
use_supertaxa = TRUE, collapse_func = mean, ...)

Arguments

obj ([taxmap()]) The object to sample from.

data Dataset names, indexes, or a logical vector that indicates which datasets in
‘obj$data‘ to sample. If multiple datasets are sampled at once, then they must
be the same length.

size (‘numeric‘ of length 1) The number of observations to sample.

replace (‘logical‘ of length 1) If ‘TRUE‘, sample with replacement.

taxon_weight (‘numeric‘) Non-negative sampling weights of each taxon. If ‘use_supertaxa‘ is
‘TRUE‘, the weights for each taxon in an observation’s classification are sup-
plied to ‘collapse_func‘ to get the observation weight. If ‘obs_weight‘ is also
specified, the two weights are multiplied (after ‘taxon_weight‘ for each obser-
vation is calculated).

sample_n_taxa 129

obs_weight (‘numeric‘) Sampling weights of each observation. If ‘taxon_weight‘ is also
specified, the two weights are multiplied (after ‘taxon_weight‘ for each obser-
vation is calculated).

use_supertaxa (‘logical‘ or ‘numeric‘ of length 1) Affects how the ‘taxon_weight‘ is used. If
‘TRUE‘, the weights for each taxon in an observation’s classification are mul-
tiplied to get the observation weight. Otherwise, just the taxonomic level the
observation is assign to it considered. If ‘TRUE‘, use all supertaxa. Positive
numbers indicate the number of ranks above each taxon to use. ‘0‘ is equivalent
to ‘FALSE‘. Negative numbers are equivalent to ‘TRUE‘.

collapse_func (‘function‘ of length 1) If ‘taxon_weight‘ option is used and ‘supertaxa‘ is ‘TRUE‘,
the weights for each taxon in an observation’s classification are supplied to ‘col-
lapse_func‘ to get the observation weight. This function should take numeric
vector and return a single number.

... Additional options are passed to [filter_obs()].

target DEPRECIATED. use "data" instead.

Value

An object of type [taxmap()]

See Also

Other taxmap manipulation functions: arrange_obs(), arrange_taxa(), filter_obs(), filter_taxa(),
mutate_obs(), sample_frac_obs(), sample_frac_taxa(), sample_n_taxa(), select_obs(),
transmute_obs()

Examples

Sample 2 rows without replacement
sample_n_obs(ex_taxmap, "info", 2)
sample_n_obs(ex_taxmap, "foods", 2)

Sample with replacement
sample_n_obs(ex_taxmap, "info", 10, replace = TRUE)

Sample some rows for often then others
sample_n_obs(ex_taxmap, "info", 3, obs_weight = n_legs)

Sample multiple datasets at once
sample_n_obs(ex_taxmap, c("info", "phylopic_ids", "foods"), 3)

sample_n_taxa Sample n taxa from [taxonomy()] or [taxmap()]

130 sample_n_taxa

Description

Randomly sample some number of taxa from a [taxonomy()] or [taxmap()] object. Weights can be
specified for taxa or the observations assigned to them. See [dplyr::sample_n()] for the inspiration
for this function.

obj$sample_n_taxa(size, taxon_weight = NULL,
obs_weight = NULL, obs_target = NULL,
use_subtaxa = TRUE, collapse_func = mean, ...)

sample_n_taxa(obj, size, taxon_weight = NULL,
obs_weight = NULL, obs_target = NULL,
use_subtaxa = TRUE, collapse_func = mean, ...)

Arguments

obj ([taxonomy()] or [taxmap()]) The object to sample from.

size (‘numeric‘ of length 1) The number of taxa to sample.

taxon_weight (‘numeric‘) Non-negative sampling weights of each taxon. If ‘obs_weight‘ is
also specified, the two weights are multiplied (after ‘obs_weight‘ for each taxon
is calculated).

obs_weight (‘numeric‘) This option only applies to [taxmap()] objects. Sampling weights of
each observation. The weights for each observation assigned to a given taxon
are supplied to ‘collapse_func‘ to get the taxon weight. If ‘use_subtaxa‘ is
‘TRUE‘ then the observations assigned to every subtaxa are also used. Any
variable name that appears in [all_names()] can be used as if it was a vector on
its own. If ‘taxon_weight‘ is also specified, the two weights are multiplied (after
‘obs_weight‘ for each observation is calculated). ‘obs_target‘ must be used with
this option.

obs_target (‘character‘ of length 1) This option only applies to [taxmap()] objects. The
name of the data set in ‘obj$data‘ that values in ‘obs_weight‘ corresponds to.
Must be used when ‘obs_weight‘ is used.

use_subtaxa (‘logical‘ or ‘numeric‘ of length 1) Affects how the ‘obs_weight‘ option is used.
If ‘TRUE‘, the weights for each taxon in an observation’s classification are mul-
tiplied to get the observation weight. If ‘FALSE‘ just the taxonomic level the
observation is assign to it considered. Positive numbers indicate the number
of ranks below the each taxon to use. ‘0‘ is equivalent to ‘FALSE‘. Negative
numbers are equivalent to ‘TRUE‘.

collapse_func (‘function‘ of length 1) If ‘taxon_weight‘ is used and ‘supertaxa‘ is ‘TRUE‘,
the weights for each taxon in an observation’s classification are supplied to ‘col-
lapse_func‘ to get the observation weight. This function should take numeric
vector and return a single number.

... Additional options are passed to [filter_taxa()].

Value

An object of type [taxonomy()] or [taxmap()]

select_obs 131

See Also

Other taxmap manipulation functions: arrange_obs(), arrange_taxa(), filter_obs(), filter_taxa(),
mutate_obs(), sample_frac_obs(), sample_frac_taxa(), sample_n_obs(), select_obs(),
transmute_obs()

Examples

Randomly sample three taxa
sample_n_taxa(ex_taxmap, 3)

Include supertaxa
sample_n_taxa(ex_taxmap, 3, supertaxa = TRUE)

Include subtaxa
sample_n_taxa(ex_taxmap, 1, subtaxa = TRUE)

Sample some taxa more often then others
sample_n_taxa(ex_taxmap, 3, supertaxa = TRUE,

obs_weight = n_legs, obs_target = "info")

select_obs Subset columns in a [taxmap()] object

Description

Subsets columns in a [taxmap()] object. Takes and returns a [taxmap()] object. Any variable name
that appears in [all_names()] can be used as if it was a vector on its own. See [dplyr::select()] for the
inspiration for this function and more information. Calling the function using the ‘obj$select_obs(...)‘
style edits "obj" in place, unlike most R functions. However, calling the function using the ‘se-
lect_obs(obj, ...)‘ imitates R’s traditional copy-on-modify semantics, so "obj" would not be changed;
instead a changed version would be returned, like most R functions.

obj$select_obs(data, ...)
select_obs(obj, data, ...)

Arguments

obj An object of type [taxmap()]

data Dataset names, indexes, or a logical vector that indicates which tables in ‘obj$data‘
to subset columns in. Multiple tables can be subset at once.

... One or more column names to return in the new object. Each can be one of two
things:

expression with unquoted column name The name of a column in the dataset
typed as if it was a variable on its own.

‘numeric‘ Indexes of columns in the dataset

132 stems

To match column names with a character vector, use ‘matches("my_col_name")‘.
To match a logical vector, convert it to a column index using ‘which‘.

target DEPRECIATED. use "data" instead.

Value

An object of type [taxmap()]

See Also

Other taxmap manipulation functions: arrange_obs(), arrange_taxa(), filter_obs(), filter_taxa(),
mutate_obs(), sample_frac_obs(), sample_frac_taxa(), sample_n_obs(), sample_n_taxa(),
transmute_obs()

Examples

Selecting a column by name
select_obs(ex_taxmap, "info", dangerous)

Selecting a column by index
select_obs(ex_taxmap, "info", 3)

Selecting a column by regular expressions
select_obs(ex_taxmap, "info", matches("^n"))

stems Get stem taxa

Description

Return the stem taxa for a [taxonomy()] or a [taxmap()] object. Stem taxa are all those from the
roots to the first taxon with more than one subtaxon.

obj$stems(subset = NULL, simplify = FALSE,
value = "taxon_indexes", exclude_leaves = FALSE)

stems(obj, subset = NULL, simplify = FALSE,
value = "taxon_indexes", exclude_leaves = FALSE)

Arguments

obj The [taxonomy()] or [taxmap()] object containing taxon information to be queried.
subset Taxon IDs, TRUE/FALSE vector, or taxon indexes to find stems for. Default:

All taxa in ‘obj‘ will be used. Any variable name that appears in [all_names()]
can be used as if it was a vector on its own.

value What data to return. This is usually the name of column in a table in ‘obj$data‘.
Any result of ‘all_names(obj)‘ can be used, but it usually only makes sense to
data that corresponds to taxa 1:1, such as [taxon_ranks()]. By default, taxon
indexes are returned.

subtaxa 133

simplify (‘logical‘) If ‘TRUE‘, then combine all the results into a single vector of unique
values.

exclude_leaves (‘logical‘) If ‘TRUE‘, the do not include taxa with no subtaxa.

Value

‘character‘

See Also

Other taxonomy indexing functions: branches(), internodes(), leaves(), roots(), subtaxa(),
supertaxa()

Examples

Return indexes of stem taxa
stems(ex_taxmap)

Return indexes for a subset of taxa
stems(ex_taxmap, subset = 2:17)

Return something besides taxon indexes
stems(ex_taxmap, value = "taxon_names")

Return a vector instead of a list
stems(ex_taxmap, value = "taxon_names", simplify = TRUE)

subtaxa Get subtaxa

Description

Return data for the subtaxa of each taxon in an [taxonomy()] or [taxmap()] object.

obj$subtaxa(subset = NULL, recursive = TRUE,
simplify = FALSE, include_input = FALSE, value = "taxon_indexes")

subtaxa(obj, subset = NULL, recursive = TRUE,
simplify = FALSE, include_input = FALSE, value = "taxon_indexes")

Arguments

obj The [taxonomy()] or [taxmap()] object containing taxon information to be queried.

subset Taxon IDs, TRUE/FALSE vector, or taxon indexes to find subtaxa for. Default:
All taxa in ‘obj‘ will be used. Any variable name that appears in [all_names()]
can be used as if it was a vector on its own.

134 subtaxa

recursive (‘logical‘ or ‘numeric‘) If ‘FALSE‘, only return the subtaxa one rank below
the target taxa. If ‘TRUE‘, return all the subtaxa of every subtaxa, etc. Positive
numbers indicate the number of ranks below the immediate subtaxa to return. ‘1‘
is equivalent to ‘FALSE‘. Negative numbers are equivalent to ‘TRUE‘. Since the
algorithm is optimized for traversing all of large trees, ‘numeric‘ values greater
than 0 for this option actually take slightly longer to compute than either TRUE
or FALSE.

simplify (‘logical‘) If ‘TRUE‘, then combine all the results into a single vector of unique
values.

include_input (‘logical‘) If ‘TRUE‘, the input taxa are included in the output

value What data to return. This is usually the name of column in a table in ‘obj$data‘.
Any result of [all_names()] can be used, but it usually only makes sense to data
that corresponds to taxa 1:1, such as [taxon_ranks()]. By default, taxon indexes
are returned.

Value

If ‘simplify = FALSE‘, then a list of vectors are returned corresponding to the ‘target‘ argument. If
‘simplify = TRUE‘, then the unique values are returned in a single vector.

See Also

Other taxonomy indexing functions: branches(), internodes(), leaves(), roots(), stems(),
supertaxa()

Examples

return the indexes for subtaxa for each taxon
subtaxa(ex_taxmap)

Only return data for some taxa using taxon indexes
subtaxa(ex_taxmap, subset = 1:3)

Only return data for some taxa using taxon ids
subtaxa(ex_taxmap, subset = c("d", "e"))

Only return data for some taxa using logical tests
subtaxa(ex_taxmap, subset = taxon_ranks == "genus")

Only return subtaxa one level below
subtaxa(ex_taxmap, recursive = FALSE)

Only return subtaxa some number of ranks below
subtaxa(ex_taxmap, recursive = 2)

Return something besides taxon indexes
subtaxa(ex_taxmap, value = "taxon_names")

subtaxa_apply 135

subtaxa_apply Apply function to subtaxa of each taxon

Description

Apply a function to the subtaxa for each taxon. This is similar to using [subtaxa()] with [lapply()]
or [sapply()].

obj$subtaxa_apply(func, subset = NULL, recursive = TRUE,
simplify = FALSE, include_input = FALSE, value = "taxon_indexes", ...)

subtaxa_apply(obj, func, subset = NULL, recursive = TRUE,
simplify = FALSE, include_input = FALSE, value = "taxon_indexes", ...)

Arguments

obj The [taxonomy()] or [taxmap()] object containing taxon information to be queried.

func (‘function‘) The function to apply.

subset Taxon IDs, TRUE/FALSE vector, or taxon indexes to use. Default: All taxa in
‘obj‘ will be used. Any variable name that appears in [all_names()] can be used
as if it was a vector on its own.

recursive (‘logical‘ or ‘numeric‘) If ‘FALSE‘, only return the subtaxa one rank below
the target taxa. If ‘TRUE‘, return all the subtaxa of every subtaxa, etc. Positive
numbers indicate the number of recursions (i.e. number of ranks below the target
taxon to return). ‘1‘ is equivalent to ‘FALSE‘. Negative numbers are equivalent
to ‘TRUE‘.

simplify (‘logical‘) If ‘TRUE‘, then combine all the results into a single vector of unique
values.

include_input (‘logical‘) If ‘TRUE‘, the input taxa are included in the output

value What data to give to the function. Any result of ‘all_names(obj)‘ can be used,
but it usually only makes sense to use data that has an associated taxon id.

... Extra arguments are passed to the function.

Examples

Count number of subtaxa in each taxon
subtaxa_apply(ex_taxmap, length)

Paste all the subtaxon names for each taxon
subtaxa_apply(ex_taxmap, value = "taxon_names",

recursive = FALSE, paste0, collapse = ", ")

136 supertaxa

supertaxa Get all supertaxa of a taxon

Description

Return data for supertaxa (i.e. all taxa the target taxa are a part of) of each taxon in a [taxonomy()]
or [taxmap()] object.

obj$supertaxa(subset = NULL, recursive = TRUE,
simplify = FALSE, include_input = FALSE,
value = "taxon_indexes", na = FALSE)

supertaxa(obj, subset = NULL, recursive = TRUE,
simplify = FALSE, include_input = FALSE,
value = "taxon_indexes", na = FALSE)

Arguments

obj The [taxonomy()] or [taxmap()] object containing taxon information to be queried.

subset Taxon IDs, TRUE/FALSE vector, or taxon indexes to find supertaxa for. Default:
All taxa in ‘obj‘ will be used. Any variable name that appears in [all_names()]
can be used as if it was a vector on its own.

recursive (‘logical‘ or ‘numeric‘) If ‘FALSE‘, only return the supertaxa one rank above the
target taxa. If ‘TRUE‘, return all the supertaxa of every supertaxa, etc. Positive
numbers indicate the number of recursions (i.e. number of ranks above the target
taxon to return). ‘1‘ is equivalent to ‘FALSE‘. Negative numbers are equivalent
to ‘TRUE‘.

simplify (‘logical‘) If ‘TRUE‘, then combine all the results into a single vector of unique
values.

include_input (‘logical‘) If ‘TRUE‘, the input taxa are included in the output

value What data to return. Any result of [all_names()] can be used, but it usually only
makes sense to use data that has an associated taxon id.

na (‘logical‘) If ‘TRUE‘, return ‘NA‘ where information is not available.

Value

If ‘simplify = FALSE‘, then a list of vectors are returned corresponding to the ‘subset‘ argument. If
‘simplify = TRUE‘, then unique values are returned in a single vector.

See Also

Other taxonomy indexing functions: branches(), internodes(), leaves(), roots(), stems(),
subtaxa()

supertaxa_apply 137

Examples

return the indexes for supertaxa for each taxon
supertaxa(ex_taxmap)

Only return data for some taxa using taxon indexes
supertaxa(ex_taxmap, subset = 1:3)

Only return data for some taxa using taxon ids
supertaxa(ex_taxmap, subset = c("d", "e"))

Only return data for some taxa using logical tests
supertaxa(ex_taxmap, subset = taxon_ranks == "species")

Only return supertaxa one level above
supertaxa(ex_taxmap, recursive = FALSE)

Only return supertaxa some number of ranks above
supertaxa(ex_taxmap, recursive = 2)

Return something besides taxon indexes
supertaxa(ex_taxmap, value = "taxon_names")

supertaxa_apply Apply function to supertaxa of each taxon

Description

Apply a function to the supertaxa for each taxon. This is similar to using [supertaxa()] with [lap-
ply()] or [sapply()].

obj$supertaxa_apply(func, subset = NULL, recursive = TRUE,
simplify = FALSE, include_input = FALSE, value = "taxon_indexes",
na = FALSE, ...)

supertaxa_apply(obj, func, subset = NULL, recursive = TRUE,
simplify = FALSE, include_input = FALSE, value = "taxon_indexes",
na = FALSE,)

Arguments

obj The [taxonomy()] or [taxmap()] object containing taxon information to be queried.
func (‘function‘) The function to apply.
subset Taxon IDs, TRUE/FALSE vector, or taxon indexes of taxa to use. Default: All

taxa in ‘obj‘ will be used. Any variable name that appears in [all_names()] can
be used as if it was a vector on its own.

recursive (‘logical‘ or ‘numeric‘) If ‘FALSE‘, only return the supertaxa one rank above the
target taxa. If ‘TRUE‘, return all the supertaxa of every supertaxa, etc. Positive
numbers indicate the number of recursions (i.e. number of ranks above the target
taxon to return). ‘1‘ is equivalent to ‘FALSE‘. Negative numbers are equivalent
to ‘TRUE‘.

138 taxa

simplify (‘logical‘) If ‘TRUE‘, then combine all the results into a single vector of unique
values.

include_input (‘logical‘) If ‘TRUE‘, the input taxa are included in the output

value What data to give to the function. Any result of ‘all_names(obj)‘ can be used,
but it usually only makes sense to use data that has an associated taxon id.

na (‘logical‘) If ‘TRUE‘, return ‘NA‘ where information is not available.

... Extra arguments are passed to the function.

Examples

Get number of supertaxa that each taxon is contained in
supertaxa_apply(ex_taxmap, length)

Get classifications for each taxon
Note; this can be done with `classifications()` easier
supertaxa_apply(ex_taxmap, paste, collapse = ";", include_input = TRUE,

value = "taxon_names")

taxa A class for multiple taxon objects

Description

Stores one or more [taxon()] objects. This is just a thin wrapper for a list of [taxon()] objects.

Usage

taxa(..., .list = NULL)

Arguments

... Any number of object of class [taxon()]

.list An alternate to the ‘...‘ input. Any number of object of class [taxon()]. Cannot
be used with ‘...‘.

Details

This is the documentation for the class called ‘taxa‘. If you are looking for the documentation for
the package as a whole: [taxa-package].

Value

An ‘R6Class‘ object of class ‘Taxon‘

taxmap 139

See Also

Other classes: hierarchies(), hierarchy(), taxmap(), taxon(), taxon_database(), taxon_id(),
taxon_name(), taxon_rank(), taxonomy()

Examples

(a <- taxon(
name = taxon_name("Poa annua"),
rank = taxon_rank("species"),
id = taxon_id(93036)

))
taxa(a, a, a)

a null set
x <- taxon(NULL)
taxa(x, x, x)

combo non-null and null
taxa(a, x, a)

taxmap Taxmap class

Description

A class designed to store a taxonomy and associated information. This class builds on the [tax-
onomy()] class. User defined data can be stored in the list ‘obj$data‘, where ‘obj‘ is a taxmap
object. Data that is associated with taxa can be manipulated in a variety of ways using functions
like [filter_taxa()] and [filter_obs()]. To associate the items of lists/vectors with taxa, name them by
[taxon_ids()]. For tables, add a column named ‘taxon_id‘ that stores [taxon_ids()].

Usage

taxmap(..., .list = NULL, data = NULL, funcs = list(), named_by_rank = FALSE)

Arguments

... Any number of object of class [hierarchy()] or character vectors.

.list An alternate to the ‘...‘ input. Any number of object of class [hierarchy()] or
character vectors in a list. Cannot be used with ‘...‘.

data A list of tables with data associated with the taxa.
funcs A named list of functions to include in the class. Referring to the names of these

in functions like [filter_taxa()] will execute the function and return the results.
If the function has at least one argument, the taxmap object is passed to it.

named_by_rank (‘TRUE‘/‘FALSE‘) If ‘TRUE‘ and the input is a list of vectors with each vector
named by ranks, include that rank info in the output object, so it can be accessed
by ‘out$taxon_ranks()‘. If ‘TRUE‘, taxa with different ranks, but the same name
and location in the taxonomy, will be considered different taxa.

140 taxmap

Details

To initialize a ‘taxmap‘ object with associated data sets, use the parsing functions [parse_tax_data()],
[lookup_tax_data()], and [extract_tax_data()].

on initialize, function sorts the taxon list based on rank (if rank information is available), see
[ranks_ref] for the reference rank names and orders

Value

An ‘R6Class‘ object of class [taxmap()]

See Also

Other classes: hierarchies(), hierarchy(), taxa(), taxon(), taxon_database(), taxon_id(),
taxon_name(), taxon_rank(), taxonomy()

Examples

The code below shows how to contruct a taxmap object from scratch.
Typically, taxmap objects would be the output of a parsing function,
not created from scratch, but this is for demostration purposes.

notoryctidae <- taxon(
name = taxon_name("Notoryctidae"),
rank = taxon_rank("family"),
id = taxon_id(4479)
)
notoryctes <- taxon(

name = taxon_name("Notoryctes"),
rank = taxon_rank("genus"),
id = taxon_id(4544)

)
typhlops <- taxon(

name = taxon_name("typhlops"),
rank = taxon_rank("species"),
id = taxon_id(93036)

)
mammalia <- taxon(

name = taxon_name("Mammalia"),
rank = taxon_rank("class"),
id = taxon_id(9681)

)
felidae <- taxon(

name = taxon_name("Felidae"),
rank = taxon_rank("family"),
id = taxon_id(9681)

)
felis <- taxon(

name = taxon_name("Felis"),
rank = taxon_rank("genus"),
id = taxon_id(9682)

)

taxmap 141

catus <- taxon(
name = taxon_name("catus"),
rank = taxon_rank("species"),
id = taxon_id(9685)

)
panthera <- taxon(

name = taxon_name("Panthera"),
rank = taxon_rank("genus"),
id = taxon_id(146712)

)
tigris <- taxon(

name = taxon_name("tigris"),
rank = taxon_rank("species"),
id = taxon_id(9696)

)
plantae <- taxon(

name = taxon_name("Plantae"),
rank = taxon_rank("kingdom"),
id = taxon_id(33090)

)
solanaceae <- taxon(

name = taxon_name("Solanaceae"),
rank = taxon_rank("family"),
id = taxon_id(4070)

)
solanum <- taxon(

name = taxon_name("Solanum"),
rank = taxon_rank("genus"),
id = taxon_id(4107)

)
lycopersicum <- taxon(

name = taxon_name("lycopersicum"),
rank = taxon_rank("species"),
id = taxon_id(49274)

)
tuberosum <- taxon(

name = taxon_name("tuberosum"),
rank = taxon_rank("species"),
id = taxon_id(4113)

)
homo <- taxon(

name = taxon_name("homo"),
rank = taxon_rank("genus"),
id = taxon_id(9605)

)
sapiens <- taxon(

name = taxon_name("sapiens"),
rank = taxon_rank("species"),
id = taxon_id(9606)

)
hominidae <- taxon(

name = taxon_name("Hominidae"),
rank = taxon_rank("family"),

142 taxmap

id = taxon_id(9604)
)
unidentified <- taxon(

name = taxon_name("unidentified")
)

tiger <- hierarchy(mammalia, felidae, panthera, tigris)
cat <- hierarchy(mammalia, felidae, felis, catus)
human <- hierarchy(mammalia, hominidae, homo, sapiens)
mole <- hierarchy(mammalia, notoryctidae, notoryctes, typhlops)
tomato <- hierarchy(plantae, solanaceae, solanum, lycopersicum)
potato <- hierarchy(plantae, solanaceae, solanum, tuberosum)
potato_partial <- hierarchy(solanaceae, solanum, tuberosum)
unidentified_animal <- hierarchy(mammalia, unidentified)
unidentified_plant <- hierarchy(plantae, unidentified)

info <- data.frame(stringsAsFactors = FALSE,
name = c("tiger", "cat", "mole", "human", "tomato", "potato"),
n_legs = c(4, 4, 4, 2, 0, 0),
dangerous = c(TRUE, FALSE, FALSE, TRUE, FALSE, FALSE))

abund <- data.frame(code = rep(c("T", "C", "M", "H"), 2),
sample_id = rep(c("A", "B"), each = 2),
count = c(1,2,5,2,6,2,4,0),
taxon_index = rep(1:4, 2))

phylopic_ids <- c("e148eabb-f138-43c6-b1e4-5cda2180485a",
"12899ba0-9923-4feb-a7f9-758c3c7d5e13",
"11b783d5-af1c-4f4e-8ab5-a51470652b47",
"9fae30cd-fb59-4a81-a39c-e1826a35f612",
"b6400f39-345a-4711-ab4f-92fd4e22cb1a",
"63604565-0406-460b-8cb8-1abe954b3f3a")

foods <- list(c("mammals", "birds"),
c("cat food", "mice"),
c("insects"),
c("Most things, but especially anything rare or expensive"),
c("light", "dirt"),
c("light", "dirt"))

reaction <- function(x) {
ifelse(x$data$info$dangerous,

paste0("Watch out! That ", x$data$info$name, " might attack!"),
paste0("No worries; its just a ", x$data$info$name, "."))

}

ex_taxmap <- taxmap(tiger, cat, mole, human, tomato, potato,
data = list(info = info,

phylopic_ids = phylopic_ids,
foods = foods,
abund = abund),

funcs = list(reaction = reaction))

taxon 143

taxon Taxon class

Description

A class used to define a single taxon. Most other classes in the taxa package include one or more
objects of this class.

Usage

taxon(name, rank = NULL, id = NULL, authority = NULL)

Arguments

name a TaxonName object [taxon_name()] or character string. if character passed in,
we’ll coerce to a TaxonName object internally, required

rank a TaxonRank object [taxon_rank()] or character string. if character passed in,
we’ll coerce to a TaxonRank object internally, required

id a TaxonId object [taxon_id()], numeric/integer, or character string. if numeric/integer/character
passed in, we’ll coerce to a TaxonId object internally, required

authority (character) a character string, optional

Details

Note that there is a special use case of this function - you can pass ‘NULL‘ as the first parameter to
get an empty ‘taxon‘ object. It makes sense to retain the original behavior where nothing passed in
to the first parameter leads to an error, and thus creating a ‘NULL‘ taxon is done very explicitly.

Value

An ‘R6Class‘ object of class ‘Taxon‘

See Also

Other classes: hierarchies(), hierarchy(), taxa(), taxmap(), taxon_database(), taxon_id(),
taxon_name(), taxon_rank(), taxonomy()

Examples

(x <- taxon(
name = taxon_name("Poa annua"),
rank = taxon_rank("species"),
id = taxon_id(93036)

))
x$name
x$rank
x$id

144 taxonomy

a null taxon object
taxon(NULL)
with all NULL objects from the other classes
taxon(

name = taxon_name(NULL),
rank = taxon_rank(NULL),
id = taxon_id(NULL)

)

taxonomy Taxonomy class

Description

Stores a taxonomy composed of [taxon()] objects organized in a tree structure. This differs from
the [hierarchies()] class in how the [taxon()] objects are stored. Unlike [hierarchies()], each taxon is
only stored once and the relationships between taxa are stored in an [edge list](https://en.wikipedia.org/wiki/Adjacency_list).

Usage

taxonomy(..., .list = NULL, named_by_rank = FALSE)

Arguments

... Any number of object of class [hierarchy()] or character vectors.

.list An alternate to the ‘...‘ input. Any number of object of class [hierarchy()] or
character vectors in a list. Cannot be used with ‘...‘.

named_by_rank (‘TRUE‘/‘FALSE‘) If ‘TRUE‘ and the input is a list of vectors with each vector
named by ranks, include that rank info in the output object, so it can be accessed
by ‘out$taxon_ranks()‘. If ‘TRUE‘, taxa with different ranks, but the same name
and location in the taxonomy, will be considered different taxa.

Value

An ‘R6Class‘ object of class ‘Taxonomy‘

See Also

Other classes: hierarchies(), hierarchy(), taxa(), taxmap(), taxon(), taxon_database(),
taxon_id(), taxon_name(), taxon_rank()

Examples

Making a taxonomy object with vectors
taxonomy(c("mammalia", "felidae", "panthera", "tigris"),

c("mammalia", "felidae", "panthera", "leo"),
c("mammalia", "felidae", "felis", "catus"))

taxonomy 145

Making a taxonomy object from scratch
Note: This information would usually come from a parsing function.
This is just for demonstration.
x <- taxon(

name = taxon_name("Notoryctidae"),
rank = taxon_rank("family"),
id = taxon_id(4479)

)
y <- taxon(

name = taxon_name("Notoryctes"),
rank = taxon_rank("genus"),
id = taxon_id(4544)

)
z <- taxon(

name = taxon_name("Notoryctes typhlops"),
rank = taxon_rank("species"),
id = taxon_id(93036)

)

a <- taxon(
name = taxon_name("Mammalia"),
rank = taxon_rank("class"),
id = taxon_id(9681)

)
b <- taxon(

name = taxon_name("Felidae"),
rank = taxon_rank("family"),
id = taxon_id(9681)

)

cc <- taxon(
name = taxon_name("Puma"),
rank = taxon_rank("genus"),
id = taxon_id(146712)

)
d <- taxon(

name = taxon_name("Puma concolor"),
rank = taxon_rank("species"),
id = taxon_id(9696)

)

m <- taxon(
name = taxon_name("Panthera"),
rank = taxon_rank("genus"),
id = taxon_id(146712)

)
n <- taxon(

name = taxon_name("Panthera tigris"),
rank = taxon_rank("species"),
id = taxon_id(9696)

)

(hier1 <- hierarchy(z, y, x, a))

146 taxonomy_table

(hier2 <- hierarchy(cc, b, a, d))
(hier3 <- hierarchy(n, m, b, a))

(hrs <- hierarchies(hier1, hier2, hier3))

ex_taxonomy <- taxonomy(hier1, hier2, hier3)

taxonomy_table Convert taxonomy info to a table

Description

Convert per-taxon information, like taxon names, to a table of taxa (rows) by ranks (columns).

Arguments

obj A taxonomy or taxmap object

subset Taxon IDs, TRUE/FALSE vector, or taxon indexes to find supertaxa for. Default:
All leaves will be used. Any variable name that appears in [all_names()] can be
used as if it was a vector on its own.

value What data to return. Default is taxon names. Any result of [all_names()] can be
used, but it usually only makes sense to use data with one value per taxon, like
taxon names.

use_ranks Which ranks to use. Must be one of the following: * ‘NULL‘ (the default): If
there is rank information, use the ranks that appear in the lineage with the most
ranks. Otherwise, assume the number of supertaxa corresponds to rank and use
placeholders for the rank column names in the output. * ‘TRUE‘: Use the ranks
that appear in the lineage with the most ranks. An error will occur if no rank
information is available. * ‘FALSE‘: Assume the number of supertaxa corre-
sponds to rank and use placeholders for the rank column names in the output.
Do not use included rank information. * ‘character‘: The names of the ranks to
use. Requires included rank information. * ‘numeric‘: The "depth" of the ranks
to use. These are equal to ‘n_supertaxa‘ + 1.

add_id_col If ‘TRUE‘, include a taxon ID column.

Value

A tibble of taxa (rows) by ranks (columns).

Examples

Make a table of taxon names
taxonomy_table(ex_taxmap)

Use a differnt value
taxonomy_table(ex_taxmap, value = "taxon_ids")

taxon_database 147

Return a subset of taxa
taxonomy_table(ex_taxmap, subset = taxon_ranks == "genus")

Use arbitrary ranks names based on depth
taxonomy_table(ex_taxmap, use_ranks = FALSE)

taxon_database Taxonomy database class

Description

Used to store information about taxonomy databases. This is typically used to store where taxon
information came from in [taxon()] objects.

Usage

taxon_database(name = NULL, url = NULL, description = NULL, id_regex = NULL)

Arguments

name (character) name of the database

url (character) url for the database

description (character) description of the database

id_regex (character) id regex

Value

An ‘R6Class‘ object of class ‘TaxonDatabase‘

See Also

[database_list]

Other classes: hierarchies(), hierarchy(), taxa(), taxmap(), taxon(), taxon_id(), taxon_name(),
taxon_rank(), taxonomy()

Examples

create a database entry
(x <- taxon_database(

"ncbi",
"http://www.ncbi.nlm.nih.gov/taxonomy",
"NCBI Taxonomy Database",
"*"

))
x$name
x$url

148 taxon_id

use pre-created database objects
database_list
database_list$ncbi

taxon_id Taxon ID class

Description

Used to store taxon IDs, either arbitrary or from a taxonomy database. This is typically used to
store taxon IDs in [taxon()] objects.

Usage

taxon_id(id, database = NULL)

Arguments

id (character/integer/numeric) a taxonomic id, required

database (database) database class object, optional

Value

An ‘R6Class‘ object of class ‘TaxonId‘

See Also

Other classes: hierarchies(), hierarchy(), taxa(), taxmap(), taxon(), taxon_database(),
taxon_name(), taxon_rank(), taxonomy()

Examples

(x <- taxon_id(12345))
x$id
x$database

(x <- taxon_id(
12345,
database_list$ncbi

))
x$id
x$database

a null taxon_name object
taxon_name(NULL)

taxon_ids 149

taxon_ids Get taxon IDs

Description

Return the taxon IDs in a [taxonomy()] or [taxmap()] object. They are in the order they appear in
the edge list.

obj$taxon_ids()
taxon_ids(obj)

Arguments

obj The [taxonomy()] or [taxmap()] object.

See Also

Other taxonomy data functions: classifications(), id_classifications(), is_branch(),
is_internode(), is_leaf(), is_root(), is_stem(), map_data(), map_data_(), n_leaves(),
n_leaves_1(), n_subtaxa(), n_subtaxa_1(), n_supertaxa(), n_supertaxa_1(), taxon_indexes(),
taxon_names(), taxon_ranks()

Examples

Return the taxon IDs for each taxon
taxon_ids(ex_taxmap)

Filter using taxon IDs
filter_taxa(ex_taxmap, ! taxon_ids %in% c("c", "d"))

taxon_indexes Get taxon indexes

Description

Return the taxon indexes in a [taxonomy()] or [taxmap()] object. They are the indexes of the edge
list rows.

obj$taxon_indexes()
taxon_indexes(obj)

Arguments

obj The [taxonomy()] or [taxmap()] object.

150 taxon_name

See Also

Other taxonomy data functions: classifications(), id_classifications(), is_branch(),
is_internode(), is_leaf(), is_root(), is_stem(), map_data(), map_data_(), n_leaves(),
n_leaves_1(), n_subtaxa(), n_subtaxa_1(), n_supertaxa(), n_supertaxa_1(), taxon_ids(),
taxon_names(), taxon_ranks()

Examples

Return the indexes for each taxon
taxon_indexes(ex_taxmap)

Use in another function (stupid example; 1:5 would work too)
filter_taxa(ex_taxmap, taxon_indexes < 5)

taxon_name Taxon name class

Description

Used to store the name of taxa. This is typically used to store where taxon names in [taxon()]
objects.

Usage

taxon_name(name, database = NULL)

Arguments

name (character) a taxonomic name. required

database (character) database class object, optional

Value

An ‘R6Class‘ object of class ‘TaxonName‘

See Also

Other classes: hierarchies(), hierarchy(), taxa(), taxmap(), taxon(), taxon_database(),
taxon_id(), taxon_rank(), taxonomy()

taxon_names 151

Examples

(poa <- taxon_name("Poa"))
(undef <- taxon_name("undefined"))
(sp1 <- taxon_name("species 1"))
(poa_annua <- taxon_name("Poa annua"))
(x <- taxon_name("Poa annua L."))

x$name
x$database

(x <- taxon_name(
"Poa annua",
database_list$ncbi

))
x$rank
x$database

a null taxon_name object
taxon_name(NULL)

taxon_names Get taxon names

Description

Return the taxon names in a [taxonomy()] or [taxmap()] object. They are in the order they appear
in the edge list.

obj$taxon_names()
taxon_names(obj)

Arguments

obj The [taxonomy()] or [taxmap()] object.

See Also

Other taxonomy data functions: classifications(), id_classifications(), is_branch(),
is_internode(), is_leaf(), is_root(), is_stem(), map_data(), map_data_(), n_leaves(),
n_leaves_1(), n_subtaxa(), n_subtaxa_1(), n_supertaxa(), n_supertaxa_1(), taxon_ids(),
taxon_indexes(), taxon_ranks()

Examples

Return the names for each taxon
taxon_names(ex_taxmap)

Filter by taxon name
filter_taxa(ex_taxmap, taxon_names == "Felidae", subtaxa = TRUE)

152 taxon_rank

taxon_rank Taxon rank class

Description

Stores the rank of a taxon. This is typically used to store where taxon information came from in
[taxon()] objects.

Usage

taxon_rank(name, database = NULL)

Arguments

name (character) rank name. required

database (character) database class object, optional

Value

An ‘R6Class‘ object of class ‘TaxonRank‘

See Also

Other classes: hierarchies(), hierarchy(), taxa(), taxmap(), taxon(), taxon_database(),
taxon_id(), taxon_name(), taxonomy()

Examples

taxon_rank("species")
taxon_rank("genus")
taxon_rank("kingdom")

(x <- taxon_rank(
"species",
database_list$ncbi

))
x$rank
x$database

a null taxon_name object
taxon_name(NULL)

taxon_ranks 153

taxon_ranks Get taxon ranks

Description

Return the taxon ranks in a [taxonomy()] or [taxmap()] object. They are in the order taxa appear in
the edge list.

obj$taxon_ranks()
taxon_ranks(obj)

Arguments

obj The [taxonomy()] or [taxmap()] object.

See Also

Other taxonomy data functions: classifications(), id_classifications(), is_branch(),
is_internode(), is_leaf(), is_root(), is_stem(), map_data(), map_data_(), n_leaves(),
n_leaves_1(), n_subtaxa(), n_subtaxa_1(), n_supertaxa(), n_supertaxa_1(), taxon_ids(),
taxon_indexes(), taxon_names()

Examples

Get ranks for each taxon
taxon_ranks(ex_taxmap)

Filter by rank
filter_taxa(ex_taxmap, taxon_ranks == "family", supertaxa = TRUE)

transmute_obs Replace columns in [taxmap()] objects

Description

Replace columns of tables in ‘obj$data‘ in [taxmap()] objects. See [dplyr::transmute()] for the inspi-
ration for this function and more information. Calling the function using the ‘obj$transmute_obs(...)‘
style edits "obj" in place, unlike most R functions. However, calling the function using the ‘trans-
mute_obs(obj, ...)‘ imitates R’s traditional copy-on-modify semantics, so "obj" would not be changed;
instead a changed version would be returned, like most R functions.

obj$transmute_obs(data, ...)
transmute_obs(obj, data, ...)

154 write_greengenes

Arguments

obj An object of type [taxmap()]

data Dataset name, index, or a logical vector that indicates which dataset in ‘obj$data‘
to use.

... One or more named columns to add. Newly created columns can be referenced
in the same function call. Any variable name that appears in [all_names()] can
be used as if it was a vector on its own.

target DEPRECIATED. use "data" instead.

Value

An object of type [taxmap()]

See Also

Other taxmap manipulation functions: arrange_obs(), arrange_taxa(), filter_obs(), filter_taxa(),
mutate_obs(), sample_frac_obs(), sample_frac_taxa(), sample_n_obs(), sample_n_taxa(),
select_obs()

Examples

Replace columns in a table with new columns
transmute_obs(ex_taxmap, "info", new_col = paste0(name, "!!!"))

write_greengenes Write an imitation of the Greengenes database

Description

Attempts to save taxonomic and sequence information of a taxmap object in the Greengenes out-
put format. If the taxmap object was created using parse_greengenes, then it should be able to
replicate the format exactly with the default settings.

Usage

write_greengenes(
obj,
tax_file = NULL,
seq_file = NULL,
tax_names = obj$get_data("taxon_names")[[1]],
ranks = obj$get_data("gg_rank")[[1]],
ids = obj$get_data("gg_id")[[1]],
sequences = obj$get_data("gg_seq")[[1]]

)

write_mothur_taxonomy 155

Arguments

obj A taxmap object

tax_file (character of length 1) The file path to save the taxonomy file.

seq_file (character of length 1) The file path to save the sequence fasta file. This is
optional.

tax_names (character named by taxon ids) The names of taxa

ranks (character named by taxon ids) The ranks of taxa

ids (character named by taxon ids) Sequence ids

sequences (character named by taxon ids) Sequences

Details

The taxonomy output file has a format like:

228054 k__Bacteria; p__Cyanobacteria; c__Synechococcophycideae; o__Synech...
844608 k__Bacteria; p__Cyanobacteria; c__Synechococcophycideae; o__Synech...
...

The optional sequence file has a format like:

>1111886
AACGAACGCTGGCGGCATGCCTAACACATGCAAGTCGAACGAGACCTTCGGGTCTAGTGGCGCACGGGTGCGTA...
>1111885
AGAGTTTGATCCTGGCTCAGAATGAACGCTGGCGGCGTGCCTAACACATGCAAGTCGTACGAGAAATCCCGAGC...
...

See Also

Other writers: make_dada2_asv_table(), make_dada2_tax_table(), write_mothur_taxonomy(),
write_rdp(), write_silva_fasta(), write_unite_general()

write_mothur_taxonomy Write an imitation of the Mothur taxonomy file

Description

Attempts to save taxonomic information of a taxmap object in the mothur ‘*.taxonomy‘ format. If
the taxmap object was created using parse_mothur_taxonomy, then it should be able to replicate
the format exactly with the default settings.

156 write_mothur_taxonomy

Usage

write_mothur_taxonomy(
obj,
file,
tax_names = obj$get_data("taxon_names")[[1]],
ids = obj$get_data("sequence_id")[[1]],
scores = NULL

)

Arguments

obj A taxmap object

file (character of length 1) The file path to save the sequence fasta file. This is
optional.

tax_names (character named by taxon ids) The names of taxa

ids (character named by taxon ids) Sequence ids

scores (numeric named by taxon ids)

Details

The output file has a format like:

AY457915 Bacteria(100);Firmicutes(99);Clostridiales(99);Johnsone...
AY457914 Bacteria(100);Firmicutes(100);Clostridiales(100);Johnso...
AY457913 Bacteria(100);Firmicutes(100);Clostridiales(100);Johnso...
AY457912 Bacteria(100);Firmicutes(99);Clostridiales(99);Johnsone...
AY457911 Bacteria(100);Firmicutes(99);Clostridiales(98);Ruminoco...

or...

AY457915 Bacteria;Firmicutes;Clostridiales;Johnsonella_et_rel.;J...
AY457914 Bacteria;Firmicutes;Clostridiales;Johnsonella_et_rel.;J...
AY457913 Bacteria;Firmicutes;Clostridiales;Johnsonella_et_rel.;J...
AY457912 Bacteria;Firmicutes;Clostridiales;Johnsonella_et_rel.;J...
AY457911 Bacteria;Firmicutes;Clostridiales;Ruminococcus_et_rel.;...

See Also

Other writers: make_dada2_asv_table(), make_dada2_tax_table(), write_greengenes(), write_rdp(),
write_silva_fasta(), write_unite_general()

write_rdp 157

write_rdp Write an imitation of the RDP FASTA database

Description

Attempts to save taxonomic and sequence information of a taxmap object in the RDP FASTA for-
mat. If the taxmap object was created using parse_rdp, then it should be able to replicate the
format exactly with the default settings.

Usage

write_rdp(
obj,
file,
tax_names = obj$get_data("taxon_names")[[1]],
ranks = obj$get_data("rdp_rank")[[1]],
ids = obj$get_data("rdp_id")[[1]],
info = obj$get_data("seq_name")[[1]],
sequences = obj$get_data("rdp_seq")[[1]]

)

Arguments

obj A taxmap object
file (character of length 1) The file path to save the sequence fasta file. This is

optional.
tax_names (character named by taxon ids) The names of taxa
ranks (character named by taxon ids) The ranks of taxa
ids (character named by taxon ids) Sequence ids
info (character named by taxon ids) Info associated with sequences. In the ex-

ample output shown here, this field corresponds to "Sparassis crispa; MBUH-
PIRJO&ILKKA94-1587/ss5"

sequences (character named by taxon ids) Sequences

Details

The output file has a format like:

>S000448483 Sparassis crispa; MBUH-PIRJO&ILKKA94-1587/ss5 Lineage=Root;rootrank;Fun...
ggattcccctagtaactgcgagtgaagcgggaagagctcaaatttaaaatctggcggcgtcctcgtcgtccgagttgtaa
tctggagaagcgacatccgcgctggaccgtgtacaagtctcttggaaaagagcgtcgtagagggtgacaatcccgtcttt
...

See Also

Other writers: make_dada2_asv_table(), make_dada2_tax_table(), write_greengenes(), write_mothur_taxonomy(),
write_silva_fasta(), write_unite_general()

158 write_silva_fasta

write_silva_fasta Write an imitation of the SILVA FASTA database

Description

Attempts to save taxonomic and sequence information of a taxmap object in the SILVA FASTA
format. If the taxmap object was created using parse_silva_fasta, then it should be able to
replicate the format exactly with the default settings.

Usage

write_silva_fasta(
obj,
file,
tax_names = obj$get_data("taxon_names")[[1]],
other_names = obj$get_data("other_name")[[1]],
ids = obj$get_data("ncbi_id")[[1]],
start = obj$get_data("start_pos")[[1]],
end = obj$get_data("end_pos")[[1]],
sequences = obj$get_data("silva_seq")[[1]]

)

Arguments

obj A taxmap object

file (character of length 1) The file path to save the sequence fasta file. This is
optional.

tax_names (character named by taxon ids) The names of taxa

other_names (character named by taxon ids) Alternate names of taxa. Will be added after
the primary name.

ids (character named by taxon ids) Sequence ids

start (character) The start position of the sequence.

end (character) The end position of the sequence.

sequences (character named by taxon ids) Sequences

Details

The output file has a format like:

>GCVF01000431.1.2369 Bacteria;Proteobacteria;Gammaproteobacteria;Oceanospiril...
CGUGCACGGUGGAUGCCUUGGCAGCCAGAGGCGAUGAAGGACGUUGUAGCCUGCGAUAAGCUCCGGUUAGGUGGCAAACA
ACCGUUUGACCCGGAGAUCUCCGAAUGGGGCAACCCACCCGUUGUAAGGCGGGUAUCACCGACUGAAUCCAUAGGUCGGU
...

write_unite_general 159

See Also

Other writers: make_dada2_asv_table(), make_dada2_tax_table(), write_greengenes(), write_mothur_taxonomy(),
write_rdp(), write_unite_general()

write_unite_general Write an imitation of the UNITE general FASTA database

Description

Attempts to save taxonomic and sequence information of a taxmap object in the UNITE general
FASTA format. If the taxmap object was created using parse_unite_general, then it should be
able to replicate the format exactly with the default settings.

Usage

write_unite_general(
obj,
file,
tax_names = obj$get_data("taxon_names")[[1]],
ranks = obj$get_data("unite_rank")[[1]],
sequences = obj$get_data("unite_seq")[[1]],
seq_name = obj$get_data("organism")[[1]],
ids = obj$get_data("unite_id")[[1]],
gb_acc = obj$get_data("acc_num")[[1]],
type = obj$get_data("unite_type")[[1]]

)

Arguments

obj A taxmap object

file (character of length 1) The file path to save the sequence fasta file. This is
optional.

tax_names (character named by taxon ids) The names of taxa

ranks (character named by taxon ids) The ranks of taxa

sequences (character named by taxon ids) Sequences

seq_name (character named by taxon ids) Name of sequences. Usually a taxon name.

ids (character named by taxon ids) UNITE sequence ids

gb_acc (character named by taxon ids) Genbank accession numbers

type (character named by taxon ids) What type of sequence it is. Usually "rep" or
"ref".

160 zero_low_counts

Details

The output file has a format like:

>Glomeromycota_sp|KJ484724|SH523877.07FU|reps|k__Fungi;p__Glomeromycota;c__unid...
ATAATTTGCCGAACCTAGCGTTAGCGCGAGGTTCTGCGATCAACACTTATATTTAAAACCCAACTCTTAAATTTTGTAT...
...

See Also

Other writers: make_dada2_asv_table(), make_dada2_tax_table(), write_greengenes(), write_mothur_taxonomy(),
write_rdp(), write_silva_fasta()

zero_low_counts Replace low counts with zero

Description

For a given table in a taxmap object, convert all counts below a minimum number to zero. This is
useful for effectively removing "singletons", "doubletons", or other low abundance counts.

Usage

zero_low_counts(
obj,
data,
min_count = 2,
use_total = FALSE,
cols = NULL,
other_cols = FALSE,
out_names = NULL,
dataset = NULL

)

Arguments

obj A taxmap object

data The name of a table in obj$data.

min_count The minimum number of counts needed for a count to remain unchanged. Any
could less than this will be converted to a zero. For example, min_count = 2
would remove singletons.

use_total If TRUE, the min_count applies to the total count for each row (e.g. OTU counts
for all samples), rather than each cell in the table. For example use_total =
TRUE, min_count = 10 would convert all counts of any row to zero if the total
for all counts in that row was less than 10.

cols The columns in data to use. By default, all numeric columns are used. Takes
one of the following inputs:

zero_low_counts 161

TRUE/FALSE: All/No columns will used.
Character vector: The names of columns to use
Numeric vector: The indexes of columns to use
Vector of TRUE/FALSE of length equal to the number of columns: Use the

columns corresponding to TRUE values.

other_cols Preserve in the output non-target columns present in the input data. New columns
will always be on the end. The "taxon_id" column will be preserved in the front.
Takes one of the following inputs:

NULL: No columns will be added back, not even the taxon id column.
TRUE/FALSE: All/None of the non-target columns will be preserved.
Character vector: The names of columns to preserve
Numeric vector: The indexes of columns to preserve
Vector of TRUE/FALSE of length equal to the number of columns: Preserve

the columns corresponding to TRUE values.

out_names The names of count columns in the output. Must be the same length and order
as cols (or unique(groups), if groups is used).

dataset DEPRECIATED. use "data" instead.

Value

A tibble

See Also

Other calculations: calc_diff_abund_deseq2(), calc_group_mean(), calc_group_median(),
calc_group_rsd(), calc_group_stat(), calc_n_samples(), calc_obs_props(), calc_prop_samples(),
calc_taxon_abund(), compare_groups(), counts_to_presence(), rarefy_obs()

Examples

Parse data for examples
x = parse_tax_data(hmp_otus, class_cols = "lineage", class_sep = ";",

class_key = c(tax_rank = "taxon_rank", tax_name = "taxon_name"),
class_regex = "^(.+)__(.+)$")

Default use
zero_low_counts(x, "tax_data")

Use only a subset of columns
zero_low_counts(x, "tax_data", cols = c("700035949", "700097855", "700100489"))
zero_low_counts(x, "tax_data", cols = 4:6)
zero_low_counts(x, "tax_data", cols = startsWith(colnames(x$data$tax_data), "70001"))

Including all other columns in ouput
zero_low_counts(x, "tax_data", other_cols = TRUE)

Inlcuding specific columns in output
zero_low_counts(x, "tax_data", cols = c("700035949", "700097855", "700100489"),

162 zero_low_counts

other_cols = 2:3)

Rename output columns
zero_low_counts(x, "tax_data", cols = c("700035949", "700097855", "700100489"),

out_names = c("a", "b", "c"))

Index

∗ NSE helpers
all_names, 5
get_data, 46

∗ accessors
get_data_frame, 47

∗ calculations
calc_diff_abund_deseq2, 11
calc_group_mean, 13
calc_group_median, 15
calc_group_rsd, 16
calc_group_stat, 18
calc_n_samples, 20
calc_obs_props, 22
calc_prop_samples, 24
compare_groups, 27
counts_to_presence, 30
rarefy_obs, 119
zero_low_counts, 160

∗ classes
hierarchies, 59
hierarchy, 59
taxa, 138
taxmap, 139
taxon, 143
taxon_database, 147
taxon_id, 148
taxon_name, 150
taxon_rank, 152
taxonomy, 144

∗ datasets
database_list, 32

∗ data
ex_hierarchies, 36
ex_hierarchy1, 36
ex_hierarchy2, 37
ex_hierarchy3, 38
ex_taxmap, 38
hmp_otus, 61
hmp_samples, 62

ranks_ref, 119
∗ hmp_data

hmp_otus, 61
hmp_samples, 62

∗ parsers
extract_tax_data, 33
lookup_tax_data, 72
parse_dada2, 95
parse_greengenes, 96
parse_mothur_tax_summary, 98
parse_mothur_taxonomy, 97
parse_newick, 99
parse_phylo, 100
parse_phyloseq, 101
parse_qiime_biom, 102
parse_rdp, 103
parse_silva_fasta, 104
parse_tax_data, 105
parse_ubiome, 109
parse_unite_general, 110

∗ sequence transformations
complement, 29
rev_comp, 124
reverse, 123

∗ taxa-datasets
ex_hierarchies, 36
ex_hierarchy1, 36
ex_hierarchy2, 37
ex_hierarchy3, 38
ex_taxmap, 38

∗ taxmap data functions
n_obs, 88
n_obs_1, 89

∗ taxmap manipulation functions
arrange_obs, 6
arrange_taxa, 7
filter_obs, 42
filter_taxa, 44
mutate_obs, 83

163

164 INDEX

sample_frac_obs, 125
sample_frac_taxa, 127
sample_n_obs, 128
sample_n_taxa, 129
select_obs, 131
transmute_obs, 153

∗ taxonomy data functions
classifications, 26
id_classifications, 62
is_branch, 65
is_internode, 66
is_leaf, 66
is_root, 67
is_stem, 68
map_data, 77
map_data_, 78
n_leaves, 86
n_leaves_1, 87
n_subtaxa, 90
n_subtaxa_1, 90
n_supertaxa, 91
n_supertaxa_1, 92
taxon_ids, 149
taxon_indexes, 149
taxon_names, 151
taxon_ranks, 153

∗ taxonomy indexing functions
branches, 9
internodes, 63
leaves, 70
roots, 124
stems, 132
subtaxa, 133
supertaxa, 136

∗ writers
make_dada2_asv_table, 75
make_dada2_tax_table, 76
write_greengenes, 154
write_mothur_taxonomy, 155
write_rdp, 157
write_silva_fasta, 158
write_unite_general, 159

all_names, 5, 47
ambiguous_synonyms, 6
arrange_obs, 6, 8, 43, 45, 84, 126, 128, 129,

131, 132, 154
arrange_taxa, 7, 7, 43, 45, 84, 126, 128, 129,

131, 132, 154

as_phyloseq, 8

branches, 9, 64, 70, 125, 133, 134, 136

calc_diff_abund_deseq2, 11, 14, 16, 18, 19,
22, 24, 26, 29, 31, 120, 161

calc_group_mean, 12, 13, 16, 18, 19, 22, 24,
26, 29, 31, 120, 161

calc_group_median, 12, 14, 15, 18, 19, 22,
24, 26, 29, 31, 120, 161

calc_group_rsd, 12, 14, 16, 16, 19, 22, 24,
26, 29, 31, 120, 161

calc_group_stat, 12, 14, 16, 18, 18, 22, 24,
26, 29, 31, 120, 161

calc_n_samples, 12, 14, 16, 18, 19, 20, 24,
26, 29, 31, 79, 120, 161

calc_obs_props, 12, 14, 16, 18, 19, 22, 22,
26, 29, 31, 79, 120, 161

calc_prop_samples, 12, 14, 16, 18, 19, 22,
24, 24, 29, 31, 120, 161

calc_taxon_abund, 12, 14, 16, 18, 19, 22, 24,
26, 29, 31, 79, 120, 161

classifications, 26, 63, 65–68, 77, 78, 87,
90–92, 149–151, 153

comp, 30, 124
compare_groups, 12, 14, 16, 18, 19, 22, 24,

26, 27, 31, 57, 58, 79, 120, 161
complement, 29, 124
counts_to_presence, 12, 14, 16, 18, 19, 22,

24, 26, 29, 30, 120, 161

data_used, 5, 47
database_list, 32
diverging_palette, 33

ex_hierarchies, 36, 37, 38
ex_hierarchy1, 36, 36, 37, 38
ex_hierarchy2, 36, 37, 37, 38
ex_hierarchy3, 36–38, 38
ex_taxmap, 36–38, 38
extract_tax_data, 33, 73, 96–101, 103–105,

107, 110, 111

filter_ambiguous_taxa, 40, 79
filter_obs, 7, 8, 42, 45, 84, 126, 128, 129,

131, 132, 154
filter_taxa, 7, 8, 40, 43, 44, 84, 126, 128,

129, 131, 132, 154
filtering-helpers, 39

INDEX 165

get_data, 5, 46
get_data_frame, 47
get_dataset, 47
ggsave, 58
graph, 69

heat_tree, 48, 58, 79
heat_tree_matrix, 11, 27, 57, 79
hierarchies, 59, 60, 139, 140, 143, 144, 147,

148, 150, 152
hierarchy, 59, 59, 139, 140, 143, 144, 147,

148, 150, 152
highlight_taxon_ids, 61
hmp_otus, 61, 62
hmp_samples, 61, 62

id_classifications, 27, 62, 65–68, 77, 78,
87, 90–92, 149–151, 153

ids (filtering-helpers), 39
internodes, 10, 63, 70, 125, 133, 134, 136
is_ambiguous, 64
is_branch, 27, 63, 65, 66–68, 77, 78, 87,

90–92, 149–151, 153
is_internode, 27, 63, 65, 66, 67, 68, 77, 78,

87, 90–92, 149–151, 153
is_leaf, 27, 63, 65, 66, 66, 67, 68, 77, 78, 87,

90–92, 149–151, 153
is_root, 27, 63, 65–67, 67, 68, 77, 78, 87,

90–92, 149–151, 153
is_stem, 27, 63, 65–67, 68, 77, 78, 87, 90–92,

149–151, 153

layout_functions, 69
leaves, 10, 64, 70, 125, 133, 134, 136
leaves_apply, 71
lfcShrink, 12
lookup_tax_data, 35, 72, 96–101, 103–105,

107, 110, 111

make_dada2_asv_table, 75, 76, 155–157,
159, 160

make_dada2_tax_table, 76, 76, 155–157,
159, 160

map_data, 27, 63, 65–68, 77, 78, 87, 90–92,
149–151, 153

map_data_, 27, 63, 65–68, 77, 78, 87, 90–92,
149–151, 153

max, 19
mean, 19

metacoder, 79
mutate_obs, 7, 8, 43, 45, 83, 126, 128, 129,

131, 132, 154

n_leaves, 27, 63, 65–68, 77, 78, 86, 87,
90–92, 149–151, 153

n_leaves_1, 27, 63, 65–68, 77, 78, 87, 87,
90–92, 149–151, 153

n_obs, 88, 89
n_obs_1, 88, 89
n_subtaxa, 27, 63, 65–68, 77, 78, 87, 90, 91,

92, 149–151, 153
n_subtaxa_1, 27, 63, 65–68, 77, 78, 87, 90,

90, 91, 92, 149–151, 153
n_supertaxa, 27, 63, 65–68, 77, 78, 87, 90,

91, 91, 92, 149–151, 153
n_supertaxa_1, 27, 63, 65–68, 77, 78, 87, 90,

91, 92, 149–151, 153
names_used, 5, 47
ncbi_taxon_sample, 80, 84
nms (filtering-helpers), 39

obs, 93
obs_apply, 94

parse_dada2, 35, 73, 75, 76, 95, 97–101,
103–105, 107, 110, 111

parse_edge_list, 35, 73, 96–101, 103–105,
107, 110, 111

parse_greengenes, 35, 73, 80, 96, 96,
98–101, 103–105, 107, 110, 111,
154

parse_mothur_tax_summary, 35, 73, 80,
96–98, 98, 100, 101, 103–105, 107,
110, 111

parse_mothur_taxonomy, 35, 73, 80, 96, 97,
97, 99–101, 103–105, 107, 110, 111,
155

parse_newick, 35, 73, 80, 96–99, 99, 100,
101, 103–105, 107, 110, 111

parse_phylo, 35, 73, 80, 96–100, 100, 101,
103–105, 107, 110, 111

parse_phyloseq, 35, 74, 80, 96–100, 101,
103–105, 107, 110, 111

parse_primersearch, 102
parse_qiime_biom, 35, 74, 80, 96–101, 102,

104, 105, 107, 110, 111
parse_rdp, 35, 74, 80, 96–101, 103, 103, 105,

107, 110, 111, 157

166 INDEX

parse_silva_fasta, 35, 74, 80, 96–101, 103,
104, 104, 107, 110, 111, 158

parse_tax_data, 35, 74, 96–101, 103–105,
105, 110, 111

parse_ubiome, 35, 74, 96–101, 103–105, 107,
109, 111

parse_unite_general, 35, 74, 80, 96–101,
103–105, 107, 110, 110, 159

primersearch, 79, 111
primersearch_raw, 112, 115
print_tree, 118

qualitative_palette, 118
quantative_palette, 119

ranks (filtering-helpers), 39
ranks_ref, 119
rarefy_obs, 12, 14, 16, 18, 19, 22, 24, 26, 29,

31, 79, 119, 161
read.FASTA, 104, 105, 111, 115, 121
read.fasta, 104, 105, 111, 115, 121
read_fasta, 104, 105, 111, 115, 121
remove_redundant_names, 122
replace_taxon_ids, 123
results, 12
rev, 123
rev_comp, 30, 124, 124
reverse, 30, 123, 124
roots, 10, 64, 70, 124, 133, 134, 136
rrarefy, 119
run_primersearch, 102

sample_frac_obs, 7, 8, 43, 45, 84, 125, 128,
129, 131, 132, 154

sample_frac_taxa, 7, 8, 43, 45, 84, 126, 127,
129, 131, 132, 154

sample_n_obs, 7, 8, 43, 45, 84, 126, 128, 128,
131, 132, 154

sample_n_taxa, 7, 8, 43, 45, 84, 126, 128,
129, 129, 132, 154

select_obs, 7, 8, 43, 45, 84, 126, 128, 129,
131, 131, 154

stems, 10, 64, 70, 125, 132, 134, 136
subtaxa, 10, 64, 70, 125, 133, 133, 136
subtaxa_apply, 135
supertaxa, 10, 64, 70, 125, 133, 134, 136
supertaxa_apply, 137

taxa, 59, 60, 138, 140, 143, 144, 147, 148,
150, 152

taxmap, 11, 13, 15–25, 28, 30, 31, 41, 50,
58–60, 64, 96–100, 104, 105,
110–112, 119, 120, 139, 139, 143,
144, 147, 148, 150, 152, 160

taxon, 59, 60, 139, 140, 143, 144, 147, 148,
150, 152

taxon_database, 59, 60, 139, 140, 143, 144,
147, 148, 150, 152

taxon_id, 59, 60, 139, 140, 143, 144, 147,
148, 150, 152

taxon_ids, 27, 63, 65–68, 77, 78, 87, 90–92,
149, 150, 151, 153

taxon_indexes, 27, 63, 65–68, 77, 78, 87,
90–92, 149, 149, 151, 153

taxon_name, 59, 60, 139, 140, 143, 144, 147,
148, 150, 152

taxon_names, 27, 63, 65–68, 77, 78, 87,
90–92, 149, 150, 151, 153

taxon_rank, 59, 60, 139, 140, 143, 144, 147,
148, 150, 152

taxon_ranks, 27, 63, 65–68, 77, 78, 87,
90–92, 149–151, 153

taxonomy, 59, 60, 139, 140, 143, 144, 147,
148, 150, 152

taxonomy_table, 146
transmute_obs, 7, 8, 43, 45, 84, 126, 128,

129, 131, 132, 153

write_greengenes, 76, 80, 154, 156, 157,
159, 160

write_mothur_taxonomy, 76, 80, 155, 155,
157, 159, 160

write_rdp, 76, 80, 155, 156, 157, 159, 160
write_silva_fasta, 76, 80, 155–157, 158,

160
write_unite_general, 76, 80, 155–157, 159,

159

zero_low_counts, 12, 14, 16, 18, 19, 22, 24,
26, 29, 31, 79, 120, 160

	all_names
	ambiguous_synonyms
	arrange_obs
	arrange_taxa
	as_phyloseq
	branches
	calc_diff_abund_deseq2
	calc_group_mean
	calc_group_median
	calc_group_rsd
	calc_group_stat
	calc_n_samples
	calc_obs_props
	calc_prop_samples
	classifications
	compare_groups
	complement
	counts_to_presence
	database_list
	diverging_palette
	extract_tax_data
	ex_hierarchies
	ex_hierarchy1
	ex_hierarchy2
	ex_hierarchy3
	ex_taxmap
	filtering-helpers
	filter_ambiguous_taxa
	filter_obs
	filter_taxa
	get_data
	get_dataset
	get_data_frame
	heat_tree
	heat_tree_matrix
	hierarchies
	hierarchy
	highlight_taxon_ids
	hmp_otus
	hmp_samples
	id_classifications
	internodes
	is_ambiguous
	is_branch
	is_internode
	is_leaf
	is_root
	is_stem
	layout_functions
	leaves
	leaves_apply
	lookup_tax_data
	make_dada2_asv_table
	make_dada2_tax_table
	map_data
	map_data_
	metacoder
	mutate_obs
	ncbi_taxon_sample
	n_leaves
	n_leaves_1
	n_obs
	n_obs_1
	n_subtaxa
	n_subtaxa_1
	n_supertaxa
	n_supertaxa_1
	obs
	obs_apply
	parse_dada2
	parse_greengenes
	parse_mothur_taxonomy
	parse_mothur_tax_summary
	parse_newick
	parse_phylo
	parse_phyloseq
	parse_primersearch
	parse_qiime_biom
	parse_rdp
	parse_silva_fasta
	parse_tax_data
	parse_ubiome
	parse_unite_general
	primersearch
	primersearch_raw
	print_tree
	qualitative_palette
	quantative_palette
	ranks_ref
	rarefy_obs
	read_fasta
	remove_redundant_names
	replace_taxon_ids
	reverse
	rev_comp
	roots
	sample_frac_obs
	sample_frac_taxa
	sample_n_obs
	sample_n_taxa
	select_obs
	stems
	subtaxa
	subtaxa_apply
	supertaxa
	supertaxa_apply
	taxa
	taxmap
	taxon
	taxonomy
	taxonomy_table
	taxon_database
	taxon_id
	taxon_ids
	taxon_indexes
	taxon_name
	taxon_names
	taxon_rank
	taxon_ranks
	transmute_obs
	write_greengenes
	write_mothur_taxonomy
	write_rdp
	write_silva_fasta
	write_unite_general
	zero_low_counts
	Index

