Package 'mldr.resampling'

	July 23, 2025
Title Res	sampling Algorithms for Multi-Label Datasets
Version (0.2.3
labe	on Collection of the state of the art multi- el resampling algorithms. The objective of these algorithms is to achieve balance in multi- el datasets.
License 1	MIT + file LICENSE
Encoding	UTF-8
Roxygenl	Note 7.2.3
Imports	data.table, e1071, mldr, pbapply, vecsets
Suggests	parallel
NeedsCo	mpilation no
Fran Mar <h< td=""><td>Miguel Ángel Dávila [cre], ncisco Charte [aut] (ORCID: https://orcid.org/0000-0002-3083-8942), ría José Del Jesus [aut] (ORCID: https://orcid.org/0000-0002-7891-3059>), tonio Rivera [aut] (ORCID: https://orcid.org/0000-0002-1062-3127)</td></h<>	Miguel Ángel Dávila [cre], ncisco Charte [aut] (ORCID: https://orcid.org/0000-0002-3083-8942), ría José Del Jesus [aut] (ORCID: https://orcid.org/0000-0002-7891-3059>), tonio Rivera [aut] (ORCID: https://orcid.org/0000-0002-1062-3127)
Maintain	er Miguel Ángel Dávila <madr0008@red.ujaen.es></madr0008@red.ujaen.es>
Repositor	ry CRAN
Date/Pub	olication 2023-08-22 12:20:02 UTC
Conte	nts
	adjustedHammingDist calculateDistances calculateTableVDM executeAlgorithm generateInstanceMLSOL getAllNeighbors getAllNeighbors2 getAllReverseNeighbors getC getNN

getN	umCores	 		 														 8
getS		 		 														 9
getU		 		 														 9
getV		 		 														 10
getV	7	 		 														 11
initT	ypes	 		 														 11
LPR	OS	 		 														 12
LPR	US	 		 														 12
MLe	NN	 		 														 13
MLI	RkNNOS	 		 														 14
MLI	ROS	 		 														 15
MLI	RUS	 		 														 15
MLS	SMOTE .	 		 														 16
MLS	SOL	 		 														 17
MLT	L	 		 														 18
MLU	儿	 		 														 18
news	Sample .	 		 														 19
REM	IEDIAL .	 		 														 20
resai	nple	 		 														 20
setN	umCores	 		 														 22
setPa	ırallel	 		 														 22
vdm		 		 			•		•					•				 23
Index																		24

adjustedHammingDist Auxiliary function used by MLeNN. Computes the Hamming Distance between two instances

Description

Auxiliary function used by MLeNN. Computes the Hamming Distance between two instances

Usage

```
adjustedHammingDist(x, y, D)
```

Arguments

x Index of sample 1y Index of sample 2

D mld mldr object in which the instances are located

Value

The Hamming Distance between the instances

calculateDistances 3

calculateDistances	Auxiliary function used to calculate the distances between an instance and the ones with a specific active label. Euclidean distance is calcu-
	lated for numeric attributes, and VDM for non numeric ones.

Description

Auxiliary function used to calculate the distances between an instance and the ones with a specific active label. Euclidean distance is calculated for numeric attributes, and VDM for non numeric ones.

Usage

```
calculateDistances(sample, rest, label, D, tableVDM = NULL)
```

Arguments

rest Indexes of the samples to which we will calculate the distance

label Label that must be active

D mld mldr object with the multilabel dataset to preprocess

tableVDM Dataframe object containing previous calculations for faster processing. If it is

empty, the algorithm will be slower

Value

A list with the distance to the rest of samples

calculateTableVDM	Auxiliary function used to calculate an auxiliary table to make VDM

calculation faster

Description

Auxiliary function used to calculate an auxiliary table to make VDM calculation faster

Usage

```
calculateTableVDM(D)
```

Arguments

D mld mldr object with the multilabel dataset to preprocess

Value

A dataframe with tables, useful for VDM calculation

4 executeAlgorithm

executeAlgorithm	Auxiliary function used by resample. It executes an algorithm, given as a string, and stores the resulting MLD in a arff file

Description

Auxiliary function used by resample. It executes an algorithm, given as a string, and stores the resulting MLD in a arff file

Usage

```
executeAlgorithm(
  D,
  a,
  P,
  k,
  TH,
  strategy,
  outputDirectory,
  neighbors,
  neighbors2,
  tableVDM
)
```

Arguments

D	mld mldr object with the multilabel dataset to preprocess
a	String with the name of the algorithm to be applied.
Р	Percentage in which the original dataset is increased/decreased (if required by the algorithm)
k	Number of neighbors taken into account for each instance (if required by the algorithm)
TH	Threshold for the Hamming Distance in order to consider an instance different to another one (if required by the algorithm)
strategy	Strategy for choosing the synthetic labels (if required by the algorithm). Possible values: "union", "intersection" and "ranking" (default)
outputDirectory	
	Route with the directory where the generated ARFF file will be stored
neighbors	Structure with all instances and neighbors in the dataset, useful in MLSOL and MLUL $$
neighbors2	Structure with some instances and neighbors in the dataset, useful in MLeNN and MLTL $$
tableVDM	Dataframe object containing previous calculations for faster processing. If it is empty, the algorithm will be slower

Value

Time (in seconds) taken to execute the algorithm (NULL if no algorithm was executed)

generateInstanceMLSOL Auxiliary function used by MLSOL. Creates a synthetic sample based on two other samples, taking into account their types

Description

Auxiliary function used by MLSOL. Creates a synthetic sample based on two other samples, taking into account their types

Usage

```
generateInstanceMLSOL(seedInstance, refNeigh, t, D)
```

Arguments

seedInstance Index of the sample we are using as "template"

refNeigh Index of the reference neighbor

t types of the instances

D mld mldr object with the multilabel dataset to preprocess

Value

A synthetic sample derived from the one passed as a parameter and its neighbors

getAllNeighbors Auxiliary function used by MLSOL and MLUL. Computes the kNN of every instance in a dataset

Description

Auxiliary function used by MLSOL and MLUL. Computes the kNN of every instance in a dataset

Usage

```
getAllNeighbors(D, d, tableVDM = NULL)
```

Arguments

D	mlo	ımldr	object	with the	e multilabel	dataset to	preprocess
---	-----	-------	--------	----------	--------------	------------	------------

d Vector with the instances of the dataset which have one or more label active

(ideally, all of them)

tableVDM Dataframe object containing previous calculations for faster processing. If it is

empty, the algorithm will be slower

Value

A list of vectors with the indexes of the neighbors for each instance

getAllNeighbors2	Auxiliary function used by MLeNN and MLTL. Gets the kNN of every instance in a dataset, when compared to some of the rest

Description

Auxiliary function used by MLeNN and MLTL. Gets the kNN of every instance in a dataset, when compared to some of the rest

Usage

```
getAllNeighbors2(neighbors, d, k)
```

Arguments

neighbors	Structure with all the neighbors in the dataset, regardless of which ones to be compared
d	Vector with the instances of the dataset which are going to be compared
k	Number of neighbors to be retrieved

Value

A list of vectors with the indexes of the neighbors for each instance

```
getAllReverseNeighbors
```

Auxiliary function used by MLUL. For each instance in the dataset, given the neighbors structure, we compute its reverse nearest neighbors

Description

Auxiliary function used by MLUL. For each instance in the dataset, given the neighbors structure, we compute its reverse nearest neighbors

```
getAllReverseNeighbors(d, neighbors, k)
```

getC 7

Arguments

d	Vector with the instances of the dataset which have one or more label active (ideally, all of them)
neighbors	Structure with the neighbors of every instance in the dataset
k	Number of neighbors to be considered

Value

A list of vectors with the indexes of the reverse nearest neighbors of every instance in the dataset

getC	Auxiliary function used by MLSOL and MLUL. For each instance in
	the dataset, we compute, for each label, the proportion of neighbors
	having an opposite class with respect to the proper instance

Description

Auxiliary function used by MLSOL and MLUL. For each instance in the dataset, we compute, for each label, the proportion of neighbors having an opposite class with respect to the proper instance

Usage

```
getC(D, d, neighbors, k)
```

Arguments

D	mld mldr object with the multilabel dataset to preprocess	
d	Vector with the instances of the dataset which have one or more label active (ideally, all of them)	
neighbors	Structure with the neighbors of every instance in the dataset	
k	Number of neighbors taken into account for each instance	

Value

A structure with the proportion of neighbors having an opposite class with respect to an instance and label

8 getNumCores

getNN	Auxiliary function used to compute the neighbors of an instance
-------	---

Description

Auxiliary function used to compute the neighbors of an instance

Usage

```
getNN(sample, rest, label, D, tableVDM = NULL)
```

Arguments

sample	Index of the sample whose neighbors we want to know
rest	Indexes of the samples among which we will search
label	Label that must be active, in order to calculate the distances
D	mld mldr object with the multilabel dataset to preprocess

mld mldr object with the multilabel dataset to preprocess

Dataframe object containing previous calculations for faster processing. If it is tableVDM

empty, the algorithm will be slower

Value

A vector with the indexes inside rest of the neighbors

getNumCores Get the number of cores av	ailable for parallel computing
--	--------------------------------

Description

Get the number of cores available for parallel computing

Usage

```
getNumCores()
```

Value

The number of cores available for parallel computing

Examples

```
getNumCores()
```

getS 9

getS	Auxiliary function used by MLSOL and MLUL. For non outlier instances, it aggregates the values of C, taking into account the global class imbalance

Description

Auxiliary function used by MLSOL and MLUL. For non outlier instances, it aggregates the values of C, taking into account the global class imbalance

Usage

```
getS(D, d, C, minoritary)
```

Arguments

D	mld mldr object with the multilabel dataset to preprocess
d	Vector with the instances of the dataset which have one or more label active (ideally, all of them)
С	Structure with the proportion of neighbors having an opposite class with respect to an instance and label
minoritary	Vector with the minoritary class of each label (normally, 1)

Value

A structure with the proportion of neighbors having an opposite class with respect to an instance and label, normalized by the global class imbalance

getU	Auxiliary function used by MLUL. It computes the influence of each
geto	Auxiliary function used by MLOL. It computes the influence of each
	instance with respect to its reverse neighbors

Description

Auxiliary function used by MLUL. It computes the influence of each instance with respect to its reverse neighbors

```
getU(D, d, rNeighbors, S)
```

10 getV

Arguments

D	mld mldr object with the multilabel dataset to preprocess
d	Vector with the instances of the dataset which have one or more label active (ideally, all of them)
rNeighbors	Structure with the reverse nearest neighbors of each instance of the dataset
S	Structure with the proportion of neighbors having an opposite class with respect to an instance and label, normalized by the global class imbalance

Value

A list of values of influence for each instance with respect to its reverse neighbors

getV	Auxiliary function used by MLUL. It calculates, for each instance, how important it is in the dataset

Description

Auxiliary function used by MLUL. It calculates, for each instance, how important it is in the dataset

Usage

```
getV(w, u)
```

Arguments

W	List of weights for each instance

u List of influences in reverse neighbors for each instance

Value

A list with the values of importance of each instance in the dataset

getW

getW	Auxiliary function used by MLSOL and MLUL. For non outlier in-
0	stances, it aggregates the values of S for each label

Description

Auxiliary function used by MLSOL and MLUL. For non outlier instances, it aggregates the values of S for each label

Usage

getW(S)

Arguments

S Structure with the proportion of neighbors having an opposite class with respect to an instance and label, normalized by the global class imbalance

Value

A vector of weights to be considered when oversampling for each instance

initTypes	Auxiliary function used by MLSOL. label of the dataset with a type	Categorizes each pair instance-

Description

Auxiliary function used by MLSOL. Categorizes each pair instance-label of the dataset with a type

Usage

```
initTypes(C, neighbors, k, minoritary, D, d)
```

Arguments

С	List of vectors with one value for each pair instance-label
neighbors	Structure with the k nearest neighbors of each instance of the dataset
k	Number of neighbors to be considered for each instance
minoritary	Vector with the minoritary value of each label (normally, 1)
D	mld mldr object with the multilabel dataset to preprocess
d	Vector with the instances of the dataset which have one or more label active
	(ideally, all of them)

Value

A synthetic sample derived from the one passed as a parameter and its neighbors

12 LPRUS

LPROS

Randomly clones instances with minoritary labelsets

Description

This function implements the LP-ROS algorithm. It is a preprocessing algorithm for imbalanced multilabel datasets, whose aim is to identify instances with minoritary labels, and randomly clone them.

Usage

```
LPROS(D, P)
```

Arguments

D mld mldr object with the multilabel dataset to preprocess

P Percentage in which the original dataset is increased

Value

A mld object containing the preprocessed multilabel dataset

Source

Charte, F., Rivera, A. J., del Jesus, M. J., & Herrera, F. (2015). Addressing imbalance in multilabel classification: Measures and random resampling algorithms. Neurocomputing, 163, 3-16.

Examples

```
library(mldr)
LPROS(birds, 25)
```

LPRUS

Randomly deletes instances with majoritary labelsets

Description

This function implements the LP-RUS algorithm. It is a preprocessing algorithm for imbalanced multilabel datasets, whose aim is to identify instances with majoritary labelsets, and randomly delete them from the original dataset.

```
LPRUS(D, P)
```

MLeNN 13

Arguments

D	mld mldr object with the multilabel dataset to preprocess
Р	Percentage in which the original dataset is increased

Value

A mld object containing the preprocessed multilabel dataset

Source

Charte, F., Rivera, A. J., del Jesus, M. J., & Herrera, F. (2015). Addressing imbalance in multilabel classification: Measures and random resampling algorithms. Neurocomputing, 163, 3-16.

Examples

```
library(mldr)
LPRUS(birds, 25)
```

MLeNN

Multilabel edited Nearest Neighbor (MLeNN)

Description

This function implements the MLeNN algorithm. It is a preprocessing algorithm for imbalanced multilabel datasets, whose aim is to identify instances with majoritary labels, and remove its neihgbors which are too different to them, in terms of active labels.

Usage

```
MLeNN(D, TH = 0.5, k = 3, neighbors = NULL, tableVDM = NULL)
```

Arguments

D	mld mldr object with the multilabel dataset to preprocess
TH	threshold for the Hamming Distance in order to consider an instance different to another one. Defaults to 0.5 .
k	number of nearest neighbours to check for each instance. Defaults to 3.
neighbors	Structure with instances and neighbors. If it is empty, it will be calculated by the function
tableVDM	Dataframe object containing previous calculations for faster processing. If it is empty, the algorithm will be slower

Value

An mldr object containing the preprocessed multilabel dataset

14 MLRkNNOS

Source

Francisco Charte, Antonio J. Rivera, María J. del Jesus, and Francisco Herrera. MLeNN: A First Approach to Heuristic Multilabel Undersampling. Intelligent Data Engineering and Automated Learning – IDEAL 2014. ISBN 978-3-319-10840-7.

MLRkNNOS	Reverse-nearest neighborhood based oversampling for imbalanced, multi-label datasets
	multi-label datasets

Description

This function implements an algorithm that uses the concept of reverse nearest neighbors, in order to create new instances for each label. Then, several radial SVMs, one for each label, are trained in order to predict each label of the synthetic instances.

Usage

```
MLRkNNOS(D, k, tableVDM = NULL)
```

Arguments

D	mld mldr object with the multilabel dataset to preprocess
k	Number of neighbors to be considered when creating a synthetic instance
tableVDM	Dataframe object containing previous calculations for faster processing. If it is

empty, the algorithm will be slower

Value

A mld object containing the preprocessed multilabel dataset

Source

Sadhukhan, P., & Palit, S. (2019). Reverse-nearest neighborhood based oversampling for imbalanced, multi-label datasets. Pattern Recognition Letters, 125, 813-820

MLROS 15

MLROS

Randomly clones instances with minoritary labels

Description

This function implements the ML-ROS algorithm. It is a preprocessing algorithm for imbalanced multilabel datasets, whose aim is to identify instances with minoritary labels, and randomly clone them.

Usage

```
MLROS(D, P)
```

Arguments

D mld mldr object with the multilabel dataset to preprocess

P Percentage in which the original dataset is increased

Value

A mld object containing the preprocessed multilabel dataset

Source

Charte, F., Rivera, A. J., del Jesus, M. J., & Herrera, F. (2015). Addressing imbalance in multilabel classification: Measures and random resampling algorithms. Neurocomputing, 163, 3-16.

Examples

```
library(mldr)
library(mldr.resampling)
MLROS(birds, 25)
```

MLRUS

Randomly deletes instances with majoritary labels

Description

This function implements the ML-RUS algorithm. It is a preprocessing algorithm for imbalanced multilabel datasets, whose aim is to identify instances with majoritary labels, and randomly delete them from the original dataset.

```
MLRUS(D, P)
```

16 MLSMOTE

Arguments

D	mld mldr object with the multilabel dataset to preprocess
Р	Percentage in which the original dataset is increased

Value

A mld object containing the preprocessed multilabel dataset

Source

Charte, F., Rivera, A. J., del Jesus, M. J., & Herrera, F. (2015). Addressing imbalance in multilabel classification: Measures and random resampling algorithms. Neurocomputing, 163, 3-16.

Examples

```
library(mldr)
MLRUS(birds, 25)
```

MLSMOTE

Synthetic oversampling of multilabel instances (MLSMOTE)

Description

This function implements the MLSMOTE algorithm. It is a preprocessing algorithm for imbalanced multilabel datasets, whose aim is to identify instances with minoritary labels, and generate synthetic instances based on their neighbor instances.

Usage

```
MLSMOTE(D, k, strategy = "ranking", tableVDM = NULL)
```

Arguments

D	mld mldr object with the multilabel dataset to preprocess
k	Number of neighbors to be considered when creating a synthetic instance
strategy	Strategy for choosing the synthetic labels. Possible values: "union", "intersection" and "ranking" (default)
tableVDM	Dataframe object containing previous calculations for faster processing. If it is empty, the algorithm will be slower

Value

A mld object containing the preprocessed multilabel dataset

MLSOL 17

Source

Charte, F., Rivera, A. J., del Jesus, M. J., & Herrera, F. (2015). MLSMOTE: Approaching imbalanced multilabel learning through synthetic instance generation. Knowledge-Based Systems, 89, 385-397.

MLSOL

Multi-label oversampling based on local label imbalance (MLSOL)

Description

This function implements the MLSOL algorithm. It is a preprocessing algorithm for imbalanced multilabel datasets, which applies oversampling on difficult regions of the instance space, in order to help classifiers distinguish labels.

Usage

```
MLSOL(D, P, k, neighbors = NULL, tableVDM = NULL)
```

Arguments

D	mld mldr object with the multilabel dataset to preprocess
P	Percentage in which the original dataset is increased
k	Number of neighbors to be considered when computing the neighbors of an instance
neighbors	Structure with all instances and neighbors in the dataset. If it is empty, it will be calculated by the function
tableVDM	Dataframe object containing previous calculations for faster processing. If it is empty, the algorithm will be slower

Value

A mld object containing the preprocessed multilabel dataset

Source

Liu, B., Blekas, K., & Tsoumakas, G. (2022). Multi-label sampling based on local label imbalance. Pattern Recognition, 122, 108294.

18 MLUL

MLTL	Multilabel approach for the Tomek Link undersampling algorithm (MLTL)

Description

This function implements the MLTL algorithm. It is a preprocessing algorithm for imbalanced multilabel datasets, whose aim is to identify tomek links (majoritary instances with a very different neighbor), and remove them. It's like MLeNN, with the number of neighbors being 1.

Usage

```
MLTL(D, TH, neighbors = NULL, tableVDM = NULL)
```

Arguments

D mld mldr object with the multilabel dataset to preprocess

TH threshold for the Hamming Distance in order to consider an instance different to

another one.

neighbors Structure with instances and neighbors. If it is empty, it will be calculated by

the function

tableVDM Dataframe object containing previous calculations for faster processing. If it is

empty, the algorithm will be slower

Value

An mldr object containing the preprocessed multilabel dataset

Source

Pereira, R. M., Costa, Y. M., & Silla Jr, C. N. (2020). MLTL: A multi-label approach for the Tomek Link undersampling algorithm. Neurocomputing, 383, 95-105.

MLUL Multi-label undersampling based on local label imbalance (MLUL)

Description

This function implements the MLUL algorithm. It is a preprocessing algorithm for imbalanced multilabel datasets, which applies undersampling, removing difficult instances according to their neighbors.

```
MLUL(D, P, k, neighbors = NULL, tableVDM = NULL)
```

newSample 19

Arguments

D	mld mldr object with the multilabel dataset to preprocess
Р	Percentage in which the original dataset is decreased
k	Number of neighbors to be considered when computing the neighbors of an instance
neighbors	Structure with all instances and neighbors in the dataset. If it is empty, it will be calculated by the function
tableVDM	Dataframe object containing previous calculations for faster processing. If it is empty, the algorithm will be slower

Value

A mld object containing the preprocessed multilabel dataset

Source

Liu, B., Blekas, K., & Tsoumakas, G. (2022). Multi-label sampling based on local label imbalance. Pattern Recognition, 122, 108294.

newSample	Auxiliary function used by MLSMOTE. Creates a synthetic sample based on values of attributes and labels of its neighbors
	· · · · · · · · · · · · · · · · · · ·

Description

Auxiliary function used by MLSMOTE. Creates a synthetic sample based on values of attributes and labels of its neighbors

Usage

```
newSample(seedInstance, refNeigh, neighbors, strategy, D)
```

Arguments

seedInstance	Sample we are using as "template"
refNeigh	Reference neighbor
neighbors	Neighbors to take into account
strategy	Strategy for choosing the synthetic labels: union, intersection or ranking
D	mld mldr object with the multilabel dataset to preprocess

Value

A synthetic sample derived from the one passed as a parameter and its neighbors

20 resample

REMEDIAL

Decouples highly imbalanced labels

Description

This function implements the REMEDIAL algorithm. It is a preprocessing algorithm for imbalanced multilabel datasets, whose aim is to decouple frequent and rare classes appearing in the same instance. For doing so, it aggregates new instances to the dataset and edit the labels present in them.

Usage

REMEDIAL (mld)

Arguments

mld

mldr object with the multilabel dataset to preprocess

Value

An mldr object containing the preprocessed multilabel dataset

Source

F. Charte, A. J. Rivera, M. J. del Jesus, F. Herrera. "Resampling Multilabel Datasets by Decoupling Highly Imbalanced Labels". Proc. 2015 International Conference on Hybrid Artificial Intelligent Systems (HAIS 2015), pp. 489-501, Bilbao, Spain, 2015. Implementation from the original mldr package

Examples

library(mldr)
REMEDIAL(birds)

resample

Interface function of the package. It executes one or several algorithms, given as strings, and stores the resulting MLDs in arff files

Description

Interface function of the package. It executes one or several algorithms, given as strings, and stores the resulting MLDs in arff files

resample 21

Usage

```
resample(
   D,
   algorithms,
   P = 25,
   k = 3,
   TH = 0.5,
   strategy = "ranking",
   params,
   outputDirectory = tempdir()
)
```

Arguments

D	mld mldr object with the multilabel dataset to preprocess
algorithms	String, or string vector, with the name(s) of the algorithm(s) to be applied.
P	Percentage in which the original dataset is increased/decreased, if required by the algorithm(s). Defaults to 25
k	Number of neighbors taken into account for each instance, if required by the algorithm(s). Defaults to $\boldsymbol{3}$
TH	Threshold for the Hamming Distance in order to consider an instance different to another one, if required by the algorithm(s). Defaults to 0.5
strategy	Strategy for choosing the synthetic labels, if required by the algorithm. Defaults to ranking
params	Dataframe with 4 columns: name of the algorithm, P, k and TH, in that order, to execute several algorithms with different values for their parameters
outputDirectory	
	Route with the directory where generated ARFF files will be stored. Defaults to a temporary directory

Value

Dataframe with times (in seconds) taken in to execute each algorithm

Examples

```
library(mldr)
library(mldr.resampling)
resample(birds, "LPROS", P=25)
resample(birds, c("LPROS", "LPRUS"), P=30)
```

22 setParallel

setNumCores

Set the number of cores available for parallel computing

Description

Set the number of cores available for parallel computing

Usage

```
setNumCores(n)
```

Arguments

n

The new value for the number of cores

Value

No return value, called in order to change the number of cores

Examples

```
setNumCores(8)
```

setParallel

Enable/Disable parallel computing

Description

Enable/Disable parallel computing

Usage

```
setParallel(beParallel)
```

Arguments

beParallel

A boolean indicating if parallel computing is to be enabled (TRUE) or disabled (FALSE)

Value

No return value, called in order to enable parallel computing

Examples

```
setParallel(TRUE)
```

vdm 23

vdm	Auxiliary function used to calculate the Value Difference Metric (VDM) between two instances considering their non numeric at-
	tributes

Description

Auxiliary function used to calculate the Value Difference Metric (VDM) between two instances considering their non numeric attributes

Usage

```
vdm(D, sample, y, label, tableVDM = NULL)
```

Arguments

D mld mldr object with the multilabel dataset to preprocess

sample Index of the first sample
y Index of the second sample

label Label that will be considered in calculations

tableVDM Dataframe object containing previous calculations for faster processing. If it is

empty, the algorithm will be slower

Value

A value for the distance

Index

```
{\it adjusted Hamming Dist}, {\it 2}
{\tt calculateDistances}, {\tt 3}
calculateTableVDM, 3
{\tt executeAlgorithm, 4}
generateInstanceMLSOL, 5
getAllNeighbors, 5
{\tt getAllNeighbors2, 6}
{\tt getAllReverseNeighbors}, 6
getC, 7
getNN, 8
getNumCores, 8
getS, 9
getU, 9
getV, 10
getW, 11
initTypes, 11
LPROS, 12
LPRUS, 12
MLeNN, 13
MLRkNNOS, 14
MLROS, 15
MLRUS, 15
MLSMOTE, 16
MLSOL, 17
MLTL, 18
MLUL, 18
newSample, 19
REMEDIAL, 20
resample, 20
\operatorname{setNumCores}, 22
setParallel, 22
vdm, 23
```