Package 'migration.indices'

July 22, 2025

Maintainer Gergely Daróczi <daroczig@rapporter.net></daroczig@rapporter.net>
License AGPL-3
BugReports https://github.com/daroczig/migration.indices/issues
Title Migration Indices
LazyData no
Type Package
Author Lajos Bálint <balint@demografia.hu> and Gergely Daróczi</balint@demografia.hu>
<pre><daroczig@rapporter.net></daroczig@rapporter.net></pre>
Description Calculate various indices, like Crude Migration Rate, different Gini indices or the Coefficient of Variation among others, to show the (un)equality of migration.
Version 0.3.1
Imports calibrate
<pre>URL https://github.com/daroczig/migration.indices</pre>
Date 2022-06-13
Encoding UTF-8
RoxygenNote 7.1.1
NeedsCompilation no
Repository CRAN
Date/Publication 2022-06-13 15:10:09 UTC
Contents
migration.acv 2 migration.acv.in 3 migration.acv.out 4 migration.cmr 4 migration.connectivity 5 migration.cv.in 6

2 migration.acv

migr	ation.acv Aggregated System-wide Coefficient of Variation	
Index		26
	niigiauon.wonu	23
	migration.weighted.gini.out	
	migration.weighted.gini.mean	
	migration.weighted.gini.in	
	migration.rate	21
	migration.inequality	
	migration.indices	
	migration.hyp	
	migration.gini.total	
	migration.gini.row	
	migration.gini.out	
	migration.gini.in	
	migration.gini.exchange.standardized	
	migration.gini.exchange	
	migration.gini.col.standardized	
	migration.gini.col	11
	migration.gini	
	migration.field.diagram	
	migration.effectiveness	
	migration.cv.out	7

Description

The Aggregated System-wide Coefficient of Variation is simply the sum of the Aggregated Inmigration (migration.acv.in) and the Aggregated Out-migration Coefficient of Variation (migration.acv.out).

Usage

```
migration.acv(m)
```

Arguments

m migration matrix

Value

A number where a higher $(\neq 0)$ shows more spatial focus.

References

• Andrei Rogers and Stuart Sweeney (1998) Measuring the Spatial Focus of Migration Patterns. *The Professional Geographer* **50**, 232–242

migration.acv.in 3

See Also

```
migration.cv.in migration.cv.out migration.acv.in migration.acv.out
```

Examples

```
data(migration.hyp)
migration.acv(migration.hyp) # 0.3333333
migration.acv(migration.hyp2) # 0.375
```

migration.acv.in

Aggregated In-migration Coefficient of Variation

Description

The Aggregated In-migration Coefficient of Variation is the weighted average of the In-migration Coefficient of Variation (migration.cv.in).

Usage

```
migration.acv.in(m)
```

Arguments

m

migration matrix

Value

A number where a higher $(\neq 0)$ shows more spatial focus.

References

• Andrei Rogers and Stuart Sweeney (1998) Measuring the Spatial Focus of Migration Patterns. *The Professional Geographer* **50**, 232–242

See Also

```
migration.cv.in migration.cv.out migration.acv.out migration.acv
```

```
data(migration.hyp)
migration.acv.in(migration.hyp) # 0.3333333
migration.acv.in(migration.hyp2) # 0.25
```

4 migration.cmr

migration.acv.out

Aggregated Out-migration Coefficient of Variation

Description

The Aggregated Out-migration Coefficient of Variation is the weighted average of the Out-migration Coefficient of Variation (migration.cv.out).

Usage

```
migration.acv.out(m)
```

Arguments

m

migration matrix

Value

A number where a higher $(\neq 0)$ shows more spatial focus.

References

• Andrei Rogers and Stuart Sweeney (1998) Measuring the Spatial Focus of Migration Patterns. *The Professional Geographer* **50**, 232–242

See Also

```
migration.cv.in migration.cv.out migration.acv.in migration.acv
```

Examples

```
data(migration.hyp)
migration.acv.out(migration.hyp) # 0
migration.acv.out(migration.hyp2) # 0.125
```

migration.cmr

Crude Migration Rate

Description

Crude Migration Rate

Usage

```
migration.cmr(m, PAR, k = 100)
```

migration.connectivity 5

Arguments

m migration matrix

PAR population at risk (estimated average population size)

k scaling constant (set to 100 by default to result in percentage)

Value

percentage (when k=100)

References

Philip Rees, Martin Bell, Oliver Duke-Williams and Marcus Blake (2000) Problems and Solutions in the Measurement of Migration Intensities: Australia and Britain Compared. *Population Studies* 54, 207–222

Examples

```
data(migration.world)
migration.cmr(migration.world, 6e+9)
```

migration.connectivity

Migration Connectivity Index

Description

The Migration Connectivity Index measures "the proportion of the total number of potential interregional flows which are not zero":

$$I_{MC} = \sum_{i} \sum_{j \neq i} \frac{MC_{ij}}{n(n-1)}$$

where MC_{ij} is 0 if the flow from i to j is zero and let it be 1 otherwise.

Usage

migration.connectivity(m)

Arguments

m migration matrix

Value

A number between 0 and 1 where zero shows no connections between regions.

6 migration.cv.in

References

 M. Bell, M. Blake, P. Boyle, O. Duke-Williams, P. Rees, J. Stillwell and G. Hugo (2002) Cross-National Comparison of Internal Migration. Issues and Measures. *Journal of the Royal Statistical Society. Series A (Statistics in Society)* 165, 435–464

Examples

```
data(migration.hyp)
migration.connectivity(migration.hyp)
data(migration.world)
migration.connectivity(migration.world)
```

migration.cv.in

In-migration Coefficient of Variation

Description

As "the coefficient of variation is defined as the standard deviation to mean ratio of a distribution", the In-migration Coefficient of Variation is computed by dividing the standard deviation (with the nominator being n instead of n-1) of the in-migration flows by the mean.

Usage

```
migration.cv.in(m)
```

Arguments

m

migration matrix

Value

A numeric vector of standardized values where a higher $(\neq 0)$ shows more spatial focus.

References

• Andrei Rogers and Stuart Sweeney (1998) Measuring the Spatial Focus of Migration Patterns. *The Professional Geographer* **50**, 232–242

See Also

```
migration.cv.out migration.acv.in migration.acv.out migration.acv
```

```
## Not run:
data(migration.hyp)
migration.cv.in(migration.hyp) # 0.2000000 0.5000000 0.3333333
migration.cv.in(migration.hyp2) # 0.2000000 0.0000000 0.4285714
## End(Not run)
```

migration.cv.out 7

migration.cv.out

Out-migration Coefficient of Variation

Description

As "the coefficient of variation is defined as the standard deviation to mean ratio of a distribution", the Out-migration Coefficient of Variation is computed by dividing the standard deviation (with the nominator being n instead of n-1) of the out-migration flows by the mean.

Usage

```
migration.cv.out(m)
```

Arguments

m

migration matrix

Value

A numeric vector of standardized values where a higher $(\neq 0)$ shows more spatial focus.

References

• Andrei Rogers and Stuart Sweeney (1998) Measuring the Spatial Focus of Migration Patterns. *The Professional Geographer* **50**, 232–242

See Also

```
migration.cv.in migration.acv.in migration.acv.out migration.acv
```

```
## Not run:
data(migration.hyp)
migration.cv.out(migration.hyp) # 0 0 0
migration.cv.out(migration.hyp2) # 0.00 0.25 0.00
## End(Not run)
```

migration.effectiveness

Migration Effectiveness Index

Description

The Migration Effectiveness Index "measures the degree of (a)symmetry or (dis)equilibrium in the network of interregional migration flows":

$$MEI = 100 \frac{\sum_{i} |D_{i} - O_{i}|}{\sum_{i} |D_{i} + O_{i}|}$$

where D_i is the total inflows to zone i and O_i is the total outflows from zone i.

Usage

migration.effectiveness(m)

Arguments

m

migration matrix

Value

A number between 0 and 100 where the higher number shows an efficient mechanism of population redistribution.

References

• Martin Bell and Salut Muhidin (2009) Cross-National Comparisons of Internal Migration. Research Paper. UNDP. https://hdr.undp.org/content/cross-national-comparisons-internal-migration

```
data(migration.hyp)
migration.effectiveness(migration.hyp)
data(migration.world)
migration.effectiveness(migration.world)
```

```
migration.field.diagram
```

Joint plot for in and out-migration fields

Description

This migration field diagram makes easy to visualize both direction of migration. E.g. points above the diagonal "are outward redistributors, while those below that line are inward redistributors."

Usage

```
migration.field.diagram(
   m,
   method = c("gini", "acv"),
   title = "Migration field diagram",
   xlab = "Out-migration",
   ylab = "In-migration"
)
```

Arguments

```
m migration matrix
method measurement of in and out-migration
title plot title
xlab label for x axis
ylab label for y axis
```

References

- Source code was adopted from Michael Ward and Kristian Skrede Gleditsch (2008) *Spatial Regression Models*. Thousand Oaks, CA: Sage. with the permission of the authors.
- Case study and use case: Andrei Rogers and Stuart Sweeney (1998) Measuring the Spatial Focus of Migration Patterns. *The Professional Geographer* **50**, 232–242

```
## Not run:
data(migration.world)
par(mfrow = c(2, 1))
migration.field.diagram(migration.world)
migration.field.diagram(migration.world, method = 'acv')
## End(Not run)
```

10 migration.gini

migration.gini

Spatial Gini Indexes

Description

This is a wrapper function computing all the following Gini indices:

- Total Flows Gini Index (migration.gini.total)
- Rows Gini Index (migration.gini.row)
- Standardized Rows Gini Index (migration.gini.row.standardized)
- Columns Gini Index (migration.gini.col)
- Standardized Columns Gini Index (migration.gini.col.standardized)
- Exchange Gini Index (migration.gini.exchange)
- Standardized Exchange Gini Index (migration.gini.exchange.standardized)
- Out-migration Field Gini Index (migration.gini.out)
- Migration-weighted Out-migration Gini Index (migration.weighted.gini.out)
- In-migration Field Gini Index (migration.gini.in)
- Migration-weighted In-migration Gini Index (migration.weighted.gini.in)
- Migration-weighted Mean Gini Index (migration.weighted.gini.mean)

Usage

```
migration.gini(m, corrected = TRUE)
```

Arguments

m migration matrix

corrected to use Bell et al. (2002) updated formulas instead of Plane and Mulligan (1997)

Value

List of all Gini indices.

References

- David A. Plane and Gordon F. Mulligan (1997) Measuring Spatial Focusing in a Migration System. *Demography* **34**, 251–262
- M. Bell, M. Blake, P. Boyle, O. Duke-Williams, P. Rees, J. Stillwell and G. Hugo (2002) Cross-National Comparison of Internal Migration. Issues and Measures. *Journal of the Royal Statistical Society. Series A (Statistics in Society)* **165**, 435–464

See Also

migration.gini.col migration.gini.row migration.gini.exchange migration.gini.in migration.gini.out

migration.gini.col 11

Examples

```
data(migration.hyp)
migration.gini(migration.hyp)
migration.gini(migration.hyp2)
```

migration.gini.col

Columns Gini Index

Description

The Columns Gini index concentrates on the "relative extent to which the destination selections of in-migrations are spatially focused":

$$G_R^T = \frac{\sum_j \sum_{i \neq j} \sum_{g \neq i,j} |M_{ij} - M_{gj}|}{(2n(n-1)-1) \sum_i \sum_{j \neq i} M_{ij}}$$

This implementation solves the above formula by computing the dist matrix for each columns.

Usage

```
migration.gini.col(m)
```

Arguments

m

migration matrix

Value

A number between 0 and 1 where 0 means no spatial focusing and 1 shows maximum focusing.

References

• David A. Plane and Gordon F. Mulligan (1997) Measuring Spatial Focusing in a Migration System. *Demography* **34**, 251–262

See Also

```
migration.gini.row migration.gini.col.standardized
```

```
data(migration.hyp)
migration.gini.col(migration.hyp) # 0.05555556
migration.gini.col(migration.hyp2) # 0.04166667
```

migration.gini.col.standardized

Standardized Columns Gini Index

Description

The standardized version of the Columns Gini Index (migration.gini.col) by dividing that with the Total Flows Gini Index (migration.gini.total):

$$G_C^{T*} = 100 \frac{G_C^T}{G^T}$$

As this index is standardized, it "facilitate comparisons from one period to the next" of the columns indices.

Usage

```
migration.gini.col.standardized(m, gini.total = migration.gini.total(m, FALSE))
```

Arguments

m migration matrix

gini.total optionally pass the pre-computed Total Flows Gini Index to save computational

resources

Value

A percentage range from 0% to 100% where 0% means that the migration flows are uniform, while a higher value indicates spatial focusing.

References

• David A. Plane and Gordon F. Mulligan (1997) Measuring Spatial Focusing in a Migration System. *Demography* **34**, 251–262

See Also

```
migration.gini.col migration.gini.row.standardized
```

```
data(migration.hyp)
migration.gini.col.standardized(migration.hyp) # 25
migration.gini.col.standardized(migration.hyp2) # 22.22222
```

migration.gini.exchange

Exchange Gini Index

Description

The Exchange Gini Index "indicates the contribution to spatial focusing represented by the n(n-q) net interchanges in the system":

$$G_{RC,CR}^{T} = \frac{\sum_{i} \sum_{j \neq i} |M_{ij} - M_{ji}|}{(2n(n-1) - 1) \sum_{i} \sum_{j \neq i} M_{ij}}$$

This implementation solves the above formula by simply substracting the transposed matrix's values from the original one at one go.

Usage

```
migration.gini.exchange(m)
```

Arguments

m

migration matrix

Value

A number between 0 and 1 where 0 means no spatial focusing and 1 shows maximum focusing.

References

• David A. Plane and Gordon F. Mulligan (1997) Measuring Spatial Focusing in a Migration System. *Demography* **34**, 251–262

See Also

```
migration.gini migration.gini.exchange.standardized
```

```
data(migration.hyp)
migration.gini.exchange(migration.hyp) # 0.05555556
migration.gini.exchange(migration.hyp2) # 0.04166667
```

migration.gini.exchange.standardized
Standardized Exchange Gini Index

Description

The standardized version of the Exchange Gini Index (migration.gini.exchange) by dividing that with the Total Flows Gini Index (migration.gini.total):

$$G_{RC,CR}^{T*} = 100 \frac{G_{RC,CR}^T}{G^T}$$

As this index is standardized, it "facilitate comparisons from one period to the next" of the exchange indices.

Usage

```
migration.gini.exchange.standardized(
   m,
   gini.total = migration.gini.total(m, FALSE)
)
```

Arguments

m migration matrix
gini.total optionally pass the pre-computed Total Flows Gini Index to save resources

Value

A percentage range from 0% to 100% where 0% means that the migration flows are uniform, while a higher value indicates spatial focusing.

References

 David A. Plane and Gordon F. Mulligan (1997) Measuring Spatial Focusing in a Migration System. *Demography* 34, 251–262

See Also

```
migration.gini migration.gini.exchange
```

```
data(migration.hyp)
migration.gini.exchange.standardized(migration.hyp) # 25
migration.gini.exchange.standardized(migration.hyp2) # 22.22222
```

migration.gini.in 15

migration.gini.in

In-migration Field Gini Index

Description

The In-migration Field Gini Index is a decomposed version of the Columns Gini Index (migration.gini.col) representing "the contribution of each region's columns to the total index" () (migration.gini.total):

$$G_{j}^{I} = \frac{\sum_{i \neq j} \sum_{k \neq j, i} |M_{ij} - M_{kj}|}{2(n-2) \sum_{i \neq j} M_{ij}}$$

These Gini indices facilitates the direct comparison of different territories without further standardization.

Usage

migration.gini.in(m, corrected = TRUE)

Arguments

m migration matrix

corrected

Bell et al. (2002) updated the formula of Plane and Mulligan (1997) to be 2(n-2) instead of 2(n-1) because "the number of comparisons should exclude the diagonal cell in each row and column, and the comparison of each cell with itself".

Value

A numeric vector with the range of 0 to 1 where 0 means no spatial focusing and 1 shows maximum focusing.

References

- David A. Plane and Gordon F. Mulligan (1997) Measuring Spatial Focusing in a Migration System. *Demography* 34, 251–262
- M. Bell, M. Blake, P. Boyle, O. Duke-Williams, P. Rees, J. Stillwell and G. Hugo (2002) Cross-National Comparison of Internal Migration. Issues and Measures. *Journal of the Royal Statistical Society. Series A (Statistics in Society)* 165, 435–464

See Also

migration.gini migration.gini.out migration.weighted.gini.in

16 migration.gini.out

Examples

```
data(migration.hyp)
migration.gini.in(migration.hyp) # 0.2000000 0.5000000 0.33333333
migration.gini.in(migration.hyp2) # 0.2000000 0.0000000 0.4285714
migration.gini.in(migration.hyp, FALSE) # 0.1000000 0.2500000 0.2142857
```

migration.gini.out

Out-migration Field Gini Index

Description

The Out-migration Field Gini Index is a decomposed version of the Rows Gini Index (migration.gini.row) representing "the contribution of each region's row to the total index" () (migration.gini.total):

$$G_i^O = \frac{\sum_{j \neq i} \sum_{l \neq i,j} |M_{ij} - M_{il}|}{2(n-2) \sum_{j \neq k} M_{ij}}$$

These Gini indices facilitates the direct comparison of different territories without further standardization.

Usage

```
migration.gini.out(m, corrected = TRUE)
```

Arguments

m migration matrix

corrected

Bell et al. (2002) updated the formula of Plane and Mulligan (1997) to be 2(n-2) instead of 2(n-1) because "the number of comparisons should exclude the diagonal cell in each row and column, and the comparison of each cell with itself".

Value

A numeric vector with the range of 0 to 1 where 0 means no spatial focusing and 1 shows maximum focusing.

References

- David A. Plane and Gordon F. Mulligan (1997) Measuring Spatial Focusing in a Migration System. *Demography* 34, 251–262
- M. Bell, M. Blake, P. Boyle, O. Duke-Williams, P. Rees, J. Stillwell and G. Hugo (2002) Cross-National Comparison of Internal Migration. Issues and Measures. *Journal of the Royal Statistical Society. Series A (Statistics in Society)* 165, 435–464

migration.gini.row 17

See Also

```
migration.gini migration.gini.in migration.weighted.gini.out
```

Examples

```
data(migration.hyp)
migration.gini.out(migration.hyp) # 0 0 0
migration.gini.out(migration.hyp2) # 0.000 0.25 0.000
migration.gini.out(migration.hyp, FALSE) # 0 0 0
migration.gini.out(migration.hyp2, FALSE) # 0.000 0.125 0.000
```

migration.gini.row

Rows Gini Index

Description

The Rows Gini index concentrates on the "relative extent to which the destination selections of out-migrations are spatially focused":

$$G_{R}^{T} = \frac{\sum_{i} \sum_{j \neq i} \sum_{h \neq i, j} |M_{ij} - M_{ih}|}{(2n(n-1) - 1) \sum_{i} \sum_{j \neq i} M_{ij}}$$

This implementation solves the above formula by computing the dist matrix for each row.

Usage

```
migration.gini.row(m)
```

Arguments

m

migration matrix

Value

A number between 0 and 1 where 0 means no spatial focusing and 1 shows maximum focusing.

References

• David A. Plane and Gordon F. Mulligan (1997) Measuring Spatial Focusing in a Migration System. *Demography* **34**, 251–262

See Also

```
migration.gini.col migration.gini.row.standardized
```

```
data(migration.hyp)
migration.gini.row(migration.hyp) # 0
migration.gini.row(migration.hyp2) # 0.02083333
```

migration.gini.row.standardized

Standardized Rows Gini Index

Description

The standardized version of the Rows Gini Index (migration.gini.row) by dividing that with the Total Flows Gini Index (migration.gini.total):

$$G_R^{T*} = 100 \frac{G_R^T}{G^T}$$

As this index is standardized, it "facilitate comparisons from one period to the next of the rows" indices.

Usage

```
migration.gini.row.standardized(m, gini.total = migration.gini.total(m, FALSE))
```

Arguments

m migration matrix

gini.total optionally pass the pre-computed Total Flows Gini Index to save computational

resources

Value

A percentage range from 0% to 100% where 0% means that the migration flows are uniform, while a higher value indicates spatial focusing.

References

• David A. Plane and Gordon F. Mulligan (1997) Measuring Spatial Focusing in a Migration System. *Demography* **34**, 251–262

See Also

```
migration.gini.row migration.gini.col.standardized
```

```
data(migration.hyp)
migration.gini.row.standardized(migration.hyp) # 0
migration.gini.row.standardized(migration.hyp2) # 11.11111
```

migration.gini.total 19

migration.gini.total Total Flows Gini Index

Description

The Total Gini Index shows the overall concentration of migration with a simple number computed by comparing each cell of the migration matrix with every other cell except for the diagonal:

$$G^{T} = \frac{\sum_{i} \sum_{j \neq i} \sum_{k} \sum_{l \neq k} |M_{ij} - M_{kl}|}{(2n(n-1)-1) \sum_{i} \sum_{j \neq i} M_{ij}}$$

This implementation solves the above formula by a simple loop for performance issues to compare all values to the others at one go, although smaller migration matrices could also be addressed by a much faster dist method. Please see the sources for more details.

Usage

migration.gini.total(m, corrected = TRUE)

Arguments

m migration matrix

corrected Bell et al. (2002) updated the formula of Plane and Mulligan (1997) to have

2n(n-1)-1 instead of 2n(n-1) in the denominator to "ensure that the index

can assume the upper limit of 1".

Value

A number between 0 and 1 where 0 means no spatial focusing and 1 shows that all migrants are found in one single flow.

References

- David A. Plane and Gordon F. Mulligan (1997) Measuring Spatial Focusing in a Migration System. *Demography* 34, 251–262
- M. Bell, M. Blake, P. Boyle, O. Duke-Williams, P. Rees, J. Stillwell and G. Hugo (2002) Cross-National Comparison of Internal Migration. Issues and Measures. *Journal of the Royal Statistical Society. Series A (Statistics in Society)* **165**, 435–464

See Also

migration.gini.col migration.gini.row migration.gini.exchange migration.gini.in migration.gini.out

20 migration.indices

Examples

```
data(migration.hyp)
migration.gini.total(migration.hyp)  # 0.2666667
migration.gini.total(migration.hyp2)  # 0.225
migration.gini.total(migration.hyp, FALSE)  # 0.2222222
migration.gini.total(migration.hyp2, FALSE)  # 0.1875
```

migration.hyp

Hypotetical Migration Matrix

Description

A small (3x3) hypotetical migration matrix.

Format

migration matrix

References

- David A. Plane and Gordon F. Mulligan (1997): Measuring Spatial Focusing in a Migration System. *Demography* **34**, pp. 253
- Andrei Rogers and Stuart Sweeney (1998) Measuring the Spatial Focus of Migration Patterns. *The Professional Geographer* **50**, 232–242

migration.indices

Migration indices

Description

This package provides various indices, like Crude Migration Rate, different Gini indices or the Coefficient of Variation among others, to show the (un)equality of migration.

migration.inequality 21

Description

Measures the distance from an expected distribution:

$$I_{MI} = \frac{\sum_{i} \sum_{j \neq i} |M_{ij} - M'_{ij}|}{2}$$

Usage

```
migration.inequality(m, expected = c("equal", "weighted"))
```

Arguments

m migration matrix

expected type of expected distribution

Value

A number between 0 and 1 where 1 shows greater inequality.

References

 M. Bell, M. Blake, P. Boyle, O. Duke-Williams, P. Rees, J. Stillwell and G. Hugo (2002) Cross-National Comparison of Internal Migration. Issues and Measures. *Journal of the Royal Statistical Society. Series A (Statistics in Society)* 165, 435–464

Examples

```
data(migration.hyp)
migration.inequality(migration.hyp)
migration.inequality(migration.hyp, expected = 'weighted')
data(migration.world)
migration.inequality(migration.world)
```

migration.rate

Aggregate net migration rate

Description

$$ANMR = 100 \frac{\sum_{i} |D_i - O_i|}{\sum_{i} P_i}$$

where D_i is the total inflows to zone i and O_i is the total outflows from zone i.

Usage

```
migration.rate(m, PAR)
```

Arguments

m migration matrix
PAR population at risk

References

Martin Bell and Salut Muhidin (2009) Cross-National Comparisons of Internal Migration. Research Paper. UNDP. https://hdr.undp.org/content/cross-national-comparisons-internal-migration

Examples

```
data(migration.world)
migration.rate(migration.world, 6e+9)
```

migration.weighted.gini.in

Migration-weighted In-migration Gini Index

Description

The Migration-weighted In-migration Gini Index is a weighted version of the In-migration Field Gini Index (migration.gini.in) "according to the zone of destination's share of total migration and the mean of the weighted values is computed as":

$$MWG^{I} = \frac{\sum_{j} G_{j}^{I} \frac{\sum_{j} M_{ij}}{\sum_{ij} M_{ij}}}{n}$$

Usage

```
migration.weighted.gini.in(m, mgi = migration.gini.in(m))
```

Arguments

m migration matrix

mgi optionally passed (precomputed) Migration In-migration Gini Index

References

• M. Bell, M. Blake, P. Boyle, O. Duke-Williams, P. Rees, J. Stillwell and G. Hugo (2002) Cross-National Comparison of Internal Migration. Issues and Measures. *Journal of the Royal Statistical Society. Series A (Statistics in Society)* **165**, 435–464

See Also

migration.gini migration.gini.in migration.weighted.gini.out migration.weighted.gini.mean

Examples

```
data(migration.hyp)
migration.weighted.gini.in(migration.hyp) # 0.1222222
migration.weighted.gini.in(migration.hyp2) # 0.05238095
```

migration.weighted.gini.mean

Migration-weighted Mean Gini Index

Description

The Migration-weighted Mean Gini Index is simply the average of the Migration-weighted Inmigration (migration.weighted.gini.in) and the Migration-weighted Out-migration (migration.weighted.gini.out) Gini Indices:

$$MWG^A = \frac{MWG^O + MWG^I}{2}$$

Usage

```
migration.weighted.gini.mean(m, mwgi, mwgo)
```

Arguments

m migration matrix
mwgi optionally passed (precomputed) Migration-weighted In-migration Gini Index
mwgo optionally passed (precomputed) Migration-weighted Out-migration Gini Index

Value

This combined index results in a number between 0 and 1 where 0 means no spatial focusing and 1 shows maximum focusing.

References

• M. Bell, M. Blake, P. Boyle, O. Duke-Williams, P. Rees, J. Stillwell and G. Hugo (2002) Cross-National Comparison of Internal Migration. Issues and Measures. *Journal of the Royal Statistical Society. Series A (Statistics in Society)* **165**, 435–464

See Also

migration.weighted.gini.in migration.weighted.gini.out

Examples

```
data(migration.hyp)
migration.weighted.gini.mean(migration.hyp) # 0.06111111
migration.weighted.gini.mean(migration.hyp2) # 0.03660714
```

migration.weighted.gini.out

Migration-weighted Out-migration Gini Index

Description

The Migration-weighted Out-migration Gini Index is a weighted version of the Out-migration Field Gini Index (migration.gini.out) "according to the zone of destination's share of total migration and the mean of the weighted values is computed as":

$$MWG^{O} = \frac{\sum_{i} G_{i}^{O} \frac{\sum_{j} M_{ij}}{\sum_{ij} M_{ij}}}{n}$$

Usage

```
migration.weighted.gini.out(m, mgo = migration.gini.out(m))
```

Arguments

m migration matrix

mgo optionally passed (precomputed) Migration In-migration Gini Index

References

 M. Bell, M. Blake, P. Boyle, O. Duke-Williams, P. Rees, J. Stillwell and G. Hugo (2002) Cross-National Comparison of Internal Migration. Issues and Measures. *Journal of the Royal Statistical Society. Series A (Statistics in Society)* 165, 435–464

See Also

```
migration.weighted.gini.in migration.weighted.gini.mean
migration.gini migration.gini.out migration.weighted.gini.in migration.weighted.gini.mean
```

```
data(migration.hyp)
migration.weighted.gini.out(migration.hyp) # 0
migration.weighted.gini.out(migration.hyp2) # 0.02083333
```

migration.world 25

migration.world

Global Bilateral Migration Database (2000)

Description

Global (country-to-country) matrix of bilateral migrant stocks in 2000 with 226 economies involved.

Format

migration matrix

References

• World Bank (2010): Global Bilateral Migration Database.

Index

```
* data
    migration.hyp, 20
    migration.world, 25
migration.acv, 2, 3, 4, 6, 7
migration.acv.in, 2, 3, 3, 4, 6, 7
migration.acv.out, 2, 3, 4, 6, 7
migration.cmr, 4
migration.connectivity, 5
migration.cv.in, 3, 4, 6, 7
migration.cv.out, 3, 4, 6, 7
migration.effectiveness, 8
migration.field.diagram, 9
migration.gini, 10, 13–15, 17, 23, 24
migration.gini.col, 10, 11, 12, 15, 17, 19
migration.gini.col.standardized, 10, 11,
         12, 18
migration.gini.exchange, 10, 13, 14, 19
migration.gini.exchange.standardized,
         10, 13, 14
migration.gini.in, 10, 15, 17, 19, 22, 23
migration.gini.out, 10, 15, 16, 19, 24
migration.gini.row, 10, 11, 16, 17, 18, 19
migration.gini.row.standardized, 10, 12,
         17, 18
migration.gini.total, 10, 12, 14-16, 18,
         19
migration.hyp, 20
migration.hyp2 (migration.hyp), 20
migration.indices, 20
migration.inequality, 21
migration.rate, 21
migration.weighted.gini.in, 10, 15, 22,
migration.weighted.gini.mean, 10, 23, 23,
migration.weighted.gini.out, 10, 17, 23,
        24
migration.world, 25
```